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1 Introduction

Many economic and social interactions are repeated: the same buyers and sellers often

trade with one another multiple times, teams of contractors regularly work for the same

procurement agencies, voters repeatedly elect representatives, to name just a few. The

central theme of this paper is the design of institutions, or contractual arrangements,

that generate “socially desirable” outcomes in settings where agents repeatedly interact

and preferences change over time.

To illustrate the type of economic problems this paper addresses, consider for ex-

ample the situation in which a buyer and a seller interact more than once. Are there

contractual arrangements that (in all equilibria) allow the seller to extract all the sur-

plus from trade? As another example, consider the case in which two (or more) agents

may work on a number of tasks that are profitable to a principal. Can we design

arrangements that (again, in all equilibria) induce the agents to work on the most

profitable tasks at each point in time, even if it is costly to them? In all these prob-

lems, an essential difficulty is the multiplicity of equilibria, including “undesirable”

equilibria, that repeated interactions make possible to sustain. The aim of the paper is

to characterize the social outcomes that are implementable; that is, those outcomes for

which there exist contractual arrangements that only yield equilibria consistent with

them.

More formally, we study the problem of repeated, full, implementation of social

choice functions in environments with complete information and a changing state of

the world. A social choice function is repeatedly implementable in Nash equilibrium if

there exists a sequence of (possibly history-dependent) mechanisms such that for any

period, for any profile of preferences at that period, the set of equilibrium outcomes

corresponds to the social choice function at that profile of preferences.

Full implementation in a static environment (i.e., with a single period) has been

extensively studied.1 The seminal contribution is Maskin (1999), which states that

Maskin monotonicity is necessary and almost sufficient for full implementation. In this

1See Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004) for recent surveys on im-
plementation theory.
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paper, we provide a condition, called dynamic monotonicity, and show that it is nec-

essary and almost sufficient for repeated Nash implementation, regardless of whether

the horizon is finite or infinite and whether the discount factor is “large” or “small.”

Dynamic monotonicity is a natural but non-trivial dynamic extension of Maskin

monotonicity. It reduces to Maskin monotonicity in single-period settings, but is weaker

in all other finitely repeated implementation problems. Thus, perhaps surprisingly,

finitely repeated implementation is “easier” to achieve than single-shot implementation.

For example, while full-surplus extraction by a seller cannot be implemented in a static

problem, it can if there are at least two periods in which the buyer and the seller interact

(see Example 1 in Section 3).

We also show that in infinitely repeated problems with patient enough agents,

dynamic monotonicity implies that the social choice function is weakly efficient from

the agents’ point of view. However, no efficiency condition is necessary in infinitely

repeated problems with impatient enough agents and in all finitely repeated problems.

For example, collusion among agents in a team can be deterred in all finite horizon

problems and in infinite horizon problems with impatient enough agents (see Example

2 in Section 3).

In a repeated implementation problem, the designer’s choice of a mechanism in

each period may depend on the agents’ actions and mechanisms in all previous pe-

riods; agents need not be playing the same stage game in each period. Intuitively,

contractual arrangements may be used to compensate an agent when he deviates be-

fore period t from a collusive strategy profile that would induce socially undesirable

outcomes from period t onwards. This possibility of inducing preemptive deviations

from future collusion facilitates implementation and is the reason why finitely repeated

implementation is easier than static implementation. Indeed, it is only when the hori-

zon is infinite and the discount factor is close to one that the gain from a future collusive

agreement dominates any preemptive punishment and only outcomes that are efficient

for the agents can be implemented. This insight is at the heart of Lee and Sabourian

(2011) work on infinitely repeated implementation problems (to be discussed shortly).

Unlike the literature on dynamic mechanism design, which has recently seen a flurry
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of papers (e.g., see the survey by Bergemann and Said, 2011), the literature on full

implementation in dynamic environments is in its infancy. Two papers have studied

repeated setting where, unlike in this paper, the state of the world does not change over

time. Kalai and Ledyard (1998) study infinitely repeated implementation in dominant

strategies; they show that every social choice function can be repeatedly implemented

starting from some (possibly distant) point in the future. Chambers (2004) studies

virtual repeated Nash implementation in continuous time.

In an important recent paper, Lee and Sabourian (2011) consider environments in

which, like in our paper, the state of the world changes over time.2 Unlike us, they focus

on infinitely repeated settings with patient agents; that is, agents with a discount factor

arbitrarily close to one. Their main result is that weak efficiency of the social choice

function relative to any other function with an equal or smaller range is necessary for

infinitely repeated implementation. Under some mild additional assumptions on the

environment, they also show that if the discount factor is larger than 1/2, then strict

efficiency in the range is sufficient for infinitely repeated implementation from period

two onwards (but the designer may fail to implement the correct outcome in the first

period).

Maskin monotonicity and weak efficiency in the range are very different conditions,

and thus it is perhaps a puzzle that the first is necessary and almost sufficient in the

static case and the second is necessary and almost sufficient in the polar case of infinite

interactions with patient enough agents. In this paper we solve this puzzle, by intro-

ducing the condition of dynamic monotonicity and showing that it is necessary and

almost sufficient in all repeated implementation problems, including the so-far unex-

plored, but clearly empirically important, case of a finite number of interactions and the

case of infinitely repeated interactions with general discount factors. In the static case,

dynamic monotonicity is equivalent to Maskin monotonicity. In infinitely repeated

problems with an arbitrarily high enough discount factor, dynamic monotonicity is es-

sentially equivalent to weak efficiency in the range. As we illustrate in Examples 1 and

2See also Renou and Tomala (2015) and Lee and Sabourian (2013) for the problem of approximate
implementation in environments with incomplete information.
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2, neither Maskin monotonicity nor an efficiency condition are necessary for repeated

implementation in general.

The paper is organized as follows. Section 2 defines the problem of repeated im-

plementation. Section 3 presents two examples motivating our investigation. Section 4

introduces the condition of dynamic monotonicity. Section 5 presents the main results

of the paper. Section 6 provides some extensions of our results and Section 7 concludes.

All proofs are in the Appendix.

2 Definitions

Single-shot Implementation. A static or single-shot implementation problem P is

a tuple 〈I, X,Θ, (ui)i∈I〉, where I = {1, . . . , I} is a set of I agents, X is the set of

alternatives – a compact subset of a finite dimensional Euclidean space, Θ is a finite

set of states of the world, and for each agent i ∈ I, ui : X×Θ→ R is a state-dependent

continuous utility function. Let Li(x, θ) = {y ∈ X : ui(x, θ) ≥ ui(y, θ)} be agent i’s

lower contour set of x at state θ. A social choice function (henceforth, scf) f : Θ→ X

associates with each state of the world θ the alternative f(θ) ∈ X.

A static mechanism G is a pair 〈(MG
i )i∈I , g〉 with MG

i the set of messages of agent i,

and g : ×i∈IMG
i → X the allocation rule. Let MG = ×j∈IMG

j and MG
−i = ×j∈I\{i}MG

j ,

with m and m−i generic elements. The mechanism 〈MG, g〉 and the state θ induce the

strategic-form game G(θ) = 〈I, (ui(g(·), θ),MG
i )i∈I〉. Let NEG(θ) ⊆ X be the set

of (pure) Nash equilibrium outcomes of the game G (θ). The social choice function f

is single-shot implementable in Nash equilibrium if there exists a static mechanism G

such that NEG (θ) = {f (θ)} for all θ ∈ Θ.

A necessary and almost sufficient condition for static Nash implementation is Maskin

monotonicity. In Definition 1, we present two equivalent, slightly unusual, formulations

of Maskin monotonicity, as they foreshadow and will help understanding our definition

of dynamic monotonicity. Call any map π : Θ→ Θ a (static) deception and let Π1 be

the set of static deceptions. The interpretation is that when the state is θ, agents act

as if the state were π (θ) instead.
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Definition 1 A social choice function f is Maskin monotonic when it satisfies
(
MA
)

or, equivalently,
(
MB
)
.

(
MA
)
. For all π ∈ Π1, for all θ ∈ Θ,

[
∀i ∈ I, Li(f(π(θ)), π(θ)) ⊆ Li(f(π(θ)), θ)

]
⇒
[
f(π(θ)) = f(θ)

]
.

(
MB
)
. For all π ∈ Π1, for all θ ∈ Θ,

[
f(π(θ)) 6= f(θ)

]
⇒[

∃ (i ∈ I, x ∈ X) : ui(f (π(θ)) , π(θ))−ui(x, π(θ)) ≥ 0 > ui(f (π(θ)) , θ)−ui(x, θ)
]
.

The intuition for the necessity of Maskin monotonicity is simple. Suppose that

f is implementable and let π be a deception. At state π(θ), there must exist an

equilibrium m∗ that implements f(π(θ)). However, if f(π(θ)) 6= f(θ), m∗ should not be

an equilibrium at state θ, so that at least one agent must have a profitable deviation;

that is, he must have a unilateral deviation from m∗ that induces an alternative x

strictly preferred to f(π(θ)) at state θ. And since m∗ is an equilibrium at state π(θ),

the deviation cannot be profitable at π(θ); that is, f(π(θ)) is preferred to x at state

π(θ). Condition (MB) precisely captures this intuition.

Repeated Implementation. A repeated implementation problem, denoted PT , rep-

resents the T -time repetition of the implementation problem P ; T can be finite or

infinite. At the beginning of each period t ∈ T = {1, . . . , T}, the state of the world is

drawn from Θ with probability mass function p, with p(θ) > 0 for all θ ∈ Θ. In each

period, the realized state is commonly observed by all agents, but not the designer.

Let (x(t, θ))t∈T ,θ∈Θ be a sequence of alternatives, where x(t, θ) is the alternative

implemented in state θ at period t. An agent’s expected payoff over sequences of

alternatives is given by the discounted criterion; that is, there exists δ ∈ (0, 1) such
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that the payoff of agent i from (x(t, θ))t∈T ,θ∈Θ is given by:3

Ui((x(t, θ))t∈T ,θ∈Θ) =
1− δ

1− δT
∑
t∈T

∑
θ∈Θ

δt−1ui(x(t, θ), θ)p(θ).

The aim of the designer is to repeatedly implement a social choice function f . A

dynamic mechanism regime specifies a mechanism in each period t, contingent on the

profile of mechanisms offered and messages played up to period t (excluding period

t). A designer history htD is a sequence of mechanisms and corresponding messages

(G1,m1, . . . , Gτ ,mτ , . . . , Gt−1,mt−1) such that Gτ is the mechanism adopted at period

τ and mτ ∈ MGτ is the corresponding message profile, for all τ < t. The set of all

possible histories observed by the designer at period t is denoted Ht
D. The set of

initial histories H1
D is the singleton {∅} and the set of all possible designer histories is

HD = ∪Tt=1Ht
D.

A dynamic mechanism regime, or regime for short, specifies a lottery over static

mechanisms as a function of the designer history. We write r (G;htD) for the probability

that mechanism G is chosen after history htD.4

We assume perfect monitoring.5 At the beginning of period t, each agent knows the

entire profile of mechanisms chosen up to period t − 1, the entire profile of messages

sent up to period t − 1, the entire profile of states of the world realized up to period

t − 1, the period t’s mechanism selected as well as the realized state of the world for

period t. Write θt = (θ1, ..., θt−1) for a profile of realized states of the world up to

period t−1. A history for agent i is thus ht = (htD, θ
t). Let Ht be the set of all possible

t-period agent histories and H = ∪Tt=1Ht be the set of all such histories. The only

possible initial history is the empty set: H1 = {∅}.

A pure strategy si for agent i specifies a message in each period t as a function of

3When computing payoffs starting from any period t, we use the normalizing factor 1−δ
1−δT−t+1 , so

that the discounted payoff from t is measured on the same scale as the single-shot payoff.
4We assume that, for each htD, r (·;htD) has finite support.
5In other words, we assume that the designer truthfully and publicly reveals all his information

(i.e., messages received, alternative implemented, and mechanism selected) at each period. In a more
general model, the communication policy would also be part of the design problem, i.e., the designer
would also choose how much to reveal to the agents in each period. Clearly, this can only enlarge the
set of implementable social choice functions.
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the history ht, the mechanism Gt currently selected and the current state θt; that is,

si(h
t, Gt, θt) ∈ MGt

i for all (ht, Gt, θt). Let s = (s1, . . . , sI) be a strategy profile. The

strategy profile s, the random draw of a state in each period, and the regime r generate

a random sequence of histories ht.

Given a regime r, we write q(ht; s) for the probability that history ht occurs when

the strategy profile is s. Throughout, we slightly abuse notation and write r(Gt;h
t)

for r(Gt;h
t
D) for any ht = (htD, θ

t). The expected payoff of agent i when the profile of

strategies is s is:

Ui (s) =
1− δ

1− δT
∑
t∈T

∑
ht∈Ht

∑
Gt∈G

∑
θt∈Θ

δt−1ui(g
(
s
(
ht, Gt, θt

))
, θt)q

(
ht; s

)
r
(
Gt;h

t
)
p(θt).

A profile of pure strategies s∗ = (s∗i , s
∗
−i) is a pure Nash equilibrium of the dynamic

game induced by regime r if Ui(s
∗) ≥ Ui(si, s

∗
−i) for all strategies si, for all agents i ∈ I

(where s∗−i denotes the strategy profile of agent i’s opponents).

Definition 2 A social choice function f is repeatedly implementable if there exists a

dynamic mechanism regime r such that (i) there exists a Nash equilibrium s∗ of the

dynamic game induced by r and (ii) for each Nash equilibrium s induced by r, we have

g (s (ht, Gt, θt)) = f (θt) for all θt ∈ Θ, for all (ht, Gt) such that q (ht; s) > 0 and

r (Gt;h
t) > 0, for all t ∈ T .

Intuitively, a social choice function is repeatedly implementable if we can construct

a dynamic mechanism whose unique equilibrium outcome is f(θ) in all periods where

the state is θ. As it is customary in the literature, Definition 2 does not rule out mixed

strategy equilibria with outcome realizations different from f(θ). In Section 6 we will

show that it is possible to rule out such undesirable mixed strategy equilibria.

We end this section with three notions of efficiency of an scf. The expected payoff

of agent i when f is repeatedly implemented is vfi =
∑

θ∈Θ ui(f(θ), θ)p(θ). Let F(f) =

{f ′ : Θ→ X : f ′(Θ) ⊆ f(Θ)} be the set of social choice functions with a range (weakly)

smaller than f , V (f) = {(vi)i∈I : vi = vf
′

i for all i ∈ I, for some f ′ ∈ F(f)} be the

associated (expected) payoff profiles, and co(V (f)) be the convex hull of V (f).
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The social choice function f is weakly efficient in the range if there does not exist

a payoff profile (vi)i∈I ∈ co(V (f)) such that vi > vfi for all i ∈ I; f is efficient in the

range if there does not exist a payoff profile (vi)i∈I ∈ co(V (f)) such that vi ≥ vfi for

all i ∈ I and vi > vfi for some i ∈ I; f is strictly efficient in the range if it is efficient

in the range and there exists no f ′ ∈ F(f) , f ′ 6= f , such that vf
′

i = vfi for all i ∈ I.6

3 Two Examples

This section illustrates repeated implementation with the help of two simple examples.

Example 1: Trading a Good. This is a multi-period variation of the leading example

of Aghion et al. (2012), which they attribute to Hart and Moore (2003).

There are two periods, t = 1, 2, a buyer B and a seller S. In each period, the seller

has a good for sale; the quality θ of the good is independently drawn in each period

and equally likely to be θL = 10 or θH = 14. The buyer and the seller have a common

discount factor δ and observe the good’s quality at the beginning of each period.

As in Aghion et al., payments to and from a third party are allowed. Hence, the

set of outcomes X is the set of triplets (z, pB, pS) with z ∈ {0, 1} representing whether

the good is traded (z = 1) or not (z = 0), pB ∈ P representing the price paid by the

buyer, and pS ∈ P representing the price paid to the seller, where P is a (arbitrarily

large) closed interval in R. For any outcome (z, pB, pS), the (per-period) buyer’s utility

is u(zθ − pB) when the good quality is θ, with u(0) = 0 and u a strictly increasing,

strictly concave function. The seller’s utility is pS.

We want to implement the efficient allocation prescribing that in each period the

good is traded and the buyer pays the seller the true quality, pB = pS = θ; that is,

the scf we want to implement is: f (θL) = (1, 10, 10) and f (θH) = (1, 14, 14).7 Since

f is not Maskin monotonic, it cannot be implemented in Nash equilibrium in a static

setting.8

6Efficiency and strict efficiency in the range were first defined by Lee and Sabourian (2011).
7Note that if u′(0) = 1, then this allocation also maximizes total surplus.
8Formally, we have that LB(f(θL), θL) = {(z, pB , pS) : u(0) ≥ u(zθL−pB)} ⊆ {(z, pB , pS) : u(4) ≥

u(zθH − pB)} = LB(f(θL), θH), while LS(f(θL), θL) = LS(f(θL), θH). Since f(θL) 6= f(θH), we have
a violation of Maskin monotonicity.
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We now present a simple dynamic mechanism that repeatedly implements f in

Nash equilibrium. In the first period, the buyer and the seller report a message in

{θL, NθL, NθH , θH}. We interpret the report θk as stating that “the quality is θk.” The

reports Nθk are objections that lead to different first-period allocations and second-

period mechanisms than announcing either θH or θL. In the second period, the buyer

and the seller have the opportunity to make an additional report in {θL, θH} if and

only if they have reported the same quality in the first period. In all other cases, the

second period allocation is chosen without requiring buyer and seller to make reports.

Table 1 gives the allocation rule in the first period along with the regime.

Seller

Buyer

θL NθL NθH θH

θL
(1, 10, 10) (1, 10, 10) (0,1,1) (0,1,1)
↪→ G2 ↪→ (1, 11, 11) ↪→ (0, 0, 0) ↪→ (0, 0, 0)

NθL
(1, 14, 10) (1, 14, 14) (1,0,0) (0,1,1)
↪→ (0,−y, 0) ↪→ (1, 14, 14) ↪→ (1, 0, 0) ↪→ (0, 0, 0)

NθH
(0, 1, 1) (1, 0, 0) (1,14,14) (1,14,10)

↪→ (0, 0, 0) ↪→ (1, 0, 0) ↪→ (1, 14, 14) ↪→ (0, 0, 0)

θH
(0, 1, 1) (0, 1, 1) (1,14,14) (1,14,14)

↪→ (0, 0, 0) ↪→ (0, 0, 0) ↪→ (1, 11, 11) ↪→ G2

Table 1: The first-period allocation and the transition↪→ to the second period allocation
or game played in Example 1.

Table 1 has 16 cells, one for each possible report profile in the first period; the

row (resp., column) report is the buyer (resp., seller) report. Each cell has two ele-

ments. The top element gives the first-period allocation, while the bottom element

(indicated with the symbol ↪→) gives the transition to the second-period mechanism.

For instance, if the buyer reports θL and the seller NθL, the first-period allocation is

(1, 10, 10), while the second-period mechanism implements (1, 11, 11) and requires no

second-period reports. When the buyer and the seller report the same quality in the

first period, the second-period mechanism is G2, given in Table 2:9

We claim that whenever y is chosen so that −u(−4) > δu(y) > u(4), the unique

9On the equilibrium path, mechanism G2 guarantees that trade takes place in the second period
and the expected price is 12 for both the buyer and the seller.
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θL θH
θL (1, 10, 10) (0, 0, 0)
θH (0, 0, 0) (1, 14, 14)

Table 2: The second-period mechanism G2 in Example 1.

pure strategy equilibrium implements the efficient allocation in both periods.10 This

is verified in the Appendix, which presents the two reduced strategic-form games that

are obtained by conditioning on the first-period quality.11

A notable feature of our mechanism is that it provides at least one agent with the

incentive to deviate early (at t = 1) from future (at t = 2) coordination on undesirable

equilibria (coordinating on announcing θL when the good’s quality is θH). It is precisely

the ability to provide such incentives in a dynamic setting that allows the repeated Nash

implementation of social choice functions, like the one in this example, that are not

implementable in a static setting.

Example 2: Task Assignment. In each of a possibly infinite number of periods,

a principal needs to assign two agents (experts), 1 and 2, to one of two tasks, A and

B. There are two states of the world, θ ∈ {θA, θB}. The agents know the state of

the world, but not the principal. In state θA (resp., θB), task A (resp., B) yields the

principal a benefit v greater than the cost to undertake it, while the other task yields

zero benefit and cost. An allocation is a quadruplet (a1, a2, w1, w2), with ai ∈ {A,B}

the assignment of agent i ∈ {1, 2} and wi ≥ 0 his wage. When the state is θ, the

assignment is (ai, a−i) and the wage wi, agent i’s payoff is wi − ci(ai, a−i, θ), where

ci(ai, a−i, θ) is agent i’s cost of executing task ai when the other agent is assigned

to task a−i, at state θ. There are complementarities: the more agents work on a

task, the less costly it is: ci(ai, a−i, θ) = 1 if (ai, a−i, θ) = (A,A, θA) = (B,B, θB),

ci(ai, a−i, θ) = 3 if (ai, a−i, θ) = (A,B, θA) = (B,A, θB) and the cost is zero otherwise;

in addition, v is sufficiently large, e.g., v > 4, so that it is profitable for the principal

to induce the agents to work on the right task.

10The existence of y follows from observing that u(4) + u(−4) < 0, since u is strictly concave and
u(0) = 0.

11As we argue in Section 6, undesirable mixed strategy equilibria could also be ruled out, at the
cost of introducing a more complicated mechanism.
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The principal wants to maximize his ex-post profit in each period, subject to giving

the agents at least their per-period outside option payoff, which we normalize to zero.

This corresponds to the scf f(θA) = (A,A, 1, 1) and f(θB) = (B,B, 1, 1). Note that f

maximizes social surplus in each period and state.

The scf f is Maskin monotonic, but it is not efficient relative to social choice func-

tions having (weakly) smaller ranges. For instance, the function f ∗ (θA) = (B,B, 1, 1),

f ∗(θB) = (A,A, 1, 1), with agents being paid to work on the unprofitable task, gives

a strictly higher expected utility to both agents than f . Thus, if the agents are suffi-

ciently patient, then f cannot be repeatedly implemented in infinite horizon problems

(Theorem 1, Lee and Sabourian, 2011).

At the end of Section 5 we will show that f is infinitely repeatedly implementable

if the discount factor is not too large. We now argue that the f is repeatedly imple-

mentable in any finite horizon problem. Consider the static mechanism where each

agent has two messages θA and θB, and the allocation rule is represented in Table 3;

Table 4 displays the payoffs to each agent of each alternative in each state.

Agent 2

Agent 1
θA θB

θA (A,A, 1, 1) (B,A, 2, 2)
θB (A,B, 2, 2) (B,B, 1, 1)

Table 3: The static mechanism in Example 2.

θA θB
Agent 1 Agent 2 Agent 1 Agent 2

(A,A, 1, 1) 0 0 1 1
(B,B, 1, 1) 1 1 0 0
(B,A, 2, 2) 2 −1 −1 2
(A,B, 2, 2) −1 2 2 −1

Table 4: Agents’ payoffs in Example 2.

At state θA, the mechanism induces a prisoners’ dilemma, with (θA, θA) as the

unique Nash equilibrium and equilibrium outcome (A,A, 1, 1). Similarly, at state θB,

the mechanism induces a prisoners’ dilemma, with (θB, θB) as the unique Nash equi-
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librium and equilibrium outcome (B,B, 1, 1). So, f is implementable when T = 1.

More fundamentally, at states θA and θB, the unique equilibrium payoff coincides with

the min-max payoff. Consequently, repeated play of the stage game equilibrium is

the only Nash equilibrium of the finitely repeated game (e.g., see Benôıt and Krishna,

1987, and González-Dı́az, 2006), and by selecting the mechanism regime that uses the

static mechanism in each round, f can be finitely repeatedly implemented in Nash

equilibrium, regardless of the number of periods.

This shows that there is an important difference between what can be implemented

in finitely repeated problems and what can be implemented in infinitely repeated prob-

lems with an arbitrarily large discount factor, as studied by Lee and Sabourian (2011).

4 Dynamic Monotonicity

Consider any period t and any sequence (uτi )τ≥t of payoffs from period t onwards. We

can write agent i’s discounted payoff at period t as

1− δ
1− δT−t+1

(
uti + δ

T∑
τ=t+1

δτ−t−1uτi

)
= (1− βt,T )uti + βt,Tvi(t),

where vi(t) is the (normalized) discounted continuation payoff and βt,T is the (normal-

ized) discount factor at period t: that is,

vi(t) =
1− δ

1− δT−t
T∑

τ=t+1

δτ−t−1uτi and βt,T =
δ − δT−t+1

1− δT−t+1
.

When the horizon is infinite, i.e., T = ∞, we have βt,∞ = δ. The lowest and highest

expected payoff agent i can obtain are:

vi =
∑
θ∈Θ

min
x∈X

ui(x, θ)p(θ), vi =
∑
θ∈Θ

max
x∈X

ui(x, θ)p(θ).

For each t ∈ T \ {T}, let Vi(t) be the closed interval [vi, vi] with the convention

that Vi(T ) = {0} if T < ∞. The set Vi(t) corresponds to the set of feasible agent

13



i’s (normalized) continuation payoffs at period t. Denote by vfi (t) the (normalized)

expected discounted payoff of agent i when f is implemented from period t+1 onwards.

Thus, vfi (t) = vfi =
∑

θ∈Θ ui(f(θ), θ)p(θ) if t < T , and vfi (T ) = 0 if T <∞.

We now generalize the important concept of deception to the dynamic setting. At

each period t, a deception specifies a state θ̂t as function of the realized state θt and

the history of realized states up to period t, θt. Formally, a deception π is a sequence

of maps (πt : Θt×Θ→ Θ)Tt=1. Intuitively, suppose that each agent is asked to directly

report a state at each period (as in a direct mechanism). A deception then corresponds

to a situation where the agents coordinate their reports to θ̂t = πt(θ
t, θt) at period t,

when the current state is θt and the profile of realized states is θt.12 (If reports are

not coordinated, the designer detects a lie and can punish the agents.) Of course, the

mechanism does not have to be direct. Nonetheless, the concept of a deception remains

important: agents can play at period t and realized states θt as if the current state is

πt(θ
t, θt) and not θt. A special deception is π∗, given by π∗t (θ

t, θt) = θt for all (θt, θt),

for all t. This corresponds to truth-telling. Let ΠT be the set of deceptions.

We define the (normalized) expected discounted continuation payoff of agent i from

following the deception π after state history (θt, θt) recursively as follows:

vfπi (θt, θt) =
∑

θt+1∈Θ

(
(1− βt+1,T )ui

(
f
(
πt+1((θt, θt), θt+1)

)
, θt+1

)
+ βt+1,Tv

fπ
i ((θt, θt), θt+1))

)
p (θt+1) .

This is agent i’s discounted continuation payoff if, in all periods τ > t, the designer

uses the social choice function f at the reported state πτ (θ
τ , θτ ) to determine the

period τ alternative. Note that the discounted continuation payoff vfπ∗i (θt, θt) from the

truth-telling deception π∗ is equal to vfi (t), regardless of (θt, θt).

For any history of realized states θt and deception π, we define the dynamic lower

contour set of x at θt as

Lfπi,θt(x, θt) ={(y, vi(t)) ∈ X × Vi(t) : (1− βt,T )ui(y, θt) + βt,Tvi(t) ≤

(1− βt,T )ui(x, θt) + βt,Tv
fπ
i ((θt, θt))}.

12Note that π and the history of realized states θt determine a unique history of reported states.
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Dynamic lower contour sets are defined in the space of alternatives and continuation

payoffs. Intuitively, for any deception π and history of states θt, the dynamic lower

contour set at θt is composed of all the pairs of alternatives and continuation payoffs

that give agent i a smaller expected discounted payoff than when x is implemented at

state θt in period t and agents continue to follow the deception π from period t + 1

onwards. Note that Lfπ∗i,θt (x, θt) does not depend on θt, since the truth-telling deception

π∗ does not. With a slight abuse of notation, we therefore write Lfi,t(x, θt) for Lfπ∗i,θt (x, θt).

We are now ready to present two equivalent definitions of dynamic monotonicity,

the dynamic generalization of Maskin monotonicity.

Definition 3 (Dynamic Monotonicity) A social choice function f is dynamic mono-

tonic if it satisfies
(
DMA

)
or, equivalently,

(
DMB

)
.

(
DMA

)
. For all π ∈ ΠT , for all θT ∈ ΘT ,

[
∀(i ∈ I, t ∈ T ), Lfi,t(f(πt(θ

t, θt)), πt(θ
t, θt)) ⊆ Lfπi,θt(f(πt(θ

t, θt), θt)
]
⇒[

∀(t ∈ T ), f(πt(θ
t, θt)) = f(θt)

]
.

(
DMB

)
. For all π ∈ ΠT , for all θT ∈ ΘT ,

[
∃(t′ ∈ T ) : f(πt′(θ

t′ , θt′)) 6= f(θt′)
]
⇒[

∃(i ∈ I, t ∈ T , x ∈ X, vi ∈ Vi(t)) :

(1− βt,T ) [ui(f
(
πt(θ

t, θt)
)
, πt(θ

t, θt))− ui(x, πt(θt, θt))] + βt,T [vfi (t)− vi] ≥ 0,

0 > (1− βt,T ) [ui(f
(
πt(θ

t, θt)
)
, θt)− ui(x, θt)] + βt,T [vfπi (θt, θt)− vi]

]
.

Intuitively, dynamic monotonicity says that if agents coordinate on a deception

that induces an undesirable alternative at some period t′ (for some profile of realized

states), then at least one agent must have a profitable deviation starting at some time

t. Since the problem is dynamic, the profitable deviation does not have to start at t′; it

could start before or after, t needs not equal t′. For instance, in Example 1, the seller
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has a profitable deviation at the first period from the second-period coordination on

trading the high quality good at the low price.

It is worth noting that we can restrict attention to deceptions that weakly dominate

truth-telling in checking for dynamic monotonicity, i.e., to deceptions π such that

vfπi (θt, θt) ≥ vfi for all i, for all (θt, θt), for all t.

Few additional observations are worth making. First, for T = 1, dynamic mono-

tonicity reduces to Maskin monotonicity. Second, observe that when T =∞, βt,T = δ

for all t, and the dynamic lower contour sets do not vary with t. Consequently, when

checking for dynamic monotonicity, it is sufficient to consider t = 1. Third, an easy-

to-check sufficient condition for dynamic monotonicity is as follows. For each agent i,

define vmax
i = maxπ:Θ→Θ

∑
θ ui(f(π(θ)), θ)p(θ) as the highest payoff that agent i can

obtain if all agents coordinate on the most favorable static deception π for agent i

(vmax
i is also the highest payoff that agent i can obtain by maximizing over all dy-

namic deceptions). Suppose that f(θ) 6= f(θ∗). Using (DMB), a sufficient condition

for dynamic monotonicity is that for all deceptions such that πt′(θ
t′ , θ∗) = θ for some

θt
′ ∈ Θt′ and t′ ∈ T , there exist t ∈ T , i ∈ I, x ∈ X, and vi(t) ∈ Vi(t) that satisfy

(1− βt,T )ui(f(θ), θ) + βt,Tv
f
i ≥ (1− βt,T )ui(x, θ) + βt,Tvi(t),

and

(1− βt,T )ui(f(θ), θ∗) + βt,Tv
max
i < (1− βt,T )ui(x, θ

∗) + βt,Tvi(t).

The example illustrating Remark 5 shows that this condition is easy to check.

We end this section with a series of remarks. The message we want to convey is

that dynamic monotonicity is the “general” condition for repeated Nash implementa-

tion. It reduces to Maskin monotonicity when there is a single period and essentially

corresponds to Lee and Sabourian’s (2011) efficiency in the range when there is an

infinite number of periods and a discount factor close to one.

The first remark gives another easy-to-check sufficient condition for the dynamic

monotonicity of a social choice function. The second remark states that, in finite

horizon problems, dynamic monotonicity is weaker than Maskin monotonicity. The
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converse is false; Example 1 demonstrates that dynamic monotonicity is strictly weaker

than Maskin monotonicity.

Remark 1 If the social choice function f is strictly efficient in the range and (vfi )i∈I

is an extreme point of co(V (f)), then f is dynamic monotonic whenever T ≥ 2.

Remark 2 Suppose T <∞. If f is Maskin monotonic, then it is dynamic monotonic.

Remark 3 Suppose T = ∞. There exists δH ∈ (0, 1) such that for all δ ∈ (δH , 1), if

f is dynamic monotonic, then it is weakly efficient in the range.

Remark 4 Suppose T =∞. If f is Maskin monotonic and efficient in the range, then

it is dynamic monotonic.

Remark 5 There are social choice functions, which are neither efficient nor Maskin

monotonic, and yet are dynamically monotonic.

As a demonstration of Remark 5, suppose that there are two agents, two periods,

no discounting (i.e., δ = 1), two equiprobable states of the world θ and θ′, and five

alternatives a, b, c, d, e. Let the payoffs be as in Table 5.

θ θ′

a 3, 3 1, 7
b 6, 0 3, 3
c 10, 10 10, 10
d −10,−10 0, 0
e 0, 0 −10,−10

Table 5: Agents’ payoffs in the example illustrating Remark 5.

The social choice function is f(θ) = a and f(θ′) = b, and the associated payoff

profile is (vf1 , v
f
2 ) = (3, 3). It is not Maskin monotonic since Li(f(θ′), θ′) ⊆ Li(f(θ′), θ)

for all i, and yet f(θ′) 6= f(θ). It is also not efficient in the range since if players

coordinate on θ (resp., θ′) when the state is θ′ (resp., θ), then they each obtain a payoff

of 7/2. Yet, f is dynamic monotonic. To see this, remember that vmax
i is the highest

payoff that agent i can obtain if all agents coordinate on the most favorable deception
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for agent i, and note that vmax
1 = 9/2, while vmax

2 = 5. It is immediate to check that

the pair (d, 10) satisfies

u1(f(θ), θ) + vf1 = 3 + 3 ≥ −10 + 10 = u1(d, θ) + v1,

max(u1(f(θ), θ′), u1(f(θ′), θ′)) + vmax
1 = 3 + 9/2 < 0 + 10 = u1(d, θ′) + v1.

Similarly, the pair (e, 10) satisfies

u2(f(θ′), θ′) + vf2 = 3 + 3 ≥ −10 + 10 = u2(e, θ′) + v2,

max(u2(f(θ′), θ), u2(f(θ), θ)) + vmax
2 = 3 + 5 < 0 + 10 = u1(e, θ) + v2.

We have the necessary preference reversals in the first period and, therefore, the social

choice function is dynamic monotonic.

The final remark states that in finitely repeated settings the set of social choice

functions that are dynamic monotonic is weakly increasing in T .

Remark 6 Suppose T < ∞ and f is dynamic monotonic over T periods. Then f is

also dynamic monotonic over T + 1 periods.13

5 Main Results

This section presents our main results, stating that dynamic monotonicity is necessary

and almost sufficient for repeated Nash implementation. We begin with necessity.

Theorem 1 (Necessity) If the social choice function f is repeatedly implementable,

then it is dynamic monotonic.

The intuition for Theorem 1 is simple and analogous to the intuition for the necessity

of Maskin monotonicity in static implementation problems. If the social choice function

f is implementable, there must exist a mechanism and an equilibrium such that f(θt)

13We thank an anonymous referee for asking us to verify whether this claim holds.
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is implemented at period t and state θt, and the continuation payoff to any agent i

is vfi (t), for any t ∈ T . Moreover, for any realized profile of states θt, all deviations

at period t and state θt must give to agent i an alternative x and a continuation

payoff vi in Lfi,θt(f(θt), θt). Consider a deception π and a “collusive” equilibrium in

which agents follow the deception (on the equilibrium path) and revert to the original

equilibrium after unilateral deviations. In particular, agents pretend that the state

is πt(θ
t, θ∗t ) = θt when the realized state at period t is θ∗t and the history of realized

states up to period t is θt. As a result, f(θt) = f(πt(θ
t, θ∗t )) is implemented at t in

state θ∗t , and the expected payoff of agent i is (1− βt,T )ui(f(θt), θ
∗
t ) + βt,Tv

fπ
i (θt, θ∗t ).

If Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ), then agent i has no profitable deviation from the

“collusive” equilibrium. For otherwise, he would have had a profitable deviation at

state θt from the original equilibrium. Hence, for f to be implemented, it must be

f (θ∗t ) = f (θt); that is, f must be dynamic monotonic.

We now consider sufficient conditions. As in static implementation problems, we

distinguish between the case of two and more than two agents. We need to introduce

some additional definitions.

For each Y ⊆ X, define maxθi Y = {x ∈ Y : ui(x, θ) ≥ ui(y, θ) for all y ∈ Y } as

agent i’s maximal set in Y at state θ. A social choice function f satisfies no-veto power

if: For all θ ∈ Θ, x ∈ maxθi X for all i ∈ I∗ with |I∗| ≥ I − 1 implies f(θ) = x. Maskin

monotonicity and no-veto power are sufficient for static Nash implementation when

there are at least three agents. A similar results holds in the repeated setting once we

replace Maskin monotonicity with dynamic monotonicity.

Theorem 2 (Sufficiency I ≥ 3) Let I ≥ 3. If the social choice function f is dynamic

monotonic and satisfies no-veto power, then it is repeatedly implementable.

The proof is constructive. The main building block of our construction is the

static mechanism G∗, a close relative to Maskin’s (1999) canonical mechanism. The

mechanism G∗ requires the agents to report a state, an alternative, a continuation

payoff, and an integer. At period t, “unanimous” reports (θt, f (θt) , v
f
i (t), 0) result in

the realization of f (θt) and in the adoption of G∗ in the next period. A unilateral
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deviation from unanimity by agent j at t, (θj,t, xj,t, vj,t, nj,t), results in the realization

of xj,t at t and in the continuation payoff vjt thereafter, if (xj,t, vj,t) is in agent j’s

dynamic contour set Lfj,t (f (θt) , θt) (where θt is the common state report of all agents

but agent j). Alternatively, the deviation results in the realization of f (θt) at period

t and in the continuation payoff vfj (t) thereafter. To guarantee that agent j obtains

vj,t (or vfj (t)) in the future, the regime appropriately randomizes between adopting

a mechanism where agent j is dictatorial (i.e., chooses the alternative), which would

guarantee he receives vj, and a punishment mechanism where agent j would get less

than vj,t (or vfj (t)). Any other report profile at t leads to the agent reporting the

highest integer at t being dictatorial at t and in all future periods. Notice that the

mechanism G∗ is equivalent to Maskin’s canonical mechanism when T = 1, and indeed

guarantees the implementation of f for very similar arguments than in Maskin (1999).

As the canonical Maskin mechanism with T = 1, our mechanism regime does not rule

out undesirable mixed strategy equilibria. As we discuss in Section 6, under a mild

additional assumption we can eliminate them.14

The dynamic mechanism regime we construct only uses stage mechanisms that are

deterministic functions of the agents’ messages, but permits random transitions be-

tween these mechanisms. Without making further assumptions, it seems impossible to

prove Theorem 2 without the help of stochastic transitions or, alternatively, stochastic

stage mechanisms.15 Yet, in environments with transfers and quasi-linear preferences,

there is no need for stochastic transitions; we can always adjust the transfers to guar-

antee that the agent obtains the appropriate continuation payoff.

As Maskin’s (1999) theorem for static Nash implementation, Theorem 2 requires

no-veto power. We can weaken the no-veto power requirement. For instance, Theorem

2 remains valid if we replace no-veto power with Assumption A, stated below, which

is closely related to the conditions µ(ii) and µ(iii) of Moore and Repullo.16 We first

need some additional notation. Let ϕt : {t+ 1, . . . , T} ×Θ→ X be a time-dependent

14See Mezzetti and Renou (2012) for an alternative definition of static implementation in mixed
Nash equilibrium.

15Azacis and Vida (2015) use random mechanisms and random transitions in their analysis of
infinitely repeated implementation problems.

16We prove this and the following claim in footnotes 22 and 23.
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social choice function and write vϕti the continuation payoff of implementing ϕt from

period t+ 1 onwards, that is,

vϕti :=
1− δ

1− δT−t
T∑

τ=t+1

δτ−t−1ui(ϕt(τ, θ), θ)p(θ).

For any vi ∈ Vi(t), define λ (vi) =
vi−vi
vi−vi

. We are now ready to state Assumption A.

Assumption A: A social choice function f satisfies Assumption A if:

(i) for all (x, vi(t)) ∈ Li,t (f(θ), θ) with i ∈ I, θ ∈ Θ and t ∈ T and for all pairs

(ϕt, ϕt) such that:

(a1) either λ(vi(t)) = 0, or ϕt(τ, θ) ∈ ∩j maxθj X for all θ ∈ Θ, for all τ > t,17

(a2) ϕt(τ, θ) ∈ ∩j 6=i maxθj X for all θ ∈ Θ, for all τ > t,

(b) x ∈ ∩j 6=i maxθ
∗
j X,

(c) βt,Tui(x, θ
∗) + (1− βt,T )

[
λ (vi(t)) v

ϕt
i + (1− λ (vi(t))) v

ϕt
i

]
≥

βt,Tui(y, θ
∗) + (1− βt,T )vi for all (y, vi) ∈ Li,t (f(θ), θ),

we have that x = f (θ∗), and ϕt(τ, ·) = ϕt(τ, ·) = f for all τ > t;

(ii) for all x such that x ∈ ∩j maxθ
∗
j X, we have that x = f (θ∗).

Condition (i) is similar to condition µ(ii) of Moore and Repullo. It states that

if x maximizes the payoff of all agents but agent i at state θ∗, if ϕt maximizes the

continuation payoff of all agents while ϕt maximize the continuation payoff of all agents

but agent i, and if the pair (x, λ (vi(t)) v
ϕt
i + (1− λ (vi(t))) v

ϕt
i ) is maximal in the

dynamic lower contour set Li,t (f(θ), θ) at state θ∗, then not only alternative x must

coincide with f(θ∗) at state θ∗, but also ϕt(τ, ·) and ϕt(τ, ·) must coincide with f for

all τ > t. Note that condition (i) is weaker than no-veto power and is almost identical

to condition µ(ii) at period T , when T <∞. Condition (ii) is a unanimity condition.

We now consider the two-agent case. As shown by Dutta and Sen (1991) and Moore

and Repullo (1990), for the static case with two agents, self-selection is a necessary

17We thank Helmuts Azacis and Peter Vida for pointing out the need to add λ(vi(t)) = 0 as a
special case.
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condition for Nash implementation.18 Our sufficiency result for two agents requires a

strengthening of self-selection.19

Assumption B : There exists an alternative w such that ui(w, θ) < ui(f(θ′), θ) for all

(θ′, θ) ∈ Θ×Θ, for all i ∈ {1, 2}.

Assumption B requires that there exists a bad outcome (relative to f) for both

agents. For instance, in pure exchange economies with strictly monotone preferences,

the zero consumption bundle is a bad outcome relative to any social choice function that

gives positive consumption to each consumer in at least one state of the world. Other

examples satisfying Assumption B include environments with transferable utilities, like

our two examples in Section 3. We have the following theorem.

Theorem 3 (Sufficiency I = 2) Let I = 2. Suppose Assumptions A and B hold. If

a social choice function f is dynamic monotonic, then it is repeatedly implementable.

We now briefly return to Example 1 and 2.

Example 1 (revisited) The set V (f) of expected (ex-ante) payoff vectors that the

two parties would obtain with an scf whose range is a subset of {(1, 10, 10), (1, 14, 14)},

the range of f , is:
{(

u(4)
2
, 10
)
, (0, 12) ,

(
u(−4)+u(4)

2
, 12
)
,
(
u(−4)

2
, 14
)}

. Thus f , which

yields expected payoffs
(
vfB, v

f
S

)
= (0, 12) is strictly efficient and an extreme point in

the convex hull of V (f). By Remark 1, f is dynamic monotonic. Since Assumptions

A and B hold, f is repeatedly implementable in Nash equilibrium irrespective of the

discount factor, as long as there are at least two periods.

Example 2 (revisited) Consider an infinitely repeated setting. To show under which

condition f is dynamic monotonic when T = ∞, we can use the sufficient condition

provided after Definition 3. Observe that vfi = 0 for all i ∈ I and that the best possible

“collusive” deception is πt (θt, θA) = θB and πt (θt, θB) = θA for all θt, for all t ∈ T .

Under such a deception vfπi (θt, θ) = vfπi = 1 for all i ∈ I. (This corresponds to vmax
i .)

Given the symmetry of the set-up, we only need to consider the pairs (θA, θB) with

18In Proposition 1 in the Appendix, we show that a weaker condition, dynamic self-selection, is
necessary for repeated Nash implementation.

19Self-selection: Let I = 2. There exists x(θ2, θ1) ∈ L1(f(θ2), θ2)∩L2(f(θ1), θ1) for all pairs (θ2, θ1).
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πt(θ
t, θB) = θA. Since f (θB) 6= f (θA), dynamic monotonicity (DMB) requires that

there exist i ∈ I, x ∈ X and vi ∈ Vi (t) such that

(1− δ) [ui(f (θA) , θA)− ui(x, θA)] + δ [0− vi] ≥ 0,

0 > (1− δ) [ui(f (θA) , θB)− ui(x, θB)] + δ [1− vi] .

This is equivalent to:

− (1− δ)ui(x, θA) ≥ δvi > 1− (1− δ)ui(x, θB). (1)

By symmetry, we may take i to be any agent, say agent 1. The only alternatives x that

may satisfy (1) for agent 1 assign agent 1 to task A and agent 2 to task B. Letting

x = (A,B,w1, w2), (1) becomes (1− δ) (3− w1) ≥ δvi > 1− (1− δ)w1, which holds if

and only if δ < 2/3. This shows that f satisfies dynamic monotonicity if the discount

factor is less than 2/3. Thus, dynamic monotonicity does not imply weak efficiency in

infinite horizon problems when the discount factor is not too large. Since the setting

of the example satisfies Assumptions A and B, with an infinite time horizon f can be

repeatedly implemented, and collusion among the agents avoided, as long as δ < 2/3.

6 Discussion

This section discusses some important aspect of our analysis.

Mixed Strategies. The proof of Theorem 2 does not rule out undesirable mixed

strategy equilibria. We now show that the theorem extends to mixed strategies under

the mild additional assumption of no indifference, which states that no agent is totally

indifferent between all alternatives at all states.

We say that a scf f is repeatedly implementable in mixed Nash equilibrium if it it

is repeatedly implementable in Nash equilibrium and, in addition, there are no mixed

strategy Nash equilibria that yield in some period t an outcome y /∈ f(θ) with positive

probability, when the state is θ.

Theorem 4 Let I ≥ 3. Assume no indifference holds. If the social choice function f

is dynamic monotonic and satisfies no-veto power, then it is repeatedly implementable
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in mixed Nash equilibrium.

Two obstacles must be overcome when dealing with mixing by agents. First, the

best message for an agent to send depends on the messages sent by the other agents, but

the agent has no certainty over such messages when the other agents mix. For instance,

announcing a large integer so as to become a dictator entails the risk of being the odd-

man-out when others play unanimously. Second, we need to consider distributions

over deceptions in order to account for mixed strategies, i.e., distributions over pure

strategies. In the proof, we overcome these difficulties by introducing random stage

mechanisms. This guarantees that mixing only occur in the last period in all equilibria

(if there is a last period). Moreover, the last-period mechanism is a version of the

mechanism in Maskin and Sjöström (2002), which allows agents to propose alternatives

contingent on the state report of their opponents. This guarantees that no undesirable

equilibria exist.

Subgame Perfection. The solution concept adopted in this paper is Nash equilib-

rium. All our results extend straightforwardly to subgame perfection. First, it is easy

to check that the Nash equilibrium sE constructed in the proof of Theorem 2 (and

Theorem 3) is subgame perfect. Since there are no undesirable Nash equilibria, hence

no undesirable subgame perfect Nash equilibria, this implies that dynamic monotonic-

ity together with no veto power (or assumption A) are sufficient for subgame perfect

implementation. Dynamic monotonicity is also necessary as long as the mechanism

adopted in each period is a static mechanism. To see this, suppose that f is repeatedly

implementable in subgame perfect Nash equilibrium, and let s be an implementing

equilibrium. Assume that there exists a deception π such that for all t ∈ T , for all

θt ∈ Θt, for all pairs (θt, θ
∗
t ) with πt(θ

t, θ∗t ) = θt, we have Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t )

for all i ∈ I. As in the proof of Theorem 1, we can construct a Nash equilibrium s′

that implements f(πt(θ
t, ·)) at all periods t and at all profiles θt of realized states up

to period t. Moreover, off the equilibrium path, s′ agrees with s, so that s′ is also a

subgame perfect equilibrium and hence f must be dynamic monotonic.20

20It is important to stress that the restriction to static mechanisms within a period rules out
the mechanisms used by Moore and Repullo (1988) and Abreu and Sen (1990) to show that, in
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Time-dependent social choice functions. We have assumed that the designer

wants to implement the same social choice function f in each period. A more general

objective would be to implement a sequence (ft)t∈T of social choice functions. It

is straightforward to modify the definitions of continuation payoffs, dynamic lower

contour sets and dynamic monotonicity to account for time-dependent social choice

functions. With these modifications, dynamic monotonicity remains necessary and

almost sufficient for repeated Nash implementation.

Social choice correspondences. The analysis extends to the implementation of

social choice correspondences. Let F : Θ→ 2X \{∅} be a social choice correspondence;

denote by F the set of all possible social choice functions which are selections of F .

A social choice correspondence is implementable if there exists a dynamic mechanism

such that for every selection f ∈ F, there exists a Nash equilibrium that repeatedly

implements f , and every Nash equilibrium repeatedly implements a selection f ∈ F.

A social choice correspondence F is dynamic monotonic when it satisfies:(
DMA

C

)
For all f ∈ F, for all π ∈ ΠT , for all θT ∈ ΘT ,

[∀ (i ∈ I, t ∈ T ) , Lfi,t(f(πt(θ
t, θt)), πt(θ

t, θt)) ⊆ Lfπi,θt(f(πt(θ
t, θt), θt)]⇒

[∃f ∗ ∈ F : ∀t ∈ T , f(πt(θ
t, θt)) = f ∗(θt)].

Note that the concept of dynamic monotonicity (for correspondences) is equiva-

lent to Maskin monotonicity (for correspondences) in static implementation problems,

and clearly equivalent to Definition 3 when F is single-valued. To see the neces-

sity of the modified condition of dynamic monotonicity, suppose that F is repeatedly

implementable and assume that there exist a selection f ∈ F, a deception π such

that for all t ∈ T , for all θt ∈ Θt, for all pairs (θt, θ
∗
t ) with πt(θ

t, θ∗t ) = θt, we have

Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ) for all i ∈ I. As in the proof of Theorem 1, we can

construct an equilibrium that implements f(πt(θ
t, ·)) at all periods t and at all profiles

θt of realized states up to period t. Consequently, there must exist f ∗ ∈ F such that

f(πt(θ
t, ·)) = f ∗, for all θt ∈ Θt, for all t ∈ T , i.e., F must be dynamic monotonic.

single-shot environments, subgame-perfect implementation is substantially more permissive than Nash
implementation.
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To show sufficiency, we need to augment the dynamic mechanism regime in the proof

of Theorem 2 with an initial stage (period t = 0), in which all agents announce a

selection f ∈ F. If all agents announce the same selection f ∈ F at period t = 0,

then our dynamic mechanism regime takes effect from t = 1 with f the social choice

function adopted in the canonical mechanism G∗t . If not all agents make the same

announcement at t = 0, then our dynamic mechanism regime takes effect from t = 1

with an arbitrary f ∗ ∈ F as the social choice function adopted in G∗t .

7 Conclusions

Our main contribution is to introduce the condition of dynamic monotonicity, a natural

but non-trivial dynamic extension of Maskin monotonicity, and to show, in Theorems

1-4, that dynamic monotonicity is necessary and almost sufficient for repeated Nash

implementation of social choice functions, regardless of whether the horizon is finite or

infinite and whether the discount factor is “large” or “small.”21

Many economic applications of implementation theory, for example most of the

contracting literature (e.g., see Aghion et al., 2012, or Maskin and Tirole, 1999) focus

on static problems. One of the main insights of our paper is that the (finitely) repeated

implementation of desirable social choice functions is easier than static implementation,

as last-period, or late periods, planned deviations from truthtelling can be avoided by

rewarding defection in early periods. For instance, we can implement full surplus

extraction by a seller as long as there are at least two periods, while full surplus

extraction is not implementable in static problems (see Example 1).

21Indeed, Theorem 1 also remains true if we adopt a different criterion than the discounting criterion
to evaluate streams of payoff, e.g., the overtaking criterion or the limit of the means criterion (naturally,
with a modification in the definition of dynamic monotonicity to account for these changes).
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Appendix

This appendix contains the proofs of all our results and the reduced strategic-form

games associated with Example 1.

Example 1: The Strategic-form Games. Conditional on a realized first-period

quality, the buyer and the seller have 64 strategies each. An agent is active at the

initial history as well as at the histories (θH , θH) and (θL, θL). At the initial history,

the agent has 4 actions. At histories (θH , θH) and (θL, θL), an agent has 2 actions for

each realization of the second-period quality. All strategies where an agent plays NθL

in the first-period are payoff equivalent (there are 16 strategies of that form). Similarly,

for all strategies where an agent plays NθH in the first-period. We write NθL and NθH

for those strategies. If the first-period reports do not match, then the game essentially

ends. Thus, all strategies where an agent reports θL at the initial history, reports

θL at the history (θL, θL) conditional on second-period quality θL, reports θL at the

history (θL, θL) conditional on second-period quality θH are payoff-equivalent. We write

θLθLθL for those strategies. Similarly, for all other strategies. For instance, θHθHθL

represents all strategies where an agent reports θH at the initial history, reports θH

at the history (θH , θH) conditional on second-period quality θL and reports θL at the

history (θH , θH) conditional on second-period quality θH . Each reduced strategic-form

game has therefore 10 “strategies.” Tables 6 and 7 represent the two reduced strategic-

form games associated with each first-period quality θL and θH . The buyer is the row

player, while the seller is the column player. In each cell, the top payoff is the buyer’s

payoff, while the bottom payoff is the seller’s payoff.

Throughout the proofs, we use the following observation. For any deception π̃ ∈ ΠT

and state history θ̃T ∈ ΘT such that for all i ∈ I and t ∈ T , Lfi,t(f(π̃t(θ̃
t, θ̃t)), π̃t(θ̃

t, θ̃t)) ⊆

Lfπ̃
i,θ̃t

(f(π̃t(θ̃
t, θ̃t), θ̃t), there exists a deception π ∈ ΠT such that for all i ∈ I, t ∈ T and,

importantly, for all (θt, θt) ∈ Θt×Θ, Lfi,t(f(πt(θ
t, θt)), πt(θ

t, θt)) ⊆ Lfπi,θt(f(πt(θ
t, θt), θt).

The deception π agrees with π̃ at θ̃T and with π∗ at all other state histories. Thus, if f

is dynamic monotonic, then f(πt(θ
t, θt)) = f(θt) for all t ∈ T and (θt, θt) ∈ Θt×Θ. As

the converse is also true, we have an equivalent formulation of dynamic monotonicity.
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θLθLθH θLθLθL θLθHθL θLθHθH NθL θHθLθH θHθLθL θHθHθL θHθHθH NθH

θLθLθH
0 0 0 0 δu(−1)+δu(3)

2
) u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 12δ 10 + 5δ 10 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθLθL
0 δu(4)

2
δu(4)

2
0 δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 5δ 10 + 10δ 10 + 5δ 10 10 + 11δ 1 1 1 1 1

θLθHθL
0 δu(4)

2
δu(4)+δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 10 + 5δ 10 + 12δ 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθHθH
0 0 δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 7δ 10 10 + 7δ 10 + 14δ 10 + 11δ 1 1 1 1 1

NθL
u(−4) + δu(y) u(−4) + δu(y) u(−4) + δu(y) u(−4) + δu(y) (2+δ)u(−4)

2
u(−1) u(−1) u(−1) u(−1) (2+δ)u(10)+δu(14)

2

10 10 10 10 14 + 14δ 1 1 1 1 0

θHθLθH
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) u(−4) u(−4) u(−4) 2u(−4)+δu(−1)+δu(3)

2

1 1 1 1 1 14 + 12δ 14 + 5δ 14 14 + 7δ 14 + 11δ

θHθLθL
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) 2u(−4)+δu(4)

2
2u(−4)+δu(4)

2
u(−4) 2u(−4)+δu(−1)+δu(3)

2

1 1 1 1 1 14 + 5δ 14 + 10δ 14 + 5δ 14 14 + 11δ

θHθHθL
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) 2u(−4)+δu(4)

2
(2+δ)u(−4)+δu(4)

2
(2+δ)u(−4)

2
2u(−4)+δu(−1)+δu(3)

2

1 1 1 1 1 14 14 + 5δ 14 + 12δ 14 + 7δ 14 + 11δ

θHθHθH
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) u(−4) (2+δ)u(−4)

2
(2+δ)u(−4)

2
2u(−4)+δu(−1)+δu(3)

2

1 1 1 1 1 14 + 7δ 14 14 + 7δ 14 + 14δ 14 + 11δ

NθH
u(−1) u(−1) u(−1) u(−1) (2+δ)u(10)+δu(14)

2
u(−4) u(−4) u(−4) u(−4) (2+δ)u(−4)

2

1 1 1 1 0 10 10 10 10 14 + 14δ

Table 6: The reduced strategic-form game: first-period quality θL.
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θLθLθH θLθLθL θLθHθL θLθHθH NθL θHθLθH θHθLθL θHθHθL θHθHθH NθH

θLθLθH
u(4) u(4) u(4) u(4) 2u(4)+δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 12δ 10 + 5δ 10 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθLθL
u(4) (2+δ)u(4)

2
(2+δ)u(4)

2
u(4) 2u(4)+δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 5δ 10 + 10δ 10 + 5δ 10 10 + 11δ 1 1 1 1 1

θLθHθL
u(4) (2+δ)u(4)

2
(2+δ)u(4)+δu(−4)

2
2u(4)+δu(−4)

2
2u(4)+δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 10 + 5δ 10 + 12δ 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθHθH
u(4) u(4) 2u(4)+δu(−4)

2
2u(4)+δu(−4)

2
2u(4)+δu(−1)+δu(3)

2
u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 7δ 10 10 + 7δ 10 + 14δ 10 + 11δ 1 1 1 1 1

NθL
δu(y) δu(y) δu(y) δu(y) δu(−4)

2
u(−1) u(−1) u(−1) u(−1) (2+δ)u(14)+δu(10)

2

10 10 10 10 14 + 14δ 1 1 1 1 0

θHθLθH
u(−1) u(−1) u(−1) u(−1) u(−1) 0 0 0 0 δu(−1)+δu(3)

2

1 1 1 1 1 14 + 12δ 14 + 5δ 14 14 + 7δ 14 + 11δ

θHθLθL
u(−1) u(−1) u(−1) u(−1) u(−1) 0 δu(4)

2
δu(4)

2
0 δu(−1)+δu(3)

2

1 1 1 1 1 14 + 5δ 14 + 10δ 14 + 5δ 14 14 + 11δ

θHθHθL
u(−1) u(−1) u(−1) u(−1) u(−1) 0 δu(4)

2
δu(−4)+δu(4)

2
δu(−4)

2
δu(−1)+δu(3)

2

1 1 1 1 1 14 14 + 5δ 14 + 12δ 14 + 7δ 14 + 11δ

θHθHθH
u(−1) u(−1) u(−1) u(−1) u(−1) 0 0 δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2

1 1 1 1 1 14 + 7δ 14 14 + 7δ 14 + 14δ 14 + 11δ

NθH
u(−1) u(−1) u(−1) u(−1) (2+δ)u(14)+δu(10)

2
0 0 0 0 δu(−4)

2

1 1 1 1 0 10 10 10 10 14 + 14δ

Table 7: The reduced strategic-form game: first-period quality θH .
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Proof of Remark 1 Note that since f is strictly efficient in the range, for each v ∈

co(V (f)) such that v 6= vf = (vfi )i∈I , there exists i∗ ∈ I such that vi∗ < vfi∗ . Moreover,

since v =
∑

f ′∈F(f) α
f ′vf

′
with

∑
f ′∈F(f) α

f ′ = 1 and αf
′ ≥ 0 for all f ′ ∈ F(f), it follows

from strict efficiency of f and the fact that vf is an extreme point of co(V (f)) that

αf = 1 whenever v = vf , i.e., v corresponds to the implementation of f . Consequently,

for any deception π such that πt(θ
t, θ∗t ) = θt 6= θ∗t , v

fπ ∈ co(V (f)) and vfπ 6= vf .

Therefore, for some i∗ we have vfπi∗ < vfi∗ and hence (f(θt), v
f
i∗) ∈ Lfi∗,t(f(θt), θt), but

(f(θt), v
f
i∗) /∈ L

fπ
i∗,θt(f(θt), θ

∗
t ). �

Proof of Remark 2 Suppose that f is Maskin monotonic and assume that there

exists a deception π such that for all t ∈ T , for all θt ∈ Θt, for all pairs (θt, θ
∗
t ) with

πt(θ
t, θ∗t ) = θt, we have Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ

∗
t ) for all i ∈ I. We need to show

that f(θ∗t ) = f (θt) for all θt ∈ Θt, for all t ∈ T . The argument is by induction.

Consider the last period T , any θT and pairs (θT , θ
∗
T ) with πT (θT , θ∗T ) = θT . Since

Vi(T ) = {0}, the nestedness of the dynamic lower contour sets, i.e., Lf
i,θT

(f(θT ), θT ) ⊆

Lfπ
i,θT

(f(θT ), θ∗T ), is equivalent to the nestedness of the static lower contour sets, i.e.,

Li(f(θT ), θT ) ⊆ Li(f(θT ), θ∗T ). From Maskin monotonicity, it follows that f(θ∗T ) =

f(θT ), as required. To complete the induction argument, consider period t < T and

suppose that for all τ > t, for all θτ , for all (θτ , θ
∗
τ ) ∈ Θ × Θ, and for all deceptions

π such that πτ (θ
τ , θ∗τ ) = θτ , we have that f(θ∗τ ) = f (θτ ). It follows that in period t

the continuation payoff vfπi (θt, θt) is equal to vfi (t) for all agents i, for all (θt, θt) and,

thus, Lfπi,θt(f(θt), θ
∗
t ) = Lfi,t(f(θt), θ

∗
t ) for all (θt, θt, θ

∗
t ). As a result, Lfi,t(f(θt), θt) ⊆

Lfπi,θt(f(θt), θ
∗
t ) is equivalent to Lfi,t(f(θt), θt) ⊆ Lfi,t(f(θt), θ

∗
t ). In turn, this is equivalent

to the nestedness of the static lower contour sets, i.e., Li(f(θt), θt) ⊆ Li(f(θt), θ
∗
t ).

Maskin monotonicity then implies f(θ∗t ) = f(θt). This concludes the proof. �

Proof of Remark 3 Assume to the contrary that f is dynamic monotonic but

not weakly efficient in the range; that is, there exists ε > 0 and a payoff profile

(vi)i∈I ∈ co(V (f)) such that vi > vfi + 2ε for all i ∈ I. Using a standard argu-

ment about convexifying the set of payoffs without public randomization (e.g., see

Lemma 3.7.2 in Mailath and Samuelson, 2006), it follows that there exists δH2 such
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that for all δ ∈ (δH2 , 1) there exists an infinite sequence of social choice functions

{f1, f2, ...} with ft ∈ F (f) for all integers t (i.e., the range of ft is a subset of

the range of f), and (1− δ)
∑∞

τ=t δ
τ−tvfτi > vi − ε, for all i ∈ I, for all t. Since

ft ∈ F (f), there exist mappings π′t : Θ → Θ such that f ◦ π′t = ft. Consider

the deception π such that πt(θ
t, θ∗t ) = π′t(θ

∗
t ) for all θ∗t , for all θt, for all t. It fol-

lows that vfπi (θt, θ∗t ) = (1− δ)
∑∞

τ=t+1 δ
τ−t−1vfτi > vi − ε > vfi + ε for all i. Let

ρ = maxi∈I,θ,θ∗∈Θ |ui (f (θ) , θ)− ui (f (θ) , θ∗)| , and let δH = max( ρ
ρ+ε

, δH2). Then, for

δ ∈ (δH , 1), for all i, for all pairs (θt, θ
∗
t ) with πt(θ

t, θ∗t ) = θt, for all θt ∈ Θt, for

all t ∈ T , it is (1− δ)ui (f (θt) , θ
∗
t ) + δvfπi (θt, θ∗t ) ≥ (1− δ)ui (f (θt) , θt) + δvfi , or,

equivalently, Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ). Dynamic monotonicity then implies that

f ◦ π′t = ft = f for all t, contradicting the assumed weak inefficiency of f . �

Proof of Remark 4 Assume f is Maskin monotonic and efficient in the range, and

suppose that there exists a deception π such that for all t ∈ T , for all θt ∈ Θt, for all

pairs (θt, θ
∗
t ) with πt(θ

t, θ∗t ) = θt, we have Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ) for all i ∈ I.

Recall that vfπi (θt, θt) is the (normalized) expected discounted continuation payoff of

agent i from following the deception π from the history induced by π and (θt, θt).

Thus, vfπi (θt, θt) is an element of the convex hull of V (f), the set of payoff profiles

of social choice functions with a range contained in the range of f . First, suppose

that (vfπi (θt, θt))i∈I 6= (vfi )i∈I . Since f is efficient in the range, it follows that there

exists an agent i∗ such that vfπi∗ (θt, θt) < vfi∗ . Consequently, we have that (f(θt), v
f
i∗) ∈

Lfi∗,t(f(θt), θt) (by definition) and (f(θt), v
f
i∗) /∈ Lfπi∗,θt(f(θt), θ

∗
t ), a contradiction. So,

it must be that vfπi (θt, θt) = vfi for all i ∈ I. It then immediately follows that the

nestedness of the dynamic lower contour sets (i.e., Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ))

implies the nestdeness of the static lower contour sets (i.e., Li(f(θt), θt) ⊆ Li(f(θt), θ
∗
t )).

Maskin monotonicity then implies that f (θ∗t ) = f (θt). This shows that f(πt(θ
t, ·)) = f

for all θt ∈ Θt, for all t ∈ T , and hence f must be dynamic monotonic. �

Proof of Remark 6 By contradiction, suppose that f is dynamic monotonic over

T periods, but not over T + 1 periods. Since f is not dynamic monotonic over T + 1

periods, there exist a profile of states θT+1 ∈ ΘT+1 and a deception π ∈ ΠT+1 with
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f(πt(θ
t, θt)) 6= f(θt) for at least one t ∈ {1, . . . , T+1}, while the dynamic lower contour

sets are nested, i.e., for all i ∈ I, for all t ∈ T ,

Lfi,t(f(πt(θ
t, θt)), πt(θ

t, θt)) ⊆ Lfπi,θt(f(πt(θ
t, θt)), θt). (2)

We first argue that f(πt(θ
t, θt)) = f(θt) for all t ∈ {2, . . . , T + 1}. Fix the first

period state θ1 in the profile θT+1 and consider any deception π∗∗ ∈ ΠT such that

π∗∗t (θt, θt) = πt+1((θ1, θ
t), θt) for all t ∈ {1, . . . , T}. In words, π∗∗ mirrors the last T

periods of π, given that the first period state was θ1.

By (2) and βt,T = βt+1,T+1, for all i ∈ I and t ∈ {1, ..., T},

Lfi,t(f(π∗∗t (θt, θt)), π
∗∗
t (θt, θt)) ⊆ Lfπ∗∗i,θt (f(π∗∗t (θt, θt)), θt).

Since f is dynamic monotonic over T periods, this implies that f(π∗∗t (θt, θt)) = f(θt)

for all t ∈ {1, . . . , T} or, equivalently, f(πt(θ
t, θt)) = f(θt) for all t ∈ {2, . . . , T + 1}. It

follows that vfπi ((θt, θt)) = vfπ∗∗i ((θt, θt)) = vfi (t) for all t ≥ 1.

Therefore, we must have f(π1(θ1)) 6= f(θ1). We now argue that this cannot be the

case either. Consider any deception π◦ such that π◦t (θ
t, θt) = πt(θ

t, θt) for all (θt, θt),

that is, π◦ coincides with the first T periods of π.

Since f is dynamic monotonic over T periods (and the fact that f(π◦1(θ1)) 6= f(θ1)),

there exist i ∈ I, t ∈ {1, . . . , T} and (x, vi) such that

(1− βt,T )ui(f(π◦t (θ
t, θt)), π

◦
t (θ

t, θt)) + βt,Tv
f
i (t) ≥ (1− βt,T )ui(x, π

◦
t (θ

t, θt)) + βt,Tvi,

and

(1− βt,T )ui(f(π◦t (θ
t, θt)), θt) + βt,Tv

f
i (t) < (1− βt,T )ui(x, θt) + βt,Tvi.

Using the definition of π◦, this is equivalent to (remember that βt,T+1 ∈ (0, 1)):
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(1− βt,T+1)
[
ui
(
f
(
πt(θ

t, θt)
)
, πt(θ

t, θt)
)
− ui

(
x, πt(θ

t, θt)
) ]
≥ βt,T

1− βt,T
(1− βt,T+1)[vi − vfi (t)]

> (1− βt,T+1)
[
ui
(
f
(
πt(θ

t, θt)
)
, θt
)
− ui(x, θt)

]
.

Let v̂i be given by

βt,T
1− βt,T

1− βt,T+1

βt,T+1

vi +
(

1− βt,T
1− βt,T

1− βt,T+1

βt,T+1

)
vfi (t).

Since βt,T ≤ βt,T+1, we have that v̂i ∈ [vi, vi]. It follows that there exists (x, v̂i) ∈

X × Vi(t) such that

(1−βt,T+1)ui
(
f
(
πt(θ

t, θt)
)
, πt(θ

t, θt)
)
+βt,T+1v

f
i (t) ≥ (1−βt,T+1)ui

(
x, πt(θ

t, θt)
)
+βt,T+1v̂i,

and

(1− βt,T+1)ui
(
f(πt(θ

t, θt), θt
)

+ βt,T+1v
f
i (t) < (1− βt,T+1)ui(x, θt) + βt,T+1v̂i.

This is equivalent to Lfi,t(f(πt(θ
t, θt)), πt(θ

t, θt)) * Lfπi,θt(f(πt(θ
t, θt)), θt), a contradiction

with (2). Therefore, f(π1(θ1)) = f(θ1), as required. �

Proof of Theorem 1 Suppose that f is repeatedly implementable by the dynamic

mechanism regime r. Fix an equilibrium s. Consider a history ht and a mechanismGt =

〈MGt , gt〉 having positive probability of occurring on the equilibrium path at period t;

that is, such that q(ht; s) > 0 and r(Gt;h
t) > 0. Since the dynamic regime r implements

f , the profile of actions s(ht, Gt, θt) at period t must satisfy gt(s(h
t, Gt, θt)) = f(θt)

for each θt ∈ Θ, and the continuation payoff must be vfi (t). Let Qi (h
t, Gt, θt; s) be

the set of current alternative and continuation payoff pairs that agent i is able to

generate by any deviation starting at t, given that all other agents follow s. Formally,

(x, vi) ∈ X × Vi(t) belongs to Qi (h
t, Gt, θt; s) if there exists mi ∈ MGt

i such that

x = g(mi, s−i(h
t, Gt, θt)) and there exists vi ∈ Vi(t) which corresponds to i’s expected
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discounted continuation payoff when (starting at t, in state θt, after history ht) agent

i follows some continuation strategy (which prescribes sending message mi at t), while

all other agents continue to follow s−i.

Since s is an equilibrium, for each i ∈ I, for each θt ∈ Θ, we must have that

(1− βt,T )ui(f(θt), θt) + βt,Tv
f
i (t) ≥ (1− βt,T )ui(x, θt) + βt,Tvi,

for each (x, vi) ∈ Qi (h
t, Gt, θt; s). Consequently, it must beQi (h

t, Gt, θt; s) ⊆ Lfi,t(f(θt), θt)

for all ht, θt and Gt such that q(ht; s) > 0 and r(Gt;h
t) > 0.

Now consider a deception π such that for all t ∈ T , for all θt ∈ Θt, for all pairs

(θt, θ
∗
t ) with πt(θ

t, θ∗t ) = θt, we have Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ) for all i ∈ I. In the

remainder of the proof, we will show that there exists an equilibrium s′ that implements

the social choice function f(πt(θ
t, ·)) at each period t, for each θt. Since the regime r

repeatedly implements f , it must be that f(πt(θ
t, ·)) = f for all θt ∈ Θt, for all t ∈ T .

Hence, we may conclude that f is dynamic monotonic and the theorem holds.

We now construct the strategy profile s′. First, consider the equilibrium path. Let

h1 = h1
π = {∅} and for all θ1, for all G1, for all i, define

s′i(h
1, G1, θ1) = si(h

1
π, G1, π1(θ1)).

Then assume that the strategy profile s′ and the histories hτ and hτπ have been defined

up to period τ = t. Let ht+1 = (ht, Gt, θt, s
′(ht, Gt, θt)), with ht = (htD, θ

t), be a period

t + 1 history corresponding to the history of realized states θt. Associate the history

ht+1 with ht+1
π = (htπ, Gt, πt(θ

t, θt), s(h
t
π, Gt, πt(θ

t, θt)), and for all θt+1, for all Gt+1, for

all i, define

s′i(h
t+1, Gt+1, θt+1) = si(h

t+1
π , Gt+1, πt+1((θt, θt), θt+1)).

This concludes the definition of s′ on the equilibrium path. Note that it prescribes

that agents behave as s would prescribe if the history of realized states were the one

described by the deception π, instead of the true history.

We now define s′ when agent i unilaterally deviates from the equilibrium path
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at period t, history ht = (htD, θ
t) and state θt. The history induced by deviating to

mi,t 6= s′i(h
t, Gt, θt) is ht+1|mi,t = (ht, Gt, θt, (mi,t, s

′
−i(h

t, Gt, θt))). Associate ht+1|mi,t
with ht+1

π |mi,t = (htπ, Gt, πt(θ
t, θt), (mi,t, s−i(h

t
π, Gt, πt(θ

t, θt))). For all θt+1, for all Gt+1,

for all i, define

s′i(h
t+1|mi,t , Gt+1, θt+1) = si(h

t+1
π |mi,t , Gt+1, θt+1).

Decompose history ht+τ into the history up to t+ 1, ht+1, and the history after t+ 1,

ht+1,t+τ , and write ht+τ = (ht+1, ht+1,t+τ ). For all τ ≥ 2, for all histories ht+τ =(
ht+1|mi,t , ht+1,t+τ

)
, define

s′i((h
t+1|mi,t , ht+1,t+τ ), Gt+τ , θt+τ ) = si((h

t+1
π |mi,t , ht+1,t+τ ), Gt+τ , θt+τ ),

for all θt+τ , for all Gt+τ , for all i. Finally, assume that s′ agrees with s at all other

histories. Note that s′ prescribes that following the deviation by agent i, starting from

period t+ 1, agents revert to the original equilibrium strategy profile s.

By construction of s′, for any t, any θt, and any θ∗t , the expected payoff of agent i

at state θ∗t from period t onwards is

(1− βt,T )ui(f(πt(θ
t, θ∗t )), θ

∗
t ) + βt,Tv

fπ
i (θt, θ∗t ).

In addition, if agent i deviates from s′ at history ((htD, θ
t), Gt, θ

∗
t ) by announcing

mi,t, the alternative implemented is x satisfying

x = g(mi,t, s
′
−i((h

t
D, θ

t), Gt, θ
∗
t )) = g(mi,t, s−i(h

t
π, Gt, πt(θ

t, θ∗t )),

and i ’s continuation payoff vi must satisfy (x, vi) ∈ Qi (h
t
π, Gt, θt; s), where θt =

πt(θ
t, θ∗t ). Thus, if agent i has a profitable deviation, there exist an alternative x

and a continuation payoff vi such that (x, vi) ∈ Qi (h
t
π, Gt, θt; s) and

(1− βt,T )ui(x, θ
∗
t ) + βt,Tvi > (1− βt,T )ui(f(πt(θ

t, θ∗t )), θ
∗
t ) + βt,Tv

fπ
i (θt, θ∗t ),
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or, since f(πt(θ
t, θ∗t ) = f(θt), (x, vi) 6∈ Lfπi,θt(f(θt), θ

∗
t ).

By construction, the t-period deviation by i is feasible under strategy profile s when

the state is θt = πt(θ
t, θ∗t ) and the history is htπ. Since, by assumption, Lfi,t(f(θt), θt) ⊆

Lfπi,θt(f(θt), θ
∗
t ), it must be (x, vi) 6∈ Lfi,t(f(θt), θt) and hence the deviation from s at t is

profitable. This contradicts the assumption that s is an equilibrium. Hence, it cannot

be (x, vi) ∈ Qi (h
t
π, Gt, θt; s) and (x, vi) 6∈ Lfπi,θt(f(θt), θ

∗
t ); it must be Qi (h

t
π, Gt, θt; s) ⊆

Lfπi,θt(f(θt), θ
∗
t ). It follows that s′ is an equilibrium (no agent has a profitable deviation

at any point in time). Since the mechanism regime r repeatedly implements f , it must

therefore be that f(πt(θ
t, ·)) = f for all θt ∈ Θt, for all t ∈ T . This concludes the proof

of the necessity of dynamic monotonicity. �

Proof of Theorem 2 Assume that the social choice function f is dynamic mono-

tonic and satisfies no-veto power. We show that f is repeatedly implementable.

Step 1: Static Mechanisms . We present several static mechanisms.

♦ The period t canonical mechanism, G∗t = 〈M∗
t , g

∗
t 〉.

Let N be the set of non-negative integers. For each i ∈ I, the message space of

agent i is M∗
t,i = Θ ×X × Vi(t) × N, with mt,i = (θt,i, xt,i, vt,i, nt,i) a generic element.

The allocation rule g∗t is defined as follows:

Rule 1 : If mt,i = (θt, f(θt), v
f
i (t), 0) for each i ∈ I, then g∗t (mt,1, . . . ,mt,I) = f(θt).

Rule 2 : If there exists j such that mt,i = (θt, f(θt), v
f
i (t), 0) for each i ∈ I \ {j}

and mt,j = (θt,j, xt,j, vt,j, nt,j) 6= (θt, f(θt), v
f
j (t), 0), then g∗t (mt,1, . . . ,mt,I) = xt,j if

(xt,j, vt,j) ∈ Lfj,t (f(θt), θt), and g∗t (mt,1, . . . ,mt,I) = f(θt), otherwise.

Rule 3 : If neither rule 1 nor rule 2 apply, then g∗t (mt,1, . . . ,mt,I) = xt,i∗ with i∗ =

min{i ∈ I : nt,i ≥ nt,j for all j ∈ I}.

♦ Agent i’ s dictatorship, Di = 〈MDi , gDi〉.

The agents’ message spaces are MDi
i = X and MDi

j = {∅} for j ∈ I \ {i}. The

allocation rule is gDi(mi,m−i) = mi.

♦ The “punishment” mechanism, Pi = 〈MPi , gPi〉.

The message space is MPi
j = X for all j ∈ I. If for all j ∈ I∗ with |I∗| ≥ n−1, mj =

x, then the allocation rule is gPi((mj)j∈I) = x; otherwise, gPi((mj)j∈I) = mi+1 (mod I).
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Step 2: The Dynamic Mechanism Regime r. We define the transition probability

r (Gt, h
t
D) that, after the designer history htD, the mechanism in period t is Gt.

Period 1:

At the initial history, the mechanism is G∗1; that is, r(G∗1; ∅) = 1.

Period t:

(A) Suppose that the history at period t is htD = (ht−1
D , G∗t−1, (mt−1,i)i∈I) (i.e., the

mechanism was G∗t−1 in period t− 1). The transition to period t is as follows:

- If mt−1,i = (θt−1, f(θt−1), vfi (t − 1), 0) for each i ∈ I and some θt−1 ∈ Θ, then

r(G∗t ;h
t
D) = 1. In words, if rule 1 of G∗t−1 applied in period t− 1, then in period

t the mechanism is G∗t with probability one.

- If there exists j such that mt−1,i = (θt−1, f(θt−1), vfi (t − 1), 0) for each i ∈ I \

{j} and mt−1,j = (θt−1,j, xt−1,j, vt−1,j, nt−1,j) 6= (θt−1, f(θt−1), vfj (t − 1), 0), then

r (Pj;h
t
D) = (1 − λ(t)

j ) and r (Dj;h
t
D) = λ

(t)
j . In words, if rule 2 of G∗t−1 applied

in period t − 1 with j as the odd-man-out, then the mechanism in period t is

the “punishment” mechanism Pj with probability (1 − λ(t)
j ) and the dictatorial

mechanism Dj with probability λ
(t)
j (to be defined later). As we shall see in (B)

and (C ), once either Pj or Dj is selected at t, it is adopted in all future periods.

- If any other profile of messages is played in period t − 1, then r(Di∗ ;h
t
D) = 1;

that is, the period t mechanism is Di∗ with i∗ the lowest-indexed agent having

announced the highest integer in period t− 1.

(B) If the designer history at period t is htD = (ht−1
D , Dj, (mt−1,i)i∈I) (i.e., the

mechanism at period t− 1 was Dj), then r(Dj;h
t
D) = 1.

(C ) If the designer history at period t is htD = (ht−1
D , Pj, (mt−1,i)i∈I) (i.e., the

mechanism at period t− 1 was Pj), then r(Pj;h
t
D) = 1.

Step 3: Definition of λ
(t)
j , t ∈ T \ {1}. We only need to define λ

(t)
j when rule 2 of

G∗t−1 applied at t − 1 and j was the odd-man-out. Let (xt−1,j, vt−1,j) be the pair of

alternative and continuation payoff announced by j in period t− 1. Recall that vj and

vj are the lowest and highest expected payoffs agent j can obtain. If vj = vj, we may

choose any λ
(t)
j ∈ [0, 1]. If vj > vj, define λ

(t)
j ∈ [0, 1] as the unique solution of

vt−1,j = λ
(t)
j vj +

(
1− λ(t)

j

)
vj,
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if (xt−1,j, vt−1,j) ∈ Lfj,t (f (θt−1) , θt−1), and otherwise as the unique solution of

vfj = λ
(t)
j vj +

(
1− λ(t)

j

)
vj.

Step 4: Existence of an Equilibrium. There exists an equilibrium sE that repeat-

edly implements f .

For each agent i, the strategy sEi is defined as follows:

1. For all θ1 ∈ Θ, sEi (∅, G∗1, θ1) = (θ1, f(θ1), vfi (1), 0).

2. For all θt ∈ Θ, if ht is such that for all τ < t: (i) Gτ = G∗τ and (ii) mτ =

(θτ , f(θτ ), v
f
i (τ), 0)i∈I for some θτ ∈ Θ, then sEi (ht, G∗t , θt) = (θt, f(θt), v

f
i (t), 0).

3. For all ht ∈ H, all θt ∈ Θ and all i ∈ I, sEi (ht, Pj, θt) = xθtj , where xθtj ∈

arg minx∈X uj(x, θt).

4. For all ht ∈ H and all θt ∈ Θ, sEi (ht, Dj, θt) = ∅ if i 6= j, and sEj (ht, Dj, θt) = xθtj ,

with xθtj ∈ arg maxx∈X uj(x, θt).

According to sEi , in the first period, each agent i announces (θ1, f(θ1), vfi (1), 0),

whenever θ1 is the true state. In period t > 1, there are three cases. First, if

the game being played is G∗t and all agents have made “unanimous” announcements

(θτ , f(θτ ), v
f
i (τ), 0) in all past periods τ < t, then agent i announces (θt, f(θt), v

f
i (t), 0),

whenever θt is the true state in period t. Second, if the game being played is Pj, then

all agents announce an alternative that “min-max” agent j. Third, if the game being

played is Dj, then agent j chooses an alternative that maximizes his period t payoff.

Under sE, agent j’s expected payoff at period t when the state is θt is

(1− βt,T )uj(f(θt), θt) + βt,Tv
f
j (t).

If agent j deviates and announces (θt,j, xt,j, vt,j, nt,j) 6= (θt, f(θt), v
f
j (t), 0), the high-

est possible payoff following the deviation is

min
{

(1− βt,T )uj(xt,j, θt) + βt,Tvt,j, (1− βt,T )uj(f(θt), θt) + βt,Tv
f
j (t)

}
,

so that agent j has no profitable deviation. Note that agent j obtains a continuation

payoff of vt,j if, following the deviation, he announces xτ,j ∈ arg maxx∈X ui(x, θτ ) for

all τ > t, for all θτ ∈ Θ, whenever he is dictatorial.
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Step 5: No Undesirable Equilibria. There are no undesirable equilibria.

Let s be any equilibrium and consider any history ht with q(ht; s) > 0. We want to

show that (i) g(s(ht, G∗t , θt)) = f(θt) for all θt ∈ Θ if r(G∗t ;h
t) > 0, (ii) g(s(ht, Di, θt)) =

f(θt) for all θt ∈ Θ if r(Di;h
t) > 0, and (iii) g(s(ht, Pi, θt)) = f(θt) for all θt ∈ Θ if

r(Pi;h
t) > 0.

Statements (ii) and (iii) follow from no-veto power. If Gi ∈ {Di, Pi} is adopted

in period t with positive probability, then there was a last time t′ < t when G∗t′ was

played and either rule 2 with agent i the odd-man-out, or rule 3 with i the dictator,

applied. Every agent j other than agent i could have deviated and become the dictator

at t′ and in all future periods. For such a deviation not to be profitable it must be the

case that the alternative implemented at t and state θt is x ∈ maxθtj X for all j 6= i.

No-veto power then implies x = f (θt), as statements (ii) and (iii) claim.22

Now consider statement (i). Assume that r(G∗t ;h
t) > 0.

Claim 1 : If the equilibrium s is such that s(ht, G∗t , θt) corresponds to rule 2 of

G∗t , i.e., si(h
t, G∗t , θt) = (θ̃t, f(θ̃t), v

f
i (t), 0) for each i ∈ I \ {j} and sj(h

t, G∗t , θt) =

(θt,j, xt,j, vt,j, nt,j) 6= (θ̃t, f(θ̃t), v
f
i (t), 0), then the alternative implemented at θt is f(θt).

Proof of Claim 1 : Let x be the alternative implemented. Note that since rule 2

of G∗t applies, x is either xt,j or f(θ̃t). At the history (ht, G∗t , θt), any agent i 6= j can

deviate and announce (θt,i, x
θt
i , vt,i, nt,i), with nt,i > nt,j, x

θt
i ∈ maxθti X, and then choose

22 To prove that (ii) and (iii) hold under Assumption A in place of no-veto power, first consider
the case when rule 2 applies in period t′. Since each agent j other than i can deviate at t′ and
become dictator in all subsequent periods τ including t (and also at t′), for rule 2 at t′ to be part of
an equilibrium it must be that on the equilibrium path in all periods τ > t′ and in all states θ the
alternative chosen maximizes the payoff of each agent j 6= i; that is, it must belong to ∩j 6=i maxθj X.
Write ϕt′(τ, θ) for the alternative implemented at τ in state θ if the mechanism is Pi, and ϕt′(τ, θ)
if the mechanism is Di. Clearly, it must be ϕt′(τ, θ) ∈ maxθi X for all τ > t′, for all θ. Let the
second and third element of the message sent by agent i at t′ on the equilibrium path be (x, vi(t

′));
at t′ agent i must not have a profitable deviation (y, vi) ∈ Li,t′ (f(θt′), θt′), where θt′ is the state
announced by all agents other than i. The most severe punishment that the other agents could use
when mechanism Pi is played at t > t′ after a deviation yields agent i a continuation payoff vi;
the highest payoff that agent i could secure himself after a deviation when mechanism Di is played
at t > t′ is vi. Since λ(vi(t

′)) is the probability that Di is played on the equilibrium path and
λ(vi) the probability Di is played after the deviation, for the equilibrium under rule 2 at t′ to exists

it must be: βt′,Tui(x, θ
∗
t′) + (1 − βt′,T )

[
λ (vi(t

′)) v
ϕt′
i + (1− λ (vi(t

′))) v
ϕt′
i

]
≥ βt′,Tui(y, θ

∗
t′) + (1 −

βt′,T ) [λ (vi) vi + (1− λ (vi)) vi] = βt′,Tui(y, θ
∗
t′) + (1 − βt′,T )vi for all (y, vi) ∈ Li,t′ (f(θt′ , θt′), where

θt′ is the state reported by all agents other than i and θ∗t′ the true state at t′. The result follows from
(i) of Assumption A, since λ(vi(t

′)) 6= 0 implies ϕt′(τ, θ) ∈ ∩j maxθj X for all θ ∈ Θ, τ > t′.
Second, if rule 3 applies at t′, the result immediately follows from condition (ii) of Assumption A.
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xθτi ∈ maxθτi X when the mechanism Di is played in period τ and θτ is the realized

state, for any τ > t. Since agent i becomes dictator for all τ ≥ t, the expected payoff

starting at t from such a deviation is: (1− βt,T )ui(x
θt
i , θt) + βt,Tvi. For the deviation

not to be profitable, it must be that x ∈ maxθti X for all i ∈ I \ {j}. It follows from

no-veto power that x = f(θt).
23

Claim 2 : If the equilibrium s is such that s(ht, G∗t , θt) corresponds to rule 3 of G∗t ,

then the alternative implemented at θt is f(θt).

Proof of Claim 2 : It is analogous to the proof of Claim 1.

Claim 3 : If the equilibrium s is such that si(h
t, G∗t , θ

∗
t ) = (θt, f(θt), v

f
i (t), 0) for some

(θ∗t , θt), for each i ∈ I, then there exists a state history θt and a deception π such

that Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ) for all i ∈ I with πt(θ

t, θ∗t ) = θt and dynamic

monotonicity implies that the alternative implemented at θ∗t is f (θt) = f (θ∗t ) .

Proof of Claim 3 : Since r(G∗t ;h
t) > 0, it must be r(G∗t ;h

t) = 1 and the mechanism

G∗τ must have been played in all periods τ < t. Thus, the history ht is uniquely

determined by the strategy s and the history of realized states θt contained in ht. Define

πt(θ
t, θ∗t ) = θt if si(h

t, G∗t , θ
∗
t ) = (θt, f(θt), v

f
i (t), 0) for each i ∈ I, and πt(θ

t, θ∗t ) =

θ∗t , otherwise. Now, take τ > t and consider any subsequent history hτ of ht (i.e.,

hτ = (ht, ht,τ ) for some ht,τ ) with q(hτ ; s) > 0. There are two cases. If r(G∗τ ;h
τ ) >

0, define πτ as done at t, using the history of realized states θτ contained in hτ .

Alternatively, if r(G∗τ ;h
τ ) = 0, let πτ (θ

τ , θτ ) = θτ for all θτ , with θτ the history of

realized states contained in hτ .24 Note that the constructed deception corresponds

to the truth-telling deception π∗τ whenever rules 2 and 3 of G∗τ apply or whenever

the mechanism is Pi or Di for some i ∈ I. From claims 1 and 2, f is implemented

whenever rule 2 or 3 of the mechanism G∗τ applies for any τ > t. Since f is also

implemented whenever the mechanism is Di or Pi, and recalling that f(πt(θ
t, θ∗t )) =

f(θt), it follows that the expected payoff of agent i under s when the state is θ∗t at

period t, is (1− βt,T )ui(f(θt), θ
∗
t ) + βt,Tv

fπ
i (θt, θ∗t ).

23The proof that Claim 1 holds under Assumption A in place of no-veto power is as in footnote 22.
24To see that the deception is well-defined, observe that if there are two histories hτ and ĥτ such

that q(hτ ; r, s, p) > 0, q(ĥτ ; r, s, p) > 0, r(G∗τ ;hτ ) > 0 and r(G∗τ ; ĥτ ) = 0, then it must be that the

history of realized states θτ contained in hτ is different from the history of realized states θ̂τ contained
in ĥτ since hτ is uniquely determined by s and θτ .
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Now, suppose that there exists (i, xt,i, vt,i) ∈ I ×X × Vi(t) such that:

(1− βt,T )ui(xt,i, θt) + βt,Tvt,i ≤ (1− βt,T )ui(f(θt), θt) + βt,Tv
f
i (t), (3)

(1− βt,T )ui(xt,i, θ
∗
t ) + βt,Tvt,i > (1− βt,T )ui(f(θt), θ

∗
t ) + βt,Tv

fπ
i (θt, θ∗t ). (4)

If agent i deviates at (ht, G∗t , θ
∗
t ) and announces (θt,i, xt,i, vt,i, nt,i) 6= (θt, f(θt), v

f
i (t), 0),

then from period t + 1 onwards he is dictatorial with probability λ
(t)
i and with prob-

ability (1 − λ
(t)
i ) the mechanism is Pi. Consequently, agent i can guarantee himself

a continuation payoff of at least vt,i = λ
(t)
i vi + (1 − λ(t)

i )vi, and thus has a profitable

deviation. Therefore, for s to be an equilibrium, it must be the case that for all

(i, xt,i, vt,i) ∈ I × X × Vi(t), if (3) holds, then (4) must fail. Equivalently, it must be

Lfi,t(f(θt), θt) ⊆ Lfπi,θt(f(θt), θ
∗
t ). Since πt(θ

t, θ∗t ; ) = θt, this proves Claim 3.

Since Claims 1-3 are true for any period t, we conclude that s implements f . �

Proof of Theorem 3 We modify the canonical mechanism G∗t as follows:

Rule 1 : If mt,i = (θt, xt, vt, 0) for all i ∈ {1, 2}, then g(m) = f(θt).

Rule 2a: If mt,i = (θt,i, xt,i, vt,i, 0) and mj,t = (θt,j, xt,j, vt,j, 0) 6= mt,i, then g(m) = w.

Rule 2b: If mt,i = (θt,i, xt,i, vt,i, nt,i) with nt,i > 0 and mj,t = (θt,j, xt,j, vt,j, 0), then

g(m) = xt,i if (xt,i, vt,i) ∈ Lfi,t(f(θt,j), θt,j) and g(m) = w, otherwise.

Rule 3 : If mt,i = (θt,i, xt,i, vt,i, nt,i) and mj,t = (θt,j, xt,j, vt,j, nt,j) with nt,i > 0 and

nt,j > 0, then g(m) = xt,i∗ with i∗ the agent with the smallest index among the agents

announcing the highest integer.

Let Pw be a mechanism that implements the outcome w, regardless of the messages.

The transition rule of the dynamic mechanism regime is:

– If the messages announced at period t are in rule 1, the next period mechanism

is the canonical mechanism with probability one.

– If the messages announced at period t are in rule 2a, then the next period mech-

anism is Pw with probability one.

– If the messages announced at period t are in rule 2b, then the next period mech-

anism is Di (where i is the agent having announced the positive integer) with

probability λ
(t)
i and Pw with probability 1− λ(t)

i .
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– If the messages announced at period t are in rule 3, then the next period mech-

anism is Di∗ with probability one.

– If the mechanism at period t was Di (resp., Pw), then the next period mechanism

is Di (resp., Pw) with probability one.

As before, we compute λ
(t)
i so that (i) the expected continuation payoff is vfi (t) if

(xt,i, vt,i) /∈ Lfi,t(f(θt,j), θt,j), (ii) the expected continuation payoff is vt,i if (xt,i, vt,i) ∈

Lfi,t(f(θt,j), θt,j) and vt,i ≥ vwi =
∑

θ ui(w, θ)p(θ), and (iii) λi,t = 0, otherwise.

To see that f is repeatedly implementable suppose G∗t is used at t and observe that:

• There are equilibrium strategies that implements f , with an equilibrium path in

which G∗t is used and all agents “truthfully” report (θt, f(θt), v
f
i (t), 0) when the

state is θt at period t. To see this, suppose that the state is θt = θt,j and agent

i deviates to (θt,i, xt,i, vt,i, nt,i) and either nt,i = 0 or (xt,i, vt,i) 6∈ Lfi,t(f(θt,j), θt,j),

then the alternative implemented is w and i’s continuation payoff is vwi . By

construction, this is not a profitable deviation. If i deviates to (θt,i, xt,i, vt,i, nt,i)

with nt,i > 0 and (xt,i, vt,i) ∈ Lfi,t(f(θt,j), θt,j), then the alternative adopted is xt,i

and the continuation payoff is vt,i; by construction, this is also not a profitable

deviation (since j tells the truth).

• By condition (ii) of Assumption A, any equilibrium with rule 3 applying for some

t must implement f .

• Any equilibrium under rule 2b at t < T or t = T implements f . Let i be the

agent reporting nt,i > 0, θt the state reported by j 6= i and θ∗t the true state at t.

Consider t < T . First, if λ
(t)
i < 1, then with positive probability the outcome in all

future periods is w; agent j can profitably deviate to rule 3, and guarantee himself

a strictly higher continuation payoff. Second, if λ
(t)
i = 1, then i becomes a dictator

at t′ > t and selects x(θt′) ∈ max
θt′
i X for all t′ > t and all θt′ , thus obtaining

the continuation payoff vi. Write ϕt(t
′, θ) for the alternative implemented at

state θ in period t′; we have that ϕt(t
′, θ) ∈ maxθi X for all θ, for all t′ > t.

Observe that vϕti = vi. Let (xi,t, vi(t)) be the second and third element of the

message sent by i at t. Agent i must have no profitable deviation, hence it

must be βt,Tui(xt,i, θ
∗
t ) + (1− βt,T )vi ≥ βt,Tui(y, θ

∗
t ) + (1− βt,T )vi for all (y, vi) ∈
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Li,t (f(θt), θt). Agent j can also deviate and become dictator himself from period

t. For such a deviation not to be profitable, first it must be x(θt′) ∈ max
θt′
j X

for all t′ > t and all θt′ (i.e., in all periods after t, the alternative implemented

ϕt(τ, θ) must therefore belong to maxθj X for all τ > t, for all θ); second, it must

be xt,i ∈ max
θ∗t
j X. The result then follows from condition (i) of Assumption A.

Consider t = T ; let the state be θ∗. It must be that xT,i ∈ maxθ
∗
i Li(f(θT,j), θT,j)

Since agent j may deviate and become dictator at t = T , either the deviation is

profitable, or by condition (ii) of Assumption A, xT,i = f(θ∗).

• There are no equilibria under rule 2a. Let vwi (t) = 0 if t = T and vwi (t) =

vwi otherwise. Assume that the true state at t is θt = θ∗ and the messages

reported are mt,i = (θt,i, xt,i, vt,i, 0) and mt,j = (θt,j, xt,j, vt,j, 0). The alternative

implemented is w and the continuation payoff vector is (vw1 , v
w
2 ). Agent i can

trigger rule 2b by announcing (θt,i, f(θt,j), v
f
i , 1). Since f(θt,j) ∈ Li(f(θt,j), θt,j),

it is the case that (f(θt,j), v
f
i ) ∈ Lfi,t(f(θt,j), θt,j). Thus, the deviation yields agent

i a discounted payoff of (1−βt,T )ui(f(θt,j), θ
∗) +βt,Tv

f
i (t) > (1−βt,T )ui(w, θ

∗) +

βt,Tv
w
i (t), and hence it is profitable.

• It follows from the arguments in the proof of Theorem 2 that if there are equilibria

under rule 1, then the dynamic lower contour sets are nested, as in the original

canonical mechanism, and f is implemented. �

Definition 4 (Dynamic Self-Selection) Let I = 2. For all t, all pairs (θt,2, θt,1) and

all θt, there exists a triple (x(θt,2, θt,1), v1(θt,2, θt,1), v2(θt,2, θt,1)) such that (x(θt,2, θt,1),

v1(θt,2, θt,1)) ∈ Lf1,t(f(θt,2), θt,2) and (x(θt,2, θt,1), v2(θt,2, θt,1)) ∈ Lf2,t(f(θt,1), θt,1).

Note that self-selection implies dynamic self-selection.

Proposition 1 Let I = 2. If a social choice function f is repeatedly implementable,

then it satisfies dynamic self-selection.

Proof Suppose that f is repeatedly implementable by the dynamic mechanism regime

r. Fix an equilibrium s. Consider any period t, any history ht and mechanism

〈MGt , gt〉 having positive probability of occurring on the equilibrium path, that is,
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such that q(ht; s) > 0 and r(Gt;h
t) > 0. The profile of actions s(ht, Gt, θ̂t) must satisfy

g(s(ht, Gt, θ̂t)) = f(θ̂t) for each θ̂t ∈ Θ, and the continuation payoff must be vfi (t).

This implies that

(1− βt,T )u1(f(θt,2), θt,2) + βt,Tv
f
1 (t) ≥

(1− βt,T )u1(g(s1(ht, Gt, θt,1), s2(ht, Gt, θt,2)), θt,2) + βt,Tv1(θt,2, θt,1),

where v1(θt,2, θt,1) is agent 1’s continuation payoff following the deviation, and

(1− βt,T )u2(f(θt,1), θt,1) + βt,Tv
f
2 (t) ≥

(1− βt,T )u2(g(s1(ht, Gt, θt,1), s2(ht, Gt, θt,2)), θt,1) + βt,Tv2(θt,2, θt,1),

where v2(θt,2, θt,1) is agent 2’s continuation payoff following the deviation. Letting

x(θt,2, θt,1) = g(s1(ht, Gt, θt,1), s2(ht, Gt, θt,2)) completes the proof. �

Proof of Theorem 4 First, assume that there exists a set J of I − 1 agents

such that ∩j∈J arg maxx∈X uj(x, θ) 6= ∅ for all θ. By no-veto power, it must be that

{f(θ)} = ∩j∈J arg maxx∈X uj(x, θ) for all θ. (By no-veto power, if there exists {x, y} ⊆

∩j∈J arg maxx∈X uj(x, θ) for some θ, then f(θ) = x = y, i.e., ∩j∈J arg maxx∈X uj(x, θ)

is a singleton.) The following regime implements f . At t = 1, all agents in J an-

nounce an integer and an alternative (the remaining agent is inactive). The alternative

implemented at t = 1 is the one announced by the agent reporting the highest inte-

ger (break ties in favor of the lowest indexed agent). Moreover, the agent reporting

the highest integer is dictatorial in all subsequent periods. It is routine to verify that

this mechanism indeed implements f . In particular, by reporting a sufficiently large

integer at t = 1, each agent in J can obtain his highest payoff with arbitrarily large

probability. Therefore, it must be that the alternative implemented at each period is

in ∩j∈J arg maxx∈X uj(x, θ) for each θ, i.e., f is implemented.

Second, assume that for every set J of I−1 agents, there exists θ and (i, j) ∈ J ×J

such that arg maxx∈X ui(x, θ)∩arg maxx∈X uj(x, θ) = ∅. We make three changes to the

mechanism regime adopted in the proof of Theorem 2.
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First, if T < ∞, we replace the canonical mechanism GT for the last period T

with a slightly modified version G∗T of the static mechanism introduced by Maskin and

Sjöström (2002, p 274). The mechanism G∗T is as follows: Mi = Θ × X × N+ × {α :

Θ → X; (α(θ), 0) ∈ Lfi,T (f(θ), θ)}, where N+ is the set of positive integers. There are

three rules:

Rule 1 : If mj = (θ, x, 1, ·) for all j 6= i and mi = (θi, xi, 1, ·), then g(m) = f(θ).

Rule 2 : If mj = (θ, x, 1, ·) for all j 6= i and mi = (θi, xi, zi, ·) with zi > 1, then

g(m) = αi(θ).

Rule 3 : In all other cases, g(m) = xi∗ , where i∗ is the lowest index agent among those

announcing the highest integer.

Second, by no indifference for each agent i there exist θ and ŷi such that maxx ui(x, θ) >

ui(ŷi, θ).
25 We use this and modify the dictatorial mechanism Di as follows: Mi =

X×N+, Mj = {∅} for all j 6= i, and g(xi, ni) = (1− 1
ni

)1xi +
1
ni

1ŷi ; that is, the outcome

is ŷi with probability 1
ni

and xi with the complementary probability.

Third, we modify the punishment mechanism Pi as follows: Mi = {∅}, Mj = X×N+

for all j ∈ I \{i}, and g(m) = xj∗ , where j∗ is the lowest indexed agent that announced

the highest integer. In all other aspects, the mechanism regime remains the same.

The proof that there exists an equilibrium that repeatedly implements f is essen-

tially the same as in the proof of Theorem 2; the only small change is that if G∗T is

played in the last period, and the state is θT , then all agents report (θT , f(θT ), 1, ·).

To show that there are no undesirable equilibria, begin by noting that there cannot

exist an equilibrium where a dictatorial regime Di is played with positive probability

on the equilibrium path; if there were, then agent i could always increase his expected

payoff by announcing a higher integer, a contradiction. It follows that rule 3 of G∗t for

all t < T cannot be in the support of any equilibrium. In addition, for rule 2 of G∗t ,

t < T , to be in the support of an equilibrium, it must be that λ
(t)
i = 0 with agent i the

odd-man out, i.e., the mechanism transitions to Pi with probability one when rule 2

applies. However, there exists a state θ for which the mechanism Pi has no equilibrium

(since there is a pair of agents with a non-empty message space who disagree on their

25Since p(θ) > 0 for all θ ∈ Θ, it follows that
∑
θ maxx ui(x, θ)p(θ) = vi > v̂i :=

∑
θ ui(ŷi, θ)p(θ).
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most preferred alternatives). It follows that any equilibrium of the game induced by

the regime transitions to Di or Pi with zero probability; that is, it corresponds to rule

1 of G∗t for all t < T and thus must be in pure strategies until the last period (if

T < ∞). This implies that if T < ∞, then G∗T is played with probability one on the

equilibrium path and hence the outcome at T must correspond to a (mixed strategy)

Nash equilibrium of G∗T .

As argued by Maskin and Sjöström (2002), in G∗T an “agent i has nothing to loose

from setting”: (i) αi(θ) equal to his favourite outcome in the lower contour set of f(θ)

at θ, (ii) xi ∈ arg maxx∈X ui(x, θ
∗
T ) where θ∗T is the true state, and (iii) “zi larger

than any integer announced with positive probability by any other agent.” First, this

implies that when rule 2 or rule 3 of G∗T apply at state θ∗T , then by no-veto power

it must be that the alternative implemented is f(θ∗T ). Second, it implies that when

rule 1 applies at θ∗T it must be that the state reported by I − 1 agents is the same,

denote it by πT (·, θ∗T ), the alternative implemented is f(πT (·, θ∗T )) and there is no

alternative in Lfi,T (f(πT (·, θ∗T )), πT (·, θ∗T )) that is preferred by agent i to f(πT (·, θ∗T ));

that is, Lfi,T (f(πT (·, θ∗T )), πT (·, θ∗T )) ⊆ Lfi,T (f(πT (·, θ∗T )), θ∗T ).26

Now consider any equilibrium σ in behavioral strategies. From the above argument,

the mechanism adopted is G∗t at any t. In addition, at all t < T , histories ht, and states

θt, the mixed action σ(ht, G∗t , θt) is pure and corresponds to rule 1 of G∗t . It follows

that we can associate with any state profile θt a unique public history htD(θt) over

mechanisms, messages reported and alternatives implemented. We now define the

deceptions induced by σ.

For any t < T , for any (θt, θt), we simply define the map πt(θ
t, θt) = θ′t, where θ′t

is the common state reported by at least I − 1 agents at the history (htD(θt), θt, G∗t , θt)

under σ. For any (θT , θT ), we define a distribution q(θT , θT ) ∈ ∆(Θ) over maps

πT (θT , θT ) ∈ Θ such that: (i) πT (θT , θT ) = θT , with probability q(θT , θT )[θT ] given

by the sum of σ(hTD(θT ), θT , G∗T , θT )[m] over all messages m such that either rule 2

or 3 apply or rule 1 applies with θT the common state reported by at least I − 1

26Hence, if we assumed Maskin monotonicity f would also be implemented at T when rule 1 applies,
but dynamic monotonicity does not imply Maskin monotonicity, as shown by Example 1.
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agents, and (ii) πT (θT , θT ) = θ′T with probability q(θT , θT )[θ′T ] given by the sum of

σ(hTD(θT ), θT , G∗T , θT )[m] over all messages m such that rule 1 applies with θ′T the com-

mon state reported by at least I − 1 agents, for all θ′T 6= θT .

We have thus defined a distribution over a set of dynamic deceptions, where decep-

tion πk, k ∈ K, has probability qk. For instance, if πk is such that πkT (θT , θT ) = θT for

all (θT , θT ), the probability qk is ×(θT ,θT )q(θ
T , θT )[θT ].

The expected payoff of agent i at t < T , when the state is θ∗t and i selects the

pure strategy si in the support of σi while all other agents follow their behavioral

strategies σ−i (and hence report state πt(θ
t, θ∗t )), is (1− βt,T )ui(f(πt(θ

t, θ∗t )), θ
∗
t ) +

βt,T
∑

k∈K q
kv

f
πk

i (θt, θ∗t ). Suppose there exists (i, xt,i, vt,i) ∈ I ×X × Vi(t) such that:

(1− βt,T )ui(xt,i, πt(θ
t, θ∗t )) + βt,Tvt,i ≤ (1− βt,T )ui(f(πt(θ

t, θ∗t )), πt(θ
t, θ∗t )) + βt,Tv

f
i (t),

(5)

(1− βt,T )ui(xt,i, θ
∗
t ) + βt,Tvt,i > (1− βt,T )ui(f(πt(θ

t, θ∗t )), θ
∗
t ) + βt,T

∑
k∈K

qkv
f
πk

i (θt, θ∗t ).

(6)

If agent i deviates at (ht, G∗t , θ
∗
t ), t < T , and sends the message (θt,i, xt,i, vt,i, nt,i) 6=

(πt(θ
t, θ∗t ), f(πt(θ

t, θ∗t )), v
f
i (t), 0), then from period t+ 1 onwards he is dictatorial with

probability λ
(t)
i and with probability (1 − λ(t)

i ) the mechanism is Pi. By selecting an

arbitrarily large integer when the mechanism is Di, agent i obtains at least a contin-

uation payoff arbitrarily close to vt,i = λ
(t)
i vi + (1 − λ(t)

i )vi, and thus has a profitable

deviation. Hence, for σ to be an equilibrium, it must be that for all (i, xt,i, vt,i) ∈

I×X×Vi(t), if (5) holds, then (6) fails; that is, it must be Lfi,t(f(πt(θ
t, θ∗t )), πt(θ

t, θ∗t )) ⊆

L
f
πk

i,θt (f(πt(θ
t, θ∗t )), θ

∗
t ) for at least one deception πk, for all t < T . We have already es-

tablished that it must also be Lfi,T (f(πT (θT , θ∗T )), πT (θT , θ∗T )) ⊆ Lfi,T (f(π(θT , θ∗T )), θ∗T ) =

L
f
πk

i,θT
(f(πT (θT , θ∗T )), θ∗T ). Dynamic monotonicity then implies f(πt(θ

t, θ∗t )) = f(θ∗t ) for

all t ∈ T . This concludes the proof of the theorem. �
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