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Abstract  

Purpose: To evaluate pacing behavior and peripheral and central contributions to muscle 

fatigue in 1500m speed skating and cycling time-trials, when a faster or slower start is 

instructed. Methods: Nine speed skaters and nine cyclists, all competing at regional or 

national level, performed two 1500m time-trials in their sport. Athletes were instructed to 

start faster than usual in one trial and slower in the other. Mean velocity was measured per 

100m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), 

voluntary activation (VA) and potentiated twitch (PT) of the quadriceps muscles were 

measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, 

knee, hip and trunk angles were measured to evaluate technique. Results: Cyclists showed a 

more explosive start than speed skaters in the fast-start time-trial (cyclists performed first 

300m in 24.70±1.73s, speed skaters in 26.18±0.79s). Both trials resulted in reduced MVC 

(12.0±14.5%), VA (2.4±5.0%) and PT (25.4±15.2%). Blood lactate concentrations after the 

time-trial and the decrease in PT were greater in the fast-start than in the slow-start trial. 

Speed skaters showed higher trunk-angles in the fast-start than in the slow-start trial, while 

knee-angles remained similar. Conclusions: Despite similar instructions, behavioral 

adaptations in pacing differed between the two sports, resulting in equal central and 

peripheral contributions to muscle fatigue in both sports. This provides evidence for the 

importance of neurophysiological aspects in the regulation of pacing. It also stresses the 

notion that optimal pacing needs to be studied sport-specifically, and coaches should be 

aware of this. 

Key words: Athletic performance, time-trial, central fatigue, peripheral fatigue, sport science  
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INTRODUCTION  

Long-track speed skating is an intriguing sport to study: The crouched position in 

combination with the static gliding phase, a sideward push-off 1-4 and high velocities require 

high quasi-isometric muscular forces. The crouched position is important for aerodynamics 

and technique, as smaller knee-angles diminish air resistance 1 and is essential to increase 

push-off length enabling a more effective technique 5. Often when speed skaters fatigue, they 

increase their body-angles 3, probably to reduce blood flow restrictions associated with the 

crouched position 6. The trade-off between positive and negative aspects of changing body-

angles in relation to muscle fatigue impacts the ability of speed skaters to benefit from a fast 

start during a 1500m time-trial. Modeling studies, which included both physiological (such as 

anaerobic and aerobic energy contribution) and biomechanical parameters (such as frictional 

energy losses) have calculated that a faster start should improve 1500m speed skating and 

cycling performance 3,4,7,8. Nevertheless, imposing a faster start in 1500m speed skating 

resulted in slower end-times; presumably due to its impact on postural control and increasing 

body-angles, supposedly associated with earlier onset of muscle fatigue. 4,7 Up until now, 

muscle fatigue has never been quantified and analyzed in speed skating. Muscle fatigue is 

often defined as an exercise-induced reduction in the force-generating capacity of the 

neuromuscular system 9 and is generally measured by changes in maximal voluntary 

contraction (MVC). Both central (at or proximal to the motor neuron) and peripheral (distal 

from the motor neuron) mechanisms play an important regulatory role in muscle fatigue 10 

and in pacing 11.  Central fatigue reflects impaired voluntary drive, whereas peripheral 

mechanisms are more related to changes in excitation-contraction coupling in the muscle 

fibers 10,12.  

It is still unclear, however, to what extent muscle fatigue and technique impact on 

pacing and performance. Speed skating and cycling share similar characteristics such as the 
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cyclic movement, crouched position, active muscles and maximal velocity 4,7,13,14. The 

increasing body-angles, however, do not occur in cycling, as the body is supported by the 

bicycle, leaving only positive aspects of the crouched body position. The present study will 

assess muscle fatigue, pacing and technical parameters in a competitive setting. Essential to 

this is that subjects perform in a competitive setting, receiving pacing instructions instead of 

rigidly imposed pacing strategies. In this way, we include the behavioral component of 

pacing: though they are guided by our instructions, the athletes decide when and how much to 

accelerate or decelerate 15,16 . This approach will provide new valuable insights in 

performance of athletes in competitive settings that cannot be obtained in a laboratory design. 

Well-controlled laboratory studies are valuable in resolving underlying regulatory 

mechanisms, but need accompanying ecologically valid field studies in which the essential 

pillars of sports sciences psychology, physiology and biomechanics are combined 17. 

To evaluate the role of muscle fatigue in the earlier observed differences in pacing 

between speed skating and cycling in a realistic competitive setting, we will evaluate the 

contribution of peripheral and central fatigue in speed skating and cycling time-trials. We 

hypothesize that cyclists will perform a faster initial phase of the time-trial than speed 

skaters, but that the impact of pacing strategy on muscle fatigue will be the same. This will 

provide evidence that different behavioral adaptations depending on the nature of the sport 

will occur in order to result in similar neurophysiological limitations. 

METHODS 

Subjects. Nine well-trained male speed skaters (age:21±3yr, height:182±6cm, 

weight:75±6kg) and nine well-trained male cyclists (age:25±9yr, height:184±7cm, 

weight:78±4kg) participated and gave written informed consent. All subjects were competing 

at regional or national level, training at least 3 times per week. The study-protocol was 

approved by the institutional review board, in the spirit of the Helsinki Declaration.  
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Protocol. Subjects performed two 1500m time-trials in their sport of expertise. To 

create significantly different pacing strategies, athletes were instructed to start (first 300 m) 

0.5s faster than their customary pacing strategy in the one trial (FS) and 0.5s slower in the 

other (SS). 0.5s is beyond the variation of 0.1s that was seen when speed skaters were 

instructed to go all-out compared to self-paced performance 4, but within the range of intra-

individual differences seen in official time trials during one season. The remaining 1200m 

had to be finished as fast as possible. Each subject performed the trials in random order at the 

same time of day, with one week in between trials in a period with no important 

competitions. Subjects were requested to keep training intensity low the day before testing, 

refrain from caffeine 12hrs before testing and to not eat in the 2hrs preceding testing. 

Speed skaters performed their 1500m-trials at an indoor 400m speed skating track in 

Calgary, 1035m above sea-level (n=3) or in Groningen, 5m above sea-level (n=6). To 

increase sample-size, data were pooled. The start was situated in the outer competition lane. 

Subjects were not aware of split times during the trial.  

Cycling trials were performed in Calgary, on the Velotron dynafit-pro ergometer 

(RacerMate Inc., Seattle, Washington USA) simulating outdoor track performance, including 

wind resistance. The accuracy of the Velotron is 3.0% (CI=1.6-4.5%) during high intensity 

intervals and <1% during constant power trials.18 A familiarization-trial was performed one 

week prior to the first trial. Subjects only received distance feedback. 

Before (pre-trial) and after (post-trial) each time-trial blood lactate concentration 

(BLC) and muscle force were measured.  During the time-trial, pacing strategy (velocity 

profiles) and technique (body-angles) were measured. 

Pre-trial. Barometric pressure, ice temperature, humidity and indoor temperature 

were measured before every speed skating trial. For cycling, barometric pressure and indoor 

temperature were constant between 880-891hPa and 19-21°C.  
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The Lactate Pro (LP, Arkray KDK, Japan) was used to measure baseline fingertip 

BLC at rest 19,20, followed by baseline muscle force measurements performed on a 

customized chair with attached force sensor, which was calibrated before each trial. The 

subject was seated upright, strapped with a seatbelt across their waist, and their ankle 

attached to the force sensor at a 90° knee-angle. Force measurements were done on the left 

leg in Calgary but on the right leg in Groningen. Force measurements were repeated three 

times (Groningen) or two times (Calgary), with one minute rest between repetitions. Force 

output (N) was recorded by Windaq (Calgary) or Spike2 (Groningen) software with a 

frequency of 3000Hz or 500Hz respectively. 

Maximal voluntary contraction (MVC), voluntary activation (VA) and potentiated 

twitch (PT) were obtained to quantify muscle performance. A decline in MVC (baseline vs 

post) indicates muscle fatigue, as a result of both peripheral and central fatigue. Peripheral 

fatigue was quantified by changes (baseline vs post) in PT 10, central fatigue  by changes in 

the VA10,21.   

To determine MVC, maximal force was measured during a 5s maximal isometric 

contraction of the m.quadriceps femoris, with verbal encouragement. To assess VA and PT, 

electrical stimulation was applied to the n.femoralis to activate the m.quadriceps during and 

5s after the MVC. Two stimulation pads were placed on the leg and connected to a high 

voltage stimulator (Digitimer DS7A(H) or 3 parallel DS7A-models). The cathode pad was 

placed at the distal side of the middle of the inguinal crease. The anode pad was placed 2-3cm 

proximal to the patella, with the knee in a bent position. Before each trial the current that 

evoked maximal twitch amplitude at rest was determined with stepwise current increases 

(minimum step: 25mA) until twitch amplitude did not increase. The current evoking the 

maximal twitch amplitude was used throughout the experiment. 
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VA was quantified by use of equation 1 22,23. The underlying principle is that an 

imposed electrical stimulation delivered to the motor nerve of muscles that perform a MVC 

will evoke an increase in muscle activation when the voluntary activation is submaximal 21,24. 

The force evoked by the imposed electrical stimulation on top of the MVC is the interpolated 

twitch (IT), the force evoked by the electrical stimulation 5s after MVC is PT.  

 

VA (%) = (1 - IT / PT) ∙ 100        [eq. 1]  

 

After baseline measurements, athletes performed a 10min low intensity warm-up 

including two brief accelerations. Cyclists warmed-up on the bicycle, whereas speed skaters 

had a 5min off-ice warm-up followed by a 5min on-ice warm-up. 

Time-trial. Mean velocities per 100m were obtained during all time-trials. For 

cycling this was obtained by the ergometer. For speed skating, infrared timing gates (TC 

timing system, Brower, USA in Calgary; HL 2-31 Photocell, TAG Heuer professional timing, 

Switzerland in Groningen) were placed at the entry and exit of every corner to measure split 

times for every straight and curve. 

Changes in speed skating technique were determined by changes in knee-, hip- and 

trunk-angles (figure 1) measured at every straight. One high resolution camera, located in the 

middle of the 400m track, filmed the speed skater in the sagittal plane. Body-angles were 

taken over 5 frames with the left leg in gliding phase and the right leg in recovery phase with 

close to 90° knee-angle (figure 1) and corrected for viewing angle. 

Post-trial. Within 2-4min after completion of the time-trial, force measurements were 

repeated. The percentage decrease of the post-trial measurement relative to baseline was used 

to quantify the amount of muscle fatigue present after the trial. Additionally, BLC was 

measured seven times at intervals of 5min starting 5min after the subject had finished his 

time-trial. BLC-post, including all seven BLC measurements after the time trial, and BLC-



“Pacing Strategy, Muscle Fatigue and Technique in 1500m Speed Skating and Cycling Time-Trials” by Stoter IK et al.  

International Journal of Sports Physiology and Performance 

© 2015 Human Kinetics, Inc. 

 

max, being the highest post-BLC value, were obtained. All subjects performed a 10min active 

cycling recovery, starting 20min after time-trial completion.  

Statistics. The highest VA, PT and mean MVC of the baseline and post force 

measurements were used for analysis. Velocity and body-angles were analyzed per lap for 0-

300m, 300-700m, 700-1100m and 1100-1500m, as is common in speed skating. Pearson’s 

correlation coefficients were calculated to determine the relationship between BLC-max and 

VA, PT and MVC. Further statistical analysis was done with mixed analysis of variance 

(ANOVA), with ‘strategy’ (FS vs SS) as within-subject variable and ‘sport’ (cycling vs speed 

skating) or ‘location’ (Calgary vs Groningen) as a between-subject variable. For statistical 

analysis of mean velocity per lap, BLC-post and force measurements the within variable ‘lap’ 

or ‘time’ (before vs after or time after trial) was added to the mixed ANOVA. Body-angles 

were tested in speed skating only, with a two-way repeated measures ANOVA with ‘strategy’ 

and ‘lap’ as within-subject variables. When the assumption of sphericity was violated, 

degrees of freedom were corrected (Greenhouse-Geisser). When a three-way interaction 

effect was found, a post hoc analysis was performed with a two-way repeated measures 

ANOVA. Planned contrasts (repeated; T1-T2, T2-T3, etc.) were used on the main and two-way 

interaction effects involving lap or time. 

RESULTS 

External conditions: In speed skating no interaction effects of strategy x location or 

main effect for trial were found for ice temperature, indoor temperature and barometric 

pressure. There were main effects for location for ice temperature (F(1,7)=36.489;p=0.001), 

indoor temperature (F(1,7)=261.241;p<0.001) and barometric pressure 

(F(1,7)=1368.7;p<0.001), showing lower mean ice temperatures (-6.9 ± 0.1°C;-5.6 ± 0.9°C), 

higher indoor temperatures (15.1 ± 0.7°C;4.1 ± 3.9°C) and lower barometric pressures (884 ± 
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6hPa;1022 ± 12hPa) in Calgary than in Groningen respectively. These differences were 

deemed inconsequential since athletes performed both time-trials in the same location. 

Start- and end-times: Start-times at 0-300m and 1500m end-times are presented 

(table 1). For start-times, an interaction effect of strategy x sport (F(1,16)=5.276;p=0.035) 

was found, with similar start-times in SS for both sports, but relatively faster start-times in FS 

for cyclists than for speed skaters.  

For end-times, neither a strategy x sport interaction-effect (p=0.46), nor main effects 

of sport (p=0.37) and strategy (p=0.28) were found, revealing no differences in end-times for  

sports or trials. 

Velocity. Mean velocities per lap are presented (table 2). To provide more insight into 

the variation during the time-trial, velocity profiles for FS and SS are also presented per 

100m for speed skating and cycling (figure 2).  

 An interaction effect of strategy x lap x sport (F(2.019,32.304)=7.126;p=0.003) was 

found. Post hoc analysis yielded interaction effects of strategy x lap for speed skating 

(F(1.434, 11.476)=11.118;p=0.004) and cycling (F(1.733,13.862)=20.392;p<0.001), 

suggesting different pacing strategies for FS and SS in both sports. In speed skating, the 

planned contrasts showed a different strategy x lap interaction for lap 1 to 2 and 2 to 3, 

showing a relatively faster start in FS than in SS and a greater decrease in mean velocity from 

lap 2 to 3 in FS than in SS. Planned contrasts in cycling showed a different strategy x lap 

interaction from lap 1 to 2, indicating a relatively faster first lap in FS than in SS. 

Force measurements. Results of force measurement at baseline and post-trial as well 

as the percentage decrease (post-trial relative to baseline) in force measurements are 

presented (table 3).   

No strategy x time (baseline vs post) x sport interactions were found for MVC 

(p=0.91), VA (p=0.24) and PT (p=0.46). Additionally no interaction effects were found for 
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MVC (p=0.37;p=0.65;p=0.19), VA (p=0.50;p=0.32;p=0.80) and PT (p=0.14;p=0.56;p=0.07) 

for strategy x sport, time x sport nor strategy x time, respectively. 

Main effects of sport were found for MVC (F(1,16)=6.186;p=0.024) and PT 

(F(1,16)=6.044;p=0.026), indicating higher average values in speed skating than in cycling. 

No main effect was found for VA (p=0.70). 

Main effects of strategy were only found for MVC (F(1,16)=6.940;p=0.018) , 

indicating higher MVC values in SS than in FS. No main effects for strategy were found for 

VA (p=0.39) nor PT (p=0.16).  

 Main effects of time were found for MVC (F(1,16)=20.256;p<0.001), VA 

(F(1,16)=5.708;p=0.030) and PT (F(1.16)=40.364;p<0.001). Lower measurements were 

found post-trial than at baseline, indicating the occurrence of general muscle fatigue (MVC) 

with both central (VA) and peripheral (PT) fatigue contributing. 

Percentage decrease in force measurements 

The percentage decrease did neither result in a strategy x sport interaction effect nor a 

main effect for sport for MVC (p=0.62;p=0.26 respectively), VA (p=0.24;p=0.32, 

respectively) and PT (p=0.06;p=0.32 respectively).  

A main effect of strategy was found for the decrease in PT (F(1,16)= 4.981;p=0.04), 

showing a greater percentage decrease in FS (29.2±14.9%) than in SS (21.7±15.0%), 

indicating a stronger  contribution of peripheral fatigue to muscle fatigue in FS than in SS. 

No main effects of strategy were found for the decrease in both MVC (p=0.26) and VA 

(p=0.32).  

Blood Lactate Concentration. Baseline BLC and BLC-post are presented in figure 

3. Baseline BLCs yielded no strategy x sport interaction (p=0.29), no main effect for sport 

(p=0.36) nor strategy (p=0.11). For BLC-post, 5-35min after the trials, no three-way 

(p=0.728), nor two-way interaction effects nor a main effect for sport (p=0.06) were found. 
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Main effects for strategy (F(1,16)= 6.112;p=0.025) and time (F(6,96)=194.977;p<0.001) were 

found, indicating higher BLC-post values after FS than after SS and decreases in BLC-post 

starting 10min after finishing the trial across both sports.  

Speed skaters had a BLC-max of 14.5±1.7mmol∙L-1 in FS and 14.8±1.4mmol∙L-1 in 

SS. Cyclists had a BLC-max of 16.3±1.8mmol∙L-1 in FS and 15.1±1.8mmol∙L-1 in SS. For 

BLC-max no strategy x sport interaction (p=0.07) was found and no main effects for strategy 

(p=0.33) nor sport (p=0.14). 

BLC-max was significantly correlated with percentage decrease in MVC (r=.518, 

p=0.025) and percentage decrease in PT (r=.556, p<.001), but not with percentage decrease in 

VA (r=.315, p=.062).  

Body-angles. For the speed skaters, body-angles and k1 are presented (figure 2). 

Unfortunately, one subject did not have a full data set for the body-angles. No strategy x lap 

interaction effects were found for knee- (p=0.13), hip- (p=0.93) and trunk-angles (p=0.39). 

Main effects for lap were found for knee- (F(3,21)=86.486;p<0.001), hip- (F(3,21)=16.176, 

p<0.001) and trunk-angles (F(3,21)=24.181;p<0.001). Contrasts showed increasing knee-

angles in all laps, increasing hip-angles in all laps except for lap 3-4 and decreasing trunk-

angles from lap 1-2 (figure 2). Additionally, a main effect for strategy was found for trunk-

angles (F(1,7)=12.280;p=0.010) with higher trunk-angles in FS than in SS. No main effect of 

strategy was found for knee- (p=0.74) and hip-angles (p=0.27). 

DISCUSSION 

The present study is the first to report data on muscle fatigue in speed skating. It was 

shown that both peripheral and central mechanisms contribute to muscle fatigue in 1500m 

speed skating as well as in cycling time-trials. However, consistent with previous reports 

investigating cycling and speed skating separately 4,7, the present study showed a relatively 

more explosive start in FS for cyclists compared to speed skaters. We can thus conclude that 
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as hypothesized, cyclists and skaters adapted different behavioral approaches to pacing while 

receiving equal instructions, and while contributions of muscle fatigue did not differ between 

sports. This provides evidence for the importance of neurophysiological aspects involved in 

regulatory mechanisms responsible for pacing, as suggested in a recent literature review 11.  

Speed skaters were not willing to sacrifice their crouched position and chose a less 

explosive strategy, while knee-angles followed the same profile throughout FS as well as SS.  

FS resulted in slightly higher trunk angles compared to SS. Possibly, speed skaters started 

less explosively to maintain speed at the end of the race, consistent with the proposal that 

maintaining body posture and coordination is more important in speed skating than in 

cycling. This was further supported by the greater loss of  skating velocity in lap 2-3 in FS 

compared to SS, while mean velocity over the last two laps did not differ. 

The present design uniquely combines neurophysiological and biomechanical 

measures in a realistic competitive setting as advised in a recent literature review on speed 

skating 17, while leaving room for the behavioral pacing responses of the athletes to these 

given instructions as an outcome measure. We do realize that our choice to study behavior in 

a setting that is as close to competitive performance as possible, consequently led to some 

limitations of the study as well. We chose to use two different groups of athletes (cyclists and 

speed skaters), to have them all perform in their sport of expertise. Though this is very 

realistic, it does prevent a repeated measures design with sport as a within factor. To increase 

our limited subject number, a common problem in sport science, we pooled measurements at 

different locations. As temperature has been shown to affect processes associated with 

muscle fatigue and pacing 11, differences need to be noted here: the 6 Groningen skaters 

performed the time-trial at lower temperatures than the cyclists and 3 Calgary skaters, which 

might explain the relatively high variability in the muscle fatigue measurements. In addition, 

skaters were tested on different legs, while asymmetry has been shown in speed skating 26. 
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However, muscle fatigue measurements were all performed off ice, in a room temperature 

environment, and on the same leg before and after exercise. We believe that these limitations 

are important to note, but at the same time, have limited impact. The study provides 

interesting and novel outcomes on behavioral pacing adaptations in relation to 

neurophysiological measures in a realistic sport setting. 

A mean BLC-max of 14-16mmol∙L-1 in all time-trials indicated that they were 

performed with maximal effort 27 and the decrease in MVC indeed confirmed the presence of 

muscle fatigue. The present paper also demonstrated that both peripheral and central 

mechanisms contributed to muscle fatigue in all time-trials. Nevertheless, the decreases in 

VA (central fatigue 10) were relatively small compared to decreases in MVC and PT (table 4).  

For all force-related variables, the 4min delay between end of trial and the force 

measurements should be kept in mind. As some recovery is likely, muscle fatigue 

mechanisms could thus not be estimated to their full extent 25,28. Speculation about the 

recovery from central and peripheral fatigue is difficult as recovery of muscle fatigue is task 

dependent and no data comparing cycling and speed skating is present at the moment. We did 

establish that, conform previous literature 25, greater (peripheral) fatigue was associated with 

greater metabolic demand, as confirmed by the association between BLC and PT and muscle 

fatigue. Differences between trials were found in post-trial BLC and PT. BLC-post was 

higher after FS than after SS and peripheral fatigue (PT) was more evident after FS. FS thus 

seemed to cause somewhat more homeostatic disturbance and peripheral fatigue than SS. 

Future studies aimed at understanding fatigue, pacing and recovery in different sports are 

recommended. 

Practical Applications 

The present study provides evidence that both peripheral and central contributions of 

muscle fatigue are involved in the regulatory process of pacing. It seems that athletes of the 
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different sports adapt their strategy differently when responding to similar instructions, 

resulting in a similar level of muscle fatigue. It stresses the notion that optimal pacing needs 

to be studied sport-specifically, and coaches should be aware of this. It is advised to further 

explore muscle fatigue, pacing and technique under controlled and standardized laboratory 

settings to place alongside these unique field data.  

CONCLUSION 

Both peripheral and central mechanisms contributed to muscle fatigue in 1500m 

speed skating as well as in cycling. While contributions of muscle fatigue were not different 

between sports, behavioral pacing adaptations differed, with a more explosive start for 

cyclists than for speed skaters. Speed skaters presumably anticipated muscle fatigue, 

homeostatic disturbance and the subsequent deleterious effect on their technique, and adapted 

their behavior to the nature of the sport in order to complete the time-trial with similar 

neurophysiological limitations as in cycling. This provides evidence for the importance of 

neurophysiological aspects involved in regulatory mechanisms responsible for pacing.  
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Figure 1: Trunk angle (θ1), hip angle (θ2) and knee angle (θ3). 
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Figure 2: Velocity (pacing) profiles for the fast start (FS) and slow start (SS) 1500m time-

trials in speed skating (n=9) and cycling (n=9). Body angles for speed skating (n=8); knee-, 

trunk- and hip-angles per lap and k1. Solid (fast-start) and dashed (slow-start) lines represent 

mean velocity and shades represent ± SD. a) represents a main effect for strategy (p<0.05). 
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Figure 3: Blood lactate concentrations (BLC) for the fast start (FS) and slow start (SS) trials 

in speed skating and cycling.  
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Table 1: 0-300m split-time and 0-1500m end-times for the fast start (FS) and the slow start 

(SS) trials in speed skating and cycling.  

 

 Speed skating  

n=9 

Cycling 

n=9 

 Time (s) Time (s) 

 FS SS FS SS 

0-300m a) 26.18 

(0.79) 

27.27 

(0.79) 

24.70 

(1.73) 

27.41 

(3.00) 

0-1500m 129.5 

(4.1) 

130.4 

(3.5) 

127.5 

(6.9) 

127.6 

(7.0) 

Values are mean (SD). a) represents a strategy x sport  

interaction effect. 

 

 

 

Table 2: Mean velocities per lap for the fast start (FS) and the slow start (SS) trials in speed 

skating and cycling.  

 

 Speed skating 

n=9 

Cycling a) 

n=9 

 Vmean (km∙h-1) Vmean (km∙h-1) 

 FS SS b) FS SS b) 

0 - 300m 42.31 

(1.18) 

40.56  

(1.23) 

45.68 

(3.30) 

41.48 

(4.80) 

300 - 700m 45.30 

(1.41) 

44.60 

(1.52) 

45.65 

(2.64) 

46.26 

(2.74) 

700 - 1100 m 41.51 

(1.75) 

41.94 

(1.60) 

41.25 

(2.26) 

42.73 

(3.19) 

1100 - 1500 m 39.34 

(1.74) 

39.59 

(1.25) 

40.20 

(2.68) 

41.27 

(2.93) 

Values are mean (SD). a) Represents a strategy x lap x sport 

interaction effect and b) represents a strategy x lap interaction 

effect. 
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Table 3: Maximal voluntary contraction (MVC), voluntary activation (VA) and potentiated 

rest twitch (PT) of speed skaters and cyclists before (baseline) and after (post) the fast start 

(FS) and slow start (SS) trials.  

 
  Both trials  FS SS  

  Baseline Post Decrease 

(%) 

 Decrease 

(%) 

Decrease 

(%) 

 

MVC (N)  Speed skaters 642  

(196) 

581 

 (174) 

8.6 

(12.3) 

 9.8 

(15.9)  

7.4 

(8.1) 

 

 Cyclists 488 

 (81) 

413 

(101) 

15.5 

 (16.1) 

 18.4 

(15.3) 

12.4 

(17.2) 

 

 All subjects 565  

(167) 

497 a) 

(164) 

12.0  

(14.5) 

 14.1 

(15.8) 

9.9 

(13.3) 

 

VA (%) Speed skaters 86.9  

(10.3) 

85.5  

(10.7) 

1.4  

(4.9) 

  0.4 

(4.9) 

2.3 

(5.0) 

 

 Cyclists 89.5  

(7.3) 

86.1  

(9.3) 

3.4  

(4.9) 

 4.0 

(6.2) 

2.8 

(3.5) 

 

 All subjects 88.2  

(8.9) 

85.8 a) 

(9.9) 

2.4 

(5.0) 

 2.2 

(5.7) 

2.6 

(4.2) 

 

PT (N) Speed skaters 249  

(65) 

164 

 (52) 

24.8 

 (13.9) 

 25.1 

(14.2) 

24.4 

(14.5) 

 

Cyclists 199  

(39) 

134  

(47) 

26.1  

(16.8) 

 33.3 

(15.2) 

18.9 

(16.0) 

 

 All subjects 224 

(58) 

149 a)  

(51) 

25.4 

(15.2) 

 29.2 

(14.8) 

21.7 b) 

(15.0) 

 

 Values are mean (SD). a) represents a main effect for time and  b) represents 

a main effect strategy. 

 

 


