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Abstract

We study how aversion to ambiguity about the predictability of future asset

values and cash flows affects optimal portfolios and asset prices. We show

that optimal portfolios do not always react to new information even though

there are no information processing costs or other market frictions. Moreover,

the equilibrium price of the market portfolio does not always incorporate all

available public information that is worse than expected. This informational

inefficiency leads to price underreaction consistent with momentum.
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There is a vast amount of empirical research which studies the predictability

of cash flows and discount rates for many asset classes around the world.1 The

economic and statistical significance of the predictability results vary from study to

study and the strength of these results as well as the theoretical underpinnings and

interpretations are widely debated. In this paper, we study how aversion to ambiguity

about the predictability of future asset values and cash flows affects optimal portfolios

and equilibrium asset prices. We show that optimal portfolios do not always react to

new information and prices do not reflect all available information about an asset in

equilibrium. We refer to this phenomenon as information inertia.

Consider a linear regression model with a signal s̃ that predicts future excess

returns r̃e. Specifically,

r̃e = α + βs̃+ ε, β = R
σe

σs
, ε̃ ∼ N (

0, σ2
e(1−R2)

)
,

where R denotes the correlation between r̃e and s̃.2 Investors do not know the cor-

relation R and thus know neither the economic significance β nor the explanatory

power R2 of the predictor s̃. We focus on predictors with strictly positive β.

Suppose investors have mean-variance preferences over excess returns and are

averse to ambiguity about the correlation R in the sense of Gilboa and Schmeidler

(1989). Hence, they consider a family of linear regression models described by the

interval [Ra, Rb] and evaluate the outcome of investment decisions under the regres-

sion model that yields the lowest expected utility. This “max-min” formulation of

preferences is a commonly used representation of decision-making under ambiguity

in asset markets, as discussed in Epstein and Schneider (2010).3

1For a review of this literature see Cochrane (2005) or Koijen and Nieuwerburgh (2011) and the
references therein.

2The variance of r̃e and s̃ is σ2
e and σ2

s , respectively.
3Gilboa and Schmeidler (1989) axiomatize this max-min or multiple prior preference represen-

tation which implies behavior that is consistent with experimental evidence (Ellsberg (1961)) and
more recent portfolio choice experiments (Ahn, Choi, Gale, and Kariv (2011) and Bossaerts, Ghi-
rardato, Guarnaschelli, and Zame (2010)). We consider different representations in Section IV and
the internet appendix. For a discussion of different preferences specifications that describe aversion
to ambiguity see Backus, Routledge, and Zin (2004), Epstein and Schneider (2010), and Hansen and
Sargent (2010b).
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We show that risky portfolios do not always react to the predictor s̃ when investors

are averse to ambiguity. Intuitively, ambiguity about the economic significance and

the explanatory power of the predictor s̃ implies ambiguity about the conditional

Sharpe ratio of the asset. An ambiguity averse investor seeks robust decision rules

and considers the worst case scenario for the Sharpe ratio. For a long position, if the

signal is lower than expected, the worst case scenario for the expected excess return

is a high economic significance (βb) because in this case the investor will significantly

revise the expected value of the asset downwards. On the other hand, the worst

case scenario for the volatility is a low explanatory power (R2
a) because in this case

less risk is resolved by the predictor. We show that there is a range of low signals

where neither the mean nor the volatility effect on the Sharpe ratio dominates and

investors ignore the signal when choosing a long position. Hence, risky portfolios

exhibit information inertia.

The information inertia result for risky portfolios is economically sizable. For

instance, suppose ambiguity aversion is parameterized with a 99% confidence interval

around an R2 of 0.09. Then 16% of predictors below their mean will not affect a

long stock position if the unconditional Sharpe ratio is 0.4. This probability is 12%

and 20% when the unconditional Sharpe ratio is 0.3 and 0.5, respectively. This is the

case even though the predictor s̃ is statistically significant (Ra > 0). In contrast, the

portfolios of standard expected utility maximizers will always respond to statistically

significant predictors unless there are transaction costs or other costs to acquire or

process information.

We also study the effects of ambiguity aversion on the equilibrium price of the

market portfolio when there is predictability about its future cash flows. We show

that the price of the market portfolio fails to incorporate all available information

in equilibrium. This informational inefficiency has an interesting asymmetry. While

signals that convey information that is better than expected are always reflected in

the stock price some signals that convey information that is worse than expected are

not.
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Moreover, the reaction of the equilibrium price to information depends on the

unconditional risk premium of the market portfolio. The price of a very risky market

portfolio is more likely to underreact to signals that are worse than expected whereas

the price of a market portfolio that is less risky tends to overreact to this signal.

However, the most striking result is that a market portfolio with intermediate risk

shows no reaction to many signals that are worse than expected even though there

are no information processing costs or other market frictions. For instance, if the

unconditional risk premium is between 5% and 10%, then 20% to 39% of bad signals

are not reflected in the price when ambiguity aversion is parameterized with a 99%

confidence interval around an R2 of 0.09.

This paper may also shed some light on the documented momentum of asset prices

in the United States and other developed countries.4 Specifically, assets that have

performed well in the past tend to continue to perform well. Most of the papers in

the literature rely on behavioral explanations for this phenomenon (e.g. Barberis,

Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and

Hong and Stein (1999)). We provide an explanation for momentum that is based

on investors who are averse to ambiguity. Moreover, prices underreact to good news

and the underreaction to bad news increases with the risk of the asset and ambiguity

aversion which is consistent with the findings in Zhang (2006).5

In addition, we study the effects of investor heterogeneity on optimal portfolios

and asset prices when all investors receive the same signal about future cash flows.

There is a range of signals for which investors’ portfolios and the price of the market

portfolio do not react to new information in equilibrium even when investors differ

with respect to their aversion to risk and ambiguity. This is no longer true if there

are some investors who are ambiguity neutral because their portfolios always respond

to information. We show that in this case equilibrium portfolios and the price of the

4For a review of the literature on momentum strategies see Jegadeesh and Titman (2011),
Moskowitz, Ooi, and Pedersen (2012), and the reference therein.

5Kelsey, Kozhan, and Pang (2011) study the effects of ambiguity aversion on the profitability of
momentum strategies. In contrast to our paper, in their model prices always react to information
and there is momentum even without ambiguity averse investors.
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market portfolio do not react a lot to these signals.

We also consider two additional models of preferences that are less parsimonious

but allow for a distinction between ambiguity and ambiguity aversion: the KMM

model of Klibanoff, Marinacci, and Mukerji (2005) and the GHTV model of Gajdos,

Hayashi, Tallon, and Vergnaud (2008). With these alternative preference representa-

tions, risky portfolios and the equilibrium price always respond to new information.

However, we show numerically that neither risky portfolios nor equilibrium prices

react a lot if ambiguity aversion is sufficiently large.

This paper complements recent work on optimal portfolios and equilibrium asset

prices when investors process public signals. Epstein and Schneider (2008) show that

investors react more to bad signals than to good signals when there is ambiguity about

the precision of these signals. Illeditsch (2011) shows that this ambiguity leads to risky

portfolios that are sensitive to news but insensitive to changes in the stock price—a

phenomenon referred to as portfolio inertia. We are the first to show that ambiguity

aversion leads to information inertia for risky portfolios and equilibrium prices without

relying on information processing costs or other market frictions. Moreover, the

economic mechanism that leads to information inertia is novel because it does not

occur at the kink in investors’ utility in contrast to the portfolio inertia results in

Illeditsch (2011).6

This paper contributes to the literature on optimal portfolio choice with ambigu-

ity. We know from Dow and Werlang (1992), Cao, Wang, and Zhang (2005), Epstein

and Schneider (2007), Easley and O’Hara (2009), and Campanale (2011) that ambi-

guity leads to portfolio inertia of the risk-free portfolio. Epstein and Wang (1994),

Epstein and Schneider (2010), and Illeditsch (2011) show that portfolio inertia can

also arise for risky portfolios. Garlappi, Uppal, and Wang (2007) characterize opti-

mal portfolios with multiple assets and ambiguity aversion. Uppal and Wang (2003),

Benigno and Nistico (2012), and Boyle, Garlappi, Uppal, and Wang (2012) show that

ambiguity aversion leads to under-diversified portfolios. In contrast, we show that

6We are not aware of any work with multiple prior preferences that leads to qualitatively different
results than standard expected utility that do are not due to the kink in utility.
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ambiguity averse investors use the unconditional asset distribution when contemplat-

ing a long (short) position with moderate risk instead of relying on a signal that

conveys bad (good) news.

Our work is also related to a large literature that studies the informational effi-

ciency of prices when there is asymmetric information. For instance, prices do not

fully reveal private information in equilibrium, (i) if it is costly to acquire information

(Grossman (1976) and Grossman and Stiglitz (1976)), (ii) if there are noise traders

(Grossman and Stiglitz (1980)), (iii) if informed investors anticipate how their trades

will impact prices (Kyle (1985) and Back, Cao, and Willard (2000)), (iv) if there

is ambiguity (Caskey (2009), Condie and Ganguli (2011), and Condie and Ganguli

(2014)).7 What is striking in this paper is that a costless informative public signal is

not always incorporated in the price when an investor is averse to ambiguity.

Our paper is also related to recent literature on portfolio choice and asset pricing

when there is ambiguity about the predictability of future asset returns/cash flows.

Hansen and Sargent (2010a) study the price of risk when investors who seek robust

decision rules find it difficult to differentiate between i.i.d. consumption growth and

one with a persistent component (long run risk of Bansal and Yaron (2004)).8 Chen,

Ju, and Miao (2011) solve a dynamic consumption and portfolio choice problem when

there is ambiguity about whether stock returns are IID or predictable. Ju and Miao

(2012) and Collard, Mukerji, Sheppard, and Tallon (2011) explain many asset pricing

puzzles by introducing ambiguity into a dynamic representative agent model in which

consumption and dividends follow a hidden state regime-switching process and a

hidden state model with a persistent latent state variable, respectively. The first

paper considers the robust control approach and the other three papers consider the

recursive smooth ambiguity model to describe preferences.9 Our focus in this paper

7Mele and Sangiorgi (2011), Ozsoylev and Werner (2011), and Tallon (1998) study the effects of
ambiguity aversion on asset prices in the presence of private information and noise traders.

8For a survey of learning models when investors seek robust decision rules see Hansen and Sargent
(2007).

9Strzalecki (2011) and Maccheroni, Marinacci, and Rustichini (2006) provide axiomatic foun-
dations for the robust control model and Klibanoff, Marinacci, and Mukerji (2005), Nau (2006),
Klibanoff, Marinacci, and Mukerji (2009), and Hayashi and Miao (2011) provide axiomatic founda-
tions for the smooth ambiguity model and its dynamic extension.
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is on the parsimonious and tractable Gilboa and Schmeidler (1989) preference model

which is a good description of ambiguity averse behavior as shown by Ahn, Choi, Gale,

and Kariv (2011) and Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010).10

There is a growing literature in macroeconomics that imposes an exogenous con-

straint or cost on the ability of investors to process information in order to explain

why macroeconomic variables exhibit inertia.11 These ideas have also been used in fi-

nance to explain information inertia of portfolios (Abel, Eberly, and Panageas (2007)),

excess correlation (Peng and Xiong (2006)), financial contagion (Mondria (2010)

and (Mondria and Quintana-Domeque 2012)), and portfolio under-diversification

(Nieuwerburgh and Veldkamp 2010), among others.12 In contrast, we derive iner-

tia from a rational choice model with multiple prior utility. Moreover, information

inertia affects investors’ utility and thus leads to a welfare loss that depends on risk

aversion and the signal.

There is an extensive literature on optimal portfolio choice when there is Bayesian

model uncertainty about the predictability of future returns (e.g. Keim and Stam-

baugh (1986), Barberis (2000), and Xia (2001) among others).13 In all these papers

investors hedge against model uncertainty but their portfolios always react to new

information. We also study portfolios and equilibrium prices when there is Bayesian

model uncertainty, which is a special case of the KMM model studied in Section IV

and show that there is no information inertia. Balduzzi and Lynch (1999), Balduzzi

and Lynch (2000), Lynch and Tan (2010), and Lynch and Tan (2011) study the ef-

fects of transaction costs on optimal portfolios when there is return predictability.

While in these papers transaction costs lead to state dependent portfolio adjustment

we derive state dependent adjustment of portfolios from a rational choice model.

The rest of the paper is organized as follows. In Section I, we introduce the

10Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010) consider α-maxmin preferences to model
ambiguity aversion which in their experiment is observationally equivalent to using maxmin prefer-
ences with a smaller set of beliefs (see Ravanelli and Svindland (2014)).

11See Sims (2003), Sims (2010), and the references therein.
12See Veldkamp (2011) and the reference therein for an overview of this literature.
13For a comprehensive survey of static and dynamic portfolio choice models when returns are

predictable see Wachter (2012).
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model. In Section II, we solve for optimal portfolios and discuss the information

inertia results. In Section III we solve for equilibrium portfolios and stock prices

and discuss the informational inefficiency of prices and momentum, in Section IV we

show that our results are quantitatively robust to a different preference model, and

in Section V we discuss the economic significance of our information inertia results.

We conclude in Section VI.

I Information Structure and Preferences

Suppose there are two dates 0 and 1. Investors can invest in a risk-free asset and a

risky asset. Let p denote the price of the risky asset, d̃ the future value or dividend

of the risky asset, and θ the number of shares invested in the risky asset. There is no

consumption at date zero. The risk-free asset is used as numeraire, so the risk-free

rate is zero. Hence, future wealth w̃ is given by

w̃ = w0 +
(
d̃− p

)
θ, (1)

in which w0 denotes initial wealth.

Suppose investors receive a signal s̃ about the future value d̃ of the asset. The

joint distribution of d̃ and s̃ is normal:

⎛
⎝ d̃

s̃

⎞
⎠ ∼ N

⎛
⎝
⎛
⎝ d̄

0

⎞
⎠ ,

⎛
⎝ σ2

d β

β 1

⎞
⎠
⎞
⎠ , (2)

where β = Rσd. Investors do not know the correlation between d̃ and s̃ and are

ambiguity averse in the sense of Gilboa and Schmeidler (1989). Hence, they consider

a family of joint distributions described by R ∈ [Ra, Rb] with Ra > 0 and Rb < 1

when making decisions.14

We follow Gilboa and Schmeidler (1993) and determine the family of conditional

14There is no ambiguity about the marginal distribution of the signal and hence there is no loss
in generality by normalizing the mean and the variance of the signal to zero and one, respectively.
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dividend distributions given the signal by applying Bayes rule for each correlation.

Hence, standard normal-normal updating for each R ∈ [Ra, Rb] leads to

d̃ | s̃ = s ∼ NR

(
μ(s, R), σ2(R)

)
, (3)

where μ(s, R) = d̄ + βs denotes the conditional mean and σ(R) = σd

√
1−R2 the

conditional volatility of d̃ given s.

The utility of a multiple prior or MEU investor who holds θ shares of the risky

asset is

min
R∈[Ra,Rb]

ER

[
u
(
w0 +

(
d̃− p

)
θ
)
| s̃ = s

]
(4)

where u(·) denotes the Bernoulli utility function of the investor.

Suppose investors have CARA utility over future wealth w̃, that is, u(w̃) = −e−γw̃

with γ > 0 and let CE(θ) denote the certainty equivalent of an MEU investor. Hence,

the investor’s utility given in equation (4) is equal to u (CE(θ)) with

CE(θ) = min
R∈[Ra,Rb]

CE(θ, R), (5)

where CE(θ, R) denotes the certainty equivalent of a standard expected utility or

SEU investor with belief R. Specifically,

CE(θ, R) = ER [w̃ | s̃ = s]− 1

2
γVarR [w̃ | s̃ = s] . (6)

The assumption of CARA utility and normal beliefs lead to mean-variance preferences

over future wealth with ambiguity aversion about the mean and variance described by

the interval [Ra, Rb]. Investors are more averse to ambiguity (in the sense of Gilboa

and Schmeidler (1989)) if the interval [Ra, Rb] is large and hence we measure the

degree of aversion to ambiguity by the size of the interval.15

15The preference model of Gilboa and Schmeidler (1989) does not allow for a distinction between
ambiguity and aversion to ambiguity. We consider in Section IV and the internet appendix preference
models that allow for a distinction between ambiguity and ambiguity aversion.
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II Portfolio Choice

We are interested in the sensitivity of optimal portfolios to changes in the signal and

hence for the remainder of this section we fix the price p and determine the optimal

portfolio for the risky asset as a function of the signal.

Let θ̄(s, R) denote the optimal portfolio of an SEU investor with belief R and θ(s)

the optimal portfolio of an MEU investor. The optimal portfolio of an SEU investor

is

θ̄(s, R) =
ER

[
d̃ | s̃ = s

]
− p

γVarR

[
d̃ | s̃ = s

] =
λ(s, R)

γσ(R)
. (7)

where λ(s, R) = μ(s,R)−p
σ(R)

denotes the conditional Sharpe ratio of the asset.

For the SEU investor an increase in the signal will always lead to an increase in

the demand for the asset and hence optimal portfolios always react to news. This is

no longer true when investors are averse to ambiguity as the next theorem shows.

Theorem 1 (Portfolio Choice). Let λd =
d̄−p
σd

denote the unconditional Sharpe ratio

of the asset. The optimal portfolio for an MEU investor with risk aversion γ and

ambiguity aversion described by [Ra, Rb] who receives the signal s is

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ(s,Ra)
γσ(Ra)

s ≥ s1 ≡ −Ra max(λd, 0)− 1
Ra

min(λd, 0)

max
(

λd

γσd
, 0
)

s1 > s ≥ s2 ≡ −Rb max(λd, 0)− 1
Rb

min(λd, 0)
λ(s,Rb)
γσ(Rb)

s2 > s ≥ s3 ≡ − 1
Rb

max(λd, 0)−Rb min(λd, 0)

min
(

λd

γσd
, 0
)

s3 > s ≥ s4 ≡ − 1
Ra

max(λd, 0)−Ra min(λd, 0)
λ(s,Ra)
γσ(Ra)

s < s4.

(8)

Suppose the unconditional Sharpe ratio is positive (λd > 0). The left graph of

Figure 1 shows that the optimal portfolio does not always react to signals that convey

news that is worse than expected. Specifically, there is a range of bad signals for which

investors do not adjust their long position in the risky asset and there is another range

of bad signals for which investors do not hold the risky asset. We briefly discuss the

intuition for information inertia of the risk-free portfolio next and then focus on the

intuition for risky portfolios for the remainder of this section.
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Figure 1: Portfolio Choice

The left graph shows the optimal portfolio and the right graph shows the investors’
perceived (log of the) conditional Sharpe ratio and volatility as a function of the
signal. Red lines represent an SEU investor with belief βb = Rbσd = 4, purple lines
represent an SEU investor with belief βm = σd(Ra+Rb)/2 = 3, blue lines represent an
SEU investor with belief βa = Raσd = 2, green lines represent an SEU investor with
belief R0 = 0, and black lines represent an MEU investor with ambiguity aversion
([Ra, Rb]). In the right graph dashed lines represent the Sharpe ratio and chain-dotted
lines the volatility. The parameters are d̄ = 100, p = 95, σ2

d = 20, and γ = 1.

Why does the risk-free portfolio exhibit information inertia? To answer this

question consider first an SEU investor with belief R and recall that the conditional

Sharpe ratio is

λ(s, R) =
μ(s, R)− p

σ(R)
=

λd +Rs√
1− R2

. (9)

An SEU investor would buy the asset if the conditional Sharpe ratio is positive and

sell short the asset if the conditional Sharpe ratio is negative. There is only one signal

realization for which the conditional Sharpe ratio is zero and thus an SEU investor

would refrain from holding the asset. In contrast, MEU investors only buy the asset

if there is no ambiguity that the conditional Sharpe ratio is positive and sell short

the asset if there is no ambiguity that the conditional Sharpe ratio is negative. There

is a range of bad signals (− λd

Ra
< s < − λd

Rb
) for which the conditional Sharpe ratio is

positive for some R and negative for others and thus the risk-free portfolio exhibits

information inertia.16

16This form of inertia also appears in Condie and Ganguli (2011) and Illeditsch (2011).
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The risk-free portfolio is the only portfolio that perfectly hedges against ambiguity

by making utility independent of the unknown parameter R. All other portfolios are

exposed to ambiguity. The next propositions shows that all these portfolios can be

determined by evaluating the optimal portfolio of an SEU investor at the belief R that

minimizes her utility. Put differently, an MEU investor behaves distinctly different

from an SEU investor at a kink of her utility which in this model only occurs at the

risk-free portfolio.17

Proposition 1 (Characterization of Optimal Portfolios). Let λd > 0. Then

θ(s) =

{
0 if − λd

Ra
≤ s ≤ − λd

Rb

θ̄(s, R∗(s)) otherwise,
(10)

where

R∗(s) = argmin
R∈[Ra,Rb]

CE(θ(s), R). (11)

We show in the next proposition that the belief R∗(s) that minimizes utility at the

optimal risky portfolio can be determined from the conditional Sharpe ratio λ(s, R)

and therefore does not require prior knowledge of the optimal portfolio θ(s).

Proposition 2 (Robust Sharpe Ratio). Let λd > 0. If s > − λd

Rb
, then θ̄(s, R) > 0 for

all R ∈ [Ra, Rb] and

R∗(s) = argmin
R∈[Ra,Rb]

λ(s, R) =

⎧⎪⎨
⎪⎩

Ra if s > −Raλd

− s
λd

if −Rbλd < s ≤ −Raλd

Rb if − λd

Rb
< s ≤ −Rbλd.

(12)

If s < − λd

Ra
, then θ̄(s, R) < 0 for all R ∈ [Ra, Rb] and

R∗(s) = argmax
R∈[Ra,Rb]

λ(s, R) = Ra. (13)

Propositions 1 & 2 show that an investor who is averse to ambiguity about the

correlation R chooses a portfolio that is robust to changes in the conditional Sharpe

ratio λ(s, R). Specifically, an MEU investor with a long position considers the belief

17Illeditsch (2011) considers a model where kinks also occur away from certainty.
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R that minimizes λ(s, R) and an MEU investor with a short position considers the

belief R that maximizes λ(s, R).

To gain intuition suppose there is no ambiguity that the conditional Sharpe ratio

is positive (s > − λd

Rb
) and thus the MEU investor is long in the asset. If the signal

conveys good news (s > 0), then an increase in the correlation R always increases

the conditional Sharpe ratio because a more informative signal raises the conditional

mean and reduces the conditional volatility. Hence, the MEU investor behaves like an

SEU investor with belief Ra and thus the portfolio reacts moderately to news (blue

dashed line in Figure 1). However, if the signal conveys bad news (s < 0), then an

increase in the correlation R decreases the conditional mean and volatility and thus

the effects on the conditional Sharpe ratio are unclear. For moderately bad news

(−Raλd ≤ s < 0), the volatility effect dominates and the portfolio reacts moderately

(blue dashed line in Figure 1). Whereas for worse news (− λd

Rb
< s ≤ −Rbλd) the mean

effect dominates and thus the portfolio reacts strongly to news (red chain-dotted line

in Figure 1).18

There is a range of bad signals (−Rbλd < s < −Raλd) for which neither the con-

ditional mean nor volatility dominates and the conditional Sharpe ratio is minimized

in the interior. Hence, small changes in the correlation change both the mean and

volatility but leave the Sharpe ratio unchanged. The interior minimizer depends on

the signal, that is R∗ = − s
λd
, because a change in the signal affects only the mean

directly, the correlation changes in order to have a counterbalancing indirect effect

on volatility. We know from Propositions 1 & 2 that in this case the MEU investor

behaves like an SEU investor with belief R∗ = − s
λd

but the portfolio does not react

to news and hence coincides with the portfolio of an SEU investor who thinks the

correlation between the signal and the asset is zero (green solid line in Figure 1).19

Why are there risky portfolios that do not react to news even though there is

18If s < − λd

Ra
, then there is no ambiguity that the conditional Sharpe ratio is negative and thus

the MEU investor is short the asset. In this case the worst case scenario is always a low correlation.
19The utility of the SEU investor with belief R = 0 is strictly greater than the utility of the SEU

investor with belief R∗ = − s
λd

≥ Ra > 0.
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no ambiguity about the fact that the signal is informative (Ra > 0)? To answer

this question suppose s = −0.75 in which case the optimal portfolio of the MEU

investor and an SEU investor with belief Rm = (Ra + Rb)/2 coincide (left graph of

Figure 1). An increase in the signal raises the Sharpe ratio perceived by the SEU and

MEU investor and thus makes the asset more attractive. The perceived risk for the

SEU investor does not change and thus her demand for the asset increases (dotted

line). However, an increase in the signal also increases the risk perceived by the MEU

investor because in this case the perceived correlation between the asset and signal

decreases and thus less risk is resolved by the signal. The increase in the Sharpe ratio

is exactly offset by the increase in the volatility and thus the MEU investor does not

change her portfolio (black solid line). Formally,

d ln θ(s) = d lnλ (s, R∗(s))− d lnσ (R∗(s)) = 0, ∀s ∈ (−Rbλd,−Raλd). (14)

The right graph of Figure 1 shows the (log) of the conditional Sharpe ratio and

volatility when the signal conveys bad news. There is a range of signals for which

both the Sharpe ratio and volatility are strictly increasing in the signal. Moreover,

the Sharpe ratio increases with the signal at exactly the same rate as the volatility

increases with the signal in this range. Hence, any change of the portfolio due to

changes in the Sharpe ratio is exactly offset by a change in risk.

Suppose the unconditional Sharpe ratio is zero (λd = 0). There is no informa-

tion inertia because the MEU investor behaves like an SEU investor with belief Ra.

Intuitively, investors will long the asset when news is good and they will short the

asset when news is bad. But there is no confusion about the interpretation of the

signal when news is good (bad) and investors are long (short) the asset because the

worst case scenario for the conditional Sharpe ratio and volatility of the asset is a

signal with a low correlation R. Suppose the unconditional Sharpe ratio is negative

(λd < 0). In this case the risk-free portfolio and a portfolio consisting of a short

position in the asset exhibits information inertia. The intuition is similar to the case

where the unconditional Sharpe ratio is positive and thus omitted.

14



We determine the quantitative significance of the information inertia results in

Section V and conclude this section with a summary of the portfolio choice results.

Model Predictions 1 (Information Inertia of Portfolios). If investors are averse to

ambiguity about the predictability of future asset values, then

(i) there is a range of bad signals over which investors do not adjust their long

position in the asset when the unconditional Sharpe ratio is positive,

(ii) there is a range of good signals over which investors do not adjust their short

position in the asset when the unconditional Sharpe ratio is negative, and

(iii) there is a range of good and bad signals over which investors do not hold the

asset when the unconditional Sharpe ratio is not zero.

III Equilibrium Price and Portfolio

In this section, we determine the price of the risky asset in equilibrium when the

economy is populated by investors who all receive the same signal about its future

cash flows but may differ with respect to risk and ambiguity aversion. We show that

there is a range of bad signals over which investors do not adjust their risky portfolios

in equilibrium and thus prices do not always incorporate public information that is

worse than expected. Moreover, we show that this informational inefficiency leads to

price underreaction consistent with momentum.

Suppose there are H investors who all receive the signal s̃ about the future value

of the dividend d̃. Investors may differ with respect to their initial wealth, and their

aversion to risk and ambiguity. Let w0h denote investor h’s initial wealth, γh > 0

her risk aversion coefficient, and [Rah, Rbh] the interval that represents her ambiguity

aversion with 0 < Rah ≤ Rbh < 1 ∀ h ∈ {1, . . . , H}.

An equilibrium in this economy is defined as follows:

Definition 1 (Equilibrium). The signal-to-price map p(s) is an equilibrium if and
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only if (i) each investor chooses a portfolio θh to maximize

min
Rh∈[Rah,Rbh]

ERh

[
uh

(
w0h +

(
d̃− p(s)

)
θh

)
| s̃ = s

]
, ∀s ∈ R (15)

and (ii) markets clear, that is,
∑H

h=1 θh = 1 and investors consume the liquidating

dividend d̃ at date 1.

A Homogeneous Ambiguity Aversion

We know that if all investors are standard expected utility maximizers, then there

exists a representative investor (SEU-RI) with these preferences.20 We show in the

next proposition that this is still true when all investors have the same aversion to

ambiguity and we determine the utility of the ambiguity averse representative investor

(MEU-RI) in equilibrium.21

Proposition 3 (MEU-RI and Equilibrium Utility). Assume that all investors have

the same ambiguity aversion [Ra, Rb]. Then there exists a representative investor

with initial wealth w0 =
∑H

h=1w0h and aggregate risk tolerance 1/γ ≡ ∑H
h=1 1/γh.

Moreover, the utility of the MEU-RI in equilibrium is

min
R∈[Ra,Rb]

ER

[
u
(
d̃
)
| s̃ = s

]
= u

(
μ (s, R∗(s))− 1

2
γσ2 (R∗(s))

)
, (16)

where

R∗(s) =

⎧⎪⎨
⎪⎩

Ra if s ≥ −γσdRa

− s
γσd

if −γσdRb < s < −γσdRa

Rb if s ≤ −γσdRb.

(17)

For the remainder of this subsection we consider a representative investor (MEU-

RI) with initial wealth w0, risk aversion γ, and ambiguity aversion [Ra, Rb].
22 Her

equilibrium utility is determined by minimizing the equilibrium utility of an SEU-RI

over her belief R. The utility of the SEU-RI is strictly increasing in the posterior

mean of the dividend and strictly decreasing in the residual variance of the dividend.

20See Chapter 7 in Back (2010).
21Wakai (2007) and Illeditsch (2011) show that there exists a representative investor when investors

have the same aversion to ambiguity but differ w.r.t. their CARA coefficient.
22We discuss the properties of the equilibrium price when investors have different ambiguity aver-

sion in the next subsection.
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Hence, the belief R that minimizes the SEU-RI’s utility depends on the nature of the

news.

Suppose the signal conveys bad news (s < 0), then the worst case for the posterior

mean μ(s, R) is a high correlation because in this case the investor significantly revises

the value of the dividend downwards whereas the worst case for the residual variance

σ2(R) is a low correlation because in this case there is less risk resolved by the signal.

If the signal conveys very bad news (s ≤ −γσdRb), then the mean dominates and

the MEU-RI investor behaves like an SEU-RI investor with belief Rb. If the signal

conveys moderately bad or good news (s ≥ −γσdRa), then the MEU-RI investor

behaves like an SEU-RI investor with belief Ra. There is a range of bad signal values

(−γσdRb < s < −γσdRa) for which neither the posterior mean nor the residual

variance dominates and utility is minimized in the interior.

The equilibrium price when the representative investor is an SEU investor with

belief R is

p̄(s, R) = ER

[
d̃ | s̃ = s

]
− γVarR

[
d̃ | s̃ = s

]
= μ(s, R)− γσ2(R). (18)

The price of the asset is strictly increasing in the signal and hence it fully incorporates

all available information. This is no longer true when the representative investor is

averse to ambiguity as the next theorem shows.

Theorem 2 (Equilibrium Price). Consider an economy with an MEU-RI with risk

aversion γ and ambiguity aversion [Ra, Rb] who receives the signal s. There is a

unique equilibrium price,

p(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ERa

[
d̃ | s̃ = s

]
− γVarRa

[
d̃ | s̃ = s

]
if s > −γσdRa

E
[
d̃
]
− γVar

[
d̃
]

if −γσdRb ≤ s ≤ −γσdRa

ERb

[
d̃ | s̃ = s

]
− γVarRb

[
d̃ | s̃ = s

]
if s < −γσdRb.

(19)

Moreover, p(s) = p̄ (s, R∗(s)) where p̄ (·) is given in equation (18) and R∗(s) is given

in equation (17).

The left graph of Figure 2 shows the equilibrium price as a function of the signal.
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The price reacts moderately to signals that convey good and moderately bad news

and it reacts strongly to signals that convey very bad news. There is a range of signals

that convey bad news for which the price does not react even though the utility of

the RI is sensitive to changes in these signals.
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Figure 2: Equilibrium Price

The left graph shows the equilibrium price and the right graph shows the RI’s per-
ceived posterior mean and variance as a function of the signal. Red lines represent
an SEU-RI economy with belief βb = Rbσd = 3, purple lines represent an SEU-RI
economy with belief βm = σd(Ra + Rb)/2 = 2, blue lines represent an SEU-RI econ-
omy with belief βa = Raσd = 1, green lines represent an SEU-RI economy with belief
R0 = 0, and black lines represent an MEU-RI economy with ambiguity aversion
[Ra, Rb]. In the right graph dashed lines represent the mean and chain-dotted lines
the variance. The parameters are d̄ = 100, σ2

d = 25, and γ = 1.

Why does the price not always incorporate signals that convey bad news? We

know from Theorem 2 that the equilibrium price p(s) coincides with the equilibrium

price p̄(s, R∗(s)) in an economy with an SEU-RI whose belief about the correlation

minimizes her utility from consuming the dividend.23 Consider a two standard devi-

ation bad news surprise (s = −2). In this case the equilibrium price is p = 75 when

there is ambiguity aversion and when there is no ambiguity aversion βm = 2 (see left

graph of Figure 2). If the signal decreases, then the SEU-RI requires a lower price

as compensation for the lower posterior mean in order to hold the market portfolio.

23We know from the previous section that an MEU investor behaves differently from an SEU
investor only if she holds the risk-free portfolio which is not an equilibrium allocation.
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However, the MEU-RI revises the worst case scenario belief about R upwards if the

signal drops. The price does not change because the lower posterior mean that would

require a drop in the equilibrium price is exactly offset by the lower risk premium

that would require an increase in the price. Formally,

dp(s) = dμ(s, R∗(s))− γdσ2(R∗(s)) = 0, ∀ s ∈ (−γσdRb,−γσdRa). (20)

The right graph of Figure 2 shows the posterior mean and residual variance per-

ceived by the MEU-RI as a function of the signal. The graph shows that there is

a range of signals for which both the mean and variance are strictly increasing in

the signal. Moreover, the posterior mean increases at the same rate as the residual

variance increases in this signal range. Hence, any change in the price due to changes

in the posterior mean is exactly offset by a change in the residual variance.

B Heterogeneous Ambiguity Aversion

We show in the next proposition that equilibrium prices still fail to incorporate all

available public information when investors are heterogeneous in their ambiguity aver-

sion.24

Proposition 4 (Information Inertia). Let 1/γ ≡ ∑H
h=1 1/γh denote aggregate risk

tolerance and let [Ra, Rb] ≡
⋂H

h=1[Rah, Rbh] 
= ∅. Then the equilibrium price is

p(s) = E
[
d̃
]
− γVar

[
d̃
]

∀ s ∈ [−γσdRb,−γσdRa] . (21)

24We do not report the equilibrium price outside of the inaction region but provide numerical
examples in Figure 3.
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Figure 3: Equilibrium Price and Portfolio

The left graph shows the equilibrium price and the right graph shows the equilibrium
portfolios as a function of the signal in an economy populated with heterogenous MEU
investors. The blue chain-dotted line shows the optimal portfolio of an MEU investor
with ambiguity aversion [Ra1, Rb1] = [0.1, 0.4] and the red dashed line shows the
optimal portfolio of an MEU investor with ambiguity aversion [Ra2, Rb2] = [0.2, 0.6].
There is a range of signals ([−2,−1]) for which investors’ portfolios and thus the
equilibrium price do not react to news. The parameters are d̄ = 100, σ2

d = 25 and
γ1 = γ2 = 1.

To gain intuition consider an economy populated by two MEU investors with am-

biguity aversion [Ra1, Rb1] = [0.1, 0.4] and [Ra2, Rb2] = [0.2, 0.6], respectively. The left

graph of Figure 3 shows the equilibrium price and the right graph shows their equi-

librium portfolios as a function of the signal. Consider the five different signal regions

(i) (−∞,−3.15], (ii) [−3.15,−2], (iii) [−2,−1], (iv) [−1,−0.5], and (v) [−0.5,∞).

Both MEU investors behave like SEU investors with beliefs Rb1 = 0.4 and Rb2 = 0.6

in the first signal range and thus the equilibrium price reacts a lot to these signals.

The equilibrium portfolio of the second MEU investor (red dashed line) is increasing

in the signal because her worst case scenario belief (Rb2 = 0.6) is larger than the

worst case scenario belief of the second MEU investor (blue chain-dotted line) and

thus she puts more weight on the signal. The analysis is similar for the fifth signal

range because with good news the worst case scenario for both investors is a low R.

For the other three ranges of signals there is at least one investor who ignores the
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signal and uses her prior when choosing her optimal portfolio. In other words, there

is at least one investor who behaves as if the signal is uninformative even though her

utility is negatively affected by it. Consider the second signal range. The first MEU

investor still behaves like an SEU investor with belief Rb1 = 0.4 but the second MEU

investor does not rely on the signal. Hence her demand, which is increasing for the

first range of signals, is now decreasing because neither mean nor variance depends

on the signal and the equilibrium price increases with it. The equilibrium price still

reacts to signals in the second region because of the first investor but not as much as

for the first range of signals. Both investors do not rely on the signals in the third

region and hence the equilibrium price does not reflect these signals. The intuition

for the fourth signal range is similar to the second. In this case the first investor does

not rely on the signal when choosing her optimal portfolio and hence in equilibrium

her asset demand decreases with the signal.

There is no information inertia in optimal portfolios of SEU investors and hence

the equilibrium price always responds to changes in the signals in their presence. But

how much do SEU investors move the price? To answer this question, we consider

a unit mass of investors where α denotes the fraction of MEU investors and 1 − α

denotes the fraction of SEU investors. The left graph of Figure 4 shows that there

is a range of signals for which prices do not respond a lot to news if the fraction of

MEU investors is sufficiently large.

C Momentum

We show in this subsection that the insensitivity of price to bad news and the un-

derreaction to good and moderately bad news leads to momentum. Moreover, the

economic significance of momentum depends on the unconditional risk premium of

the asset.

Let R̂ denote the correlation between d̃ and s̃ that generates the data with R̂ =

(Ra + Rb)/2.
25 Consider a time series of dividends and stock prices generated from

25It is common in the literature (e.g. Hansen and Sargent (2001)) to assume that midpoint of the
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the CARA-normal model with representative SEU or MEU investors. Suppose an

econometrician regresses future price changes on a constant and the current stock

price p(s). Specifically,

d− p(s) = constant + slope× p(s) + noise. (22)

The right graph of Figure 4 shows the slope of this predictability regression as a func-

tion of the unconditional risk premium of the asset for four different representative

agent economies. The green solid line represents an economy in which the belief of

the SEU-RI coincides with the data generating belief R̂. In this case the stock price

incorporates all available information and thus the slope is zero. The blue dashed

line represents an economy in which the SEU-RI perceives a higher R than the econo-

metrician and the red chain-dotted line represents an economy in which the SEU-RI

perceives a lower R than the econometrician. In this case the stock price incorporates

all available information but does so incorrectly from the econometrician’s point of

view. Hence, the price underreacts in the first economy consistent with momentum

and overreacts in the second economy consistent with reversals.

The black solid line represents an economy with an MEU-RI. In this case, there

is momentum if the unconditional risk premium of the asset is sufficiently large.26

If the unconditional risk premium of the stock is large, then the slope is positive

because moderate price reactions to news are more likely than strong price reactions

to news. For stocks with intermediate risk, the economic significance is larger than in

an economy with an SEU-RI with belief Ra because in this case many bad signals are

not reflected in the stock price. In contrast, for every homogenous and heterogeneous

SEU investors economy with beliefs R ∈ [Ra, Rb] the slope of the regression in equation

(22) lies between the red chain-dotted and blue dashed line and does not depend on

the unconditional risk premium.

ambiguity interval generates the data.
26This dependence on the unconditional risk premium may help to distinguish our explanation of

profitable momentum strategies from other explanations. See Jegadeesh and Titman (2011) and the
references therein for review of momentum strategies.
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Figure 4: Equilibrium Price and Momentum

The left graph shows the equilibrium price as a function of the signal when there is
a unit mass of investors where α denotes the fraction of MEU investors and 1 − α
denotes the fraction of SEU investors. If α increases, then there is a range of signals
for which prices do not respond a lot to news. The right graph shows the slope of a
regression of future price changes on current prices. If the unconditional risk premium
of the asset is sufficiently large, then the slope is positive which is consistent with
momentum. The parameters are d̄ = 100, σ2

d = 25, Ra = 0.2, Rb = 0.6, and γ = 1.

We conclude this section with a summary of our results.

Model Predictions 2 (Information Inertia of Equilibrium Portfolios, Informational

Inefficiency, and Momentum). If investors are averse to ambiguity about the pre-

dictability of future cash flows, then

(i) prices do not always incorporate public signals that convey bad news,

(ii) there is a range of bad signals over which investors do not adjust their risky

portfolio positions in equilibrium,

(iii) and the informational inefficiency of prices and the resulting underreaction leads

to momentum.

IV Parameter Uncertainty and the Smooth Model

We have shown so far that ambiguity aversion leads to portfolios and prices that do not

react to news in equilibrium. We study in this section the implications for portfolio
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choice and asset pricing when investors face Bayesian model or parameter uncertainty

and we distinguish between ambiguity and aversion to ambiguity by considering the

smooth ambiguity model axiomatized in Klibanoff, Marinacci, and Mukerji (2005).

We show that there are signal regions for which portfolios and prices show very low

sensitivity to news if aversion to ambiguity is sufficiently high.

Consider the model described in Section I and assume that the correlation between

the signal and the dividend is random. Let P denote the prior distribution for R̃ with

support [Ra, Rb] ⊂ (0, 1).27 The joint distribution of d̃ and s̃ conditional on knowing

the correlation R is normal and given in equation (2). Hence, standard Bayesian

updating leads to

d̃ | s̃ = s, R̃ = R ∼ NR

(
μ(s, R), σ2(R)

)
. (23)

The investor does not learn anything about the correlation R after observing the

signal and hence the prior P coincides with the posterior.28 Let u(·) denote the

function that measures attitudes toward risk and φ(·) the function that measures

attitudes towards ambiguity. The utility of an ambiguity averse investor in the sense

of Klibanoff, Marinacci, and Mukerji (2005) who holds θ shares of the risky asset is

therefore

EP [φ (ER̃ [u (w̃) | s̃ = s])] = EP

[
φ
(
u
(
CE(θ, R̃)

])]
, (24)

where CE(θ, R) denotes the certainty equivalent of an SEU investor with dogmatic

belief R. If φ(·) is linear, then investors are neutral to ambiguity and thus we call

them BMU investors (investors who face Bayesian model uncertainty) otherwise we

call them KMM investors.

For the remainder of this section we assume that investors have constant absolute

risk aversion and constant relative ambiguity aversion, that is, u(w) = −e−γw and

27The SEU investors of the previous sections have dogmatic priors over the correlation R.
28Investors can draw inferences about the correlation R, if they observe a time series of d̃ and s̃.

In this case P in equation (24) below would be the distribution of R̃ conditional on observing the
signal s̃ = s.
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φ(u) = − 1
1+α

(−u)1+α with γ positive and α nonnegative.29 Hence, the certainty

equivalent CE(θ, R) is given in equation (6).

A Portfolio Choice

Let θ(s) denote the portfolio of a KMM investor that maximizes utility given in

equation (24). The properties of θ(s) are summarized in the next proposition.

Proposition 5 (Portfolio Choice). For every distribution P with support [Ra, Rb] ⊂
[0, 1] such that utility given in equation (24) exists, let Q (R; s, θ(s)) denote the risk

and ambiguity adjusted distribution of R̃ conditional on s̃ = s. Specifically,

dQ (R; s, θ(s)) =
e−γ(1+α)(σdsR θ(s)+ 1

2
γσ2

dR
2θ(s)2)

EP

[
e−γ(1+α)(σdsR̃ θ(s)+ 1

2
γσ2

dR̃
2θ(s)2)

]dP(R) (25)

The optimal portfolio is unique and implicitly given by

θ(s) =
λQ (s, θ(s))

γσQ (s, θ(s))
(26)

where

σQ (s, θ(s)) = σd

√
1− EQ(R;s,θ(s))

[
R̃2 | s̃ = s

]
(27)

λQ (s, θ(s)) =
d̄− p+ σdsEQ(R;s,θ(s))

[
R̃ | s̃ = s

]
σQ (s, θ(s))

. (28)

Why does the Sharpe ratio and volatility depend on the position in the asset?

To answer this question consider first the case where α = 0. The BMU investor

hedges against parameter uncertainty by adjusting its distribution for risk. The risk

adjusted probability Q depends on the position in the asset because the effects of

different realizations of R̃ on utility depend on the asset position. For instance,

suppose an investor who contemplates a long position in the asset receives a signal

that conveys bad news. If the long position is very large, then the investor is more

29We choose constant absolute risk aversion for u(·) so that conditional on knowing R investors
have mean-variance preferences. The choice of constant relative ambiguity aversion for φ(·) simplifies
the analysis but does not change the qualitative result of this section.
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concerned about the residual variance and thus the risk adjusted probability of low

correlation states is higher than the actual probability of these states. Similarly,

for a moderate long position in the asset, the investor is more concerned about a

low posterior mean and thus the risk adjusted probability of high correlation states

exceeds the actual probability of these states.30 A KMM investor is also averse to

ambiguity and thus puts additional weight on the states of the world for which R

has adverse effects on utility. An increase in risk aversion would also make a BMU

investor more concerned about parameter uncertainty. However, an increase in risk

aversion has the indirect effect of decreasing the asset position which makes her less

concerned about parameter uncertainty. The smooth model alleviates this tension by

having an additional parameter that increases the aversion to parameter uncertainty.

The left graph of Figure 5 shows the optimal portfolio as a function of the signal

when the unconditional Sharpe ratio is positive and R̃ is uniformly distributed on

the interval [Ra, Rb]. The black solid line represents an MEU investor, the red solid

line represents a BMU investor (α = 0), and the other three lines represent KMM

investors with different degrees of ambiguity aversion α. There is a range of signals for

which risky portfolios become less and less sensitive to news as ambiguity aversion

increases. Moreover, the figure shows that there are signal ranges for which asset

demand is strictly increasing in α, which is consistent with Gollier (2011) who also

finds that an increase in aversion to ambiguity does not always lead to a decrease in

asset demand.

Why does the sensitivity to news for some risky portfolios decrease with aversion

to ambiguity? The intuition for this result is similar to the intuition for the informa-

tion inertia result. Asset demand for a KMM investor is increasing in the Sharpe ratio

and decreasing in the volatility of the asset. Both the Sharpe ratio and volatility are

determined by averaging over R̃ using the risk and ambiguity adjusted probability Q.

The risk and ambiguity adjustment depends on the signal and thus the conditional

volatility and Sharpe ratio depend on the signal. The right graph of Figure 5 shows

30There is no parameter uncertainty for the risk free portfolio and thus Q and P coincide.
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Figure 5: Optimal Portfolio

The left graph shows the optimal portfolio and the right graph shows the risk and
ambiguity adjusted (log of the) conditional Sharpe ratio and volatility as a function
of the signal. The black lines represent an MEU investor, the red lines represent a
BMU investor (α = 0), and the other lines represent KMM investors with different
degrees of ambiguity aversion α. In the right graph dashed lines represent the Sharpe
ratio and chain-dotted lines the volatility. The parameter R is uniformly distributed
on the interval [Ra, Rb] = [0.2, 0.6] and d̄ = 100, p = 75, σ2

d = 25, and γ = 1.

the (log) of the conditional Sharpe ratio and volatility perceived by a KMM investor

for different degrees of ambiguity aversion α. If α is sufficiently large, then there is

a range of signals for which both the conditional Sharpe ratio and volatility increase

at approximately the same rate and thus the portfolio does not react much to these

signals.31

B Equilibrium Price

Suppose there exists a representative investor with prior P over the correlation R̃.

In equilibrium the representative investor holds the asset (θ = 1) and consumes the

liquidating dividend d̃. The properties of the equilibrium price are summarized in the

next proposition.

31There is also a range of signals for which the risk-free portfolio does not react much to news if
α is sufficiently large.
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Proposition 6. The unique equilibrium price is

p(s) = d̄− γσ2
d + sσd EQ(R,s)

[
R̃ | s̃ = s

]
+ γσ2

dEQ(R,s)

[
R̃2 | s̃ = s

]
, (29)

where Q(R, s) denotes the risk and ambiguity adjusted equilibrium distribution of the

correlation R̃ conditional on s̃ = s. Specifically,

dQ(R; s) =
e−γ(1+α)(σdsR+ 1

2
γσ2

dR
2)

EP

[
e−γ(1+α)(σdsR̃+ 1

2
γσ2

dR̃
2)
]dP(R). (30)

The left graph of Figure 6 shows the equilibrium price as a function of the signal

when R̃ is uniformly distributed on the interval [Ra, Rb]. The black solid line repre-

sents an economy with an MEU-RI the red solid line represents an economy with a

BMU-RI (α = 0), and the other three lines represent economies with a KMM-RI with

different degrees of ambiguity aversion α. There is a range of signals for which the

equilibrium price becomes less sensitive to changes in the signal when α increases.
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Figure 6: Equilibrium Price

The left graph shows the equilibrium price and the right graph shows the risk and
ambiguity adjusted conditional mean and variance as a function of the signal. The
black lines represent an MEU investor, the red lines represent a BMU investor (α = 0),
and the other three lines represent KMM investors with different ambiguity aversion
α. In the right graph dashed lines represent the mean and chain-dotted lines the
variance. The parameter R is uniformly distributed on the interval [Ra, Rb] and
d̄ = 100, σ2

d = 25, and γ = 1.

Why does the sensitivity of the equilibrium price to news decrease with aversion
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to ambiguity? Intuitively, the price increases with the posterior mean and decreases

with the posterior variance. The RI hedges against risk and ambiguity and thus both

the mean and variance depend on the signal. The right graph of Figure 6 shows that

there is a range of signal values for which both the risk and ambiguity adjusted mean

and variance increase at approximately the same rate and thus the equilibrium price

does not react much to these signals.

V Calibration

In this section we focus on the quantitative significance of information inertia. Sup-

pose s̃ is a standardized predictor of ỹ where ỹ is either the future excess returns or

divided growth rate of the market portfolio. The unconditional mean and variance

of ỹ are ȳ and σ2
y , respectively. Investors are averse to ambiguity about the correla-

tion between ỹ and s̃ and consider a family of linear regression models described by

R ∈ [Ra, Rb]. Specifically,

ỹ = α + βs̃+ ε, α = ȳ, β = Rσy, ε̃ ∼ N (
0, σ2

y(1− R2)
)
. (31)

We use a confidence interval for the correlation R as a proxy for ambiguity aver-

sion.32 Let R̂ denote the point estimate for the correlation R, â the significance level

of the confidence interval [Ra, Rb], and T the size of the data sample.33 The size of

the interval is strictly decreasing in the significance level â and hence α = 1 − â can

be interpreted as a measure for ambiguity aversion.

We consider 84 observations of ỹ and s̃, that is, T = 84 and three different

32Garlappi, Uppal, and Wang (2007) use a confidence interval for expected stock returns as a
proxy for ambiguity aversion.

33The confidence interval (see Fisher (1921)) for the correlation R is [Ra, Rb] with

Ra = tanh

(
artanh

(
R̂
)
− Φ−1

(
1− â

2

)
1√

T − 3

)
(32)

Rb = tanh

(
artanh

(
R̂
)
+Φ−1

(
1− â

2

)
1√

T − 3

)
. (33)
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values for the point estimate of the correlation, that is, R̂ ∈ {30%, 40%, 50%}. These
estimates correspond to R2s in predictive regressions ranging from 0.09 to 0.25.34 We

focus on predictors for excess returns that are statistically significant to determine

the probability of information inertia in optimal portfolios and we focus on predictors

for dividend growth that are statistically significant to determine the probability of

information inertia in equilibrium prices. Hence Ra > 0 in both cases. If we allow

for insignificant predictors (0 ∈ [Ra, Rb]) then the probability of information inertia

is higher.

A Information Inertia of Portfolios

Suppose the signal s̃ predicts future excess returns r̃e, that is, ỹ = r̃e, ȳ = μe, and

σy = σe in equation (31). Let θ denote the fraction of wealth invested in the risky

asset and 1 − θ the fraction of wealth invested in the risk-free asset. Investors are

averse to ambiguity in the sense of Gilboa and Schmeidler (1989) and have mean-

variance preferences over excess returns. Hence, the optimal portfolio of an MEU

investor maximizes

min
R∈[Ra,Rb]

(
ER [r̃e | s̃ = s] θ − 1

2
γ VarR [r̃e | s̃ = s] θ2

)
, (34)

where ER [r̃e | s̃ = s] = α + βs and VarR [r̃e | s̃ = s] = σ2
e(1− R2).

The optimal portfolio of an SEU investors with mean-variance preferences and

belief R is

θ̄(s, R) =
ER [r̃e | s̃ = s]

γVarR [r̃e | s̃ = s]
. (35)

The optimal portfolio for an MEU investor with risk aversion γ and ambiguity aversion

34Koijen and Nieuwerburgh (2011) consider 84 annual observations to study the predictability of
the price-dividend ratio for stock market returns and dividend growth. The R2s of return predictabil-
ity regressions with significant price-dividend ratio range from 4.82% to 17.72% and the R2s of cash
flow predictability regressions with significant price-dividend ratio range from 4.08% to 24.42%.
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[Ra, Rb] is

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̄(s, Ra) s ≥ s1 ≡ −Ra max(λe, 0)− 1
Ra

min(λe, 0)

max
(
θ̄(s, 0), 0

)
s1 > s ≥ s2 ≡ −Rb max(λe, 0)− 1

Rb
min(λe, 0)

θ̄(s, Rb) s2 > s ≥ s3 ≡ − 1
Rb

max(λe, 0)− Rb min(λ, 0)

min
(
θ̄(s, 0), 0

)
s3 > s ≥ s4 ≡ − 1

Ra
max(λe, 0)− Ramin(λe, 0)

θ̄(s, Ra) s < s4,

where λe =
μe

σe
denotes the unconditional Sharpe ratio.

We know from Section II that there is range of good and bad signals for which

investors neither buy nor sell short the asset (information inertia of the risk-free

portfolio). Moreover, if the unconditional Sharpe ratio is positive (λe > 0), then

there is a range of bad signals for which investors do not change their long position

and if the unconditional Sharpe ratio is negative (λe < 0), then there is range of good

signals for which investors do not change their short position (information inertia for

risky portfolios). The size of the inaction region and the probability of information

inertia is given in Proposition 8 in Appendix A.

Table 1 shows the probability of information inertia conditional on bad news for

risky portfolios (Risky PF), for the riskfree portfolio (Risk-free PF), and for both

(Total).35 We consider five different values for the unconditional Sharpe ratio, that

is, λe ∈ {0.25, 0.3, 0.35, 0.4, 0.5} and ambiguity aversion decreases from α = 0.99 to

α = 0.5. From Panel B of the Table in which α = 0.95, we see that for an asset

with unconditional Sharpe ratio of 0.3, the conditional probability of information

inertia for a risky portfolio is 9.3% when the R2 is 0.09 and 8.6% when the R2 is

0.16. The total probability of information inertia conditional on a bad news surprise

is 62.7% and 54.3%, respectively. The probability of information inertia for risky

portfolios is increasing in the unconditional Sharpe ratio and decreasing in the R2 of

the predictability regression. The probability of information inertia for the risk free

portfolio is increasing in ambiguity aversion and non-monotonic in the unconditional

35The unconditional probability is half of the conditional probability.
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Sharpe ratio and the R2 of the predictability regression.

B Information Inertia of Prices

Suppose the signal s̃ predicts future dividend growth r̃e, that is, ỹ = g̃d, ȳ = μg,

and σy = σg in equation (31). The equilibrium expected excess return with an

SEU-RI who has mean-variance preferences and belief R is constant and equal to

μ̄e ≡ γσ2
g(1 − R2). This is no longer true when there is ambiguity aversion about

R. Specifically, the equilibrium expected excess return with an MEU-RI who has

mean-variance preferences and ambiguity aversion [Ra, Rb] is

μe(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γσ2
g(1− R2

a) if s > −γRaσg

γσ2
g if −γRbσg ≤ s ≤ −γRaσg

γσ2
g(1− R2

b) if s < −γRbσg.

(36)

There is a range of signals for which the information does not get incorporated into the

price and thus the expected excess return in equilibrium is equal to the unconditional

expected excess return γσ2
g . The size of the inaction region and the probability of

information inertia is given in Proposition 9 in Appendix A.

We report the probability of information inertia in prices conditional on bad

news in Table 2.36 We consider six different values for the unconditional expected

excess return, that is, γσ2
g ∈ {0.02, 0.03, 0.04, 0.05, 0.075, 0.1} and ambiguity aversion

decrease from α = 0.99 to α = 0.5. Panel B of Table 2 shows that for α = 0.95

and an unconditional expected excess return of 10%, the conditional probability of

information inertia is 29.8% when the R2 is 9% and 26.7% when the R2 is 16%. The

probability of information inertia is increasing in the unconditional expected excess

return and decreasing in the R2 of the predictability regression.

36The unconditional probability is half of the conditional probability.
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Table 1: Information Inertia of Optimal Portfolios
This table shows the probability of information inertia conditional on a bad news
surprise for different ambiguity aversion (α), explanatory power of the excess return
predictability regressions (R2), and unconditional Sharpe ratios (λe). The size of the
data sample is fixed at T = 84. The probability of information inertia for a long posi-
tion is decreasing in the R2 and increasing in λe and α. The probability of information
inertia for the risk free portfolio is increasing in α and non monotonic in λe and the R2.

R2 = 9% R2 = 16% R2 = 25%
Sharpe
Ratio

Risky
PF

Riskfree
PF

Total Risky
PF

Riskfree
PF

Total Risky
PF

Riskfree
PF

Total

Panel A (α = 0.99)
0.25 10.16% 63.97% 74.12% 9.41% 61.50% 70.91% 8.44% 38.35% 46.79%
0.3 12.17% 57.43% 69.60% 11.27% 59.51% 70.78% 10.10% 41.72% 51.82%
0.35 14.18% 51.22% 65.39% 13.11% 55.61% 68.72% 11.73% 43.50% 55.23%
0.4 16.17% 45.38% 61.55% 14.94% 50.90% 65.84% 13.35% 43.85% 57.20%
0.5 20.12% 34.91% 55.03% 18.54% 41.26% 59.80% 16.51% 41.25% 57.76%

Panel B (α = 0.95)
0.25 7.79% 59.87% 67.66% 7.20% 44.05% 51.25% 6.44% 26.39% 32.83%
0.3 9.34% 53.37% 62.71% 8.62% 45.65% 54.28% 7.70% 29.36% 37.07%
0.35 10.88% 46.88% 57.76% 10.04% 45.15% 55.19% 8.95% 31.36% 40.31%
0.4 12.41% 40.79% 53.20% 11.44% 43.08% 54.52% 10.19% 32.42% 42.60%
0.5 15.45% 30.09% 45.54% 14.19% 36.31% 50.51% 12.59% 32.03% 44.63%

Panel C (α = 0.9)
0.25 6.56% 53.62% 60.18% 6.06% 35.42% 41.48% 5.41% 21.26% 26.67%
0.3 7.86% 49.33% 57.19% 7.25% 37.53% 44.79% 6.47% 23.82% 30.29%
0.35 9.16% 43.73% 52.89% 8.44% 37.95% 46.39% 7.52% 25.64% 33.16%
0.4 10.45% 37.89% 48.34% 9.62% 36.96% 46.58% 8.56% 26.73% 35.29%
0.5 13.01% 27.28% 40.29% 11.94% 32.15% 44.09% 10.58% 26.90% 37.47%

Panel D (α = 0.75)
0.25 4.61% 37.92% 42.53% 4.25% 23.37% 27.62% 3.79% 14.15% 17.94%
0.3 5.52% 37.08% 42.61% 5.09% 25.31% 30.40% 4.53% 15.97% 20.50%
0.35 6.43% 34.35% 40.78% 5.92% 26.19% 32.11% 5.27% 17.34% 22.61%
0.4 7.34% 30.49% 37.83% 6.75% 26.11% 32.86% 5.99% 18.24% 24.23%
0.5 9.14% 21.89% 31.03% 8.37% 23.69% 32.06% 7.41% 18.72% 26.13%

Panel E (α = 0.5)
0.25 2.71% 21.74% 24.45% 2.50% 13.18% 15.68% 2.22% 8.04% 10.27%
0.3 3.25% 22.03% 25.28% 2.99% 14.44% 17.43% 2.66% 9.12% 11.78%
0.35 3.78% 21.10% 24.88% 3.48% 15.13% 18.61% 3.09% 9.94% 13.04%
0.4 4.32% 19.27% 23.59% 3.96% 15.28% 19.24% 3.52% 10.52% 14.03%
0.5 5.37% 14.26% 19.63% 4.92% 14.23% 19.15% 4.35% 10.92% 15.26%
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Table 2: Information Inertia of Prices
This table shows the probability of information inertia in equilibrium prices condi-
tional on a bad news surprise for different ambiguity aversion (α), explanatory power
of the cash flow predictability regressions (R2), and unconditional expected excess
return (γσ2

g). The size of the data sample is fixed at T = 84. The probability of
information inertia is decreasing in the R2 and increasing in γσ2

g and α.

Unconditional Expected Excess Return
2% 3% 4% 5% 7.5% 10%

R2 Panel A (α = 0.99)
9% 8.13% 12.17% 16.17% 20.12% 29.73% 38.81%
16% 7.54% 11.27% 14.94% 18.54% 27.14% 34.99%
25% 6.77% 10.10% 13.35% 16.51% 23.88% 30.27%
R2 Panel B (α = 0.95)
9% 6.24% 9.34% 12.41% 15.45% 22.83% 29.82%
16% 5.77% 8.62% 11.44% 14.19% 20.77% 26.76%
25% 5.17% 7.70% 10.19% 12.59% 18.20% 23.03%
R2 Panel C (α = 0.9)
9% 5.26% 7.86% 10.45% 13.01% 19.23% 25.13%
16% 4.86% 7.25% 9.62% 11.94% 17.47% 22.51%
25% 4.34% 6.47% 8.56% 10.58% 15.28% 19.32%
R2 Panel D (α = 0.75)
9% 3.69% 5.52% 7.34% 9.14% 13.51% 17.66%
16% 3.41% 5.09% 6.75% 8.37% 12.25% 15.78%
25% 3.04% 4.53% 5.99% 7.41% 10.69% 13.51%

R2 Panel E (α = 0.5)
9% 2.17% 3.25% 4.32% 5.37% 7.95% 10.39%
16% 2.00% 2.99% 3.96% 4.92% 7.20% 9.27%
25% 1.78% 2.66% 3.52% 4.35% 6.27% 7.92%
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VI Conclusion

We study how information about an asset affects optimal portfolios when investors

do not know the model that links this information to future asset values. We show

that ambiguity averse investors do not always act on information that is worse than

expected. Hence, they do not participate in the stock market or rebalance their port-

folios as frequently as traditional models would predict which is consistent with the

household portfolio choice literature.37 Our explanation does not rely on information

processing costs or other market frictions and it is different from the explanation in

Epstein and Schneider (2010) and Illeditsch (2011) who show that aversion to ambi-

guity leads to risk-free and risky portfolios that do not react to changes in the stock

price—a phenomenon which they refer to as portfolio inertia.

We also study the effects of ambiguity aversion on the equilibrium price of the

market portfolio when investors receive information about its future cash flows. We

show that the price of the market portfolio fails to incorporate all available informa-

tion in equilibrium. Specifically, signals that convey information that is better than

expected are always reflected in the stock price while some signals that convey infor-

mation that is worse than expected are not. This informational inefficiency leads to

price underreaction consistent with momentum.
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A Appendix: Proofs and Additional Results

We first state and prove two results that are of independent interest and will also

be useful in proofs of the main results. The first result (Proposition 7) determines

the certainty equivalent of the MEU investor and the second result (Theorem 3)

determines the MEU optimal portfolio as a function of price.

Proposition 7 (Preferences). Let θ̂a ≡ −s/(γRaσd) and θ̂b ≡ −s/(γRbσd). The cer-

tainty equivalent of an investor with risk aversion γ and ambiguity aversion described

by [Ra, Rb] who has recieved signal s is

CE(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ERa [w̃ | s̃ = s]− 1
2
γVarRa [w̃ | s̃ = s] if θ ≤ min

(
θ̂a, 0

)
E [w̃]− 1

2
γVar [w̃]− s2

2γ
if min

(
θ̂a, 0

)
< θ ≤ min

(
θ̂b, 0

)
ERb

[w̃ | s̃ = s]− 1
2
γVarRb

[w̃ | s̃ = s] if min
(
θ̂b, 0

)
< θ ≤ max

(
θ̂b, 0

)
E [w̃]− 1

2
γVar [w̃]− s2

2γ
if max

(
θ̂b, 0

)
< θ ≤ max

(
θ̂a, 0

)
ERa [w̃ | s̃ = s]− 1

2
γVarRa [w̃ | s̃ = s] if θ > max

(
θ̂a, 0

)
.

(37)
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The certainty equivalent CE(θ) is a continuous and concave function of the stock

demand θ. Moreover, it is continuously differentiable except for the portfolio θ = 0 if

s 
= 0.

Proof of Proposition 7. The certainty equivalent CE(θ) of the ambiguity averse MEU

investor satisfies

CE(θ) = min
R∈[Ra,Rb]

CE(θ, R). (38)

Note that
∂CE(θ, R)

∂R
= θσds+ γθ2σ2

dR. (39)

Consider three cases, (i) s = 0, (ii) s > 0, and (iii) s < 0.

(i) s = 0 ⇔ θ̂a = θ̂b = 0.

Then ∂CE(θ,R)
∂R

> 0 for all R ∈ [Ra, Rb]. Thus the minimum of CE(θ, R) is

attained at Ra and hence,

CE(θ) = min
R∈[Ra,Rb]

CE(θ, R) = CE(θ, Ra) for all θ ∈ R. (40)

CE(θ, Ra) is continuously differentiable and concave in θ for all θ ∈ R and thus

so is CE(θ).

(ii) s > 0 ⇔ θ̂a < θ̂b < 0.

Suppose θ < θ̂a < 0 or θ > 0. Then ∂CE(θ,R)
∂R

> 0 for all R ∈ [Ra, Rb]. Thus, the

minimum of CE(θ, R) is attained at Ra.

Suppose θ̂b < θ < 0. Then ∂CE(θ,R)
∂R

< 0 for all R ∈ [Ra, Rb]. Thus, the minimum

of CE(θ, R) is attained at Rb.

Suppose θ̂a ≤ θ ≤ θ̂b. Then, since
∂2CE(θ,R)

∂R2 > 0, the minimum is attained when
∂CE(θ,R)

∂R
= 0, i.e. R∗(θ) ≡ argmin

R∈[Ra,Rb]

CE(θ, R) = −s
γσdθ

. Note that R∗ ∈ [Ra, Rb]

when θ̂a ≤ θ ≤ θ̂b < 0 and that

CE(θ, R∗) = E[w̃]− 1

2
γVar[w̃]− s2

2γ
= CE(θ, 0)− s2

2γ
. (41)
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Using the above, we get

CE(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CE(θ, Ra) if θ ≤ θ̂a

CE(θ, 0)− s2

2γ
if θ̂a < θ ≤ θ̂b

CE(θ, Rb) if θ̂b < θ ≤ 0

CE(θ, Ra) if 0 < θ.

(42)

as desired.

CE(θ) is continuous for all θ ∈ R and R ∈ [Ra, Rb] and CE(0, Ra) = CE(0, Rb).

CE(θ, R) is continuously differentiable for all θ ∈ R and R ∈ [Ra, Rb] and the
∂2CE(θ,R)

∂θ2
≤ 0 for all θ ∈ R and R ∈ [Ra, Rb]. Thus, for any θ 
= 0 there is

an open neighborhood for such CE(θ) is continuously differentiable and ∂2CE(θ)
∂θ2

exists and is non-positive.

To verify concavity and non-differentiability of CE(θ) at θ = 0, we calculate the

left derivative CE′−(θ) and the right derivative CE′+(θ) at θ = 0.

CE′−(0) ≡ lim
θ↑0

∂CE(θ)

∂θ
= d̄+Rbσds− p (43)

CE′+(0) ≡ lim
θ↓0

∂CE(θ)

∂θ
= d̄+Raσds− p (44)

Thus, CE′−(0) > CE′+(0), so CE(θ) is concave for all θ ∈ R, not differentiable

at θ = 0, and continuously differentiable at all θ 
= 0.

(iii) s < 0 ⇔ θ̂ > θ̂b > 0.

Using reasoning similar to that for the above case, we get

CE(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CE(θ, Ra) if θ ≤ 0

CE(θ, Rb) if 0 < θ ≤ θ̂b

CE(θ, 0)− s2

2γ
if θ̂b < θ ≤ θ̂a

CE(θ, Ra) if θ̂a < θ

(45)

and that CE(θ) is continuous and concave in θ ∈ R. Moreover, CE(θ) is con-

tinuously differentiable at all θ 
= 0.

Finally, combining the above cases provides the desired expression and properties

for CE(θ).
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Theorem 3 (Optimal Demand). Optimal demand at price p for an investor with risk

aversion γ and ambiguity aversion described by [Ra, Rb] who has recieved signal s is

θ(s, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(s, Ra, p) p ≤ p1(s) ≡ μ(s, Ra)− γσ2(Ra)max
(
θ̂a, 0

)
max

(
θ(s, 0, p), 0

)
p1(s) < p ≤ p2(s) ≡ μ(s, Rb)− γσ2(Rb)max

(
θ̂b, 0

)
θ(s, Rb, p) p2(s) < p ≤ p3(s) ≡ μ(s, Rb)− γσ2(Rb)min

(
θ̂b, 0

)
min

(
θ(s, 0, p), 0

)
p3(s) < p ≤ p4(s) ≡ μRa(s)− γσ2(Ra)min

(
θ̂a, 0

)
θ(s, Ra, p) p > p4(s),

(46)

where μ(s, R) = d̄+Rσds and σ2(R) ≡ σ2
d(1− R2).

Proof of Theorem 3. Consider three cases: (i) s = 0, (ii) s > 0, and s < 0. For

expositional simplicity, we make the dependence on p and s explicit.

(i) s = 0 ⇔ θ̂a = θ̂b = 0, so it follows from the proof of Proposition 7 that

CE(θ) = CE(θ, Ra) for all θ ∈ R. Thus, it follows that θ(s, p) = θ(s, Ra, p) for

all p ∈ R.

(ii) s > 0 ⇔ θ̂a < θ̂b < 0, so it follows from the proof of Proposition 7 that CE(θ)

is given by (42).

Consider five sub-cases: (a) p ≤ p1 = μ(s, Ra), (b) p1 < p ≤ p2 = μ(s, Rb), (c)

p2 < p ≤ p3 = μ(s, Rb) − γσ2(Rb)θ̂b, (d) p3 < p ≤ p4 = μ(s, Ra) − γσ2(Ra)θ̂a,

and (e) p4 < p.

(ii)(a) Suppose p ≤ p1. We show that θ(s, p) = θ(s, Ra, p). First, note that

θ(s, Ra, p) =
μ(s, Ra)− p

γσ2(Ra)
≥ μ(s, Ra)− p1

γσ2(Ra)
= 0. (47)

Moreover, for any θ > 0, CE(θ) = CE(θ, Ra) from (42). Thus, since CE(θ)

is concave, θ(s, Ra, p) is the local and hence global maximizer of CE(θ) for

all p ≤ p1.

(ii)(b) Suppose p1 < p ≤ p2. We show that θ(s, p) = 0. First, note that since

Raσd > 0,

θ(s, 0, p) =
d̄− p

γσ2
d

<
d̄− p1
γσ2

d

≤ μ(s, Ra)− p1
γσ2

d

= 0. (48)

Since CE(θ) is concave, it suffices to show that θ = 0 is a local maximizer.
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Given (42), there exists ε > 0 such that

CE(θ) =

⎧⎨
⎩CE(θ, Rb) if − ε < θ ≤ 0

CE(θ, Ra) if 0 ≤ θ < ε.
(49)

For −ε < θ ≤ 0,

CE(0)− CE(θ, Rb) = θ
(
p− d̄−Rbσds

)
+

1

2
γ(σ2

d(1− R2
b)) ≥ 0 (50)

when p ≤ p2.

For 0 ≤ θ < ε,

CE(0)− CE(θ, Ra) = θ
(
p− d̄− Raσds

)
+

1

2
γ(σ2

d(1− R2
a)) ≥ 0 (51)

when p1 ≤ p. Combining the above, shows that θ = 0 is a local and hence

global maximizer of CE(θ) for p1 < p ≤ p2.

(ii)(c) Suppose p2 < p ≤ p3. We show that θ(s, p) = θ(s, Rb, p). First, note that

θ(s, Rb, p) =
μ(s, Rb)− p

γσ2(Rb)
<

μ(s, Rb)− p2
γσ2(Rb)

= 0 (52)

when p2 < p and that

θ(s, Rb, p) =
μ(s, Rb)− p

γσ2(Rb)
≥ μ(s, Rb)− p3

γσ2(Rb)
= θ̂b (53)

when p ≤ p3.

From (42), CE(θ) = CE(θ, Rb) when θ̂b < θ ≤ 0. Thus, given concavity

of CE(θ), θ(s, Rb, p) is a local and hence global maximizer of CE(θ) when

p2 < p ≤ p3.

(ii)(d) Suppose p3 < p ≤ p4. We show that θ(s, p) = θ(s, 0, p). First, note that

since Raσd > 0,

θ(s, 0, p) =
d̄− p

γσ2
d

<
d̄− p3
γσ2

d

<
d̄− p2
γσ2

d

≤ 0. (54)

Also, p3 = μ(s, Rb)−γσ2(Rb)θ̂b = d̄−γσ2
d θ̂b and p4 = μ(s, Ra)−γσ2(Ra)θ̂a =

d̄− γσ2
dθ̂a. Hence,

θ̂a ≤ θ(s, 0) < θ̂b (55)

when p3 < p ≤ p4.
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From (42), CE(θ) = CE(θ, 0) − s2

2γ
when θ̂a < θ ≤ θ̂b < 0. Thus, since

CE(θ) is concave, θ(s, 0, p) is a local and hence global maximizer of CE(θ)

for p3 < p ≤ p4.

(ii)(e) Suppose p4 < p. We show that θ(s, p) = θ(s, Ra, p). First, note that

θ(s, Ra, p) =
μ(s, Ra)− p

γσ2(Ra)
<

μ(s, Ra)− p4
γσ2(Ra)

≤ θ̂a = 0. (56)

Moreover, for any θ < θ̂a, CE(θ) = CE(θ, Ra) from (42). Thus, since CE(θ)

is concave, θ(s, Ra, p) is the local and hence global maximizer of CE(θ) for

all p > p4.

Using the above, we get

θ(s, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(s, Ra, p) if p ≤ p1

0 if p1 < p ≤ p2

θ(s, Rb, p) if p2 < p ≤ p3

θ(s, 0, p) if p3 < p ≤ p4

θ(s, Ra, p) if p4 < p.

(57)

as desired.

(iii) When s < 0 ⇔ θ̂a > θ̂b > 0, then it follows from the proof of Proposition

7 that CE(θ) is given by (45). Moreover, p1 = μ(s, Ra) − γσ2(Ra)θ̂a, p2 =

μ(s, Rb)− γσ2(Rb)θ̂b, p3 = μ(s, Rb), and (d) p4 = μ(s, Ra). Thus, using similar

reasoning as above, we get

θ(s, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(s, Ra, p) if p ≤ p1

θ(s, 0, p) if p1 < p ≤ p2

θ(s, Rb, p) if p2 < p ≤ p3

0 if p3 < p ≤ p4

θ(s, Ra, p) if p4 < p.

(58)

as desired.

Combining the three cases above provides the desired expression for θ(s).

Proof of Theorem 1. Consider three cases: (i) λ = 0, (ii) λ > 0, and (iii) λ < 0
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and the expression for demand in Theorem 3. We omit the dependence on p for

expositional ease.

(i) Suppose λ = 0. Then s1 = s2 = s3 = s4 = 0 and from Theorem 3, θ(s) =

θ(s, Ra) if p ≤ p1 ⇔ s ≥ 0 and if p > p4 ⇔ s < 0.

(ii) λ > 0. Then s1 = −Raλ > s2 = −Rbλ > s3 = − λ
Rb

> s4 = − λ
Ra

.

Then from Theorem 3 the following holds.

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(s, Ra) if p ≤ p1 ⇔ s ≥ s1

θ(s, 0) if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θ(s, Rb) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

0 if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θ(s, Ra) if p > p4 ⇔ s < s4.

(59)

(iii) λ < 0. Then s1 = − λ
Ra

> s2 = − λ
Rb

> s3 = −Rbλ > s4 = −Raλ.

Then from Theorem 3 the following holds.

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(s, Ra) if p ≤ p1 ⇔ s ≥ s1

0 if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θ(s, Rb) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

θ(s, 0) if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θ(s, Ra) if p > p4 ⇔ s < s4.

(60)

Combining the above cases provides the desired expression.

Proof of Proposition 1. Suppose λ > 0. Then optimal demand for the MEU investor

is given by (59). Moreover, from the proof of Proposition 7 it follows that

R∗(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ra if s > s1 = −Raλ or s ≤ s4 = − λ

Ra

− s
λ

if − λRb < s ≤ −Raλ

Rb if s ≤ s2 = −Rbλ or s > s3 = − λ
Rb

(61)

Hence, it follows that

θ(s) =

⎧⎨
⎩θ(s, R∗(s)) if s > − λ

Rb
or s < − λ

Ra

0 if − λ
Ra

≤ s ≤ − λ
Rb
.

(62)
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Proof of Proposition 2. Let s > − λ
Rb
. Then, s > − λ

R
for all R ∈ [Ra, Rb] since − λ

R
is

increasing in R. From this it follows that for all R ∈ [Ra, Rb],
d̄+Rσds−p

σ(R)
= λ(s, R) > 0

and hence θ(s, R) = λ(s,R)
γσ(R)

> 0.

Moreover, d2

dR2λ(s, R) > 0 for all R ∈ [Ra, Rb], so λ(s, R) is strictly convex in

R. Letting R′ denote the unique minimizer of λ(s, R) over [Ra, Rb], the first-order

(Kuhn-Tucker) condition for the constrained minimisation yields

0 ≤ s+ λR′

(1−R′2)
(63)

with equality holding if Ra < R′ < Rb. This yields the result that R∗(s) as in (61) is

unique minimizer of λ(s, R) over [Ra, Rb].

An analogous argument shows that if s < − λ
Ra

, then for allR ∈ [Ra, Rb], λ(s, R) <

0 and hence θ(s, R) < 0. Moreover, in this case, d2

dR2λ(s, R) < 0 for all R ∈ [Ra, Rb],

so λ(s, R) is strictly concave in R and the first order condition yields the result that

R∗(s) = Ra is the unique maximizer of λ(s, R) over [Ra, Rb].

Proof of Proposition 3. Using θh(s, p) to denote the demand at price p for investor h

who recieves signal s, it follows from Theorem 3 that

θh(s, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(s,Ra)−p
γhσ2(Ra)

p ≤ p1

max
(

d̄−p
γhσ

2
d
, 0
)

p1 < p ≤ p2
μ(s,Rb)−p
γhσ2(Rb)

p2 < p ≤ p3

min
(

d̄−p
γhσ

2
d
, 0
)

p3 < p ≤ p4
μ(s,Ra)−p
γhσ2(Ra)

p > p4,

(64)

where p1, p2, p3, p4 are as in 3 due to homogeneous ambiguity aversion [Ra, Rb] across

investors.
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Summing up individual demands leads to aggregate demand,

θ(s, p) =

H∑
h=1

θh(s, p)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(s,Ra)−p
γσ2(Ra)

p ≤ p1

max
(

d̄−p
γσ2

d
, 0
)

p1 < p ≤ p2
μ(s,Rb)−p
γσ2(Rb)

p2 < p ≤ p3

min
(

d̄−p
γhσ

2
d
, 0
)

p3 < p ≤ p4
μ(s,Ra)−p
γσ2(Ra)

p > p4,

(65)

with 1
γ
=

∑H
h=1

1
γh

risk tolerance, wealth w0 =
∑H

h=1w0h and ambiguity aversion

described by [Ra, Rb].

The representative investor holds the risky asset in equilibrium and consumes the

dividend. Thus, using (5) and (6) and Proposition 1 with θ(s, p) = 1 for the RI yields

(16) as the representative investor utility in equilibrium. Since u′ > 0, the equilibrium

utility can be computed by solving

min
R∈[Ra,Rb]

μ(s, R)− 1

2
γσ2(R). (66)

Since μ(s, R)− 1
2
γσ2(R) is strictly convex in R over [Ra, Rb], the following first order

(Kuhn-Tucker) condition is necessary and sufficient for the solution to the constrained

minimization problem.

0 ≤ R(s+ σsγ) (67)

with equality if R ∈ (Ra, Rb). Solving this yields (17) as desired.

Proof of Theorem 2. We make the dependence of demand on price p explicit for ex-

positional ease. Market clearing requires that θ(s, p) = 1 since there is one unit of

the risky asset in aggregate.

Consider three cases: (i) s > −γRaσd, (ii) −γRbσd ≤ s ≤ −γRaσd, and (iii)

s < −γRbσd.

(i) Suppose s > −γRaσd. Then θ̂a < 1. We need to verify that markets clear when

p(s) = μ(s, Ra)− γσ2(Ra). From Theorem 1, it follows that

θ(s, p) = θ(s, Ra, p) =
μ(s, Ra)− p(s)

γσ2(Ra)
= 1 (68)
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if and only if

p(s) = μ(s, Ra)− γσ2(Ra) ≤ p1 = μ(s, Ra)− γσ2(Ra)max
{
θ̂a, 0

}
(69)

or

p(s) = μ(s, Ra)− γσ2(Ra) > p4 = μ(s, Ra)− γσ2(Ra)min
{
θ̂a, 0

}
. (70)

Since θ̂a < 1, p(s) ≤ p1 and the result follows.

(ii) Suppose −γRbσd ≤ s ≤ −γRaσd. Then θ̂b ≤ 1 ≤ θ̂a. We need to verify that

markets clear when p(s) = d̄− γσ2
d. From Theorem 1, it follows that

θ(s, p) = θ(s, 0, p) =
d̄− p(s)

γσ2
d

= 1 (71)

if and only if

p(s) = d̄− γσ2
d > p1 = μ(s, Ra)− γσ2(Ra)max

{
θ̂a, 0

}
(72)

and

p(s) = d̄− γσ2
d ≤ p2 = μ(s, Rb)− γσ2(Rb)max

{
θ̂b, 0

}
. (73)

Since θ̂a ≥ 1 and μ(s, Ra)− γσ2(Ra)θ̂a = d̄− γσ2
d θ̂a, we have p(s) > p1.

If θ̂b ≤ 0, then s ≥ 0. So, p(s) = d̄−γσ2
d ≤ d̄+Rbσds = μ(s, Rb) = p2. If 0 < θ̂b,

then since θ̂b ≤ 1 we p(s) = d̄ − γσ2
d ≤ d̄ − γσ2

d θ̂b = μ(s, Rb)− γσ2(Rb)θ̂b = p2.

So, p1 < p(s) ≤ p2

(iii) Suppose s < −γRbσd. Then θ̂b > 1. We need to verify that markets clear when

p(s) = μ(s, Rb)− γσ2(Rb). From Theorem 1, it follows that

θ(s, p) = θ(s, Rb, p) =
μ(s, Rb)− p(s)

γσ2(Rb)
= 1 (74)

if and only if

p(s) = μ(s, Rb)− γσ2(Rb) > p2 = μ(s, Rb)− γσ2(Rb)max
{
θ̂b, 0

}
(75)

and

p(s) = μ(s, Rb)− γσ2(Rb) ≤ p3 = μ(s, Rb)− γσ2(Rb)min
{
θ̂b, 0

}
. (76)
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Since θ̂b > 1, p2 < p(s) ≤ p3 and the result follows.

Combining the above cases provides the desired result.

Proof of Proposition 4. Using θh(s) to denote the demand for investor h, it follows

from Theorem 3 that

θh(s, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(s,Rah)−p
γhσ2(Rah)

p ≤ p1h ≡ μ(s, Rah)− γhσ
2(Rah)max

(
θ̂ah, 0

)
max

(
d̄−p
γhσ

2
d
, 0
)

p1h < p ≤ p2h ≡ μ(s, Rbh)− γhσ
2(Rbh)max

(
θ̂bh, 0

)
μbh−p

γhσ2(Rbh)
p2h < p ≤ p3h ≡ μ(s, Rbh)− γhσ

2(Rbh)min
(
θ̂bh, 0

)
min

(
d̄−p
γhσ

2
d
, 0
)

p3h < p ≤ p4h ≡ μ(s, Rah)− γhσ
2(Rah)min

(
θ̂bh, 0

)
μ(s,Rah)−p
γhσ2(Rah)

p > p4h,

(77)

where θ̂ah ≡ −s/(γhRahσd) and θ̂bh ≡ −s/(γhRbhσd).

We first show that there exists an equilibrium. Individual demand given in

equation (77) is continuous and non-increasing in p with lim
p→−∞

θh(s, p) = ∞ and

lim
p→∞

θh(s, p) = −∞ for all h ∈ {1, . . . , H}. Hence, aggregate demand θ(s, p) =∑H
h=1 θh(s, p) is continuous and non-increasing in p with lim

p→−∞
θ(s, p) = ∞ and

lim
p→∞

θ(s, p) = −∞. Hence, there exists an equilibrium because the market clear-

ing condition θ(s, p)− 1 = 0 has always a solution.

We next determine the equilibrium stock price p(s) for all s ∈ [−γσdRb,−γσdRa].

By assumption we have that Ra = max {Ra1, . . . , Rah} and Rb = min {Rb1, . . . , Rbh}.
Hence, since s < 0,

p1(s) ≡ max
h∈{1,...,H}

p1h(s) = max
h∈{1,...,H}

{
d̄+

σd

Rah
s

}
= d̄+

σd

Ra
s (78)

p2(s) ≡ min
h∈{1,...,H}

p2h(s) = min
h∈{1,...,H}

{
d̄+

σd

Rbh

s

}
= d̄+

σd

Rb

s. (79)

We have that Rb ≥ Ra and thus (i) [ŝb, ŝa] 
= ∅ and (ii) p2(s) ≥ p1(s) for all s ∈ [ŝb, ŝa].

It follows from equations (77)-(79) that

θh(s, p) =
d̄− p

γhσ2
d

∀ p1(s) ≤ p ≤ p2(s), and ∀h ∈ {1, . . . , H}. (80)

Summing over all investors leads to
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θ(s, p) =

H∑
h=1

θh(s, p) =
d̄− p

σ2
d

H∑
h=1

1

γh
=

d̄− p

γσ2
d

∀ p1(s) ≤ p ≤ p2(s).

Imposing the market clearing condition θ(s, p)=1 leads to the price p(s) = d̄−γσ2
d.

Finally, the desired result follows from noting that p1(s) ≤ d̄ − γσ2
d ≤ p2(s) if and

only if −γσdRb ≤ s ≤ −γσdRa.

Proof of Proposition 5. For all θ ∈ R, the function ξ(θ, s, R),

ξ(θ, s, R) =
e−γ(1+α)(σdsR θ+ 1

2
γσ2

dR
2θ2)

EP

[
e−γ(1+α)(σdsR̃ θ+ 1

2
γσ2

dR̃
2θ2)

] (81)

is non-negative and EP

[
ξ(θ, s, R̃)

]
= 1 hence dQ (s, R, θ) as defined in (25) is a

conditional probability distribution.

The utility U(θ) of a KMM investor from holding portfolio θ is as given in (24)

with u(w) = −e−γw, γ > 0 and φ(u) = − 1
1+α

(−u)1+α , α ≥ 0. The first-order condi-

tion for this investor’s optimal portfolio is

0 = U ′(θ) = EP

[
φ′(u(CE(θ, R̃)))u′(CE(θ, R̃))

(
λ(s, R̃) + γθσ(R̃)

)
σ(R̃)

]
. (82)

The second derivative of (24) with respect to θ is

U ′′(θ) = EP

[(
λ(s, R̃) + γθσ(R̃)

)2

σ2(R̃) (φ′′(·)u′(·) + φ′(·)u′′(·))− φ′(·)u′(·)γσ2(R̃)

]
< 0

(83)

given u′ > 0, u′′ < 0 and φ′ > 0, φ′′ ≤ 0.

Hence, KMM investor utility is strictly concave in θ and optimal portfolio is

unique. Solving for θ(s) using the first-order condition and φ′(u) = (−u)α and u′(w) =

γe−γw yields

θ(s) =
EP[φ′(·)u′(·)(λ(s,R̃)σ(R̃))]

γEP[σ2(R̃)]

=
(d̄−p)+σdsEQ(R;s,θ(s))[R̃|s̃=s]

γσ2
d(1−EQ[(R̃2)])

= λQ(s,θ(s))

γσQ(s,θ(s))

(84)

as desired.
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Proof of Proposition 6. Setting θ(s) = 1 in (25) and usingQ(R, s) to denoteQ(R; s, 1)

yields the distribution of R̃ condtional on s̃ = s in (30).

The representative investor holds the risky asset and consumes the dividend in

equilibrium. Setting θ(s) = 1 in the first-order condition (82) yields,

λQ(s,1) = γσQ (s, 1) . (85)

Using the expressions for λQ (s, θ(s)) and σQ (s, θ(s)) from Proposition 5 with θ(s) = 1

and Q(R, s) for Q(R; s, 1), solving for p(s) yields (29) as the unique equilibrium

price.

The following results provide the size and probability of information inertia in

portfolio choice (Proposition 8) and in equilibrium prices (Proposition 9) that are

used for the calculations in Section V.

Proposition 8. The size of the signal region for which risky portfolios do not react

to news is (Rb−Ra)λe. The probability of investors exhibiting information inertia for

risky asset positions conditional on s̃ ≤ x is

1

Φ (x)
·

⎧⎪⎨
⎪⎩

0 if x < −λeRb

Φ (λeRb)− Φ (−x) if −λeRb ≤ x ≤ −λeRa

Φ (λeRb)− Φ (λeRa) if x > −λeRa,

(86)

where Φ(·) denotes the cumulative distribution function of a standard normal dis-

tributed variable.

The size of the signal region for which the risk-free portfolio does not react to news

is Rb−Ra

RbRa
λe. The probability of investors exhibiting information inertia when holding

the risk-free portfolio conditional on s̃ ≤ x is

1

Φ (x)
·

⎧⎪⎪⎨
⎪⎪⎩

0 if x < − λe

Rb

Φ
(

λe

Rb

)
− Φ (−x) if − λe

Rb
≤ x ≤ − λe

Ra

Φ
(

λe

Ra

)
− Φ

(
λe

Rb

)
if x > − λe

Ra
.

(87)

Proof of Proposition 8. The expression for MEU investor optimal portfolio given in

sub-section A follows from reasoning similar to that for (8). That is, reasoning similar

to that for (59) (resp. (60)) in the proof of Theorem 1, yields that MEU investors are
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long (resp. short) in the stock, but demand does not react to news, i.e.

θ(s) = θ(s, 0) ≥ 0( resp. ≤ 0), (88)

if and only if λe > 0 (resp. λe < 0) and s1 > s ≥ s2, where s1 = −Raλe and

s2 = −Raλe (resp. s4 ≤ s < s3, where s4 = −Raλe and s3 = −Rbλe).

Hence, the size of the signal region for which risky portfolios do not react to news

is (Rb − Ra)λe. Moreover, s̃ ∼ N(0, 1), so it follows that the probability of investors

exhibiting information inertia for a risky asset position conditional on s̃ ≤ x is as

given in (86).

Moreover, reasoning similar to that for (59) (resp. (60)) in the proof of Theorem

1, yields that MEU investors hold the riskless portfolio, but demand does not react

to news, i.e.

θ(s) = 0, (89)

if and only if λe > 0 (resp. λe < 0) and s4 ≤ s < s3, where s4 = − λe

Ra
and s3 = − λe

Rb

(resp. s1 > s ≥ s2, where s1 = − λe

Ra
and s2 = − λe

Ra
).

Hence, the size of the signal region for which riskless portfolios does not react

to news Rb−Ra

RbRa
λe. Moreover, s̃ ∼ N(0, 1), so it follows that probability of investors

exhibiting information inertia for a risky asset position conditional on s̃ ≤ x is as

given in (87).

Proposition 9. The size of the signal region for which the stock price does not react to

news is γσg(Rb −Ra). The probability of the equilibrium price exhibiting information

inertia conditional on s̃ ≤ x

=

⎧⎪⎨
⎪⎩

0 if x < −γRbσg
Φ(x)−Φ(−γRbσg)

Φ(x)
if −γRbσg ≤ x ≤ −γRaσg

Φ(−γRaσg)−Φ(−γRbσg)
Φ(x)

if x > −γRaσg,

(90)

where Φ(·) denotes the cumulative distribution function of a standard normal dis-

tributed variable.

Proof of Proposition 9. Since the representative investor holds the stock in equilibriun

(θ(s) = 1) and consumes the dividend, the expression for equilibrium expected excess

return is as given in (36) using reasoning similar to that for Proposition 3. It follows

that the size of the signal region for which the stock price does not react to news

is γσg(Rb − Ra). Moreover, s̃ ∼ N(0, 1), so the probability of the equilibrium price
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exhibiting information inertia conditional on s̃ ≤ x is as given in (90).
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