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Abstract

We propose a simple model of non-exclusive �nancial advice in which two households rely on a

self-interested (common) expert to make their investment choices. There is only one source of risk,

and the expert is privately informed about the risky asset�s volatility. When monetary transfers are

unenforceable, we show that investors may delegate their investment decisions to the expert. When

doing so, however, they impose restrictions on her choices which crucially depend on whether the

expert perceives investors�asset allocations as complements or as substitutes. Finally, we analyze the

implications of non-exclusivity in �nancial advice on investment behavior and welfare, and highlight

a set of novel testable implications.
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1. Introduction

In most developed countries money managers play an important role in households�investment deci-

sions. A substantial portion of �nancial wealth is not managed directly by savers, but by specialized

intermediaries. Moreover, investors often consult a �nancial advisor or a money manager before making

any important �nancial decision. This propensity of investors to rely on �nancial advisors has been
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documented in recent empirical studies. A survey conducted by Hung et al. (2008) reveals that 73

percent of all US retail investors consult a �nancial advisor before purchasing shares. In a large online

survey among recent purchasers of investment products in the EU, Chater et al. (2010) found that

nearly 80 percent made their purchases through an intermediary, with 58 percent of them claiming that

an advisor in�uenced their choice.

Many existing theories explain why, and under which conditions, investors delegate to experts their

portfolio choices. However, most of these models focus on the relationship between an investor and his

exclusive advisor, whereas little is known on how investors should behave when they interact with an

expert who simultaneously advises other investors. What type of externalities do investors exert on each

other when they share the same advisor? Do experts tend to induce excessive risk-taking when they

advise multiple clients? How does non-exclusivity in �nancial advice a¤ect investors�asset-allocation

behavior and welfare?

We address these issues by examining the mechanism design problem that an investor faces when

he is advised by an expert who also deals with other investors. Non-exclusivity in the �nancial advice

matters to each individual investor because the expert�s behavior with an investor may depend on her

relationships with other investors. For example, if some clients decide to invest heavily in a particular

product, the advisor�s incentive to induce her other clients to invest in that product may soften or

strengthen depending on whether some sale targets have been reached or not.

We analyze a simple model of non-exclusive �nancial advice in which an expert advises two identical

investors who desire to invest their money into a risky asset, but do not have enough knowledge to do

it personally. The expert has private information about the riskiness of this asset � i.e., the state of

the world. Investors cannot provide incentives to the advisor by means of money transfers. Both this

assumption and the fact that �nancial advice is non-exclusive seem particularly compelling for the case

of small investors (e.g., households). Indeed, when making their investment decisions, households are

usually advised by their banks�employees, whose services are typically non-exclusive and do not require

additional costs over and above the (�xed) fees required to open a deposit account. Accordingly, each

investor chooses and commits to an asset allocation rule (mechanism) that maps the advisor�s report

about the state of the world into a portfolio choice. We characterize the investment rules chosen by

investors in equilibrium of this common agency game and determine the conditions under which these

outcomes feature �delegated portfolio management�and when, instead, clients prefer to enforce rigid

investment rules that are unresponsive to the information reported by the advisor. The objective

is to understand how non-exclusivity in �nancial advice alters experts� incentive to induce excessive

risk-taking, the form of delegation that arises in equilibrium, and its implications for welfare.

To gain insights on the novel forces that non-exclusivity in �nancial advice brings out, we �rst

consider the benchmark in which the advisor deals with only one client � i.e., the case of exclusive
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�nancial advice. Following the earlier literature, we focus on the case in which the advisor wants her

client to overinvest in the risky asset relative to the �rst-best rule.1 In this case, the advisor has an

incentive to claim that the riskiness of this asset is lower than its actual value. The investor takes into

account this partisan bias when designing the optimal investment rule. The solution of his mechanism

design problem consists in delegating the investment decision to the advisor, but imposing a cap on

the amount the advisor can allocate to the risky asset � i.e., a partial delegation strategy. On the

one hand, by delegating to the expert his asset-allocation choice, the investor incorporates the relevant

private information of the advisor in the composition of his portfolio. On the other hand, the imposition

of a cap enables him to cope with the advisor�s bias towards an overly risky choice. The optimal cap

balances the bene�t from using the advisor�s private information and the cost stemming from the latter�s

partisan bias.

Next, we examine the case of non-exclusive �nancial advice. With a common expert, the portfolio

choice of one client may a¤ect the expert�s ideal investment choice of the other client. We �nd that

whether the advisor perceives her clients�portfolio choices as substitutes or as complements plays a

key role in the determination of the mechanisms chosen by the investors in equilibrium. Investment

choices are perceived as substitutes when the advisor�s incentive to induce a higher risk exposure by

one client weakens as the other client�s risk exposure increases. In contrast, investment choices are

perceived as complements when the advisor�s incentive to induce a higher risk exposure by one client

strengthens when the risk exposure of the other client increases too. In reality, whether portfolio choices

are perceived as substitutes or as complements by a �nancial advisor depends on her indirect utility

function, which originates both from her preference structure (e.g., risk aversion, reputational and career

concerns and so on) and the incentive scheme to which she is exposed by her employer (for example a

bank). In the baseline model, for the sake of tractability, we take this indirect utility function as given.

However, in the extensions, we show that substitutability may be driven by the expert�s reputational

and career concerns, which emerge for example when the advisor is �red by the clients if the investment

does not perform su¢ ciently well, or by the advisor�s need to hedge income risk when she is risk averse.

Instead, complementarity may result from sales incentives, granted to the bank by the provider of the

�nancial product, which are convex in the total amount of sales. Since none of these cases seems to be

more realistic than the other, both are considered in the analysis.

When the �nancial advisor perceives investors�portfolio choices as complements she has an incentive

to induce each investor to take even more risk than in the case of exclusive �nancial advice. As a result,

investors trust less the expert and delegate less � i.e., their investment choices are less responsive to

the type of asset they buy and, as long as some delegation occurs, it happens only when investors buy

very risky assets. Overall, the fact that portfolio allocations are perceived as complements hinders the

1See, e.g., Inderst and Ottaviani (2012b), Stracca (2005) and Ottaviani (2000).
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relationship between the advisor and each investor relative to the exclusivity case. In other words,

investors generate a negative externality on each other: their expected utility is higher under exclusive

�nancial advice.

In contrast, when the expert perceives investors�portfolio choices as substitutes she has an incentive

to induce each client to take less risk than in the case of exclusive �nancial advice. This mitigates

the con�ict of interests between the investors and the �nancial advisor, but only up to a certain point.

When the degree of substitutability is low, investors trust more the �nancial advisor and delegate more

by increasing the cap on the proportion of their wealth the advisor can allocate to the risky asset. In

this case, the presence of one investor generates a positive externality on the other investor. Investors

are better o¤when �nancial advice is non-exclusive than when it is exclusive. However, when the degree

of substitutability is su¢ ciently high, the direction of the misalignment of incentives changes. In this

case, the advisor has an incentive to induce investors to allocate too little wealth into the risky asset

relative to their �rst-best allocation2, thereby generating a con�ict of interest of a di¤erent sort. In

equilibrium, investors respond by changing the investment rule they propose to the �nancial advisor.

Speci�cally, they still delegate the portfolio decision to the �nancial advisor, but now impose a �oor on

the proportion of their wealth that is invested in the risky asset. Hence, with strong substitutability

delegation occurs only when investors buy low risk products. Clearly, whether investors are better o¤

than in the case of exclusive �nancial advice depends on the degree of substitutability. The higher

the substitutability, the larger the misalignment of incentives, the less investor delegate by imposing a

higher �oor and the lower the investors�expected utility.

These results are qualitatively robust to a number of extensions that include multiple dimensions

of asymmetric information between the advisor and the investors, more than two investors, and hetero-

geneity of investors. Taken together, they o¤er novel insights on the rules according to which investors

would like to regulate their relationships with �nancial experts when advice is non-exclusive. Our analy-

sis suggests that experts may not always induce excessive risk taking, and that the extent to which this

occurs hinges on the interplay between the structure of the compensation schemes to which they are

exposed, their reputational and career concerns. Moreover, by a¤ecting the optimal design of delegation

rules for money managers, this relationship impacts investors�expected utility in a non-obvious manner,

and therefore it shapes the social desirability of regulatory rules that determine sales commissions, how

experts weight their reputation and hedge income risk.

Interestingly, even if there is no direct evidence on the �correlation� between non-exclusivity, in-

vestor�s propensity to delegate, the characteristics of the products they buy and their risk exposure, the

emergence of equilibria with partial delegation, whose features do not depend exclusively on investors�

characteristics, seems consistent with the evidence collected by Foerster et al. (2014) who �nd that

2That is, the allocation that would arise in case the investor is fully informed about the state of the world.
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clients�observable characteristics jointly explain only 11% of the variation in risky share in the cross-

section of Canadian households. They argue that advisor �xed e¤ects have substantial explanatory

power and impute this evidence to the advisors�idiosyncratic �tastes�in portfolio allocation, which may

re�ect agency con�icts similar to those studied throughout our paper. This evidence should be inter-

preted with care though. Indeed, Foerster et al. (2014) do not account explicitly for the non-exclusive

dimension of �nancial advice, although by considering retail investors they are quite likely restricting

attention to deals that are non-exclusive.

The paper is structured as follows. In Section 2 we review the relevant literature and highlight

our contribution. Section 3 lays down the baseline model with symmetric investors. Section 4 studies

the exclusivity benchmark. In Section 5 we characterize equilibria with non-exclusive �nancial advice.

In Section 6 we provide the comparative statics analysis and compare the regimes with and without

exclusive advice. In Section 7, we show how the advisor�s career concerns, risk aversion and the shape of

sales�commissions may lead her to perceive her clients�portfolio choices as substitutes or as complements

and consider several extensions of the basic model. Section 8 reviews the model�s main empirical

predictions and concludes. All proofs are in the Appendix.

2. Related literature

The agency problem between investors and their money managers has been extensively studied by

the earlier literature � see, e.g., Stracca (2005) and Inderst and Ottaviani (2012b) for recent surveys

of this literature. Existing models highlight many important aspects of standard delegated portfolio

management by studying how investors should optimally design contracts (remuneration schemes) for

money managers. Following the moral-hazard tradition some of these models assume that the money

manager chooses the riskiness and/or the expected return of his client�s portfolio, and that this choice

is unobservable to the investor, who then needs to design a second-best contract that motivates the

expert to choose the right action (e.g., Adamati and P�eiderer, 1997; Stoughton, 1993; Palomino and

Prat, 2003; and Palomino and Uhlig, 2006). In the adverse selection framework, Allen (1985) and

Bhattacharya and P�eiderer (1985) are the �rst to propose models where a better informed advisor

must be solicited to reveal superior information about the rate of return and/or the riskiness of a

�nancial asset to an uninformed investor. These papers show that optimal contracts do not achieve the

�rst-best solution due to the standard trade-o¤ between e¢ ciency and information rents (see also Allen

and Gorton, 1993; and Das and Sundaram, 1998). Similar points are made in the literature studying

the link between complexity and obfuscation. For example, Carlin and Manso (2010) show that when

investors are uninformed, they may either pay excessive fees or invest in �bad assets�. Hence, providers

of �nancial products earn higher rents from investors who are unsophisticated and more uninformed.
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Our paper follows the adverse selection approach. But, in contrast with earlier models, we posit

that money transfers between investors and their advisors are not feasible. We share this approach both

with the recent bulk of work on optimal delegation pioneered by Holmstrom (1984) � see, e.g., Alonso

and Matusheck (2008), Dessein (2002), Martimort and Semenov (2006), Melumad and Shibano (1996),

for abstract delegation settings, and Morgan and Stocken (2003), among others, for an application to

stock recommendation. Our novel contribution to both these literatures is the non-exclusivity aspect.3

So far, no delegation models have accounted for this possibility with the exception of Asparouhova

et al. (2013) who also model delegated portfolio management as non-exclusive, but take a general

equilibrium approach. In their model managers compete to attract investors by o¤ering bundles of

portfolio allocations and intermediation fees, investors can buy at linear prices any combination of

portfolios they want. By looking at the general equilibrium implications of non-exclusive advice, they

o¤er a number of interesting predictions (that are then tested through an experiment) on the way

competitive money managers should behave both on the pricing and product design sides. However, in

their model there is no asymmetric information: delegated portfolio management is not an endogenous

result, but rather an assumption. In this sense, our models are complementary.

Finally, notice that in our model the investors� propensity to rely on the �nancial advisor is an

equilibrium phenomenon � i.e., investors optimally decide to delegate their portfolio choices to the

advisor balancing out the costs and bene�ts of leaving discretion to the expert. This is di¤erent from

the approach taken in Gennaioli et al. (2013) where trust is modeled as a behavioral attitude that

reduces the investors� perception of the riskiness of a given investment. In this sense, our models

complement one another. Speci�cally, while Gennaioli et al. (2013) focuses on the implications of

trust on asset allocation choices, our mechanism design approach abstracts from the issue of modeling

preferences that are trust dependent, and focuses on the implications of asymmetric information on the

investors�propensity to rely on �nancial advice.

3. The baseline model

Players and environment. Consider two identical investors (each denoted by i = 1; 2) with initial

wealth normalized to 1. There is only one risky investment opportunity (e.g., equities, funds, structured

products and so on) and the riskless asset (e.g., government bonds, pension and insurance plans, etc.).

The stochastic return of the risky asset ~r has mean � and variance �2. The riskless asset pays the

riskfree rate rf , with � > rf � 1.

Due to the lack of proper �nancial education, investors must rely on a (common) �nancial advisor to

make their investment choices. The advisor is better informed than the investors about the variance �2

3A similar approach is taken in the cheap talk literature by Farrel and Gibbons (1989) who propose a model
in which a sender deals with two receivers but there are no externalities between the receivers�actions.
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of the risky investment (the state of the world). More precisely, while the expected return � is common

knowledge, the variance �2 cannot be assessed with certainty by the investors who need to rely on the

superior knowledge of the expert. In the absence of �nancial advice, investors have only a symmetric

prior about the state of the world: they correctly believe that �2 distributes uniformly over the compact

support � � [1��; 1 + �], with � 2 (0; 1).4 This prior is common knowledge.

Preferences and con�ict of interests. Investors are risk averse with respect to wealth. Their

interim expected utility exhibits mean-variance preferences � i.e., for a given state of the world �2, the

utility of an investor i who allocates �i of his wealth to the risky asset is

u(�i; �
2) = E [�i~r + (1� �i) rf ]�



2
E [�i (~r � �)]2 = �i (�� rf ) + rf �



2
�2i�

2; (3.1)

where  > 0 measures the investor�s coe¢ cient of risk aversion. Hence, absent asymmetric information,

the investors�optimal asset allocation yields the �rst-best benchmark � i.e., the standard mean-variance

allocation

�F (�2) =
�� rf
�2

: (3.2)

At �2 = 1, the �rst-best asset allocation �F (1) can be interpreted as a measure of the risk premium

per unit of risk aversion. To simplify exposition, we will de�ne this index by � � �F (1).

By contrast, when investors do not know the state of the world �2 and do not rely on the expert,

their unconditional expected utility is

Z
�2
u(�i; �

2)
d�2

2�
= �i (�� rf ) + rf �



2
�2iE

�
�2
�
;

which is maximized at ��i = �:

The advisor�s preferences are represented by the following quadratic loss function that depends

4The idea is that non-institutional investors, such as households, with limited access to detailed information
on asset returns, are less able to quantify the risk carried by �nancial activities than their expected returns.
Palomino and Uhlig (2007), for instance, argue that mutual fund regulation does not require funds to disclose
their portfolio very often, and managers window dress around disclosure dates. Therefore, for young funds with
a short track record, estimating the return volatility may not be possible in the absence of insider information.
Moreover, if one considers private equity funds, their return volatility may be di¢ cult to estimate since their
net asset value is not very often observed. The idea is that non-institutional investors, such as households,
with limited access to detailed information on asset returns, are less able to quantify the risk carried by �nancial
activities than their expected returns. Palomino and Uhlig (2007), for instance, argue that mutual fund regulation
does not require funds to disclose their portfolio very often, and managers window dress around disclosure dates.
Therefore, for young funds with a short track record, estimating the return volatility may not be possible in the
absence of insider information. Moreover, if one considers private equity funds, their return volatility may be
di¢ cult to estimate since their net asset value is not very often observed. Alternatively, one can imagine that
unsophisticated investors �nd it harder to estimate the return volatility of an asset than to estimate its expected
return. This may be because the former estimate relies on the latter.
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symmetrically on the investors�portfolio choices � i.e.,

v
�
�; �2

�
= �1

2

X
i=1;2

�
�i � (1 + �)�F (�2)

�2 � ��1�2; (3.3)

where � � (�1; �2).5 The parameter � 2 [0; 1) in the �rst term of this equation re�ects the strength

of the con�ict of interests between the expert and each client. As argued in Ottaviani (2000), this

misalignment of preferences may be the result of (linear) commissions paid to the �nancial advisor for

selling some types of �nancial products.6

The second term, instead, captures the potential e¤ect of the decision of one investor on the common

advisor�s behavior when she interacts with other investors. In other words, it re�ects the potential

externalities that investors may cause on one another through the advisor�s preferences. The parameter

� 2 (�1; 1) measures the direction and magnitude of such externalities. Observe that @2v (�) =@�1@�2 =

��. Hence, � < 0 captures the case where the investors�portfolio choices are perceived as complements

by the advisor: she prefers investor i to allocate a larger fraction of his wealth into the risky activity

when investor j does so too. This complementarity may arise for example because providers of the

�nancial products pay commissions to the bank that reward not only the achievement of investment

targets on each single client, but that also award premia that are increasing with the size of the clientele

gathered by the bank � e.g., when funds reward the achievement of clients�targets.. In contrast, � > 0

captures the case where the investors�portfolio choices are perceived as substitutes by the advisor: she

wants investor i to allocate a lower fraction of his wealth in the risky asset when investor j �s investment

in that asset increases. This may for instance re�ect her concerns about reputational losses following

unsuitable sales.7

In Section 7.1 we show more carefully how these externalities might result from the advisor�s sales

commissions, and her reputational and career concerns. Of course, when � = 0, the advisor�s utility is

separable across clients, and there is no di¤erence between exclusive and non-exclusive �nancial advice.

Contracting. Contracts that require state contingent monetary transfers between the advisor and

her clients are not enforceable � i.e., there cannot be fees contingent on the information transmitted

by the expert to the investors (�xed fees are normalized to zero without loss of generality). Most

commonly, in fact, clients pay no direct compensation to advisors for their services. Hence, we focus

on a simple class of (bilateral) direct mechanisms such that each investor i chooses a direct mechanism

Mi � f�i(mi)gmi2�, with �i (�) : �! <, which speci�es a portfolio allocation �i(mi) for any (private)

5Similar loss functions are used in the cheap-talk literature (e.g., Crawford and Sobel, 1982).
6An analogous approach is followed in Stocken (2003).
7Gennaioli et al. (2013), for instance, argue that money mangers are particularly sensitive to their reputation.

In our model we are implicitly assuming that reputation may be crucially a¤ected by the size of an advisor�s
clientele via network e¤ects that may arise from (un-modeled) information spillovers between clients.
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report mi 2 � made by the advisor to investor i about the state of the world �2. As standard in this

literature, mechanisms are restricted to be continuous and piecewise di¤erentiable.8 The expert cannot

refuse advice to his clients: an intrinsic common agency game � i.e., a game in which the common

agent cannot refuse to deal with some of her principals.9

The use of direct mechanisms allows us to rely on intuitive and easy to characterize incentive

constraints. Yet, as we will see in Section 5.3, all the equilibrium outcomes obtained throughout the

paper can be implemented by simple indirect mechanisms that require only each investor to announce

a choice set from which the advisor can pick his preferred allocation.

Timing. The timing of the game is as follows:

� Period 0: Nature draws �2 and only the advisor observes its realization.

� Period 1: Each investor i announces a mechanism Mi to the advisor and commits to it. These

announcements are simultaneous.

� Period 2: The advisor (privately) reports mi to each investors i. Investment choices are made

according to the mechanisms chosen in Period 1.

� Period 3: Asset returns materialize.

The assumption that investors can commit to the decision rule they announce is standard in the

mechanism design literature that studies delegation in the absence of monetary incentives. Moreover, it

allows us to disentangle the e¤ects of asymmetric information on equilibrium portfolio choices from those

due to lack of commitment, and to avoid the typical selection issue of cheap talk games (e.g., Crawford

and Sobel, 1982, among others). This hypothesis is often motivated with a reputation argument: the

relationship between an investor and his �nancial advisor is usually long-lasting (due to switching

costs). In addition, in Section 5.3 we argue that our equilibrium mechanisms are robust to the threat

of renegotiation as long as appropriate disinvestment fees can be enforced.

We make the following assumption on the parameters of the model.
8It should be noted that, more generally, these mechanisms may exhibit discontinuities similar to those that

arise with the partition equilibria of signaling models a� la Crawford and Sobel (1982). However, as shown in
Martimort and Semenov (2006) in a single principal-agent relationship, continuous mechanisms are optimal when-
ever the distribution function of the agent�s type is strictly log-concave. Yet, although the uniform distribution
satis�es such requirement, in our model the analysis may be slightly more complex due to the common agency
dimension: best replies to discontinuous mechanisms may not be continuous mechanisms. Yet, using the approach
developed by Martimort and Semenov (2006) one can show that a best reply to a continuous mechanism must
be a continuous mechanism as long as the strict log-concavity requirement is met. Addressing the issue of the
existence of equilibria with discontinuous mechanisms is out of the scope of this paper.

9Investors could o¤er more complex mechanisms where their portfolio allocation depends not only on the
advisor�s report about the state of the world, but also on the mechanism o¤ered to the advisor by the other
investor. While it is realistic to consider this type of mechanisms in some contexts (see, e.g., Attar et al., 2011;
Martimort and Stole, 2002 and 2003; and Pavan and Calzolari, 2009), we believe it is less so in our environment
and do not consider them.
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Assumption 1. 1� �+ 2� > 0 and � < 1��.

This assumption simpli�es the analysis as it implies that taking short positions on any of the two

assets is never optimal � i.e., under the optimal mechanism 0 � �i � 1 for i = 1; 2. Finally, we assume

that the structure of the advisor�s preferences is common knowledge � i.e., both investors know � and

�. This means that investors are wary of the con�ict of interests with the advisor. In Section 7.4 we

discuss the case where the precise magnitude of these con�ict of interests is not known to investors.

We use Perfect Bayesian Equilibrium as the equilibrium concept.

4. The exclusivity benchmark

We begin with the analysis of the case in which the advisor provides �nancial advice to one investor only.

The analysis of this benchmark provides basic insights on the trade-o¤s that determine the equilibrium

portfolio choices in our context.

Since the advisor�s risk preferences are misaligned with those of the investor � i.e., � > 0 �

the expert has an incentive to manipulate her report about the state of the world. To prevent this

behavior, the optimal mechanism must elicit truthful information revelation. Given a mechanism � (�),

the advisor�s utility is

v(� (m) ; �2) � �1
2

�
� (m)� (1 + �)�F (�2)

�2
,

when she reports m to the investor and the state of the world is �2. Within the class of continuous

mechanisms, incentive compatibility requires10

@

@m
v(�(�2); �2) = 0 ,

�
�(�2)� (1 + �)�F (�2)

�
_�(�2) = 0. (4.1)

Essentially, the asset allocation rule announced by the investor must be such that the advisor�s utility

is maximized when she truthfully reports the state of the world.11 Condition (4.1) is satis�ed by two

interesting classes of asset allocation rules: the pooling ones, where the asset allocation is unresponsive

to the state of the world � i.e., when the derivative _�(�2) is equal to zero; and the separating ones

that mandate an asset allocation that coincides with the advisor�s ideal point � i.e.,

�AE(�
2) = (1 + �)�F (�2).

This last type of rule can be seen as delegation by the client of the investment decision to the advisor.

An optimal investment rule for the investor might also combine the two schemes, so that for some
10See, e.g., Alonso and Matusheck (2008), Martimort and Semenov (2006), and Melumad and Shibano (1991).
11Direct inspection of the incentive compatibility constraint (4.1) reveals why in our framework �xed fees are

irrelevant and can be normalized to zero without loss of generality � they have no e¤ect on the advisor�s incentive
to misreport the true state of the world.
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subsets of � it is optimal to impose a �xed allocation and for others it is optimal to let the advisor pick

her most preferred asset allocation.

Let P = [Kk=1Pk be the union of all K subsets of � in which the investor pools by choosing �k for

every �2 2 Pk. The investor�s maximization problem can be written as

max
(Pk;�k)Kk=1;K

(Z
�nP

�AE(�
2)

�
� � �

A
E(�

2)�2

2

�
d�2 +

KX
k=1

Z
Pk
�k

�
� � �k�

2

2

�
d�2

)
.

subject to K 2 Z; Pk � � and �k 2 [0; 1] for every k = 1; ::;K.12

Proposition 1. The optimal mechanism for the investor when �nancial advice is exclusive, M�
E �

f��E(m)gm2�, satis�es the following properties:

� If � < �, then the investor partially delegates the investment decision to the �nancial advisor.

Speci�cally, his investment decision is given by

��E(�
2) =

8<: ��E if �2 � x�E
�AE(�

2) if �2 > x�E

;

with x�E =
1+�
1�� (1��) 2 (1��; 1 + �) and

��E =
�

E
�
�2j�2 � x�E

� = � 1� �
1�� : (4.2)

� If � � �, then the investor totally ignores the information provided by the �nancial advisor and

invests ��E(�
2) = � for all �2 2 �.

The optimal mechanism is shaped by two contrasting forces. To induce a truthful report by the

advisor, the investor must either force a pooling allocation, or he must allow the advisor to obtain her

ideal investment choice. Both schemes depart from the investor�s �rst best allocation, and are thus

costly to him. On the one hand, an investment rule unresponsive to the state of the world � i.e.,

the pooling one � is costly to the investor because he is risk averse, and thus would like to invest an

amount of wealth into the risky asset tailored to its return volatility. On the other hand, the cost of

linking the investment strategy to the state of the world � i.e., a separating outcome � stems for

the fact that such allocation must coincide with the advisor�s ideal investment to guarantee truthful

information revelation. But, because preferences are misaligned, this carries more risk than what the

investor would like to bear.

The relative magnitude of these costs determines the structure of the optimal asset allocation.

Proposition 1 states that, when the con�ict of interest between the investor and his advisor is not
12Hereafter the symbol Z will denote the set of all integers.
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very strong (� < �), it is optimal for the investor to leave discretion to the advisor and enable her to

implement her ideal point if the volatility of the risky asset is larger than the threshold x�E . This is

because the di¤erence between the players�ideal points is less pronounced when the realized variance

�2 is large.13 Hence, the cost of delegation is relatively less severe than the cost of pooling to the

investor, who prefers a portfolio that covaries with the state of the world. By contrast, when �2 is low,

the agency con�ict is harder to be reconciled with a separating allocation: in these states of the world

the advisor�s most preferred investment into the risky asset is much larger than that of the investor.

Thus, it is optimal for the latter to force a �at rule, which as condition (4.2) shows, coincides with

the �rst-best rule when the investor only knows that �2 distributes between 1 � � and x�E . Notice,

however, that when � is large enough, the objectives of the two players diverge so much that the cost

of delegation always outperforms that of basing �nancial decisions on the prior alone. In this case, the

optimal asset allocation rule requires a fully pooling allocation � i.e., x�E = 1 +�.

Figure 1 below, provides a graphical representation of the optimal asset allocation with partial

delegation:

Figure 1: Delegation under exclusive �nancial advice.

The optimal asset allocation rule is represented by the solid line, which corresponds to the advisor�s

ideal point for all �2 larger than x�E , and features a cap for all �
2 lower than x�E .

Hence, under exclusivity, uninformed investors rely more often on �nancial advise when buying

assets whose return volatility is large. Another interesting prediction is that, compared to the �rst-best

benchmark, there is under-investment into the risky activity when its return volatility is low, and over-

investment otherwise. In addition, as expected, the pooling region expands (i.e., x�E increases) when �

becomes larger because the misalignment of preferences between the investor and the advisor becomes

more severe. The impact of the risk premium and the risk aversion coe¢ cient on the optimal portfolio

13That is, the di¤erence �AE(�
2)� �F

�
�2
�
= ��=�2 is decreasing in �2.
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allocation are as in the standard mean-variance analysis. What is perhaps less obvious is the impact

of � on the optimal portfolio allocation. Clearly, a larger intrinsic bias � increases the optimal (risky)

investment within the delegation region. But, the opposite holds true in the pooling region. In this

case, a larger � reduces the pooling allocation because it exacerbates the con�ict of interest between

the advisor and the investor. This leads the latter to adopt a more conservative investment strategy

in order to reduce his exposure to the former�s opportunistic behavior. Finally, it can be easily seen

that a larger � induces delegation in a larger set of circumstances14: less transparency or poor �nancial

literacy of investors induce more reliance on money managers. This also explains why the investment

into the risky asset in the pooling region becomes larger when uncertainty increases � i.e., ��E increases

with �.

5. Non-exclusive �nancial advice

Suppose now the advisor deals simultaneously with two identical investors. We begin by analyzing how

non-exclusivity of the �nancial advice modi�es the advisor�s incentive compatibility constraint and her

ideal investment choices.

Given mechanisms �1(�) and �2(�), the advisor�utility if he reports m1 and m2 to investors when

the true variance is �2 is given by

v(�1(m1); �2(m2); �
2) = �1

2

X
i=1;2

�
�i(mi)� (1 + �)�F (�2)

�2 � ��1(m1)�2(m2):

Using the same logic as before, the (local) incentive compatibility conditions, necessary and su¢ cient

to guarantee that the advisor truthfully reports �2 to each investor are

@

@mi
v(�1(�

2); �2(�
2); �2) = 0 ,

�
�i(�

2)� (1 + �)�F (�2) + ��j(�2)
�
_�i(�

2) = 0;

for i = 1; 2. Hence, for any given mechanism �j(�
2) chosen by investor j, an incentive compatible

mechanism for investor i is either �at � i.e., _�i(�2) = 0 � or it requires

�i(�
2) = �AE(�

2)� ��j(�2) � �Ai (�2); (5.1)

which is the advisor�s ideal point on investor i�s portfolio choice (given the choice of investor j).

Equation (5.1) highlights the key feature of the case where the expert advises more than one investor:

her ideal point on investor i is equal to the individual (or intrinsic) target �AE(�
2) net of the externality

14Indeed, the area where the investor forces a pooling allocation, which is measured by the ratio x�E�(1��)
2� =

1��
�

�
1�� , shrinks when � increases.

13



��j(�
2). Hence, other things being equal, the expert�s incentive to understate or overstate the value of

�2 depends both on the sign and the magnitude of the interaction parameter �.

Noteworthy, if _�i(�2) 6= 0 for each i = 1; 2, then it must be the case that both investors choose the

same asset allocation

�AN (�
2) =

�AE(�
2)

1 + �
, (5.2)

which is (strictly) decreasing in �2. Essentially, if both investors fully delegate their portfolio choices to

the advisor, they invest the same fraction of wealth into the risky asset. This is because the advisor�s

preferences are symmetric with respect to investment choices, and investors feature the same attitude

towards risk.

Since investors are identical we focus on symmetric equilibria in which they choose the same mech-

anismM�
N , which requires pooling in the subset P�N � � and, within this subset, allocates a share ��N

of wealth to the risky asset. The mechanismM�
N must solve the maximization problem of each investor

given that the other investor also choosesM�
N . Let Pi = [

Ki
k=1Pi;k be the union of all Ki subsets of �

in which investor i pools by choosing �i;k for every �2 2 Pi;k. Investor i�s maximization problem is

max
(Pk;i;�k;i)

Ki
k=1;Ki

(Z
(�nPi)\P�N

�Ai (�
2)

�
� � �

A
i (�

2)�2

2

�
d�2 +

+

Z
(�nPi)\(�nP�N )

�AN (�
2)

�
� � �

A
N (�

2)�2

2

�
d�2 +

KiX
k=1

Z
Pi;k

�i;k

�
� � �i;k�

2

2

�
d�2

)
:

subject to Ki 2 Z; Pk;i � � and �i;k 2 [0; 1] 8k = 1; ::;Ki.

We start the characterization of the equilibrium with the following lemma.

Lemma 1. In any symmetric equilibrium, neither the pooling region nor the delegation region of the

mechanism chosen by the investors are strictly contained in �.

Lemma 1 implies that, once symmetry is imposed, only two types of equilibria with partial delegation

may arise: one in which investors pool for low values of �2, and delegate otherwise (exactly as in the

exclusivity benchmark), the other in which investors delegate for low values of �2, and pool otherwise.

Of course, there can also exist symmetric equilibria with full pooling or with full delegation, which are

however less interesting for our purposes.

5.1. Portfolio choices perceived as complements by the �nancial advisor

Portfolio choices are perceived as complements by the advisor when � < 0. In this case, an increase

in �j expands the advisor�s ideal portfolio choice of investor i: the more risk one investor takes, the

higher the incentive of the advisor to induce the other investor to also take more risk. Because of

14



this e¤ect, the common advisor has an incentive to induce each investor to take even more risk than

in the case of exclusive advice. Observe that �Ai (�
2) � �AE(�

2) and �AN (�
2) > �AE(�

2) when � < 0 .

Hence, the incentives of the �nancial advisor and those of her clients are even less aligned than under

exclusivity. Moreover, the misalignment of incentives exacerbates as � decreases. This suggests that

under non-exclusive advice investors should trust less the advisor and be less keen to delegate.

Proposition 2. Suppose that � < 0. The game with non-exclusive �nancial advice has a unique

symmetric equilibrium such that:

� If � > (� � �)= (1 + �), investors partially delegate their investment decisions to the �nancial

advisor and each invests

��N (�
2) =

8<: ��N if �2 � x�N
�AN (�

2) if �2 > x�N

;

with x�N � 1+�
1��+2� (1��) 2 (1��; 1 + �) and �

�
N =

�
1��

1��+2�
1+� .

� If � � (���)= (1 + �), investors ignore the advisor�s reports and choose ��N (�2) = � for all �2.

Observe that the conditions � < 0 and � > (���)= (1 + �) cannot be satis�ed simultaneously when

� > �. Hence, as in the case of exclusive �nancial advice, in this region of parameters, investors never

delegate the investment decision to the advisor. The reason is that, the con�ict of interest that stems

from the advisor�s intrinsic bias towards an excessive risk exposure is already so strong that delegation

is never optimal: full pooling emerges at equilibrium.

However, when � < � delegation emerges in equilibrium as long as the complementarity of portfolio

choices is not too strong (i.e., if � is not too low). Nevertheless, it is a more limited form of delegation

than that in the case of exclusive advice, since x�N > x�E . Indeed, as argued above, in this region

of parameters the expert�s ideal point on each investor is larger with non-exclusive advice than with

exclusive advice. Hence, the common advisor has an additional reason to understate the true variance,

which makes the investors less keen to trust her and to delegate.

As expected, investors delegate less as � decreases. To see why, observe that the condition � >

(���)= (1 + �) is less likely to be satis�ed for lower values of �, and that the threshold x�N decreases

with �. In words, a lower � makes the advisor more willing to induce excessive risk taking by both

investors, which exacerbates the con�ict of interest between them and calls for less delegation.

Finally, as in the exclusivity benchmark, delegation becomes more likely as � increases. A larger

�, which re�ects more uncertainty about the state of the world, ampli�es the informative advantage of

the advisor and thus obliges the investor to rely more often on her.15

15Indeed, the ratio x�N�(1��)
2� = 1��

�
���

1��+2� is decreasing in � also in this case.
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5.2. Portfolio choices perceived as substitutes by the �nancial advisor

Portfolio choices are perceived as substitutes by the �nancial advisor when � > 0. In this region of

parameters, an increase in �j reduces the advisor�s ideal portfolio choice of investor i: the more risk

one investor takes, the lower the incentive of the advisor to induce the other investor to take more risk.

As a consequence, the common advisor has an incentive to induce each investor to take less risk than

in the case of exclusive �nancial advice. Observe that �Ai (�
2) � �AE(�

2) and �AN (�
2) < �AE(�

2) when

� > 0. Hence, in this case, non-exclusivity of �nancial advice mitigates the con�ict of interest between

the advisor and investors. This suggest that investors should trust more the advisor and delegate more.

The following proposition shows that this is true, but only up to a point. If � is too high, the advisor

may actually prefer that investors invest too little in the risky asset generating a con�ict of interest of

a di¤erent sort.

Proposition 3. Suppose that � > 0. The game with non-exclusive �nancial advice has a unique

symmetric equilibrium. The mechanism chosen by investors in that equilibrium has the following

properties:

� If (���)= (1 + �) < � � �, investors partially delegate their investment decisions to the �nancial

advisor and each invests

��N (�
2) =

8<: ��N if �2 � x�N
�AN (�

2) if �2 > x�N

;

with x�N � 1+�
1��+2� (1��) 2 (1��; 1 + �) and �

�
N =

�
1��

1��+2�
1+� .

� If � < � < (� + �)=(1 � �) investors also partially delegate their investment decisions to the

�nancial advisor, but each invests

��N (�
2) =

8<: �AN (�
2) if �2 � x�N

��N if �2 > x�N

;

with x�N =
1+�

1��+2� (1 + �) 2 (1��; 1 + �) and �
�
N =

�
1+�

1��+2�
1+� .

� If � � (� ��)= (1 + �) or � � (� + �)=(1 ��) then investors ignore the advisor�s reports and

choose ��N (�
2) = � for all �2.

Consider �rst the case � < � � i.e., the advisor perceives the portfolio allocation of her clients as

weak substitutes. As expected, delegation is more likely to occur than under exclusivity.16 Moreover,

investors delegate their portfolio allocation decisions more as � increases. Indeed, as � increases, either

16Under exclusive �nancial advice delegation is optimal only if � < �, while here it occurs in equilibrium if
(���)= (1 + �) < �.
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delegation becomes more likely to occur in equilibrium or when it occurs it is of less constrained form

(x�N decreases with �). As hinted above, this is because a larger � makes the advisor less willing to

induce excessive risk taking by both investors, which mitigates the con�ict of interest between them

and calls for more delegation. Clearly, if more discretion is left to the advisor as a result of a lower

con�ict of interest, each client is also more eager to invest more into the risky activity because there is

less fear of opportunistic behavior by the advisor.

For � = � the unique equilibrium of the game with non-exclusive advice trivially yields the �rst-best

outcome (full delegation). Essentially, in this cutting edge case, the negative externality between the

portfolio choices stemming from non-exclusive advice exactly compensates the advisor�s incentive to

induce excessive risk taking, which stems from her intrinsic bias towards an excessive risk exposure.

Consider now the case where � > � � i.e., the advisor perceives the portfolio allocation of his

clients as strong substitutes. If � is not too large, partial delegation may emerge again in equilibrium.

However, it is a di¤erent form of delegation. Observe that, in this case, the investor sets a minimum on

the fraction of his wealth invested into the risky asset. This contrasts with the form of delegation when

portfolio choices are weak substitutes, where investors cap the amount invested into the risky asset. The

reason is that, with strong substitutability between investment choices, the ideal point of the advisor

on each client falls below the �rst-best level. Hence, the advisor has an incentive to report a variance

larger than the true one, so as to induce both clients to take less risk than what they would like to bear.

To prevent this type of behavior, in a symmetric equilibrium, it is optimal for both investors to impose

a �oor on the investment into the risky activity so as to discourage the advisor from over-reporting risk.

This leads to a novel type of equilibrium where both investors leave discretion to the advisor when the

return volatility of the risky asset is low, and pool when it is su¢ ciently large.

A graphical illustration of this equilibrium with partial delegation is o¤ered in Figure 2 below:

Figure 2: Delegation under non-exclusive �nancial advice with strong substitutes.
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The equilibrium asset allocation rule is represented by the solid line, which corresponds to the

advisor�s ideal point for all �2 lower than x�N , and features a �oor for all �
2 larger than x�N .

As in the exclusivity benchmark and the case where portfolio choices are complements, delegation

becomes more likely as � increases. However, in contrast to the case where portfolio choices are

complements or weak substitutes, when they are strong substitutes the amount of wealth invested into

the risky asset within the pooling region ��N is decreasing in �: a larger uncertainty about the state

of the world makes investors less willing to risk.

5.3. Delegated portfolio management and commitment

Up to this point, we have characterized the equilibrium outcomes of the game by using direct mecha-

nisms. But, are there simpler indirect mechanisms that sustain the portfolio allocations characterized

throughout the analysis? Are these indirect mechanisms consistent with real life practices?

It turns out that these indirect mechanisms take an extremely simple form: they require investors

to fully delegate their portfolio choices to the advisor, by letting she pick any allocation within a given

(compact) set.

Corollary 1. The indirect mechanisms that implement the equilibrium investment choices character-

ized in Propositions 1, 2 and 3 simply require investors to fully delegate their investment choices to the

advisor and bound her choice of risky investment within a given compact set.

Hence, investors do not need to play the communication game analyzed above but, to implement

the same equilibrium outcome, they can simply specify the range of investment choices that they are

willing to accept, and leave to the advisor full control over the actual portfolio composition: an extremely

simple form of delegated portfolio management. Of course, this delegation strategy implicitly assumes

that investors commit to accept the investment decision of the �nancial advisor � i.e., ex post, they

commit not to change the portfolio allocation that the advisor has chosen in their behalf. This is

the materialization in the context of the application of this indirect mechanism of our hypothesis that

investors can commit to the mechanism they use when interacting with the �nancial advisor.

Interestingly, the existence of disinvestment costs, which reduces investors�incentives to alter invest-

ment choices once they have been done, can naturally generate this commitment. Hence, the investor�s

ability to commit to the mechanism is automatically ensured whenever disinvestment costs are su¢ -

ciently large. One important source of disinvestment costs are disinvestment fees. This means that a

simple way to solve the commitment problem is to impose su¢ ciently large disinvestment fees. These

fees, which are not paid on the equilibrium path, prevent investors from divesting part of the money

allocated by the advisor into a given asset and allocate it into the other asset whenever they manage to

infer the state of the world from the advisor�s choice. As a result, our equilibrium analysis remains valid
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even under the lack of formal commitment, provided that delegation schemes require disinvestment fees.

Actually, these fees, which a priori seem detrimental to investors because they reduce the ability to

adjust investment decisions, are welfare enhancing for investors: whenever they are enforceable, dis-

investment fees work as a threat that helps eliminate the typical utility loss coming from the lack of

commitment.17

6. Investors�expected utility and investment in the risky asset

Do investors prefer to be in an exclusive relationship with their �nancial advisors? The answer to

this question depends on the relative magnitude of the advisor�s bias with and without exclusivity.

Intuitively, investors are better o¤ dealing with an exclusive advisor (rather than with an common

advisor) if and only if common agency exacerbates the con�ict of interests between the investor and

the advisor. Formally, this con�ict of interest can be measured by the distance between the ideal point

of the advisor and the �rst best allocation � i.e.,

���AE(�2)� �F (�2)�� < ���AN (�2)� �F (�2)�� , 2�� � (1� �) < 0:

Hence, we can state the following.

Proposition 4. Investors� expected utility is higher with exclusive �nancial advice than with non-

exclusive �nancial advice when � < 0 or � � 2�
1�� > 0. Moreover, the investors�expected utility under

non-exclusive �nancial advice increases with � when � < �, and decreases with � when � > �.

When investment choices are perceived as complements by the advisor, clients exert a negative

externality one on the other: with non-exclusive advice, the expert has an extra reason to understate

the state of the world and induce excessive risk taking. As a result, the investors�(ex-ante) utility is

higher when they deal with an exclusive advisor. Di¤erently, when investment choices are perceived as

substitutes by the advisor, clients might exert a positive externality on each other depending on how

strong this substitutability is. More precisely, for moderate substitutability � i.e., 0 < � � 2�=(1� �)

� the advisor�s global incentive to induce excessive risk taking is mitigated under non-exclusive advice

via the externality channel: investors generate a positive externality on each other and thus prefer to

deal with a common advisor rather than being in an exclusive relationship with her. By contrast, with

strong substitutability � i.e., � > 2�=(1��) � the common advisor induces too much under-investment

into the risky activity. As a result, investors exert again a negative externality on each other and thus

prefer to be in an exclusive relationship with her.

17On the issue of commitment versus cheap talk see Kolotilin et al. (2013) among others.
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Another natural question that emerges from our analysis is whether exclusive �nancial advice leads

investors to invest more (on average) in the risky asset. In order to provide clear cut implications, we

will focus on the impact of investors�uncertainty about the return volatility of their investment (as

measured by changes in the parameter �) on the expected investment into the risk activity. To this

purpose, let

�̂�N �
Z 1+�

1��
��N (�

2)
d�2

2�
;

denote the average investment with non-exclusivity, and

�̂�E �
Z 1+�

1��
��E
�
�2
� d�2
2�

;

the average investment in the exclusivity benchmark:

Proposition 5. Suppose that � � 0, then �̂�N � �̂�E if, and only if, � is large enough. Suppose that

� > 0, then �̂�N � �̂�E if and only if � is not too large.

This result shows that (ceteris paribus) the impact of non-exclusive advice on the (average) in-

vestment into the risky activity depends on the investors�uncertainty about the state of nature. The

economic intuition is as follows. Consider �rst the case of complements (� � 0). In this region of pa-

rameters the advisor�s ideal point on each investor is larger with non-exclusivity than with exclusivity

(see equation 5.1). This means that (ceteris paribus) when investors delegate, they take more risk when

dealing with a common advisor than when dealing with an exclusive advisor, and the opposite holds

when they pool. Recall that in both contractual regimes, as � increases there is more reliance on the

advisor. Hence, for � large enough, investors dealing with a common advisor invest more (resp. less)

into the risky asset because they are more (resp. less) likely to delegate.

Next, consider the case of substitutes (� > 0). In this region of parameters the advisor�s ideal point

on each investor is lower with non-exclusivity than with exclusivity (see equation 5.1). This means that

(ceteris paribus) when investors delegate, they take less risk when dealing with a common advisor than

when dealing with an exclusive advisor. Hence, for � large enough investors dealing with a common

advisor invest less (resp. more) into the risky asset because they are more (resp. less) likely to delegate.

7. Extensions and robustness

In this section we develop a few natural extensions of the baseline model and perform some robustness

checks.
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7.1. Interpretation of the expert�s preferences

The type of externality investors impose on one another has been treated, so far, as an exogenous

feature of the model. In this section we show how the types of externality considered in the baseline

analysis may result from the advisor�s career concerns, the structure of the sales commissions paid by

the provider of the �nancial product and the investors�ex post decisions to �re the advisor. In other

words, we show how these ingredients (un-modeled so far) may originate an interaction between the

clients� investment choices in the advisor�s utility function. Clearly, while in equation (3.3) we have

assumed, for tractability, that this interaction is linear, in reality it can be more complex (i.e., non-

linear), so that the forces that drive complementarity and substitutability may be simultaneously at

work. To simplify exposition, here we will consider each case in isolation.

Complementarity. A simple way to generate complementarity between the investors�portfolio choices

in the expert�s objective function is to assume that she is exposed to sales commissions that are convex

in the volume of sales. The idea that sales incentives create an agency con�ict, which harms investors,

is not new in the literature. For example, Ottaviani (2000) shows that the intrinsic bias � can be

interpreted as the result of linear commission fees. However, recent anecdotal evidence o¤ered by

two reports, conducted respectively by the Financial Services Authority (FSA) and by Consumers

International, highlights several instances in which �convex� fees can signi�cantly increase the risk of

misselling of �nancial products.18 The practices described in these reports include, among others:

� Accelerators, stepped payments and thresholds: Once advisors achieve a certain �threshold� (a

minimum level of sales), they are given �higher rates of incentives�on each additional sale.

� Disproportionate rewards for marginal sales: Reaching a certain target or a goal that triggers an

increase in earnings much higher than the normal rate at which incentives accrue. An example is

a �retrospective accelerator�where passing a target increases the level of incentive earned for all

sales over a period, rather than just those above the target.

To illustrate how a convex commission scheme may lead an advisor to perceive her clients�portfolio

choices as complements, let C(�1 + �2) denote the commission scheme as a function of the total sales

�1+�2, with C (�) being twice continuously di¤erentiable, C 0(�) � 0, C 00(�) � 0 and C(0) = C 0(0) = 0.19

Suppose, just for simplicity, that these commissions are entirely passed through by the bank to the (risk-

neutral) advisor. Finally, following Ottaviani (2000), suppose the expert�s expected utility is equal to

18These reports are available at:
https://www.fca.org.uk/static/fca/documents/�nalised-guidance/fsa-fg13-01.pdf
http://www.consumersinternational.org/media/1529404/sales-incentive-report_riskybusiness_�nal2_151014.pdf
19The assumption that C (�) is a twice continuously di¤erentiable function is just a convenient approximation.
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the sum of her clients�expected utility plus the commissions. In this case, the expert�s expected utility

is given by

v
�
�; �2

�
=
X
i=1;2

h
�i (�� rf ) + rf �



2
�2i�

2
i
+ C(�1 + �2).

Under a standard concavity requirement20, the advisor�s ideal level of investment in the risky asset by

investor i (given the investment level �j by investor j), in an internal solution, solves the �rst-order

condition

�� rf � �i�2 + C 0(�i + �j) = 0;

which implies that �i and �j are strategic complements � i.e., using the Implicit Function Theorem

@�i
@�j

=
C 00(�i + �j)

j�2 � C 00(�i + �j)j
> 0: (7.1)

Hence, the advisor prefers an investor to allocate a larger fraction of his wealth into the risky activity

when the other investor does so too. This complementarity becomes stronger when the compensation

scheme becomes relatively more convex � i.e., when (other things being equal) the functionC 00 (�)

increases.

Substitutability. Explaining substitutability is less straightforward. One obvious way to do it, which

is immediately suggested by (7.1), would be to assume that sales commissions are concave rather than

convex � i.e., that C 00 (�) < 0. However, while convexity of these compensation schemes is plausible as

argued above, concavity seems harder to justify, unless binding regulatory constraints impose a cap on

these payments, which tends to make them concave.21 Yet, the following are two situations in which

substitutability is likely to emerge in the advisor�s utility function.

Advisor with career concerns. Suppose that, in addition to sales incentives (which are assumed linear

for simplicity), the advisor�s �wealth�w depends on the performance of her portfolio, perhaps because

her career advances depend on performance � i.e.,

w(~r;�) = (~r � rf )
X
i=1;2

�i| {z }
Career concerns

+ �
X
i=1;2

�i| {z }
Sales incentives

: (7.2)

Suppose also the advisor is risk averse with a mean-variance expected utility, whose risk aversion

20That is, the advisor�s expected utility is concave along each dimensions �i, which in our example requires
C 00 (�) not too positive.
21Actually, the reports discussed above advocate in favour of such regulations in order to reduce the risk of

misselling of �nancial products.
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coe¢ cient is �. Using condition (7.2), her expected utility in this case can be written as

v(�; �2) = (�� rf + �)
X
i=1;2

�i�
�

2

24X
i=1;2

�i

352 E [~r � �]2 = X
i=1;2

h
(�� rf + �)�i �

�

2
�2�2i

i
� ��1�2�

2| {z }
Interaction term

:

Hence, for given �2, substitutability is captured by the advisor�s risk aversion coe¢ cient �. In fact, in

order to edge the income risk, the expert tends to be more prudent when giving advice to one client if

she has induced the other client to take enough risk.

Advisor who faces �ring costs. Consider now a situation in which, once the return of the risky

asset is realized, investors may decide to change advisor if they perceive that the investment has not

performed su¢ ciently well. More formally, suppose investor i ��res�the advisor if, and only if,

�i (~r � rf ) � ~zi,

where ~zi is a random variable (i.i.d. across investors and independent of the stochastic return ~r)

distributed according to a continuous c.d.f. H (zi) with associated p.d.f. h (zi). The variable ~zi can be

interpreted as investor i�s unanticipated �irritational emotions�� i.e., all those factors, exogenous to

the relationship between the investor and the advisor, that may induce the former to �re the latter.22

The larger the value of ~zi the more likely is that the advisor will be �red by investor i. A similar �idea�

is developed in Kaniel and Kondor (2013), who also discuss anecdotal evidence suggesting that the

capital at the disposal of top traders at investment banks and hedge funds is positively correlated with

their past performance. Firing decisions are, in fact, an extreme form of �irrational behavior�that may

induce investors to cut down the amount invested in a risky activity after a bad performance.

Hence, for any risky investment �i, the probability that investor i �res the advisor conditional on a

given return ~r is

1� Pr [~zi � �i (~r � rf ) j~r] = 1�H (�i (~r � rf )) :

To make our point in the simplest possible way, we assume (without loss of insights) that the

advisor�s (anticipated) cost of being �red is positive and equal to � only when both clients quit and

22Extensive evidence from psychology and empirical �nance suggests that people place greater weight on in-
formation gained through personal experience. First described by Tversky and Kahneman (1974) as availability
bias, this idea has gained considerable support in recent empirical literature. For example, Malmendier and Nagel
(2011) show that the predictions by investors who have experienced low stock market returns throughout their
lives are more cautious.
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zero otherwise.23 ;24 Conditional on ~r, this happens with probability

[1�H (�1 (~r � rf ))]� [1�H (�2 (~r � rf ))] :

The expected (unconditional) cost for the advisor of being �red is

�

Z
~r
[1�H (�1 (~r � rf ))]� [1�H (�2 (~r � rf ))] dG (~r) ;

where G (:) is the c.d.f. of ~r. Assuming, as before, that the expert cares about the sum of the clients�

expected utility and the (linear) sales commissions, her unconditional expected utility net of the �ring

cost is given by

v
�
�; �2

�
=

2X
i=1

h
rf + �i (�� rf + �)�



2
�2i�

2
i
� �

Z
~r

Q
i=1;2

[1�H (�i (~r � rf ))] dG (~r) .

Maximizing v (�) with respect to �i yields, in the case of an internal solution, the �rst-order condition

�� rf + � � �i�2 + �
Z
~r
(~r � rf )h (�i (~r � rf )) [1�H (�j (~r � rf ))] dG (~r) = 0;

which, under a standard concavity requirement25, implies that �i and �j are substitutable � i.e., using

the Implicit Function Theorem

@�i
@�j

= �
�
R
~r (~r � rf )

2 h (�i (~r � rf ))h (�j (~r � rf )) dG (~r)
j�2 � �

R
~r (~r � rf )

2 h0 (�i (~r � rf )) [1�H (�j (~r � rf ))] dG (~r) j
< 0:

Substitutability here results from the need of the advisor to hedge the risk of being �red by both

clients. In fact, the higher is �, the stronger the substitutability between �i and �j (other things being

equal). Noteworthy, the parameter � can be interpreted as a proxy of the cost of reputation that the

advisor bears when both her clients quit. A higher � may re�ect, for instance, a higher distance from

retirement � i.e., older advisors should care less about their reputation. In this perspective, our analysis

suggests that older advisors, whose � should be relatively low, should induce (other things being equal)

their clients to take excessive risk in order to cash commission fees. This prediction is consistent with

the evidence provided by Foerster et al. (2014), who �nd that older advisors are more willing to give

their clients riskier products because, being close to or over the retirement age, they do not need to be

23The advisor may anticipate the investor�s �ring behavior due to her past experience or insider knowledge of
the market.
24When the advisor bears a reputational cost even when only one client �res her, the result of the analysis

does not change qualitatively provided that the cost of loosing both clients is su¢ ciently larger than the cost of
loosing only one.
25That is, the advisor�s expected utility is concave along each dimension �i, which in our example requires

h0 (�) not too positive.
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as concerned about any detrimental e¤ect that this behavior might have on their reputation. On the

contrary, younger advisors seem to hold a more prudent behavior.

7.2. Multiple clients

In this section we show that the structure of the equilibrium investment rules does not change (qualita-

tively) when, instead of two clients, the advisor has N > 2 clients. Clearly, regardless of the number of

clients, whether the advisor perceives their investment choices as complements or as substitutes is still

key to determine the equilibrium of the game. Hence, the basic e¤ects of non-exclusive �nancial advice

and the structure of the investments rule obtained in the baseline model extend, qualitatively, to the

case where the advisor serves several clients. The interesting aspect to address here is, therefore, how

the misalignment of preferences between the expert and each investor varies when the number of her

clients increases. In what follows we show that, at least in some cases, this misalignment becomes more

pronounced as the number of clients increases, which (as in the analysis developed above) induces less

delegation in equilibrium.

Before detailing the formal arguments, there is one important consideration the reader should be

aware of. Speci�cally, there are several arbitrary ways to introduce multiple investors into the loss

function (3.3), each delivering potentially di¤erent predictions. As explained before, this is because the

loss-function in (3.3) is just a simplifying and quite �exible analytical tool, which allows us to capture

complementarity and substitutability in a uni�ed framework. Hence, to avoid the ambiguity of making

claims based on a reduced form approach, we will study the impact of the number of investors within

the context of the examples developed in Section 7.1.

Consider �rst the case of complementarity. Suppose (just for simplicity) that the compensation

scheme C (�) is quadratic � i.e.,

C (�) = �

NX
i=1

�i| {z }
Linear component

+ �

"
NX
i=1

�i

#2
| {z }

Convex component

;

where N is the number of clients the advisor serves. Following the approach used in the previous

sections, we obtain that the advisor�s (symmetric) ideal point is

�AN (�
2) =

�� rf + �
�2 � 2N� ;

which is increasing in N . In fact, because investment choices are complements, a larger number of

clients would make the advisor even more willing to induce excessive risk in order to exploit convexity

of her compensation scheme � i.e., it would exacerbate the con�ict of interest between the advisor and
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her clients, leading to even less delegation in a symmetric equilibrium.

Consider now the case of substitutability. For brevity, we focus only on the more tractable case of

career concerns. With N clients the advisor�s future wealth is

w(�) = (~r � rf )
NX
i=1

�i:

Hence, her (symmetric) ideal point is

�AN
�
�2
�
=
�� rf
�N�2

;

which is decreasing in N . This implies that, even with substitutability, everything else equal, a larger

pool of clients exacerbates the con�ict of interest between the advisor and her clients, inducing the

advisor to behave more prudently than in the baseline model.

To conclude, in both cases, as the number of clients increases, the con�ict of interest between the

advisor and her clients becomes more pronounced. Hence, in equilibrium, investors delegate less, which

means that the pooling region expands. Of course, this conclusion should be interpreted with care.

The examples studied above highlight only two of many alternative ways in which the investors�choices

may interact in the advisor�s utility function. In practice, other forces may be simultaneously at work,

and encompassing all in a tractable model may be a very complex task, as they may work in opposite

directions. Hence, the assessment of the impact of N on the con�ict of interest between investors and

their common advisor seems more of an empirical matter, which surprisingly has not been studied yet.

7.3. Heterogeneous investors

In this section we allow investors to di¤er in the information they own and in their degree of risk

aversion. For comparison purposes, we will return to the reduced form approach of Section 3.

Investors with di¤erent information about �2. Suppose that investors have di¤erent information

about �2, although they feature the same risk aversion coe¢ cient. For simplicity, assume that investor

1 is perfectly informed about the realization of the state of the world and thus chooses the �rst best

allocation, whereas investor 2 is uncertain about the realization of �2 and (as before) has a uniform

prior distributed over the support �. We could think of investor 1 as being a very sophisticated investor.

A higher (resp. lower) � can be interpreted as a larger (resp. smaller) heterogeneity between investors.

Since investor 1 is perfectly informed about the state of the world, only investor 2 has to elicit

truthful information revelation from the advisor. Incentive compatibility requires �2(�2) is either �at

or if it is equal to the advisor�s ideal point

�A2 (�
2) = (1 + �� �)�F (�2):
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Observe that the di¤erence between the advisor�s ideal point and the investor�s ideal point depends

only on the sign of �� � and that

�A2 (�
2)� �F (�2) = (�� �)�F (�2) � 0 , � � �. (7.3)

Condition (7.3) suggests that the forces at play in this simple asymmetric environment are similar

to those described in the case of symmetric investors. Speci�cally, when the advisor perceives the

investment choices of her clients as complements (� � 0) or as weak substitutes (0 < � < �), she has

an incentive to induce the uninformed investor to take excessive risk. Hence, the portion of wealth that

investor 2 allocates to the risky activity needs to be capped. By contrast, when investment choices are

perceived as strong substitutes (� < �), the advisor has an incentive to induce the uninformed client

to underinvest into the risky asset, which in turn requires the portion of wealth allocated to the risky

activity to be �oored. Clearly, for � = � the �rst-best allocation is implemented.

Relative to the case where investors are symmetric, the con�ict of interest between the advisor

and his uninformed client is ampli�ed: the advisor cannot manipulate the choice of the fully informed

investor 1, so the cost of truthful information revelation has to be paid only by the uninformed investor

2. This suggests that less informed investors are those who need to distort more their �nancial choices

when dealing with a common advisor and are those who bene�t more from exclusive �nancial advice.

Investors with di¤erent risk attitudes. Consider now investors that di¤er in the degree of risk

aversion, but have the same information. For simplicity, consider the case where investor 1 is risk

neutral, so that his wealth is entirely invested into the risky asset regardless of the advisor�s report m1,

while investor 2�s risk averse coe¢ cient is  > 0. Hence, a higher  (resp. lower) captures a larger (resp.

smaller) asymmetry between the investors.

Since investor 1 is risk neutral, only investor 2 has to elicit a truthful report from the advisor. Using

the same techniques developed in Section 5, it is easy to verify that incentive compatibility requires

that �2(�2) is either unresponsive to �2 or if it is equal to the advisor�s ideal point

�A2 (�
2) = (1 + �)�F (�2)� �:

In contrast to the results stated in the previous sections, with di¤erent attitudes towards risk new

interesting outcomes may arise. To see why, it is useful to compare the advisor�s ideal point with the

�rst-best rule � i.e.,

�A2 (�
2) = (1 + �)�F (�2)� � � �F (�2) , �

�2
� �

�
: (7.4)
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Hence, for � � 0 or � > 0 but not too large, the advisor�s ideal point always exceeds the �rst

best choice. This suggests that when the advisor perceives the clients�investment allocation choices as

complements � i.e., � � 0 � or as weak substitutes � i.e., � < ��F (�2) for every �2 � investor 2�s

optimal delegation strategy still requires to cap the portion of wealth invested into the risk asset. When,

instead, asset allocations are perceived as very strong substitutes by the advisor � i.e., � > ��F (�2)

for every �2 � the advisor�s ideal point falls short of the �rst-best choice. In this case, investor 2�s

optimal delegation strategy requires a �oor on the amount invested into the risky asset. However, with

heterogenous attitude towards risk, a novel interesting outcome emerges. This case occurs when there

exists a �̂2 2 (1��; 1 + �) such that ��F (�̂2) = � � i.e.,

1 + � > �̂2 � ��

�
> 1��.

At �2 = �̂2 the investor�s ideal point coincides with the �rst best. Hence, �A2 (�
2) > �F (�2) for values

of �2 lower than �̂2: in this region of parameters, investor 2 would like to cap the portion of wealth

that he invests into the risky asset. By contrast, �A2 (�
2) < �F (�2) for values of �2 that exceed �̂2: in

this region of parameters investor 2�s optimal investment choice is to impose a �oor on the amount of

wealth that he can invest into the risky asset.

While the �rst two types of behavior have already been discussed in the case of symmetric investors

and heterogenous beliefs, the third one is novel and hinges only on the hypothesis that investors are

heterogeneous with respect to their risk attitude. In this case, investor 2�s optimal delegation strategy

requires both a cap and a �oor. Since � is decreasing in , this suggests that an optimal delegation

strategy requires both a cap and a �oor only for people with moderate risk aversion, who tend to

rely less often on �nancial advice when buying assets with extremely low or excessively large return

volatility. The reason is that very risk averse people tend to impose only a cap on the amount of wealth

they are willing to invest into the risky asset because their ideal investment choice entails most likely

less risk than what the advisor would like to induce; by contrast, less risk averse people tend to impose

only a �oor on the amount of wealth they are willing to invest into the risky asset because their ideal

investment choice entails most likely more risk than what the advisor would like to induce. Hence,

moderate risk averse people may induce both a cap and a �oor.26

26Of course, to simplify our life, in this section we have taken the extreme case in which one investor is
completely risk neutral while the other is risk-averse. What would happen if they were both risk averse? Of
course, if there is a negligible di¤erence in their attitude towards risk, all the qualitative results found in the
baseline model continue to hold here too by continuity. Otherwise, one should expected the following. With
complements or weak substitutes, the con�ict of interest between the advisor and his clients is largest for the
more risk averse investor, who is the one that is likely to impose a tighter cap on his equilibrium investment
decision. By contrast, with strong substitute, the con�ict of interest is stronger with the less risk averse investor,
who is the one that is likely to impose a tighter �oor in equilibrium.
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7.4. Multidimensional asymmetric information: basic insights

The analysis developed so far hinges on the assumption that investors know � and �. Yet, while it seems

reasonable to assume that clients know the advisor�s intrinsic bias � (a standard assumption in the cheap

talk literature), which in many models re�ects the linear component of the advisor�s commission fees

(see, e.g., Ottaviani, 2000), they may not know how the advice they receive is a¤ected by the presence

of the other client � i.e., each client may have only imperfect information on � or, alternatively, be

uncertain about the presence of the other client.27 Hence, a natural question is whether our results

remain qualitatively valid when the advisor is better informed than the investors not only on �2 but

also on � and, therefore, is asked to report both.

In this section we partially address this issue by studying the basic properties of the equilibrium

mechanisms with two dimensions of asymmetric information.28 Suppose investors believe � is distributed

according to some continuously di¤erentiable c.d.f. in the support �. Each investor i chooses a direct

mechanismMi � f�i(mi; ti)gmi2�;ti2�, with �i (�) : ���! [0; 1], which speci�es a portfolio allocation

�i(mi; ti) for any (private) pair of reports mi 2 � and ti 2 �, made by the advisor to investor i about

the state of nature (�2; �). As before, we focus on continuous and piecewise di¤erentiable mechanisms.

Given mechanisms �1(�) and �2(�), the advisor�utility is

v(�1(m1; t1); �2(m2; t2); �
2; �) = �1

2

X
i=1;2

�
�i(mi; ti)� (1 + �)�F (�2)

�2 � ��1(m1; t1)�2(m2; t2);

if she reports (m1; t1) and (m2; t2) when the true state of nature is
�
�2; �

�
.

Using the same logic as before, the (local) incentive compatibility conditions, necessary to guarantee

truthful information revelation are

@

@mi
v(�1(�

2; �); �2(�
2; �); �2; �) = 0 ,

�
�i(�

2; �)� (1 + �)�F (�2) + ��j(�2; �)
� @�i(�2; �)

@mi
= 0;

@

@ti
v(�1(�

2; �); �2(�
2; �); �2; �) = 0 ,

�
�i(�

2; �)� (1 + �)�F (�2) + ��j(�2; �)
� @�i(�2; �)

@ti
= 0;

for every i = 1; 2. Observe that the �rst terms of these conditions are identical, which implies that an

incentive compatible mechanism is either �at along both dimensions of asymmetric information � i.e.,

@�i(�
2; �)=@mi = @�i(�

2; �)=@ti = 0 � or it requires

�i(�
2; �) = (1 + �)�F (�2)� ��j(�2; �):

27As the reader will realize in what follows, the absence of monetary transfers makes the multidimensional
screening problem quite easy to account also for uncertainty about �, while still preserving the main qualitatively
features of the baseline results.
28For brevity, we do not address here the technical issues related to the existence of equilibrium. The objective

of this section is solely to show that even when � is unknown, the investment choices feature properties that are
qualitatively similar to those analyzed in the main model.
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Imposing symmetry, this condition yields again

�AN (�
2; �) =

(1 + �)�F (�2)

1 + �
:

As a result, within the type space � � � the equilibrium outcome is simple: it entails an investment

choice that is either unresponsive to �2 and � or it implements the advisor�s ideal point �AN (�
2; �).

Indeed, note that

�AN (�
2; �) > �F

�
�2
�

, � > �;

which implies that for values of � relatively small, the equilibrium should feature a cap when �2 is

small enough, whereas for values of � large the equilibrium should feature a �oor when �2 is large

enough. Hence, assuming away corner solutions in which only one dimension of asymmetric information

matters29, an equilibrium with partial delegation (if it exists) entails a pooling outcome when �2 and �

are both small (cap) and when they are both large (�oor), while it features separating when �2 and �

take intermediate values.

8. Concluding remarks

When investors deal with a common �nancial advisor, there may exist externalities between investors

that arise from the expert�s preference structure. These externalities a¤ect equilibrium asset allocation

choices in a non-obvious way. To highlight this point and its implications for investment behavior and

welfare, we have developed a stylized model of non-exclusive �nancial advice in which investors rely

on a common expert to make their portfolio choices. Although it is di¢ cult to validate our results

with the available evidence, because up to now there has been no attempt to tackle empirically the

impact of non-exclusive advice �nancial markets, our results advance the current understanding of how

clients and advisors are expected to behave in a common agency setting where monetary transfers

are not allowed, and o¤er new ground for future empirical investigations. Speci�cally, the analysis

has delivered the following testable implications on the e¤ect of non-exclusivity of �nancial advice on

investment behavior.

First, relative to earlier models in which �nancial advice is exclusive, in our setting when portfolio

choices are more likely to be perceived as complements or strong substitutes investors should trust

less the expert and be less keen to delegate. By contrast, when portfolio choices are more likely to

be perceived as weak substitutes investors should trust more the expert and be more keen to delegate

relative to the exclusivity benchmark. Evidence pointing in this direction is found in Monti et al. (2014)

who investigate factors that in�uence trust and advice, �nding empirical evidence supporting the idea

29Intuitively, for this to be true it is su¤cient that there is enough variation in both states � i.e., that the
length of the intervals � and � is not too asymmetric and that � 2int�.
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that people tend to trust more advisors that they perceive as being relatively less biased.

Second, the model predicts that depending on whether portfolio choices are perceived as strong

substitutes or weak substitutes/complements, the optimal investment strategy requires a �oor or a cap

on the amount of wealth invested into the risky asset, respectively. As explained before � see Figures 1

and 2 � this has interesting empirical implications for actual portfolio choices. In fact, when the optimal

investment strategy requires a cap (e.g., when experts are exposed to convex sales incentives), investors

are relatively more likely to delegate when buying products with a high risk pro�le. By contrast, when

it is optimal to impose a �oor (e.g., when experts care particularly about reputation), investor are more

likely to delegate when buying products with a low risk pro�le. Although there is no available evidence

on the correlation between investor�s propensity to delegate and the characteristics of the products they

buy, the emergence of an equilibrium with partial delegation, whose features do not depend exclusively

on investors�characteristics, seems consistent with the evidence collected by Foerster et al. (2014) who

�nd that clients�observable characteristics jointly explain only 11% of the variation in risky share in the

cross-section of Canadian households. They argue that advisor �xed e¤ects have substantial explanatory

power and impute this evidence to the advisors�idiosyncratic �tastes�in portfolio allocation, which may

re�ect agency con�icts similar to those highlighted in our paper.

Third, the model con�rms the pervasive perception in the industry that �convex�sales incentives

(such as accelerators, stepped payments, thresholds and so on) exacerbate the incentive to induce

excessive risk taking, especially when �nancial advice is non-exclusive, and it also implies that reputation

concerns may mitigate this incentive � i.e., older advisors, whose cost of being �red is relatively small,

should induce their clients to take excessive risk in order to cash larger commission fees. This latter

prediction is consistent with the evidence provided by Foerster et al. (2014), who �nd that older advisors

are more willing to give their clients riskier products because, being close to or over the retirement age,

they do not need to be as concerned about any detrimental e¤ect that this behavior might have on their

reputation. On the contrary, younger advisors seem to hold a more prudent behavior.

Fourth, when accounting for more than two clients, it seems that the con�ict of interest between the

advisor and each individual investor exacerbates as the number of clients grows larger (at least in some

cases of interest). Finally, when accounting for asymmetries between investors, the analysis implies

that: less informed investors are those who need to distort more their �nancial choices when dealing

with a common advisor and are those who bene�t more from exclusive �nancial advice; asymmetries in

risk aversion may have instead strong implications on the type of strategy investors enact. Speci�cally,

people that are not too risk averse tend to delegate more when buying assets with a high risk pro�le,

people with moderate risk aversion delegate more when they buy assets with intermediate risk, while

very risk averse people delegate only when buying assets with a low risk pro�le.

Taken together, these predictions imply that non-exclusivity in �nancial advice may matter sub-
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stantially not only to understand people investment behavior, but also to predict the potential welfare

e¤ects of policies that regulate (or, at least, impact) the structure of the commission fees paid to retail

banks by the providers of �nancial products, the nature of banks� internal sales incentives and the

advisor�s career prospects. Hence, this speci�c dimension seems to deserve more close attention by the

empirical research.
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A. Appendix

Proof of Proposition 1. We begin by showing that if the optimal mechanismM�
E is such that the

investor pools in a subset P of �, then P cannot be strictly contained in �.
Suppose that the investor pools only in the subset P � [x; y] � �, with 1�� < x < y < 1+� � i.e.,

he invests a share � of his wealth into the risky asset for every �2 2 P. Then, incentive compatibility
requires an investment �AE(�

2) for every �2 2 �nP. The investor�s maximization problem is

max
P;�

W(P; �) �max
x;y;�

(Z y

x
�

�
� � ��

2

2

�
d�2 +

Z
�n[x;y]

�AE(�
2)

�
� � �

A
E(�

2)�2

2

�
d�2

)
:

subject to P � � and � 2 [0; 1].
The �rst-order condition with respect to � is

� =
�

E [�2j�2 2 P] �
2�

x+ y
: (.1)

Continuity of the mechanismM implies �AE(x) = � = �
A
E(y). Using (.1) and �

A
E(�

2) = (1+ �)�F
�
�2
�
,

it is easy to verify that x = y, which provides a contradiction with the starting hypothesis that P � �.
Using the same logic one also shows that, as long as the optimal mechanisms features pooling in a
subset of �, this subset cannot be the union of multiple disjoint intervals (all strictly inside �).

Hence, ifM�
E features some pooling, there are only three possible cases to be considered:

(1) P = [1��; x] with 1�� < x � 1 + �;

(2) P = [x; 1 + �] with 1�� � x < 1 + �;

(3) P =[x1; y1] [ [x2; y2] with 1�� = x1 < y1 < x2 < y2 = 1 +�.

Consider �rst case (1). The investor�s maximization problem is

max
P;�

W(P; �) �max
x;�

�Z x

1��
�

�
� � ��

2

2

�
d�2 +

Z 1+�

x
�AE(�

2)

�
� � �

A
E(�

2)�2

2

�
d�2

�
:

The �rst-order condition with respect to � is

� =
�

E [�2j�2 � x] �
2�

1��+ x: (.2)

Continuity of the mechanism then implies

�AE(x) =
�

E [�2j�2 � x] ;

which yields

x�E =
1 + �

1� � (1��) ; (.3)

and thus

��E(�
2) =

8<:
�(1��)
1��
�(1+�)
�2

if

if

�2 � x�E
�2 > x�E

: (.4)
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Finally, 1�� < x�E � 1 + � implies

1�� < 1 + �

1� � (1��) � 1 + �;

which requires � � �. Notice that x < 1 + � when � < �, so that P = [1 ��; x] � �. By contrast,
P = � when � � �.

Next, we show that an optimal contract cannot satis�es the properties stated in case (2). The proof
of this claim is by contradiction. Under case (2), the investor�s maximization problem is

max
P;�

W(P; �) �max
x;�

�Z 1+�

x
�

�
� � ��

2

2

�
d�2 +

Z x

1��
�AE(�

2)

�
� � �

A
E(�

2)�2

2

�
d�2

�
:

The �rst-order condition with respect to � is

� =
�

E [�2j�2 � x] �
2�

x+ 1 +�
:

Continuity of the mechanism then implies

�AE(x) =
�

E [�2j�2 � x] ;

yielding

x =
1 + �

1� � (1 + �) ; (.5)

Notice that � > 0 implies x > 1 + �, which contradicts the starting hypothesis P � �. Therefore, an
optimal asset allocation cannot satisfy the properties stated in case (2).

Finally, consider case (3). In this scenario the investor pools in two disjoint intervals, say P1=[1�
�; x1] and P2 = [x2; 1 + �], with 1 � � < x1 < x2 = 1 + �. Let P =(P1;P2), �P = (�P1 ; �P2) and
x = (x1; x2). The investor�s maximization problem is

max
P;�P

W(P; �P) � max
x;�P

�Z x1

1��
�P1

�
� � �

P1�2

2

�
d�2+

+

Z x2

x1

�AE(�
2)

�
� � �

A
E(�

2)�2

2

�
d�2 +

Z 1+�

x2

�P2
�
� � �

P2�2

2

�
d�2

�
;

where �P1 and �P2 are the shares of wealth invested into the risky asset within the pooling regions P1
and P2, respectively. Optimality then requires

�Pk =
�

E [�2j�2 2 Pk]
k = 1; 2:

Continuity of the mechanism then implies

�

E [�2j�2 � x1]
= �AE(x1);
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�

E [�2j�2 � x2]
= �AE(x2):

Solving for x1 and x2

x1 =
1 + �

1� � (1��) ;

x2 =
1 + �

1� � (1 + �) > 1 + �;

which is a contradiction. Therefore, an optimal asset allocation cannot satisfy the properties stated in
case (3).

In order to complete the characterization of the optimal mechanism we need to show that the
investor never gains from full delegation � i.e., P = ? cannot be an optimum. Speci�cally, for any
asset allocation rule that satis�es (1) the following holds

@W(x; �(x))
@x

����
x=1��

=
�2�2

2 (1��) > 0:

where
�(x) � 2�

1��+ x:

But this directly implies x > 1��. Finally, notice that W(x; �) is concave in �. In fact, substituting
for ��E (x) we have

@2W(x; �(x))
@x2

����
x=x�E

= �
2
�2

(1� �)3

(1��)2 (1 + �)
(2�+ 1) < 0;

which completes the proof. �

Proof of Lemma 1. The proof of the lemma is by contradiction.
To begin with, we show that there exists no symmetric equilibrium where both investors o¤er a

mechanismM that requires pooling in the subset P � �. Let P � [x; y], with 1�� < x < y < 1 +�,
be one of the (disjoint) regions in which both investors pool at equilibrium � i.e., the subset of � in
which each investor chooses � for every �2 2 P. Hence, outside P there must exist some intervals of �
in which both investors delegate their portfolio choices to the advisor, thus allocating a fraction �AN (�

2)

of their wealth into the risky asset.
Continuity of the mechanismM then implies �AN (x) = �

A
N (y) = �, where optimality requires

� =
�

E [�2j�2 2 P] : (.6)

Using (.6) and the expression for �AN (�
2) this system of equations can be rewritten as

�AN (x) =
2�

x+ y
;

�AN (y) =
2�

x+ y
;

whose unique solution requires x = y, which contradicts P � �.
Next, we prove the remaining part of the Lemma. First, notice that the above argument rules out

the possibility of having multiple (disjoint) delegation regions strictly contained in �: Otherwise, we
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should have at least one pooling region strictly contained in �: However, this does not exclude the
existence of a single delegation region strictly inside �, surrounded by two pooling regions. In what
follows we show that this cannot be possible as well. The proof is again by contradiction. Suppose
that such a symmetric equilibrium exists. Accordingly, let P1 � [1 � �; x] and P2 � [y; 1 + �], with
1�� < x < y < 1 +�, be the two regions where both investors pool � i.e., the subsets of � in which
each investor chooses �P1 for every �2 2 P1 and �P2 for every �2 2 P2. On the contrary, delegation
takes place in the interior [x; y].

Continuity of the mechanismM then implies �AN (x) = �
P1 and �AN (y) = �

P2 � where, optimality
of the mechanism requires

�P1 =
�

E [�2j�2 2 P1]
;

�P2 =
�

E [�2j�2 2 P2]
:

Hence

x =
1 + �

1� �+ 2� (1��) ; y =
1 + �

1� �+ 2� (1 + �) ;

which clearly contradict the starting hypothesis that 1�� < x and y < 1 + �: �

Proof of Proposition 2. The proof of the proposition is structured as follows. First, we characterize
the properties that a symmetric (candidate) equilibrium where both investors pool for low values of �2

and delegate otherwise need to satisfy. Second, we show that, in the region of parameters under consid-
eration, this outcome is immune from unilateral deviations within the class of continuous mechanisms.
Third, we show that there exists a non-empty region of parameters where there exists an equilibrium
with full pooling. Finally, we argue that within the regions of parameters under consideration there are
no other symmetric equilibria.

Suppose that both investors o¤er a mechanismM�
N =

�
��N (�

2)
	
�22� that entails a pooling alloca-

tion in the subset P�N � [1��; x�N ] � �, with 1�� < x�N < 1 +�, and a separating one for �2 > x�N
� i.e.,

��N (�
2) =

8<: ��N

�AN (�
2)

if

if

�2 � x�N
�2 > x�N

:

The �rst-order condition identifying ��N is

��N =
�

E
�
�2j�2 2 P�N

� ; (.7)

While continuity ofM�
N requires ��N = �

A
N (x

�
N ). Substituting (.7) and the expression for �

A
N (�

2) into
this equation, x�N solves

x�N
E
�
�2j�2 � x�N

� = 1 + �

1 + �
;

yielding

x�N =
1 + �

1� �+ 2� (1��) ;

and thus

��N = �
1� �+ 2�

(1 + �) (1��) :

Notice that x�N 2 (1��; 1+�) in the region of parameters under consideration. Following the approach
of Proposition 1 concavity of the investors� expected utility at

�
x�N ; �

�
N (�

2)
�
can be easily checked.

Hence, � > (���) =(1 + �) and � < � are necessary conditions for such a symmetric equilibrium to
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exist. In the following we show that they are also su¢ cient.

Next, we show that, within the class of continuous mechanisms and incentive compatible mecha-
nisms, there are no pro�table deviations from the symmetric outcome characterized above. The proof
is developed in the following steps, where it is assumed (without loss of generality) that investor 1 sticks
to the equilibrium behavior.

Step 1. Consider �rst the class of deviations where investor 2 o¤ers a mechanismM2 such that �2(:)
is constant in a neighborhood of �2 = 1 �� � i.e., there exists a non-empty neighborhood of 1 ��,
say B (1��), such that B (1��) � � and _�2

�
�2
�
= 0 for every �2 2 B (1��).

1.A. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [1��; x], with 1�� < x < 1 + � and x 6= x�N .

Showing that this deviation is unpro�table in the region of parameters under consideration is
straightforward. Indeed, continuity of the optimal mechanism implies x = x�N . This is immediate
for x > x�N . By contrast, for x < x

�
N continuity ofM2 requires

�

E[�2j�2 � x] = �
A
E(x)� ���N ;

which has only one solution in � equal to x�N . A contradiction.

1.B. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails pooling in regions
P2 � [1��; x] and P 02 = [y; 1 + �], with y > x � x�N .

Continuity ofM2 requires

�

E[�2j�2 � x] = �
A
N (x) , x = x�N ;

�

E[�2j�2 � y] = �
A
N (y) , y =

1 + �

1� �+ 2� (1 + �) :

But, in the region of parameters under consideration, it is easy to verify that y > 1+�. A contradiction.

1.C. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails pooling in regions
P2 � [1��; x] and P 02 = [y; 1 + �], with 1 + � > y > x�N > x > 1��.

In this case the same contradiction obtained in step 1.B obtains.

1.D. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails pooling in regions
P2 � [1��; x] and P 02 = [y; 1 + �], with 1 + � > x�N � y > x > 1��.

Continuity ofM2 requires
�

E[�2j�2 � x] = �
A
E(x)� ���N ;

�

E[�2j�2 � y] = �
A
E(y)� ���N :

Hence
2

1��+ x =
1 + �

x
� � 1� �+ 2�

(1 + �) (1��) ; (.8)

2

1 + �+ y
=
1 + �

y
� � 1� �+ 2�

(1 + �) (1��) : (.9)

Notice that, in the region of parameters under consideration, (.8) has two solutions: one negative and
one equal to x�N . A contradiction with the initial assumption that x

�
N � y > x.
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1.E. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails full pooling. In order to
show that this cannot be a best reply, consider the case where investor 2 deviates by using a strategy like
the ones considered in 1.A. Clearly, full pooling is a degenerated form of this class of strategy, where
x = 1 + �. But, this corner solution can be optimal if and only if the derivative of the unconstrained
maximization problem of investor 2 with respect to x is non negative at x = 1 + �. Recall that if
x = 1 +�, then optimality requires investor 2 to invest � into the risky asset for every �2. Hence, the
derivative of investor 2�s expected utility with respect to x evaluated at x = 1 +� is


�
� � �AN (1 + �)

�
�
�
� � 1

2

�
�AN (1 + �) + �

�
(1 + �)

�
=

� �2�� �+ � +��
(1 + �) (1 + �)

� �(1 + �) + �� �
2 (1 + �)

;

which is strictly negative in the region of parameters under consideration. A contradiction.

1.F. Finally, using the same arguments developed in the proof of cases 1.B, 1.C, and 1.D it is easy
to verify that deviations starting with a pooling allocation at 1�� and involving at least two disjoint
separation regions are not pro�table.

Step 2. Consider now the class of deviations where investor 2 o¤ers a mechanismM2 such that �2 (:)
is (strictly) decreasing in a neighborhood of �2 = 1�� � i.e., there exists a non-empty neighborhood
of 1��, say B (1��), such that B (1��) � � and _�2

�
�2
�
< 0 for every �2 2 B (1��).

2.A. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [x; 1 + �], with 1�� < x�N � x < 1 + �:

Continuity ofM2 requires

�AN (x) =
�

E[�2j�2 � x] , x =
1 + �

1� �+ 2� (1 + �) :

By construction x < 1 + �, which would imply � < �. A contradiction.

2.B. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [x; 1 + �], with 1�� < x < x�N < 1 + �:

Continuity ofM2 requires
�

E[�2j�2 � x] = �
A
E(x)� ���N ;

that is
2�

x+ 1 +�
= (1 + �)

�

x
� ���N ; (.10)

Let
� (z) � (1 + �) �

z
� 2�

z + 1 +�
:

Condition (.10) then rewrites as � (x) = ���N . Notice that

� (1��) = ��+�
1�� > � (1 +�) =

��

1 + �
> 0;

and

�0 (z) = �� (1 + �)
2 (1 + �)� z2 (1� �) + 2z (1 + �) (1 + �)

z2 (� + 1 + z)2
;

38



where it can be veri�ed that

(1 + �)2 (1 + �)� z2 (1� �) + 2z (1 + �) (1 + �) > 0 8z 2 �:

Hence, �0 (z) < 0 in �. Taken together, these conditions imply that � (x) > 0 in �.
Next, note that for � < 0, (.10) has no solution, which yields a contradiction.

2.C. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [x; y], with 1�� < x < y < 1 + �.

First, it is straightforward to show that continuity of the mechanism (together with optimality)
rules out deviations such that y > x > x�N and x

�
N > y > x.

Next, consider a deviation such that x < x�N < y. Continuity ofM2 imply

�

E[�2j�2 2 P2]
= �AE(x)� ���N ;

�

E[�2j�2 2 P2]
= �AN (y):

Hence,
2�

x+ y
= (1 + �)

�

x
� ���N ;

2y

x+ y
=
1 + �

1 + �
:

The solution of this system of equations is

x =
2�� � (1� �)
(1� �+ 2�) � (1��) ;

y =
(2�� � (1� �)) (1 + �)

(1� �+ 2�)2 �
(1��) :

Notice that

x� (1��) = 2 (�� �) (1 + �)
(1� �+ 2�) � (1��) < 0 , � < 0:

Hence, for � < 0, this yields a contradiction in the region of parameters under consideration.

2.D. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails full delegation.
Notice that, given the mechanism o¤ered by investor 1, the advisor�s ideal point over investor 2�s

asset allocation choice is

�A2
�
�2
�
=

8<: �AN
�
�2
�

�AE
�
�2
�
� ���N

if

if

�2 � x�N
�2 < x�N

:

Hence, � � 0 implies �A2
�
�2
�
> �F

�
�2
�
. Then, using the same logic of the proof of Proposition 1, it

follows that for investor 2 it is optimal to pool in a non-empty subset of �. A contradiction.

2.E. Finally, using the same arguments developed in the proof of cases 2.A, 2.B, and 2.C, it can be
veri�ed that deviations starting with a separating at �2 = 1 � � and involving at least two disjoint
pooling regions are not pro�table.
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We now turn to characterize the region of parameters where there exists pooling equilibrium. Recall
that in an equilibrium with full pooling both investors choose ��N

�
�2
�
= � regardless of the advisor�s

reports. We must then show that there exists a region of parameters where there are no pro�table
deviations from this outcome. As before, assume (without loss of generality) that investor 1 pools �
i.e., �1 = � 8m 2 �. Consider a deviation by investor 2 such that

�2(�
2) =

8>>><>>>:
�2

�A2
�
�2
�

�2

if

if

if

�2 < x

�2 2 [x; x]

�2 > x

; (.11)

where 1 + � � x � x � 1��. Notice that incentive compatibility implies �2 > �2 and

�A2
�
�2
�
= �AE(�

2)� ��:

Notice that whenever x � 1+�, investor 2�s best reaction entails full pooling. If this is not the case, one
must have that the solution of investor 2�s maximization problem requires 1 + � � x > x � 1��. In
what follows we show that in the region of parameters where � � (���) = (1 + �) this is not possible.

The derivative of investor 2�s expected utility with respect to x is


�
�2 � �A2 (x)

�
�
�
� � 1

2

�
�A2 (x) + �2

�
x
�
; (.12)

where
�2 =

�

E [�2j�2 � x] :

Evaluating (.12) at x = 1 +�, so that �2 = �, this derivative can be rewritten as

�2
�
���(1 + �)� �

1 + �

�
�
�
�+�(1� �)� �

2

�
: (.13)

By the same token, the derivative of investor 2�s expected utility with respect to x is


�
�A2 (x)� �2

�
�
�
� � 1

2

�
�A2 (x) + �2

�
x
�
; (.14)

where
�2 =

�

E [�2j�2 � x] :

Evaluating (.14) at x = 1�� so that �2 = �, this derivative can be rewritten as

��2
�
�� � (1 + �) +�

1��

�
�
�
���(1� �)� �

2

�
: (.15)

In the region of parameters under consideration, the expression in equation (.13) is positive and
that in equation (.15) is negative. Hence, by concavity of investor 2�s objective function (which can be
immediately checked) it follows that investor 2�s best reply to full pooling by investor 1 is full pooling,
which shows that full pooling is an equilibrium in this region.

Moreover, notice that a strategy for investor 2 that requires a pooling allocation only when �2 2 int�
is not feasible: this would indeed contradict continuity of the optimal mechanisms. Hence, in the region
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of parameters under consideration there is a unique symmetric equilibrium where both investors pool.
This result, together with the �rst part of the proof also implies that in each of the two regions of
parameters identi�ed by the statement of the proposition there is a unique symmetric equilibrium. �

Proof of Proposition 3. The proof of the proposition is structured as follows. As before, we
�rst characterize the properties that a symmetric (candidate) equilibrium where both investors pool
for high values of �2 and delegate otherwise need to satisfy. Second, we show that, in the region of
parameters under consideration, this outcome is immune from unilateral deviations within the class
of continuous mechanisms. Third, we show that there exists a non-empty region of parameters where
there exists an equilibrium with full pooling. Finally, we argue that within the regions of parameters
under consideration there are no other symmetric equilibria.

To begin with, notice that when � = � there is a unique symmetric equilibrium with full delegation.
Second, it can be checked that the proof of Proposition 2 can be extended to the case where � > � > 0.
Hence, for brevity we will focus on the novel type of equilibrium that emerges when � > �.

Suppose that both investors o¤er a mechanismM�
N �

�
��N (�

2)
	
�22� that entails a pooling alloca-

tion in the subset P�N � [x�N ; 1 +�] � �, with 1�� < x�N < 1 +�, and a separating one for �2 < x�N
� i.e.,

��N (�
2) =

8<: �AN (�
2)

��N

if

if

�2 � x�N
�2 > x�N

:

From the optimality conditions of the investors�maximization problem, it follows that

��N =
�

E [�2j�2 2 P] �
2�

x�N + 1 +�
; (.16)

while continuity of the mechanism implies that ��N = �AN (x
�
N ). Substituting (.16) and the expression

for �AN (�
2), this equation rewrites as

2�

x�N + 1 +�
� �AN (x�) = 0;

whose unique solution yields

x�N =
1 + �

1� �+ 2� (1 + �) :

Therefore, the pooling allocation is

��N = �
1� �+ 2�

(1 + �) (1 + �)
:

Since � < 1, it follows that x�N 2 (1 � �; 1 + �) in the region of parameters where � < � <

(�+�) = (1��). As before, it can be shown that concavity of the investors�expected utility holds at
(x�N ; �

�
N ) within the region of parameters under consideration. Hence, � < � < (�+�) = (1��) is a

necessary condition for such a symmetric equilibrium to exist. In the following we show that they are
also su¢ cient.

Next, we show that, within the class of continuous mechanisms and incentive compatible mecha-
nisms, there are no pro�table deviations from the symmetric outcome characterized above. The proof
is developed in the following steps, where it is assumed (without loss of generality) that investor 1 sticks
to the equilibrium behavior.

Step 1. Consider �rst the class of deviations where investor 2 o¤ers a mechanismM2 such that �2 (:)
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is constant in a neighborhood of �2 = 1 +�.

1.A. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [x; 1 + �], with 1�� < x�N < 1 + � and x 6= x�N :

Showing that this deviation is unpro�table in the region of parameters under consideration is
straightforward. Indeed, continuity of the optimal mechanism implies x = x�N . This is immediate
for x < x�N . By contrast, for x > x

�
N continuity of ofM2 requires

�

E[�2j�2 � x] = �
A
E(x)� ���N ;

which has only one solution in � equal to x�N . A contradiction.

1.B. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails pooling in regions
P2 � [1��; x] and P 02 = [y; 1 + �], with x < y � x�N .

By continuity, the optimal mechanismM2 must satisfy

2�

1��+ x = �
A
N (x) , x =

1 + �

1� �+ 2� (1��) ;

2�

1 + �+ y
= �AN (y) , y = x�N :

But, in the region of parameters under consideration it is easy to verify that x < 1��: a contradiction.

1.C. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails pooling in regions
P2 � [1��; x] and P 02 = [y; 1 + �], with 1 + � > y > x�N > x > 1��.

In this case the same contradiction obtained in step 1.B obtains.

1.D. Suppose that investor 2 deviates by o¤ering a mechanism M2 that entails a pool allocation in
regions P2 � [1��; x] and P 02 = [y; 1 + �], with 1 + � > y > x � x�N > 1��.

By continuity, the optimal mechanismM2 must satisfy

2�

E[�2j�2 � x] = �
A
E(x)� ���N ;

2�

E[�2j�2 � y] = �
A
E(y)� ���N :

Hence, x and y must solve
2

1��+ x =
1 + �

x
� � 1� �+ 2�

(1 + �) (1 + �)
;

2

1 + �+ y
=
1 + �

y
� � 1� �+ 2�

(1 + �) (1 + �)
:

Notice that, in the region of parameters under consideration, the latter equation has a unique positive
solution y = x�N . A contradiction with the initial assumption that y > x � x�N .

1.E. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails full pooling. In order
to show that this is not optimal, consider the case where investor 2 deviates by using a strategy like
the ones considered in 1.A. Clearly, full pooling is a degenerated form of this class of strategy, where
x = 1 ��. But, this corner solution can be optimal if and only if the derivative of the unconstrained
maximization problem of investor 2 with respect to x is non positive at x = 1 � �. Recall that if
x = 1��, then optimality requires ��2 = � for every �2. The derivative of investor 2�s expected utility
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with respect to x evaluated at x = 1�� is


�
�AN (1��)� �

�
�
�
� � 1

2

�
�AN (1��) + �

�
(1��)

�
=

�2
(� + �� � +��)
(1 + �) (1��)

(� (1 + �)� �+ �)
2 (1 + �)

> 0;

which is strictly in the region of parameters under consideration: a contradiction.

1.F. Using the same arguments developed in the proof of cases 1.B, 1.C and 1.D, it is easy to verify
that deviations starting with a pooling at 1 + � and involving at least two disjoint separation regions
are not pro�table.

Step 2. Consider now the class of deviations where investor 2 o¤ers a mechanismM2 =
�
�2
�
�2
�	
�22�

such that �2 (:) is (strictly) decreasing in a neighborhood of �2 = 1 + � � i.e., there exists a non-
empty neighborhood of 1 + �, say B (1 + �), such that B (1 + �) � � and _�2

�
�2
�
< 0 for every

�2 2 B (1 + �).

2.A. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [1��; x], with 1�� < x � x�N < 1 + �:

Continuity of the mechanism, together with optimality, imply

�AN (x) =
2�

1��+ x , x =
1 + �

1� �+ 2� (1��) :

By construction x > 1 � �, which requires � > �. But, this condition is not met in the region of
parameters under consideration.

2.B. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [1��; x], with 1�� < x�N < x < 1 + �:

Continuity of the mechanism, together with optimality, imply

�AE(x)� ���N =
2�

1��+ x: (.17)

De�ne
� (z) � �AE(z)�

2�

1��+ z :

Condition (.17) rewrites as � (x) = ���N . Notice that

� (1��) = ��

1�� > 0; � (1 +�) = �
���
1 +�

;

�0 (z) = �� (1��)
2 (1 + �)� z2 (1� �) + 2z (1��) (1 + �)

z2 (z + 1��)2
;

and

� (x�N )� ���N = �
(1� �+ 2�)2��

(1 + � (1��) +��) (1 + �) (1 + �) < 0:

Moreover, � (1 +�) > 0 and �0 (z) < 0 for every z 2 � if � > �. Hence, � (x�N ) < ���N directly implies
that x�N > x for � > �: a contradiction. Next, suppose that � � �. In this region of parameters it is
easy to verify that �0 (z) = 0 has a unique solution in � (say z�) with �0 (z) > 0 if and only if z > z�

43



and � (z�) < 0. Hence, � (1 +�) � 0 together with � (x�N ) < ���N , directly imply that x
�
N > x a

fortiori when � � �: again a contradiction.

2.C. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails pooling only in region
P2 � [x; y], with 1�� < x < y < 1 + �.

First, it is straightforward to show that continuity of the mechanism (together with optimality)
rules out deviations such that y > x > x�N and x

�
N > y > x.

Next, consider a deviation such that x < x�N < y. Continuity of M2, together with optimality,
imply

�AN (x) =
2�

x+ y
;

�AE(y)� ���N =
2�

x+ y
:

The solution of this system of equations is

x = (1 + �) (1 + �)
2�� � + ��
� (1� �+ 2�)2

;

y = (1 +�)
2�� � + ��
� (1� �+ 2�) :

Notice that

y � x�N =
2 (�� �)

(1� �+ 2�) � (1 + �) < 0;

since � < � in the region of parameters under consideration, yielding the desired contradiction.

2.D. Suppose that investor 2 deviates by o¤ering a mechanismM2 that entails full delegation.
Notice that, given the mechanism o¤ered by investor 1, the advisor�s ideal point over investor 2�s

asset allocation choice is

��2
�
�2
�
=

8<: �AN
�
�2
�

�AE
�
�2
�
� ���N

if

if

�2 � x�N
�2 > x�N

:

Hence: �AN
�
�2
�
< �F

�
�2
�
since � > � and

��F (x�N ) < ��
�
N ) �AE

�
�2
�
� ���N < �F

�
�2
�

8�2 > x�N :

But this implies that ��2
�
�2
�
< �F

�
�2
�
for all �2 2 �. Then, by the same logic of the proof of

Proposition 1, it follows that for investor 2 it is optimal to pool in a non-empty subset of �. A
contradiction.

2.E. Finally, using the same arguments developed in the proof of cases 2.A, 2.B and 2.C, it is easy
to verify that deviations starting with a separating at �2 = 1 + � and involving at least two disjoint
pooling regions are not pro�table.

The rest of the proof follows the same logic used in the proof of Proposition 2. �

Proof of Corollary 1. We prove the result only for the exclusivity benchmark, the proof for the game
with non-exclusivity follows exactly the same logic and is omitted for brevity.
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Suppose that the investor o¤ers a very simple delegation mechanism to the advisor that requires
him to choose the amount of wealth to allocate to the risky asset within the range � 2 [�; �], with

� = �
1 + �

1 + �
; � = �

1� �
1�� :

For every �2, the advisor�s optimization problem is

min
�2[�;�]

1

2

�
�� (1 + �)�F (�2)

�2
:

The result then follows immediately since �AE(�
2) � � if and only if �2 � x�E , and �

A
E(�

2) � � with
equality only at �2 = 1 +�. �

Proof of Proposition 4. To show this result we �rst need to compute the investors�expected utility
with and without exclusivity.

Consider �rst the exclusivity benchmark. Using the result of Proposition 1 the investor�s expected
(indirect) utility is

W�
E =



2�

"Z x�E

1��
��E

�
� � �

�
E�

2

2

�
d�2 +

Z 1+�

x�E

�AE(�
2)

�
� � �

A
E(�

2)�2

2

�
d�2

#
=

�2

2�

�
�+

(1 + �)(1� �)
2

ln
(1 + �) (1� �)
(1��) (1 + �)

�
:

Next, consider the case of non-exclusive advice. Two cases must be distinguished depending on the
type of equilibrium.

(1) In the region of parameters where there exist an equilibrium with partial delegation where both
investors pool for low values of �2 and delegate otherwise � i.e., see Proposition 2 and the �rst part of
Proposition 3 � the investors�expected utility is

W�
N =



2�

"Z x�N

1��
��N

�
� � �

�
N�

2

2

�
d�2 +

Z 1+�

x�N

�AN (�
2)

�
� � �

A
N (�

2)�2

2

�
d�2

#
=

�2

2 (1 + �)�

�
�� � + (1 + �) 1� �+ 2�

2 (1 + �)
ln
(1 + �) (1� �+ 2�)
(1��) (1 + �)

�
Notice that in this region of parameters W�

E =W�
N for � = 0 and that

@W�
N

@�
=
�2

2�

(1 + �)

(1 + �)3

�
(�� �) ln (1 + �) (1� �+ 2�)

(1��) (1 + �)

�
> 0

since � > � and (1+�)(1��+2�)
(1��)(1+�) > 1. It then follows that W�

E � W�
N if and only if � � 0.

(2) In the region of parameters where there exist an equilibrium with partial delegation where both
investors pool for high values of �2 and delegate otherwise � i.e., see the second part of Proposition 3
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� the investors�expected utility is

W�
N =



2�

"Z x�N

1��
�AN (�

2)

�
� � �

A
N (�

2)�2

2

�
d�2 +

Z 1+�

x�N

��N

�
� � �

�
N�

2

2

�
d�2

#
=

�2

2 (1 + �)�

�
� � �+ (1 + �) 1� �+ 2�

2 (1 + �)
ln

(1 + �) (1 + �)

(1��) (1� �+ 2�)

�
:

Notice that W�
E =W�

N for � =
2�
1�� > �. Moreover,

@W�
N

@�
=
 (�� �) (1 + �)

(1 + �)3
ln

(1 + �) (1 + �)

(1��) (1� �+ 2�) < 0;

since � < � and
1 + �

1� �+ 2�
1 + �

1�� > 1:

Hence, W�
E � W�

N if and only if � � 2�
1�� . �

Proof of Proposition 5. In the case of exclusivity, the average investment into the risky asset is

�̂�E =
1

2�

"Z x�E

1��
��Ed�

2 +

Z 1+�

x�E

�AE(�
2)d�2

#
=
�

�

�
�+

(1 + �)

2
ln
(1 + �) (1� �)
(1��) (1 + �)

�
:

By contrast, in the region of parameters in which there exists an equilibrium with partial delegation
where both investors pool for low values of �2 and delegate otherwise � i.e., see Proposition 2 and the
�rst part of Proposition 3 � the average investment into the risky asset is

�̂�N =
1

2�

"Z x�N

1��
��Nd�

2 +

Z 1+�

x�N

�AN (�
2)d�2

#
=

�

�(1 + �)

�
�� � + 1 + �

2
ln
(1 + �) (1� �+ 2�)
(1��) (1 + �)

�
:

Hence

�̂�E � �̂�N , 2� � ln
"
1� �+ 2�
1� �

�
(1��) (1 + �)
(1 + �) (1� �)

��#
� 0:

The solution of �̂�N = �̂
�
E with respect to � is

�1 =

1+�
1��

�
1��+2�

(1��) exp 2�

� 1
� � 1

1+�
1��

�
1��+2�

(1��) exp 2�

� 1
�
+ 1

;

where it can be checked that in the parameter region under consideration �1 2 (0; 1). Notice also that

@ ln

�
1��+2�
1��

�
(1��)(1+�)
(1+�)(1��)

���
@�

� 0 , � � 0;

which directly implies the result.
Consider now the region of parameters where there exists an equilibrium with partial delegation
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where both investors pool for high values of �2 and delegate otherwise � i.e., see the second part of
Proposition 3 � the average investment into the risky asset is

�̂�N �
1

2�

"Z x�N

1��
�AN (�

2)d�2 +

Z 1+�

x�N

��Nd�
2

#
=

�

�(1 + �)

�
� � �+ 1 + �

2
ln

(1 + �) (1 + �)

(1��) (1� �+ 2�)

�
:

Hence

�̂�E � �̂�N , 2 (2�� � (1� �))� (1 + �) ln
"

(1 + �)(2+�)

(1� �+ 2�) (1� �)�

�
1��
1 +�

��#
> 0:

The solution of �̂�N = �̂
�
E with respect to � is

�2 =

h
(1��+2�)(1��)�

(1+�)(2+�)
exp

�
2(2���+��)

1+�

�i� 1
� � 1h

(1��+2�)(1��)�

(1+�)(2+�)
exp

�
2(2���+��)

1+�

�i� 1
�
+ 1

< 1

Suppose that �2 > 0. Then,

@ ln

�
(1+�)(2+�)

(1��+2�)(1��)�

�
1��
1+�

���
@�

< 0;

since � > 0 in the parameter region under consideration. This implies that ��E � ��N if and only if
� � �2. We now show under which conditions �2 > 0. Notice that this requires

(1� �+ 2�) (1� �)�

(1 + �)(2+�)
exp

�
2 (2�� � + ��)

1 + �

�
< 1;

which implies

� (�; �) � ln (1� �+ 2�) (1� �)
�

(1 + �)(2+�)
+
2 (2�� � + ��)

1 + �
< 0:

Notice that � (� = 0; �) = �2�+ln (2� + 1) < 0 for each � 2 [0; 1] and � (� = �; �) = ln (1��)�

(1+�)(1+�)
+2� <

0 if and only if � > 0:537. It is then easy to show that there exists a threshold �� < � such that: (i) if
� > �� then � (�; �) < 0 for every �; (ii) if � � �� there exists a function � (�), which solves � (�; �) = 0,
such that � (�; �) < 0 if and only if � > � (�). Hence, �2 > 0 if: (i) � � ��; (ii) � < ��and � > � (�).
�

References

[1] Admati, A.R and P. Pfleiderer, (1997), �Does it All Add Up? Benchmarks and the Compen-
sation of Active Portfolio Managers,�Journal of Business, 70: 323-50.

[2] Allen, F., (1985), �Contracts to Sell Information,�Rodney L. White Center for Financial Re-
search Working Papers 6-87, Wharton School Rodney L. White Center for Financial Research.

[3] Allen, F., and G. Gordon, (1993), �Churning Bubbles,� Review of Economic Studies, 60:
813-836.

47



[4] Alonso, R., and N. Matouschek, (2008), �Optimal Delegation,�Review of Economic Studies,
75: 259-293.

[5] Asparouhova, E., P. Bossaerts, J. Copic, B. Cornell, J. Cvitanic, and D. Meloso,
(2013), �Experiments on Asset Pricing under Delegated Portfolio Management,� forthcoming
Managment Science.

[6] Attar, A., T. Mariotti and F. Salanié, (2011), �Nonexclusive Competition in the Market
for Lemons,�Econometrica, 79: 1869-1918.

[7] Bergstresser, Daniel, John Chalmers, and Peter Tufano, (2009), �Assessing the Costs
and Bene�ts of Brokers in the Mutual fund Industry�, Review of Financial Studies, 22: 4129�
4156.

[8] Bhattacharya, S., and P. Pfleiderer, (1985), �Delegated Portfolio Management,�Journal of
Economic Theory, 36: 1-25.

[9] Calcagno, R., and C. Monticoni, (2013), �Financial Literacy and the Demand for Financial
Advice,�mimeo.

[10] Chalmers, J., and J. Reuter, (2012), �What is the Impact of Financial Advisors on Retirement
Portfolio Choices and Outcomes?�, mimeo.

[11] Chater, N., S. Huck, and R. Inderst, (2010), �Consumer Decision-making in Retail In-
vestment Services: a Behavioral Economics Perspective�, Report to the European Commis-
sion/SANCO.

[12] Chen, H., and G. G. Pennacchi, (2009), �Does Prior Performance A¤ect a Mutual Fund�s
Choice of Risk? Theory and Further Empirical Evidence�, Journal of Financial and Quantita-
tive Analysis, 44: 745-775.

[13] Chevalier, J., and G. Ellison, (1997), �Risk Taking by Mutual Funds as a Response to
Incentives,�Journal of Political Economy, 105: 1167-1200.

[14] Crawford, V. P., and J. Sobel, (1982), �Strategic Information Transmission,�Econometrica,
50: 1431-1451

[15] Das, S. R., and R. K. Sundaram, (2002), �Fee Speech: Signaling, Risk-Sharing, and the Impact
of Fee Structures on Investor Welfare,�Review of Financial Studies 15, 1465-1497.

[16] Del Guercio, D., J. Reuter, P. Tkac, (2010), �Broker Incentives and Mutual Fund Market
Segmentation�, mimeo.

[17] Dessein, W., (2002), �Authority and Communication in Organizations�, Review of Economic
Studies, 69: 811�838.

[18] Farrel J., and R. Gibbons, (1989), �Cheap Talk with Two Audiences�, American Economic
Review, 79: 1214-1223.

[19] Foerster, S., Linnainmaa, J. T., Melzer, B. T. and A. Previtero, (2014), �Retail
Financial Advice: Does One Size Fit All?�, mimeo.

[20] Gennaioli, N., A. Shleifer and R. Vishny, (2013), �Money Doctors,� Journal of Finance,
forthcoming.

[21] Georgarakos, D., and R. Inderst, (2011), �Financial Advice and Stock Market Participation�,
mimeo.

[22] Gruber, M., (1996), �Another Puzzle: the Growth in Actively Managed Mutual Funds,�Journal
of Finance, 51: 783-810.

[23] Guiso, L., and Viviano, E., (2013), �How Much Can Financial Literacy Help?�, EIEF Working
Papers Series 1325.

48



[24] Hackethal, A., M. Haliassos, and T. Jappelli, (2012), �Financial Advisors: A Case of
Babysitters?,�Journal of Banking and Finance, 36: 509-524,

[25] Hung, A., C. Noreen, J. Dominitz, E. Talley, C. Berrebi and F. Suvankulov, (2008),
�Investor and Industry Perspectives on Investment Advisers and Broker-Dealers,� Technical
Report, Rand Institute for Civil Justice.

[26] Holmström, B., (1984), �On the Theory of Delegation�, in M. Boyer and R. Kihlstrom (eds.),
Bayesian Models in Economic Theory, Elsevier.

[27] Inderst, R., and M. Ottaviani, (2012a), �How (not) to Pay for Advice: A Framework for
Consumer Financial Protection,�Journal of Financial Economics, 105: 393-411.

[28] Inderst, R., and M. Ottaviani, (2012b), �Financial Advice,�Journal of Economic Literature,
50: 494-512.

[29] Kaniel, R., and P. Kondor, (2013), �The Delegated Lucas Tree,�Review of Financial Studies,
26: 929-984.

[30] Kolotilin, A., H. Li and W.Li, (2013), �Optimal Limited Authority for Principal,�Journal of
Economic Theory, 148: 2344�2382.

[31] Malkiel, B.G., (1995), �Returns From Investing in Equity Mutual Funds 1971-1991,� Journal
of Finance, 50: 549-570.

[32] Malmendier, U., and Nagel, S., (2011), �Depression Babies: Do Macroeconomic Experiences
A¤ect Risk Taking?�, Quarterly Journal of Economics, 126: 373-416.

[33] Martimort, D., and A. Semenov, (2006), �Continuity in Mechanism Design without Transfers,�
Economic Letters, 93: 182-189.

[34] Martimort, D., and L. Stole, (2002), �The Revelation and Delegation Principles in Common
Agency Games,�Econometrica, 70: 1659-1673.

[35] Martimort, D., and L. Stole, (2003), �Contractual Externalities and Common Agency Equi-
libria,�The B.E. Journal of Theoretical Economics, 3: 1-40.

[36] Melumad, N., and T. Shibano, (1991), �Communication in Settings with no Transfers,�RAND
Journal of Economics, 22: 437-455.

[37] Monti, M., V. Pelligra, L. Martignon and N. Berg, (2014), �Retail investors and �nancial
advisors: New evidence on trust and advice taking heuristics�, Journal of Business Research,
67: 1749�1757.

[38] Morgan, J., and P. Stocken, (2003), �An Analysis of Stock Recommendations,�RAND Jour-
nal of Economics, 34: 183-203.

[39] Ottaviani M., (2000), �The Economics of Advice,�mimeo.

[40] Palomino, F. and A. Prat, (2003), �Risk Taking and Optimal Contracts for Money Managers,�
RAND Journal of Economics, 34: 113-37.

[41] Palomino, F. and H. Uhlig, (2007), �Should Smart Investors Buy Funds with High Returns in
the Past?,�Review of Finance, 11: 51-70.

[42] Pavan, A., and G., Calzolari, (2009), �Sequential Contracting with Multiple Principals,�
Journal of Economic Theory, 144: 503-531.

[43] Stoughton, N., (1993), �Moral Hazard and the Portfolio Management Problem,� Journal of
Finance, 48: 2009-2028.

[44] Stracca, L. (2005), �Delegated Porto�io Management: a Survey of the Theoretical Literature,�
ECB Working paper series, N. 520/Sep. 2005.

49



[45] Tversky, A. and Kahneman, D., (1974), �Judgment under uncertainty: Heuristics and biases�,
Science, 185: 1124-1131.

50


