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This paper examines the pricing of volatility risk using SPX corridor implied volatility. We
decompose model-free implied volatility into various components using different segments of
the cross-section of out-of-the money put and call option prices. We find that only model-free
volatility computed from the cross-section of out-of-the-money call option prices carries a
significant negative risk premium in the cross-section of stock returns and subsumes all
relevant information for forecasting future volatility. Our empirical results provide strong
evidence that SPX out-of-the money put option prices do not contain useful information for
pricing aggregate volatility risk in the cross-section of stock returns. © 2015Wiley Periodicals,
Inc. Jrl Fut Mark

1. INTRODUCTION

Stochastic return volatility plays a crucial role in thedeterminationof asset returns. In the equity
markets, a rise in volatility is usually associated with bad states and a deterioration of the
investment opportunity set. If volatility risk is systematic, asset pricing theory suggests that
investors arewilling topayapremiumforbuyingprotectionagainst suchunfavorable shocksand
therefore stocks that do well (bad) when volatility increases should carry a low (high) premium.

Previous studies in the literature have used either option implied information or/and the
cross-section of stock returns to study the market price of volatility risk. Bakshi and Kapadia
(2003) analyze the profits/losses of delta hedged option portfolios on SPX and Carr and Wu
(2009) use the difference between the realized volatility and the volatility swap rate to
quantify the volatility risk premium in SPX returns. Bates (2000), Chernov and Ghysels
(2000), Pan (2002), and Eraker (2004) use parametric stochastic volatility models fitted to
SPX option prices and index returns to estimate the volatility risk premium. Other studies
examine the pricing of volatility risk in the cross-section of stock returns. Ang, Hodrick, Xing,
and Zhang (2006), use the implied volatility VXO as a proxy for market volatility and Adrian
and Rosenberg (2008) use historical data and a two component GARCHmodel for modeling
volatility dynamics. Cremers, Halling, andWeinbaum (2013) use investable option strategies
and examine the pricing of aggregate jump and volatility risk. All studies find that volatility
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risk carries a negative premium in the cross section of stock returns. DeLisle, Doran, and
Peterson (2011) use the VXO index and find that only upside changes in implied volatility are
priced in the cross-section of stock returns.

In this paperwealso examine thepriceof volatility risk in thecross-sectionof stock returns.
Our empirical analysis is basedonmodel-free impliedvolatility computed fromthecross-section
of out-of-themoneySPXput andcall optionprices.Themaincontributionof this paper is that in
the empirical analysis we use the concept ofmodel-free corridor implied volatility introduced by
Carr andMadan (1998) and developed further by Andersen and Bondarenko (2010).We break
the implied volatility into various components that capture market volatility risk over different
intervals for the underlying asset price. This decomposition allows us to separate the
incremental information of the various segments of the cross-section of out-of-the money put
and call option prices with respect to the pricing of systematic volatility risk.

Our study is motivated by empirical results in the literature which show that the SPX
out-of the-money put options market may be disconnected from the equity market. After the
US stock market crash in 1987 the SPX option market is consistently displaying a smirk
pattern when implied volatility is plotted against moneyness. According to the smirk pattern
out-of-the-money put options are consistentlymore expensive than the corresponding out-of-
the money call options. Rubinstein (1994) refers to this phenomenon as “crash-o-phobia“
and attributes it to the strong demand for out-of-the-money put options to hedge against
market crashes. Jackwerth (2000) and Jones (2006) find that the returns from writing SPX
out-of-the money put options are extraordinarily high and cannot be explained by known risk
factors that affect stock returns. Bates (2008) argues that the out-of-the money put option
market operates more like an insurance market for crash risk. Theories of demand based
option pricing (see Bollen and Whaley, 2004 and Garleanu, Pedersen and Poteshman,
(2009) argue that SPX out-of-the money put option prices are mainly driven by the demand
pressure by hedgers who seek portfolio insurance. If out-of the-money put option prices are
driven by factors which do not affect the pricing of stocks, it is natural to assume that they will
also not contain useful information with respect to the price of volatility risk in the cross-
section of stock returns. This is the main hypothesis tested in this paper.

We decompose total implied volatility into model-free implied volatility extracted from
out-of-the-money calls andmodel-free implied volatility extracted fromout-of-the-money puts
using various segments of optionsmoneyness range.We also calculatemeasures ofmodel-free
volatility that are designed to capture tail risk and thesemeasures are computed from the cross-
section of deep out-of-the-money put option prices. Our empirical design is similar to that of
Ang, Hodrick, Xing, and Zhang (2006). We use all stocks on NYSE, AMEX and the NASDAQ
between January 1996 toDecember2011, to create quintile portfolios based on factor loadings
of stock returns to innovations in various measures of corridor implied volatility.

Consistent with our hypothesis, we find that only model-free volatility computed from
out-of the-money calls carries a significant negative risk premium in the cross-section of
stock returns. Portfolios with high factor loadings to innovations in out-of the-money call
implied volatility are perceived to be less risky and earn lower returns than portfolios with low
factor loadings. In a series of empirical tests we don’t find any strong evidence that out-of the-
money put option implied volatility or volatility tail risk is priced in the cross-section of stock
returns. In the cross-sectional tests we also use innovations in the VIX index as another proxy
for volatility risk. The model-free VIX index provided by CBOE is a popular measure of
investor fear gauge and it is computed as a weighted average of out-of-the-money call and put
option prices. We find that the VIX index is not a priced factor in the cross-section of stock
returns and this is due to the fact that part of the VIX dynamics is driven by the prices of out-
of-the-money put options. This finding suggests that the VIX futures contracts currently
offered by the CBOE may not be suitable for hedging volatility risk in equity portfolios.



The empirical results from the quintile portfolio returns suggest that model-free
volatility computed from the cross-section of out-of the-money calls is probably a better proxy
for future realized volatility. To test if this is indeed the case, we run predictive regressions to
examine which implied volatility measure is most capable of forecasting future realized SPX
volatility. We find that model-free volatility computed from out-of the-money call option
prices subsumes all relevant information for forecasting future volatility.

The remainder of the paper is structured as follows. In the next Section we describe the
methodology for constructing corridor implied volatility. In Sections 3 and 4 we present the
empirical results on the pricing of volatility risk. Section 5 examines the ability of the various
model-free volatility measures to predict future realized volatility. The last Section concludes
and presents the implications of the study.

2. CORRIDOR IMPLIED VOLATILITY

Suppose that an asset’s dynamics is governed by the following diffusion process:

dSt ¼ mtdtþ stdBt

where, St is the price of the asset at time t, Bt is a standard Brownian motion, mt is the drift
component and st is the diffusion component. We assume that the volatility component
evolves stochastically over time. The annualized realised volatility of the asset’s log returns
over the time interval [t, T] is given by:

Vðt;TÞ ¼ 1
T � t

Z T

t
s2
s ds

� �
ð1Þ

The annualized corridor return volatility is defined as

VCðt;TÞ ¼ 1
T � t

Z T

t
s2
s 1St2½BL;BU�ds

� �
ð2Þ

where, 1St2½BL;BU� is an indicator function that that takes the value of 1 if the asset price is
inside the two barriers and zero otherwise.

We constructmodel-free implied volatility using themethod developed by Britten-Jones
and Neuberger (2000). This method computes the risk-neutral volatility from the cross-
section of out-of-money (OTM) call and put option prices. For a given horizon T-t, the risk-
neutral expectation of volatility in (1) is given by:

EQ Vðt;TÞ½ � ¼ 2expðrðT � tÞÞ
T � t

Z F0

0

Pðt;T;KÞ
K2 dKþ

Z 1

F0

Cðt;T;KÞ
K2 dK

� �
ð3Þ

whereF0 is the forward price of the underlying withmaturityT, r is the risk-free rate asset and
Cðt;T;KÞ and Pðt;T;KÞ are OTM call and put option prices, respectively, with strike price K
and maturity T.1 The model-free implied volatility can be decomposed into two components.

1Equation (1) is an excellent approximation to the risk-neutral quadratic variation of the logarithm of the asset price
when there are relatively small jumps in the stock price (Carr andWu (2009)). However, if there is an extreme jump,
e.g., 2008 financial crisis, then the approximation error can be very large. In fact, Andersen et al. (2015) discuss
issues related to jumps and discrete sampling. We would like to thank an anonymous referee for pointing out this
issue.



The component computed from OTM calls (VC) and the component computed from OTM
puts (VP):

VCðt;TÞ ¼ 2expðrðT � tÞÞ
T � t

Z 1

F0

Cðt;T;KÞ
K2 dK ð4Þ

VPðt;TÞ ¼ 2expðrðT � tÞÞ
T � t

Z F0

0

Pðt;T;KÞ
K2 dK ð5Þ

where, Vðt;TÞ ¼ VCðt;TÞ þ VPðt;TÞ.
The calculation of implied volatility in (3) or (4) and (5), requires the use of options with

strike prices spanning from zero to infinity. Andersen and Bondarenko (2010) develop a
method for defining the strike range over which the implied volatility is calculated. Their
method allows the decomposition of the implied volatility into various components that
capture market volatility over different intervals of the underling’s risk neutral distribution.
They use the ratio R(K) which is given by:

RðKÞ ¼ Pðt;T;KÞ
Cðt;T;KÞ þ Pðt;T;KÞ ð6Þ

Suppose that we want to truncate the left tail by q percent and we want to find which
OTMput options to use for the calculation of VP in expression (3).We need to find the strike
priceKq for whichR(Kq)¼q and chooseOTMput option prices that have a strike price higher
than Kq. The function R(K) and its inverse Kq ¼ R�1ðqÞ can be easily obtained from the
observedmarket prices ofOTMcall and put option prices. Note that the quotientK0:5 is equal
to the mean of the risk neutral distribution. For example if we choose the strike prices,
K0:01 ¼ R�1ð0:01Þ and K0:99 ¼ R�1ð0:99Þ we truncate the left tail of the underlying’s risk
neutral density by 1% and the right tail by 1%, respectively.

This type of decomposition allows us to examine in a consistent manner the
informational content of option prices at differentmoneyness levels. In the empirical analysis
we use various symmetric lower (BL) and upper (BU) bounds to define themoneyness range at
which implied volatility is calculated. Andersen and Bondarenko (2010) show that the
implied volatility with lower (BL) and upper (BU) bounds is analogous to the risk neutral
expectation of corridor volatility in (2) and it is given by:

EQðVðt;TÞÞ ¼ 2expðrðT � tÞÞ
T � t

Z F0
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K2 dKþ
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VPðt;TÞ ¼ 2expðrðT � tÞÞ
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In the subsequent empirical analysis we use model-free volatilities computed from (7)
when BU takes the values R�1ð0:01Þ, R�1ð0:05Þ, R�1ð0:1Þ, R�1ð0:15Þ, R�1ð0:2Þ, R�1ð0:25Þ,
and BL takes the values R�1ð0:99Þ, R�1ð0:95Þ, R�1ð0:90Þ, R�1ð0:85Þ, R�1ð0:80Þ, R�1ð0:75Þ.
The model-free volatility which is computed from the full cross-section of OTM put and call
option prices is denoted as VF, the model-free volatility which is computed from the full
cross-section of OTMputs is denoted as VPF and themodel-free volatility which is computed
from the full cross-section of OTMcalls is denoted as VCF. Themodel-free volatility which is



computed from the cross-section of OTM put and call option prices that truncates the left
and right tails of the underlying’s risk-neutral return distribution by 1% is denoted as V99.
The model-free volatility which is computed from the cross-section of OTM puts that
truncates the left tail by 1% is denoted as VP99 and the model-free volatility which is
computed from the cross-section of OTM calls that truncates the right tail by 1% is denoted
as VC99. We similarly define model-free volatilities that correspond to 5%, 10%, 15%, 20%,
and 25% truncation levels of the left and right tails of the underlying’s risk neutral
distribution (a total of 21 model-free volatilities).

In the ensuing empirical analysis we also use the CBOE volatility indices VIX and
VXO. The VIX index is a measure of model-free volatility and it is computed using the full
cross-section of SPX OTM put and call option prices. The VXO index is based on S&P
100 options and it is computed as the average of the Black and Scholes (1973) implied
volatilities on two near-the-money calls and two near-the-money puts. The main
difference between the two indices is that the VXO does not contain information from
the full cross-section of OTM options. Note that Ang, Hodrick, Xing, and Zhang (2006)
use the VXO index and not the VIX index when they study the price of volatility risk in the
cross-section of stock returns.

We also construct three measures that capture volatility risk in the left tail of the
underlying’s risk neutral density:

VPðt;TÞ ¼ 2expðrðT � tÞÞ
T � t

Z BL

0

Pðt;T;KÞ
K2 dK ð8Þ

where, BL takes the values R�1ð0:01Þ, R�1ð0:05Þ, R�1ð0:1Þ.
The model-free volatility which is computed from the cross-section of deep OTM puts

that corresponds to the 1% of the left tail of the underlying’s risk-neutral return is denoted
as VPT1, the model-free volatility which is computed from the cross-section of deep OTM
puts that corresponds to the 5% of the left tail is denoted as VPT5 and themodel-free volatility
which is computed from the cross-section of deep OTM puts that corresponds to the 10% of
the left tail is denoted as VPT10.

3. DATA DESCRIPTION

We construct the various corridor implied volatility measures on a daily frequency using
options data on SPX from Option Metrics Ivy Database. Our sample period is from
January 1996 to December 2011. From the row data we select only OTM call and put
option prices. Options with strike prices of more than 103% of the forward index level (K/
F> 1.03) and call options with strike prices of less than 97% of the forward index level (K/
F< 0.97) are eliminated. The forward index level is calculated as in Jiang and Tian (2007)
from at-the money options using the put-call parity. We use the average bid and ask prices
for each option contract and eliminate contracts with zero bids and average prices less than
$3/8. For each option maturity available we use a cubic spline to interpolate implied
volatilities across moneyness levels (K/F). For moneyness levels below (above) the lowest
(highest) available moneyness level in the row data, we use the implied volatility at the
lowest (highest) strike price. After this interpolation and extrapolation procedure, we
construct a fine grid of 1000 implied volatilities for moneyness levels between 0.01% and
300% relative to the spot price.

We convert the implied volatilities into option prices using the Black and Scholes model
and use a trapezoidal rule similar to that proposed by Jiang and Tian (2007) to approximate



the integrals in (7) and (8). We calculate the implied volatilities only when there are at least
two OTM call prices and two OTM put prices available.2

All model-free volatility measures have a constant maturity of 30 days. To construct the
constant maturity volatilities, we first compute the implied volatilities using options that
expire within the two nearestmaturities (less than 30 days and greater than 30 days). Thenwe
linearly interpolate between the two maturities to construct the 30-day model-free volatility.
We compute model-free volatilities that correspond to 5%, 10%, 15%, 20% and 25%
truncation levels of the left and right tails of the underlying’s risk neutral distribution. The
moneyness levels implied by the different upper and lower levels used in Equation (7) range
from 1.11 (upper) to 0.82 (lower) for the 1% truncation level to 1.03 (upper) to 0.98 (lower)
for the 25% truncation level.

Table I reports the descriptive statistics of the model-free volatilities that correspond to
the various truncated points described in Section 2. The volatility calculated from the cross-
section ofOTMcalls is consistently lower than the volatility computed from the cross-section
ofOTMputs. This is consistent with the implied skew in the SPX optionsmarket whereOTM
puts are more expensive relative to OTM calls. The implied volatilities computed from the
cross-section of OTM calls are consistently less volatile with smaller skewness and kurtosis
compared the volatilities computed from the cross-section of OTM puts. Figure 1 plots the
time series of VF, VPF, and VCF for the time period 1996–2011. It is evident from Figure 1,
that most of the spikes in VF during times of market downturns are mainly generated by VPF
which is the volatility part that corresponds to the cross-section of OTM put prices.

Table II reports the correlation coefficients of daily changes in VF, VPF, and VCF with
respect the excess return on the market portfolio (MKT), the size factor (SMB), the value
factor (HML) the momentum factor (UMD) and the liquidity factor (LIQ) of Pastor and
Stambaugh (2003) .The data onMKT, SMB,HML andUMDwere taken fromProfessor Ken
French’s website and the liquidity factor fromProfessor Lubos Pastor’s website. VF ismainly
correlated with VPF (0.98) and to a lesser extent with VCF (0.93). VCF has a negative
correlation of �0.73 with the market return while VPF has a negative correlation of �0.66.
All model-free volatilities have a positive correlation with the SMB and UMD factors and a
negative correlation with the HML. The LIQ factor is negatively correlated with VF, VCF,
and VPF.

4. EMPIRICAL RESULTS

4.1. Portfolio Sorts

We use all stock returns included in the CRSP NYSE/AMEX/NASDAQ daily file from
January 1996 toDecember 2011 to create quintile portfolios based on factor loadings of stock
returns to innovations in various measures of model-free volatility. Innovations inmodel-free
volatilities are proxied by daily changes in volatility levels. Every month in our sample period
we use daily data to estimate factor loading of individual stock returns with respect to
innovations in model-free volatility:

Ri;t � Rf ;t ¼ ai þ biMMKTt þ bi;VDVt þ ei;t ð9Þ

2The qualified OTM calls are approximately 25% of the total options used in the calculations. The market for SPX
500 OTM calls is more liquid compared to the individual equity option market studied by Xing, Zhang and Zhao
(2010).



TABLE I
Descriptive Statistics of Model-Free Volatilities

Volatility Mean St. Dev Skewness Kurtosis

0% truncation

VF 0.057 0.058 4.39 28.39
VPF 0.037 0.040 4.46 29.17
VCF 0.020 0.018 4.24 27.68

1% truncation

V99 0.053 0.054 4.38 28.48
VP99 0.033 0.037 4.45 29.16
VC99 0.020 0.018 4.23 27.66

5% truncation

V95 0.045 0.046 4.43 29.01
VP95 0.027 0.030 4.51 29.85
VC95 0.018 0.017 4.26 27.87

10% truncation

V90 0.039 0.040 4.46 29.53
VP90 0.022 0.025 4.56 30.48
VC90 0.017 0.015 4.29 28.26

15% truncation

V85 0.033 0.034 4.48 29.77
VP85 0.018 0.021 4.58 30.66
VC85 0.015 0.014 4.31 28.66

20% truncation

V80 0.028 0.030 4.52 30.27
VP80 0.014 0.017 4.63 31.24
VC80 0.014 0.013 4.32 28.75

25% truncation

V75 0.024 0.025 4.52 30.27
VP75 0.011 0.014 4.61 30.97
VC75 0.012 0.011 4.34 29.20

Descriptive statistics of SPX model-free volatilities. The model-free volatility which is computed from the segment of the cross-
section of OTM put and call option prices that truncates the left and right tails of the underlying's risk-neutral return distribution by
1% is denoted asV99. Themodel-free volatility which is computed from the segment of the cross-section ofOTMput that truncates
the left tail by 1% is denoted asVP99 and themodel-free volatility which is computed from the segment of the cross-section of OTM
calls that truncates the right tail by 1% is denoted as VC99.We similarly definemodel-free volatilities that correspond to 5%, 10%,
15%, 20%, and 25% truncation levels of the left and right tails of the underlying's risk neutral distribution. VF, VPF, and VCF are
computed using the full cross-section of option prices (0% truncation). The data are daily and cover the period from January 1996
to December 2011 (3,918 observations for each series).



where the variable DVt¼Vt�Vt�1 denotes daily volatility innovations. We use a total of 21
different model-free volatilities described in Section 2. For comparison purposes we also use
the CBOE volatility indices, VIX and VXO.

At the end of each month, we sort stocks into quintiles based on the value of the
estimated loadings (bi,V), where stocks in quintile 1 have the lowest coefficients and stocks in
quintile 5 have the highest coefficients. Then we record the value-weighted daily returns of
the quintile portfolios over the next month and subsequently the estimation window is rolled

FIGURE 1
Time series of daily implied volatilities, where VF¼VPFþVCF. VF is the model-free volatility

computed from the full cross-section of OTM calls and puts, VPF is the model-free implied volatility
computed from the full cross-section of OTM puts and VCF is the model-free implied volatility

computed from full cross-section ofOTMcalls. The data are daily observations and the sample period is
from January 1996 to December 2011. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

TABLE II
Correlation Coefficients

VF VPF VCF MKT SMB HML UMD LIQ

VF 1
VPF 0.986 1
VCF 0.934 0.860 1
MKT �0.706 �0.660 �0.73 1
SMB 0.092 0.082 0.10 0.009 1
HML �0.028 �0.019 �0.04 �0.132 �0.13 1
UMD 0.218 0.190 0.26 �0.275 0.09 �0.265 1
LIQ �0.147 �0.140 �0.146 0.249 0.114 �0.067 �0.015 1

Correlation coefficients between daily changes in model-free volatilities, the excess market return (MKT), the size factor (SMB),
the value factor (HML) and the momentum factor (UMD). VF is the model-free volatility computed from the full cross-section of
OTM calls and puts, VPF is the model-free implied volatility computed from the full cross-section of OTM puts and VCF is the
model-free implied volatility computed from full cross-section of OTM calls. The data are daily and cover the period from
January 1996 to December 2011 (3,918 observations for each series). The correlation coefficients of the liquidity factor (LIQ) are
based on monthly data.



1 month forward and the process is repeated. The value-weighting is based on stock’s
capitalization at the end of the formation period (end of month).

In Table III we report the monthly returns of the quintile portfolios and the spread in
average returns between the 5th quintile portfolio and the1st quintile portfolio.We also report
the alpha of the 5–1 spread with respect to the Fama and French (1993) three factor model
augmented by the momentum factor of Carhart (1997). The monthly returns of the quintile
portfolios are obtained by multiplying the average daily returns within each month by 22.
Similarly, thealpha is alsomultipliedby22.The t-statistics are adjusted for autocorrelationand
heteroskedasticy using the Newey and West (1987) estimator with 12 lags.

The market price of risk of innovations in model-free volatility computed from the cross-
section of OTM calls is consistently negative and highly significant for truncation levels ranging
from 0% to 20%. The spread in average returns between the 5th quintile portfolio and the 1st
quintile portfolio suggests that the price of volatility risk is approximately�10% per annum. The
alphas are alsohighly significantwith t-statistics ranging from�3.33 to�2.65. In sharpcontrast,
the spread in average returns between the 5th quintile portfolio and the 1st quintile portfolio
when volatility is computed from the cross-section of OTM puts is consistently insignificant.

Whenmodel-free volatility is computed from the full cross-section of OTM put and call
option prices (VF) the spread in average returns between the 1st and the 5th portfolios is
marginally significant (t-statistic¼�1.85). The spread becomes more significant when the
truncation level is higher than or equal to 1%. Again, this is evidence that OTM put option
prices, and especially deepOTMputs, do not contain useful information for capturing equity
volatility risk. When innovations are measured with the VIX index the 5–1 spread in average
returns is not statistically significant with a t-statistic of �1.25 and the alpha is only weakly
significant with a t-statistic of�1.85. In sharp contrast, the average spread in the case of VXO
is highly significant with a t-statistic of�2.76 and an alpha with a t-statistic of�3.55. This is
again consistent with the previous results since VXO is computed from near the money
implied volatilities and does not contain any information from OTM put option prices.
Overall, the empirical results from the portfolio sorts provide strong evidence that OTM put
option prices do not provide any useful information with respect to equity volatility risk.

Table IV reports the results fromtheportfolio sortsusingmodel-free volatilities that capture
left tail volatility risk.Again, innovations inmodel-free volatilities areproxiedby thedaily changes
in volatility levels computed from equation (8). The portfolio formation procedure is the same
with the one described previously. The spread in average returns between the 5th quintile
portfolio and the 1st quintile portfolio is highly insignificant in all cases.

4.2. Fama-Macbeth Regressions

To further test the validity of our empirical results, we calculate the prices of volatility risk
using the Fama and Macbeth (1973) two-stage regression. The price of volatility risk is
estimated for each one of the 21 corridor volatilities and the VIX and VXO indices. For each
corridor volatility we construct 25 double sorted portfolios. First we sort according to the
market beta and then we sort according to the volatility beta and we use the same procedure
as the one outlined in section 4.1 for the single sorted portfolios. For each corridor volatility
we use as test assets its corresponding 25 volatility sorted portfolios and as a volatility risk
factor the spread in returns between portfolios with high and low beta volatility.3 The
volatility factor portfolio is denoted as VOL and we use its monthly returns.

3The volatility factor is constructed from the 25 portfolios and it is equal to 1/5((rP5þ rP10þ rP15þ rP20þ rP25)�
(rP1þ rP6þ rP11þ rP16þ rp21)), where rpi is the return of the ith portfolio.



TABLE III
Volatility Sorted Portfolios

Portfolio VF VPF VCF Portfolio V99 VP99 VC99

1 0.005 0.008 0.012 1 0.010 0.009 0.011
2 0.005 0.009 0.009 2 0.009 0.008 0.010
3 0.004 0.007 0.007 3 0.007 0.008 0.007
4 0.004 0.008 0.007 4 0.007 0.007 0.007
5 0.002 0.004 0.002 5 0.003 0.005 0.002
5–1 �0.003 �0.004 �0.010 5–1 �0.007 �0.004 �0.009
t-stat �1.855 �1.373 �2.649 t-stat �2.011 �1.221 �2.518

alpha �0.009 �0.007 0.000 alpha �0.009 �0.007 �0.011
t-stat �2.549 �2.019 �3.330 t-stat �2.676 �1.848 �3.194

Portfolio V95 VP95 VC95 Portfolio V90 VP90 VC90

1 0.010 0.009 0.012 1 0.011 0.009 0.011
2 0.009 0.008 0.009 2 0.009 0.009 0.010
3 0.007 0.008 0.007 3 0.007 0.008 0.007
4 0.007 0.007 0.007 4 0.007 0.007 0.007
5 0.004 0.005 0.002 5 0.003 0.004 0.002
5-1 �0.007 �0.004 �0.010 5–1 �0.008 �0.005 �0.009
t-stat �1.912 �1.172 �2.557 t-stat �2.263 �1.386 �2.337

alpha �0.009 �0.007 �0.011 alpha �0.011 �0.007 �0.011
t-stat �2.629 �1.822 �3.226 t-stat �2.988 �2.014 �3.029

Portfolio V85 VP85 VC85 Portfolio V80 VP80 VC80

1 0.010 0.008 0.011 1 0.011 0.009 0.011
2 0.010 0.009 0.010 2 0.009 0.009 0.010
3 0.007 0.008 0.007 3 0.007 0.008 0.007
4 0.007 0.006 0.007 4 0.007 0.006 0.007
5 0.003 0.006 0.003 5 0.003 0.004 0.002
5-1 �0.007 �0.003 �0.008 5–1 �0.008 �0.005 �0.009
t-stat �1.967 �0.772 �1.988 t-stat �2.210 �1.526 �2.329

alpha �0.009 �0.004 �0.011 alpha �0.011 �0.007 �0.011
t-stat �2.691 �1.405 �2.654 t-stat �2.908 �2.110 �2.982

Portfolio V75 VP75 VC75 Portfolio VIX VXO

1 0.012 0.009 0.011 1 0.010 0.012
2 0.010 0.010 0.010 2 0.009 0.010
3 0.007 0.008 0.007 3 0.008 0.009
4 0.006 0.006 0.007 4 0.008 0.007
5 0.003 0.003 0.003 5 0.005 0.003
5-1 �0.009 �0.006 �0.008 5–1 �0.005 �0.010
t-stat �2.469 �1.754 �2.249 t-stat �1.252 �2.762

alpha �0.011 �0.009 �0.011 alpha �0.007 �0.011
t-stat �3.152 �2.258 �2.945 t-stat �1.855 �3.554

continued



In the first stage we estimate for each portfolio i¼1, 2,. . ., 25 the factor loadings with
respect to the market return and the spread between the high/low volatility beta portfolios
using the full sample. We also control for the size factor (SMB), the value factor (HML). the
momentum factor (UMD) and the liquidity factor (LIQ) of Pastor and Stambaugh (2003).
The first stage regression is the following:

Ri;t � Rf ;t ¼ ai þ biMMKTt þ biHMLHMLt þ biSMBSMBt

þbiUMDUMDt þ biLIQLIQt þ biVOLVOLt þ ei;t
ð10Þ

This table reports the average monthly returns of quintile portfolios 1–5. Every month we use daily data and regress individual
stock excess returns on excess market returns and innovations on market volatility: Ri;t � Rf;t ¼ ai þ biMMKTt þ bi;VDVt þ ei;t .
Stocks are sorted into quintiles based on the regression coefficient biv, where quintile 1 has the lowest coefficient and quintile 5 has
the highest coefficient. Within each quintile we form value-weighted portfolios based on stocks capitalization at the last day of the
estimation period. We record the daily returns of each value-weighted portfolio over the next month and then the estimation
window is rolled forward 1 month and the process is repeated. We repeat the estimation procedure for a total of 192 months. The
row “5–1” reports the difference in monthly returns between portfolio 5 and portfolio 1. The row “alpha” reports Jensen's alpha with
respect to the Fama-French three factor model augmented by the momentum factor of Carhart. The t-statistics are adjusted for
autocorrelation and heteroskedasticy using the Newey and West (1987) estimator with 12 lags. The sample period is from
January 1996 to December 2011. The model-free volatility which is computed from the segment of the cross-section of OTM put
and call option prices that truncates the left and right tails of the underlying's risk-neutral return distribution by 1% is denoted as
V99. The model-free volatility which is computed from the segment of the cross-section of OTM puts that truncates the left tail by
1% is denoted as VP99 and the model-free volatility which is computed from the segment of the cross-section of OTM calls that
truncates the right tail by 1% is denoted as VC99. We similarly define model-free volatilities that correspond to 5%, 10%, 15%,
20%, and 25% truncation levels of the left and right tails of the undelrying's risk neutral distribution. VF, VPF, and VCF are
calculated using the full cross-section of option prices (0% truncation).

TABLE IV
Volatility Tail Risk Sorted Portfolios

Portfolio VPT1 VPT5 VPT10

1 0.006 0.008 0.008
2 0.008 0.008 0.008
3 0.008 0.008 0.009
4 0.008 0.008 0.007
5 0.007 0.006 0.005
5–1 0.001 �0.002 �0.003
t-stat 0.284 �0.810 �1.053

alpha 0.000 �0.002 �0.004
t-stat 0.350 �1.156 �1.558

This table reports the average monthly returns of quintile portfolios 1–5. Every month we use daily data and regress individual
stock excess returns on excess market returns and innovations on market volatility: Ri;t � Rf;t ¼ ai þ biMMKT þ bi;VDVt þ ei;t .
Stocks are sorted into quintiles based on the regression coefficient biv, where quintile 1 has the lowest coefficient and quintile 5 has
the highest coefficient. Within each quintile we form value-weighted portfolios based on stocks capitalization at the last day of the
estimation period. We record the daily returns of each value-weighted portfolio over the next month and then the estimation
window is rolled forward 1 month and the process is repeated. We repeat the estimation procedure for a total of 192 months. The
row “5–1” reports the difference in monthly returns between portfolio 5 and portfolio 1. The row “alpha” reports Jensen's alpha with
respect to the Fama-French three factor model augmented by the momentum factor of Carhart. The t-statistics are adjusted for
autocorrelation and heteroskedasticy using the Newey and West (1987) estimator with 12 lags. The sample period is from
January 1996 to December 2011. The model-free volatility which is computed from the segment of the the cross-section of OTM
puts that corresponds to the 1% of the left tail of the underlying's risk-neutral return is denoted as VPT1, the model-free volatility
which is computed from the segment of the cross-section of OTMputs that corresponds to the 5%of the left tail is denoted asVPT5
and themodel-free volatility which is computed from the segment of the cross-section of OTM puts that corresponds to the 10% of
the left tail is denoted as VPT10.

TABLE III
(Continued)



In the second stage the market price of risk of each factor is estimated using monthly cross-
sectional regressions:

�Ri;j � �Rf ;j ¼ l0;j þ biMlM;j þ biHMLlHML;j þ biSMBlSMB;j

þbi;UMDlUMD;j þ bi;LIQlLIQ;j þ bi;VOLlVOL;j þ ei;j ð11Þ

where, �Ri;j is the monthly return of portfolio i¼1, 2,. . ., 25 in month j¼ 1,. . ., 192. The
estimates of the factor premiums l are obtained by averaging the monthly premiums,

l ¼ ð1=MÞ
XM
j¼1

lj, where M¼192. We compute the Fama-Macbeth t-statistics adjusted for

autocorrelation andheteroskedasticyusing theNewey andWest (1987) estimatorwith12 lags.
The results are reported in Table V. The volatility risk premium is consistently

significant only when the 25 volatility sorted portfolios and the volatility factor are
constructed from volatilities that use the cross-section of OTM call options (only in the case
of the VC75 portfolio the premium is insignificant). The cross sectional average volatility
premium is around �7% per annum which is somewhat smaller than the spread in average
returns between the 5th quintile portfolio and the 1st quintile portfolio obtained from the
portfolio sorting tests (around �10% per annum).4 In contrast, the volatility risk premium
computed from portfolios and spreads obtained from volatilities that use the cross-section of
OTM put options is insignificant in all cases regardless of truncation levels.

4.3. Factor Mimicking Aggregate Volatility Risk

Similar to Ang, Hodrick, Xing, and Zhang (2006), we construct amimicking factor that tracks
changes in daily volatility innovations (DVt). The factor is obtained from estimating the
regression:

DVt ¼ aþ b0Xt þ et ð12Þ
where, Xt represent the return of base assets. The factor that mimics volatility innovations
is given by b0Xt. For each corridor volatility we use as base assets the excess returns of its
corresponding 5 volatility sorted portfolios. The average monthly returns and the
corresponding t-statistics of the factor-mimicking portfolios are reported in Table VI.
Consistent with the previous results the monthly returns of the portfolios that track
changes in volatilities computed from OTM call options are consistently negative and
significant. The monthly returns of the portfolios that track changes in volatilities
computed from OTM put options are insignificant or marginally significant up to the 20%
truncation level. Table VII reports the results from single portfolios sorts. Portfolios sorts
are based on the sensitivity to the volatility factor mimicking portfolios and the procedure
is the same as the one described in section 4.1. The results are somewhat statistically
weaker compared to the results in Table III. However, the spread in average returns
between the 5th quintile portfolio and the 1st quintile portfolio when volatility is
computed from the cross-section of OTM calls is statistically significant at the 10% level
and the alphas are also highly significant with t-statistics above 2. The average spread when
volatility is computed from the cross-section of OTM puts is in all cases insignificant.5

4This difference may be attributed to the lack of control variables (SMB, HML, UMD, and LIQ) in regression (9).
5We have also tested single portfolios sorts using factor mimicking portfolios for volatility risk in the left tail and the
results were insignificant as in Table IV.



TABLE V
Fama-Macbeth Regressions

Con. MKT SMB HML UMD LIQ VOL

VF �0.002 �0.004 0.011 0.007 0 0.002 �0.004
t-stat �0.395 �0.885 1.423 1.146 �0.441 0.119 �1.641
VCF 0.007 �0.004 0.007 �0.003 0.001 �0.011 �0.006
t-stat 1.45 -0.923 0.941 �0.451 2.125 �0.779 �2.575
VPF �0.001 0 0.004 0.008 0.001 0.024 �0.002
t-stat �0.222 �0.005 0.928 1.25 1.409 1.272 �0.734

V99 �0.002 �0.003 0.01 0.01 0 0 �0.004
t-stat �0.427 �0.687 1.343 1.443 0.321 0.012 �1.72
VC99 0.007 �0.004 0.009 �0.001 0.001 �0.011 �0.005
t-stat 1.14 �0.955 0.921 �0.161 2.248 �0.645 �2.089
VP99 �0.003 0.001 0.001 0.007 0 0.033 �0.001
t-stat �0.596 0.19 0.259 1.064 0.344 2.109 �0.475

V95 �0.001 �0.005 0.012 0.006 0 0.008 �0.005
t-stat �0.206 �0.977 1.582 0.768 0.243 0.535 �1.866
VC95 0.005 �0.006 0.01 �0.003 0.001 �0.019 �0.007
t-stat 1.019 �1.31 1.14 �0.379 0.918 �1.406 �3.305
VP95 0 �0.002 0.005 0.004 0 0.012 �0.002
t-stat �0.001 �0.521 0.757 0.561 0.024 0.908 �0.851

V90 0.001 �0.005 0.01 0.006 0 �0.003 �0.005
t-stat 0.162 �0.912 1.278 0.763 0.37 �0.157 �2.054
VC90 0.005 �0.005 0.008 �0.003 0.001 �0.009 �0.007
t-stat 1.123 �0.993 0.992 �0.349 1.332 �0.697 �3.187
VP90 0 �0.002 0.005 0.005 0 0.013 �0.002
t-stat �0.017 �0.474 0.808 0.612 0.195 1.286 �1.055

V85 0.003 �0.004 0.002 0.001 0 0.015 �0.004
t-stat 0.607 �0.798 0.266 0.188 0.437 0.859 �1.937
VC85 0.005 �0.005 0.009 �0.001 0.001 �0.011 �0.005
t-stat 0.943 �0.937 1.163 �0.209 1.538 �0.728 �2.641
VP85 0 �0.002 0.003 0.005 0 0.007 �0.002
t-stat 0.077 �0.599 0.402 0.594 �0.657 0.503 �0.981

V80 0.008 �0.008 0.006 �0.001 0 �0.02 �0.005
t-stat 1.831 �1.581 0.737 �0.187 �0.069 �2.156 �2.419
VC80 0.001 �0.003 0.015 �0.001 0.001 0.013 �0.005
t-stat 0.14 �0.554 1.798 �0.09 1.972 0.764 �2.552
VP80 �0.001 �0.003 0.007 0.004 �0.001 �0.005 �0.003
t-stat �0.182 �0.584 1.17 0.594 �0.612 �0.546 �1.01

V75 0.005 �0.008 0.008 0 0 �0.012 �0.006
t-stat 1.419 �1.44 1.351 �0.068 �0.087 �0.736 �2.826

continued



These results provide further evidence that volatility from deep OTM put options is not
priced in the cross section of equity returns.

5. REALIZED VOLATILITY FORECASTING

The results in the previous section suggest that model-free volatility computed from the
cross-section of OTM call options may be a better proxy for future volatility. To test if this is
indeed the case, we run predictive regressions to examine the forecasting ability of the
alternative model-free volatility measures. We use one-month ahead realized standard
deviation (

ffiffiffiffiffiffiffi
RV

p
) as the dependent variable and the square-root of model-free volatilities

computed from the cross- section of OTM put and call option prices, respectively, as
independent variables. We also control for past realized volatility Again, we compute model-
free volatilities that correspond to 0%, 5%, 10%, 15%, 20%, and 25% truncation levels of the
left and right tails of the underlying’s risk neutral distribution. We run the regressions using
the following specification:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RVtþ1

p
¼ b0 þ b1

ffiffiffiffiffiffiffiffi
VPt

p
þ b2

ffiffiffiffiffiffiffiffiffi
VCt

p
þ b3

ffiffiffiffiffiffiffiffi
RVt

p
þ etþ1 ð13Þ

where, now t denotes end-of-month observations. Realized volatility is computed using daily
SPX returns within each month.

The coefficient estimates along withNewey andWest (1987) t-statistics with 12 lags are
reported in Table VIII. The coefficient b1 is insignificant for all model-free volatilities
computed from OTM put option prices. In contrast, the coefficient of the model-free
volatility computed fromOTM call option prices is highly significant regardless of truncation
level. These results suggest that OTM call option prices subsume all relevant information for
forecasting future SPX realized volatility.

TABLE V
(Continued)

Con. MKT SMB HML UMD LIQ VOL

VC75 0.007 �0.004 0 �0.002 0 �0.016 �0.003
t-stat 0.982 �1.086 �0.069 �0.166 0.721 �0.794 �0.585
VP75 �0.001 �0.003 0.008 0.005 0 �0.003 �0.004
t-stat �0.114 �0.575 1.163 0.662 0.098 �0.218 �1.606

VIX 0.007 �0.006 0.005 0 0.001 �0.031 �0.005
t-stat 1.314 �1.171 0.642 0.06 1.485 �1.925 �1.811
VXO 0 �0.005 0.009 0.003 0 0.013 �0.005
t-stat 0.097 �1.119 1.155 0.339 0.809 1.054 �2.228

Themonthly risk premiums from Fama–MacBeth cross-sectional regressions using themonthly excess returns on the 25 volatility
sorted portfolios. For each corridor volatility we use as test assets its corresponding 25 volatility sorted portfolios and as a volatility
risk factor (VOL) the spread in returns between high/low volatility beta portfolios. We also control for the excess market return
(MKT), the size factor (SMB), value factor (HML), themomentum factor (UMD) and the liquidity factor (LIQ). In the first stage, factor
loadings are obtained from regressing portfolio returns on excess market returns, the control variables and the return of the VOL
portfolio using the full sample over the time period January 1996 to December 2011. In the second stage, the monthly excess
returns of the portfolios are regressed on the loadings every month to obtain the estimates of the market price of risk for each
factor. We compute the Fama-Macbeth (FM) t-statistics adjusted for autocorrelation and heteroskedasticy using the Newey and
West (1987) estimator with 12 lags.



6. CONCLUSIONS

In this paper we examine the price of volatility risk using SPX corridor implied volatility. We
break total implied volatility into various components that capture market volatility over
different intervals for the underlying asset price. This decomposition allows us to separate the
incremental information of the various segments of the cross-section of OTM put and call
option prices with respect to the pricing of systematic volatility risk. We find that only
volatilities computed from the cross-section of OTM call option prices carry a significant

TABLE VI
Factor Mimicking Aggregate Volatility Risk

Mean t-statistic

FVF �0.008 �2.562
FVPF �0.005 �1.314
FVCF �0.003 �2.378

FV99 �0.007 �2.604
FVP99 �0.005 �1.330
FVC99 �0.002 �2.347

FV95 �0.006 �2.445
FVP95 �0.004 �1.481
FVC95 �0.002 �2.362

FV90 �0.006 �2.531
FVP90 �0.003 �1.680
FVC90 �0.002 �2.327

FV85 �0.005 �2.446
FVP85 �0.003 �1.840
FVC85 �0.002 �2.460

FV80 �0.004 �2.337
FVP80 �0.002 �1.913
FVC80 �0.002 �2.350

FV75 �0.003 �2.402
FVP75 �0.002 �2.129
FVC75 �0.002 �2.389

FVIX �0.010 �2.753
FVXO �0.007 �2.185

Monthly returns from volatility factor mimicking portfolios. The portfolio that tracks changes in model-free volatility computed from
the segment of the cross-section of OTM put and call option prices that truncates the left and right tails of the underlying's risk-
neutral return distribution by 1% is denoted as FV99. The portfolio that tracks changes in model-free volatility computed from the
segment of the cross-section of OTM puts that truncates the left tail by 1% is denoted as FVP99 and the portfolio that tracks the
model-free volatility which is computed from the segment of the cross-section of OTM calls that truncates the right tail by 1% is
denoted as FVC99. We similarly define portfolios that track changes in model-free volatilities that correspond to 5%, 10%, 15%,
20%, and 25% truncation levels of the left and right tails of the underlying's risk neutral distribution. FVF, FVPF, and FVCF are
portfolios that track changes in model-free volatilities computed from the full cross-section of option prices (0% truncation).



TABLE VII
Volatility Factor Mimicking Sorted Portfolios

Portfolio FVF FVPF FVCF Portfolio FV99 FVP99 FVC99

1 0.009 0.008 0.011 1 0.009 0.007 0.011
2 0.009 0.007 0.011 2 0.008 0.009 0.010
3 0.008 0.007 0.007 3 0.007 0.008 0.008
4 0.006 0.008 0.006 4 0.007 0.007 0.006
5 0.006 0.006 0.003 5 0.006 0.006 0.003
5–1 �0.003 �0.002 �0.009 5–1 �0.003 �0.001 �0.008
t-stat �0.614 �1.373 �1.871 t-stat �0.670 �0.252 �1.819

alpha �0.005 �0.005 �0.011 alpha �0.005 �0.004 �0.011
t-stat �1.152 �1.079 �2.583 t-stat �1.202 �0.856 �2.566

Portfolio FV95 FVP95 FVC95 Portfolio FV90 FVP90 FVC90

1 0.009 0.005 0.010 1 0.009 0.006 0.012
2 0.009 0.009 0.010 2 0.009 0.009 0.011
3 0.007 0.007 0.007 3 0.006 0.007 0.008
4 0.006 0.007 0.007 4 0.007 0.007 0.005
5 0.007 0.008 0.004 5 0.006 0.008 0.003
5–1 �0.003 0.003 �0.006 5–1 �0.003 0.002 �0.009
t-stat �1.277 0.765 �1.348 t-stat �0.681 0.403 �1.926

alpha �0.006 0.084 �0.009 alpha �0.006 �0.001 �0.012
t-stat �2.629 0.000 �2.019 t-stat �1.343 �0.316 �2.668

Portfolio FV85 FVP85 FVC85 Portfolio FV80 FVP80 FVC80

1 0.009 0.008 0.011 1 0.009 0.006 0.011
2 0.008 0.008 0.009 2 0.009 0.008 0.010
3 0.008 0.006 0.009 3 0.008 0.007 0.008
4 0.006 0.006 0.006 4 0.004 0.008 0.006
5 0.007 0.009 0.003 5 0.006 0.006 0.003
5–1 �0.002 0.001 �0.009 5–1 �0.003 �0.001 �0.008
t-stat �0.529 0.132 �1.845 t-stat �0.636 �0.116 �2.329

alpha �0.005 �0.002 �0.011 alpha �0.006 �0.003 �0.011
t-stat �1.226 �0.558 �2.508 t-stat �1.302 �0.639 �2.425

Portfolio FV75 FVP75 FVC75 Portfolio FVIX FVXO

1 0.008 0.009 0.012 1 0.009 0.010
2 0.007 0.009 0.010 2 0.008 0.009
3 0.008 0.008 0.008 3 0.008 0.008
4 0.008 0.006 0.005 4 0.008 0.008
5 0.007 0.006 0.001 5 0.004 0.004
5–1 �0.001 �0.003 �0.011 5–1 �0.005 �0.006
t-stat �0.364 �0.793 �2.490 t-stat �1.230 �1.359

alpha �0.001 �0.005 �0.014 alpha �0.008 �0.007
t-stat �0.295 �1.280 �3.209 t-stat �1.742 �1.810

continued



negative risk premium in the cross-section of stock returns.We also find that they contain all
relevant information for forecasting future realized volatility.

Our empirical results provide strong evidence that SPX out-of-the money put option
prices do not contain useful information for capturing systematic volatility risk in equity
returns. These results provide evidence that equity market and the out-of-the-money index

This table reports the average monthly returns of quintile portfolios 1–5. Every month we use daily data and regress individual
stock excess returns on excess market returns and the returns of the factor that mimics aggregate volatility risk:
Ri;t � Rf;t ¼ ai þ biMMKTt þ bi;VFVt þ ei;t. Stocks are sorted into quintiles based on the regression coefficient biv, where quintile
1 has the lowest coefficient and quintile 5 has the highest coefficient.Within each quintile we form value-weighted portfolios based
on stocks capitalization at the last day of the estimation period.We record the daily returns of each value-weighted portfolio over the
next month and then the estimation window is rolled forward 1 month and the process is repeated. We repeat the estimation
procedure for a total of 192months. The row “5–1” reports the difference in monthly returns between portfolio 5 and portfolio 1. The
row “alpha” reports Jensen's alpha with respect to the Fama-French three factor model augmented by the momentum factor of
Carhart. The t-statistics are adjusted for autocorrelation and heteroskedasticy using the Newey and West (1987) estimator with
12 lags. The sample period is from January 1996 to December 2011. The portfolio that tracks changes in model-free volatility
computed from the segment of the cross-section of OTMputs that truncates the left tail by 1% is denoted as FVP99 and the portfolio
that tracks themodel-free volatility which is computed from the segment of the cross-section of OTM calls that truncates the right tail
by 1% is denoted as FVC99. We similarly define portfolios that track changes in model-free volatilities that correspond to 5%, 10%,
15%, 20%, and 25% truncation levels of the left and right tails of the underlying's risk neutral distribution. FVF, FVPF, and FVCF are
portfolios that track changes in model-free volatilities computed from the full cross-section of option prices (0% truncation).

TABLE VIII
Predicting Future Realized Volatility

100 99 95 90 85 80 75

Constant �0.02 �0.02 �0.02 �0.02 �0.02 �0.02 �0.01
(�2.73) (�2.35) (�2.10) (�1.92) (�1.64) (�1.33) (�1.25)

VP �0.16 �0.17 �0.19 �0.16 �0.08 �0.04 0.07
(�0.45) (�0.45) (�0.47) (�0.39) (�0.20) (�0.09) (0.2)

VC 1.11 1.13 1.19 1.2 1.13 1.14 1.07
(3.19) (3.02) (3.04) (3.02) (3.13) (2.87) (3.77)

RV 0.38 0.38 0.37 0.36 0.36 0.36 0.36
(2.45) (2.51) (2.51) (2.55) (2.58) (2.62) (2.62)

Adj. R2 0.58 0.58 0.58 0.58 0.58 0.58 0.58

Constant �0.04 �0.04 �0.04 �0.04 �0.04 �0.04 �0.03
(�2.01) (�1.91) (�1.81) (�1.71) (�1.59) (�1.42) (�1.36)

VP 0.04 0.03 0.04 0.06 0.15 0.21 0.35
(0.17) (0.12) (0.12) (0.18) (0.42) (0.51) (0.98)

VC 1.51 1.54 1.59 1.62 1.59 1.62 1.58
(3.02) (2.88) (2.85) (2.68) (2.62) (2.42) (2.7)

Adj. R2 0.55 0.55 0.55 0.55 0.55 0.55 0.55

Coefficient estimates from the regression:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RVtþ1

p ¼ b0 þ b1

ffiffiffiffiffiffiffiffi
VPt

p þ b2

ffiffiffiffiffiffiffiffi
VCt

p þ b3

ffiffiffiffiffiffiffiffi
RVt

p þ etþ1, where, VPt and VCt are model-
free volatilities computed from the cross-section of OTM put and call option prices, respectively. Columns denote the truncation of
the underlying's risk-neutral return distribution. Model-free volatilities that are computed using the full cross-section of option
prices are in the first column (100). The model-free volatilities which are computed from the segment of the cross-section of OTM
put and call option prices that truncates the left and right tails of the underlying's risk-neutral return distribution by 1% are in the
second column (99). We similarly definemodel-free volatilities that correspond to 5%, 10%, 15%, 20%, and 25% truncation levels
of the left and right tails of the undelrying's risk neutral distribution. The t-statistics reported in parentheses are corrected for
autocorrelation and heteroskedasticity using the Newey and West (1987) estimator with 12 lags. The data are end-of-month
observations and the sample period is from January 1996 to December 2011.

TABLE VII
(Continued)



put option market are segmented due to market imperfections. One possible explanation of
our results is provided by Bollen andWhaley (2004) and Garleanu, Pedersen and Poteshman
(2009) which show that out-of-the money index put option prices are driven mainly by the
demand pressure by hedgers who seek portfolio insurance.
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