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Abstract. This paper introduces a wide-spectrum specification logicνZ. The minimal core logic is extended to a more
expressive specification logic which includes a schema calculus similar (but not equivalent) to Z, some new additional
schema operators and extensions to a programming and program development logic.

1. Introduction

In this paper we introduce a wide-spectrum logicνZ. This is a very small specification logic based on a total correctness
relational semantics with refinement as its fundamental relation.
The language which underlies the logic is Z-like, that is to say, we have schemas and schema operators. A signifi-
cant difference is that operation schemas have two predicates, so resemble more the specification statements of the
Refinement Calculus (e.g. [6] and [28]) or designs of the UTP [24]. This is, in fact, a fairly trivial difference, and
the language could easily be set up using single predicate schemas, if preferred. On the other hand, there are several
significant differences betweenνZ and Z:

• Z is based on apartial-correctness semantics;νZ is based on atotal-correctness semantics.
• Z permits refinement of over–specifications;νZ does not.
• Z schema operators are not monotonic;νZ schema operators are monotonic (anti-monotonic).
• Z is based onequality; νZ is based onrefinement.
• Z is aspecificationlanguage;νZ is wide-spectrum.
• Z is relatively inflexible;νZ is extensible.
• Z is a language; νZ is a logic.

νZ is very economical and expressive: the core language is verysmall but capable of further development by definition.
After we introduce the theory itself, we go on in the sectionsthat follow to introduce a more expressive specification
language (specification of specification constructs inνZ) and then a programming language (specification of program-
ming constructs inνZ). None of these constructs are fixed; it is possible to provide alternative specification infrastruc-
ture and indeed alternative programming languages. BecauseνZis a logic, the various definitions, for specification and
programming, inherit this and so we induce an extended specification logic and a programming logic alongside the
definitions. These combine to form a mathematical frameworkfor the derivation of programs from specification.
In this paper we will concentrate entirely on the system itself, its mathematical basis, and on methodologies for ex-
tending the core framework with additional features for specification, for programming and for program development.
In future publications we will explore more pragmatic issues, providing techniques and examples to demonstrate how
to effectively specify, refine and implement systems withinνZ.
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2. CoreνZ

νZ is interpreted within the logicZ⊥
C
, the extension ofZC introduced in [20] which includes⊥ elements in all types.

We assume familiarity with this theory (and notational conventions); all this is also covered in [23].

2.1. Syntax ofνZ

The syntax of the coreνZ framework is minimal. The type of anoperation schema, U , isPT (writtenU PT ) whereT
is a schema type which has the formV gV ′. Generally we will, as is usual in Z, write∆V for V gV ′. We will write
U (v ) to indicate that variablev may appear free in the schema expressionU .1

Definition 2.1.

U PT ::=
X PT – schema variable
[ T | P | Q ] – atomic specifications
¬U PT – negation
U
PT0

0 ∨ U
PT1

1 (T = T0 g T1) – disjunction
∃ xTx • U

PT0

0 (T = T0 − Tx) – existential hiding
µX PT • U (X )PT – recursive schemas

2.2. Semantics ofνZ

We first need to define refinement. In this framework it is simply containment.

Definition 2.2.

U
PT

0 w U
PT

1 =df ~U0� ⊆T ~U1�

We also need to specify the universe of specification models for a given type. Part (ii) is based on [11] section 8.1.

Definition 2.3.

(i) magicPT =df [ T | true | false ]
(ii) WT =df {

�

U PT
�

| magicPT w U ∧ U o
9 magicP(∆T

out ) w U }

Now we have the semantics of specifications.

Definition 2.4. In what follows,T? =df V⊥ ? V ′⊥. The types are omitted here, but are taken to be as specified inthe
syntax above.

~X � =df X
�

[ T | P | Q ]
�

=df {z0 ? z ′1 ∈ T? | z0.P ⇒ z0.z
′
1.Q }

~¬U � =df {z ∈ T? | z =V⊥ ∨ z < U }

~U0 ∨ U1� =df {z ∈ T? | z
.
∈ ~U0� ∨ z

.
∈ ~U1�}

~∃ x • U0� =df {z ∈ T? | ∃ y ∈ T?
0 • y ∈ ~U0� ∧ z = y � T }

�

µX • U (X )
�

=df

�

{X ∈WT | ~U (X )� w X }

In the case of recursion, the schema variableX must appear in apositiveposition inU . That is: this is monotone
recursion. The notationt .P indicates the usual distribution of the bindingt through the propositionP so that its
component observationsx are replaced byt .x. Note that⊥ .P = false for all P (⊥ satisfies nothing, in particular it is
outside every precondition). Since types can be recovered from the alphabets ofP andQ for atomic schemas, we can
and will write [ P | Q ] for [ T | P | Q ] in the sequel (and suppress types) where possible.

1 When the variable has the typePT andT is a schema type (that is: it is a variable over schemas) we shall write it in Z⊥
C

, as we do inνZ, in
upper-case.
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2.3. Logic ofνZ

The semantics induces a logic for the constructs, as follows. In this introductory paper we omit the proofs.

2.3.1. Refinement

The rules for operation refinement inνZ are as follows:

Proposition 2.1. Let z be a fresh variable.

z ∈ U0 ` z ∈ U1

U0 w U1
(w+)

U0 w U1 t ∈ U0

t ∈ U1
(w−)

�

2.3.2. Atomic Operation Schemas

The rules for atomic operation schema inνZ are as follows:

Proposition 2.2.
t0.P ` t0.t

′
1.Q

t0 ? t ′1 ∈ [ P | Q ]
(U+)

t0 ? t ′1 ∈ [ P | Q ] t0.P

t0.t
′
1.Q

(U−)

�

The following inequations are derivable:

Proposition 2.3. Weakening of preconditions and strengthening of postconditions (respectively):

t .P1 ` t .P0

[ P0 | Q ] w [ P1 | Q ]
t .Q0 ` t .Q1

[ P | Q0 ] w [ P | Q1 ]

�

2.3.3. Negated Schemas

Note that negation inνZ is not the relational complement: it is well-known that the universe of total-correctness
relations in this model is not closed under that operation (seee.g.[11]). An alternative characterisation of the semantics
is available using a combination of relational complement,disjunction and magic.

Definition 2.5.
¬U = U ∨ magic

In any event, the rules for negation are derivable:

Proposition 2.4.

t < U

t ∈ ¬U
(U+¬0

)
t
.
∈magic

t ∈ ¬U
(U+¬1

)
t ∈ ¬U t < U ` P t

.
∈magic ` P

P
(U−¬)

�

Negated schemas areanti-monotonicwith respect to the refinement relation:

Proposition 2.5.
U1 w U0

¬U0 w ¬U1

�

The notion satisfies double negation and excluded middle.
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Proposition 2.6.
t ∈ U

t ∈ ¬¬U
t ∈ ¬¬U
t ∈ U t ∈ ¬U ∨ U

�

2.3.4. Disjunction Schemas

The rules for disjunction schemas inνZ are derivable, as follows:

Proposition 2.7. Let i ∈ 2.

t
.
∈Ui

t ∈ U0 ∨ U1
(U+
∨i

) t ∈ U0 ∨ U1 t
.
∈U0 ` P t

.
∈U1 ` P

P
(U−
∨
)

�

Disjunction schemas aremonotonicwith respect to the refinement relation:

Proposition 2.8.
U0 w U2 U1 w U3

U0 ∨ U1 w U2 ∨ U3

�

The inequational refinement logic of disjunction schemas:

Proposition 2.9.

[ P0 | Q0 ] ∨ [ P1 | Q1 ] w [ P0 ∧ P1 | Q0 ∨ Q1 ]
�

Proposition 2.10.

[ P0 ∨ P1 | Q0 ∧ Q1 ] w [ P0 | Q0 ] ∨ [ P1 | Q1 ]
�

2.3.5. Existential Hiding Schemas

The rules for existential hiding schemas inνZ are derivable, as follows:

Proposition 2.11.
t ∈ U

t
.
∈ ∃ x • U

(U+
∃
) t ∈ ∃ x • U t ? 〈| xVy |〉 ∈ U ` P

P
(U−
∃
)

�

The rule for existential hiding involvesbinding extensionwhich is closely connected to binding substitution and to a
lemma which will be required extensively in the proofs of therefinement inequations that follow. First we have the
definition of substitution for a bindingt0.

Definition 2.6.

t0[x0/t1].x1 =df

{

t1 when x0 = x1
t0.x1 otherwise

We employ the notationb.P andb.t (generalising binding selection) adapted from [33]. Suppose that{z0 · · · zn } is the
alphabet set oft , thent .P is P [z0 · · ·zn/t .z0 · · · t .zn ].

Lemma 2.12.

t0[x/t0.t1].P = t0.P [x/t1]
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Proof By induction on the structure of propositions and terms.
�

In view of this, it is possible to express the existential elimination rule as:

t ∈ ∃ x • U t [x/y] ∈ U ` P

P
(U−
∃
)

Existential hiding schemas aremonotonicwith respect to the refinement relation:

Proposition 2.13.
U0 w U1

∃ x • U0 w ∃ x • U1

�

There are inequations for refinement involving existentialhiding. First, when hiding a before observation:

Proposition 2.14.

∃ x • [ P | Q ] w [ ∀ u • P [x/u] | ∃u • Q [x/u] ]

Proof

z0 ? z ′1 ∈ ∃ x • [ P | Q ]
(0)

z0 ? 〈| xVy |〉 ? z ′1 ∈ [ P | Q ]
(2)

z0[x/y] ? z ′1 ∈ [ P | Q ]

∀u • z0.P [x/u]
(1)

z0.P [x/y]
z0[x/y].P

z0[x/y].z ′1.Q

z0.z
′
1.Q [x/y]

∃ u • z0.z
′
1.Q [x/u]

∃ u • z0.z
′
1.Q [x/u]

(2)

z0 ? z ′1 ∈ [ ∀u • P [x/u] | ∃u • Q [x/u] ]
(1)

∃ x • [ P | Q ] w [ ∀ u • P [x/u] | ∃u • Q [x/u] ]
(0)

�

Second, when hiding an after observation:

Proposition 2.15.

∃ x′ • [ P | Q ] w [ P | ∃ v • Q [x′/v ] ]

Proof

z0 ? z ′1 ∈ ∃ x
′ • [ P | Q ]

(0)

z0 ? z ′1 ? 〈| x
′Vw |〉 ∈ [ P | Q ]

(2)

z0 ? z ′1[x′/w ] ∈ [ P | Q ] z0.P
(1)

z0.z
′
1[x′/w ].Q

z0.z
′
1.Q [x′/w ]

∃ v • z0.z
′
1.Q [x′/v ]

∃ v • z0.z
′
1.Q [x′/v ]

(2)

z0 ? z ′1 ∈ [ P | ∃ v • Q [x′/v ] ]
(1)

∃ x′ • [ P | Q ] w [ P | ∃ v • Q [x′/v ] ]
(0)

�

And now, in the other direction:

Proposition 2.16.

[ ∃ u • P [x/u] | ∀ u • Q [x/u] ] w ∃ x • [ P | Q ]
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Proof

z0 ? z ′1 ∈ [ ∃u • P [x/u] | ∀u • Q [x/u] ]
(0)

z0[x/y].P
(1)

z0.P [x/y]
∃u • z0.P [x/u]

∀ u • z0.z
′
1.Q [x/u]

z0.z
′
1.Q [x/y]

z0[x/y].z ′1.Q

z0[x/y] ? z ′1 ∈ [ P | Q ]
(1)

z0 ? 〈| xVy |〉 ? z ′1 ∈ [ P | Q ]
z0 ? z ′1 ∈ ∃ x • [ P | Q ]

[ ∃ u • P [x/u] | ∀ u • Q [x/u] ] w ∃ x • [ P | Q ]
(0)

�

Finally:

Proposition 2.17.
[ P | ∀ v • Q [x′/v ] ] w ∃ x′ • [ P | Q ]

Proof

z0 ? z ′1 ∈ [ P | ∀ v • Q [x′/v ] ]
(0)

z0.P
(1)

∀ v • z0.z
′
1.Q [x/v ]

z0.z
′
1.Q [x′/w ]

z0.z
′
1[x′/w ].Q

z0 ? z ′1[x′/w ] ∈ [ P | Q ]
(1)

z0 ? 〈| x
′Vw |〉 ? z ′1 ∈ [ P | Q ]

z0 ? z ′1 ∈ ∃ x
′ • [ P | Q ]

[ P | ∀ v • Q [x′/v ] ] w ∃ x′ • [ P | Q ]
(0)

�

2.3.6. Recursive Schemas

The rules for recursive schemas inνZ are derivable, as follows:

Proposition 2.18.
t ∈ U (µX • U (X ))

t ∈ µX • U (X )
(µ+)

t ∈ µX • U (X )
t ∈ U (µX • U (X ))

(µ−)

�

3. Specifying a Specification Language inνZ

The principles on whichνZ is based includeeconomy(the core system begin so small) andextensibility(the ease with
which the core system can be made more expressive). Since thecore system is so inexpressive, a first ambition will
be to provide additional infrastructure which provides fora considerably more expressive specification language. We
cover some aspects of this in this section, beginning with extensions providing other standard schema operators.
Some of the operators which we consider here are familiar from Z (though, because the semantics is differnt, the
logic of these operators departs from that in Z). In additionthere will be variations on familiar operators, such as
composition: in this section we provide a notion of composition which allowsarbitrary schemas to be composed,
even when those schemas do not match for type. Finally, we introduce a range of quite new operators, unfamiliar in
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Z, which we will see have some use when we turn to the topic of programming languages and program development
logics in later sections.

3.1. Conjunction Schemas

We can define schema conjunction in terms of disjunction and negation, using the usual de Morgan definitions. We
omit the proofs, which are a little more involved than usual,due to the more complex notion of negation we are obliged
to use.

Definition 3.1.
U0 ∧ U1 =df ¬(¬U0 ∨ ¬U1)

The usual rules are derivable.

Proposition 3.1. Let i ∈ 2.

t
.
∈U0 t

.
∈U1

t ∈ U0 ∧ U1
(U+
∧
)

t ∈ U0 ∧ U1

t
.
∈Ui

(U−
∧i

)

�

Conjunction schemas aremonotonicwith respect to the refinement relation:

Proposition 3.2.
U0 w U2 U1 w U3

U0 ∧ U1 w U2 ∧ U3

�

The inequational refinement logic of conjunction schemas:

Proposition 3.3.
[ P0 | Q0 ] ∧ [ P1 | Q1 ] w [ P0 ∧ P1 | Q0 ∧ Q1 ]

�

Proposition 3.4.
[ P0 | Q0 ] ∧ [ P1 | Q1 ] w [ P0 ∨ P1 | Q0 ∨ Q1 ]

�

Proposition 3.5.
[ P0 ∨ P1 | Q0 ∧ Q1 ] w [ P0 | Q0 ] ∧ [ P1 | Q1 ]

�

3.2. Implication Schemas

We can define schema implication in terms of disjunction and negation, using the usual de Morgan definitions.

Definition 3.2.
U0⇒ U1 =df ¬U0 ∨ U1

With the obvious rules derivable:

Proposition 3.6.

z
.
∈U0 ` z

.
∈U1

z ∈ U0⇒ U1
(U+⇒)

t ∈ U0⇒ U1 t
.
∈U0

t
.
∈U1

(U−⇒)

�

Schema implication ismonotonicon the right, andanti-monotonicon the left with respect to the refinement relation:
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Proposition 3.7.
U2 w U0 U1 w U3

U0⇒ U1 w U2⇒ U3

�

The inequational refinement logic of schema implication:

Proposition 3.8.
[ P0 | Q0 ] ⇒ [ P1 | Q1 ] w [ P0 ∧ P1 | Q0⇒ Q1 ]

�

Proposition 3.9.
[ P0 ⇒ P1 | Q0 ∧ Q1 ] w [ P0 | Q0 ] ⇒ [ P1 | Q1 ]

�

3.3. Universal Hiding Schemas

Universal hiding is defined in terms of existential hiding and negation, using the standard de Morgan definition. We
provide the proofs in detail, in this section, for illustration.

Definition 3.3.
∀ x • U =df ¬∃ x • ¬U

And then the usual introduction and elimination rules are derivable.

Proposition 3.10. Let z be a fresh variable. We assume thatt has the formt0 ? t ′1.

t ? 〈| xVz |〉 ∈ U

t ∈ ∀ x • U

Proof Consider the following derivation, which requires thelaw of excluded middle:

t0 =⊥∨ t0 ,⊥

t0 =⊥
(0)

t ∈ ¬∃ x • ¬U

δ0....
t ∈ ¬∃ x • ¬U

t ∈ ¬∃ x • ¬U
(0)

whereδ0 is:

t ∈ ∃ x • ¬U
(1)

δ1....
false

false
(2)

t < ∃ x • ¬U
(1)

t ∈ ¬∃ x • ¬U

and whereδ1 is:

t ? 〈| xVz |〉 ∈ ¬U
(2)

t ? 〈| xVz |〉 < U
(3)

t ? 〈| xVz |〉 ∈ U

false

t0 =⊥
(3)

t0 ,⊥
(0)

false

false
(3)

�

Proposition 3.11. Let t have the formt0 ? t ′1.

t ∈ ∀ x • U v ∈ Tx

t ? 〈| xVv |〉 ∈ U
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Proof Consider the following derivation, which requires thelaw of excluded middle:

t0 =⊥∨ t0 ,⊥

δ0....
t ? 〈| xVv |〉 ∈ U

δ1....
t ? 〈| xVv |〉 ∈ U

t ? 〈| xVv |〉 ∈ U
(0)

whereδ0 is:

t0 ? 〈| xVv |〉 < U
(1)

t0 ? 〈| xVv |〉 ∈ ¬U

t0 ? 〈| xVv |〉 ∈ T?

t0 ? 〈| xVv |〉 ∈ T0⊥

t0 =⊥
(0)

t0 ? 〈| xVv |〉 ∈ T0
(2)

t0
.
∈ T0

t0 ,⊥

false

t0 ? 〈| xVv |〉 =⊥
(2)

〈| xVv |〉 =⊥

v =⊥

v ∈ Tx
v ,⊥

false

false
(2)

t ? 〈| xVv |〉 ∈ U
(1)

andδ1 is:

t ∈ ¬∃ x • ¬U

t ? 〈| xVv |〉 < U
(4)

t ? 〈| xVv |〉 ∈ ¬U

t ∈ ∃ xTx • ¬U t0 ,⊥
(0)

false

t ? 〈| xVv |〉 ∈ U
(4)

�

Universal hiding schemas aremonotonicwith respect to the refinement relation:

Proposition 3.12.
U0 w U1

∀ x • U0 w ∀ x • U1

�

We have an inequational logic of refinement for universal hiding.
First, when hiding a before observation:

Proposition 3.13.

∀ x • [ P | Q ] w [ ∃ u • P [x/u] | ∃u • Q [x/u] ]

Proof

∃ u • z0.P [x/u]
(1)

z0 ? z ′1 ∈ ∀ u • [ P | Q ]
(0)

z0[x/y] ? z ′1 ∈ [ P | Q ]
z0.P [x/y]

(2)

z0[x/y].P

z0[x/y].z ′1.Q

z0.z
′
1.Q [x/y]

∃ u • z0.z
′
1.Q [x/u]

∃u • z0.z
′
1.Q [x/u]

(2)

z0 ? z ′1 ∈ [ ∃u • P [x/u] | ∃u • Q [x/u]
(1)

∀ x • [ P | Q ] w [ ∃ u • P [x/u] | ∃ u • Q [x/u] ]
(0)

�

And:

Proposition 3.14.

∀ x • [ P | Q ] w [ ∀ u • P [x/u] | ∀u • Q [x/u] ]
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Proof

z0 ? z ′1 ∈ ∀ x • [ P | Q ]
(0)

z0[x/y] ? z ′1 ∈ [ P | Q ]
∀ u • z0.P [x/u]

(1)

z0.P [z/y]

z0[x/y].z ′1.Q

z0.z
′
1.Q [x/y]

∀ u • z0.z
′
1.Q [x/u]

z0 ? z ′1 ∈ [ ∀u • P [x/u] | ∀u • Q [x/u] ]
(1)

∀ x • [ P | Q ] w [ ∀ u • P [x/u] | ∀ u • Q [x/u] ]
(0)

�

Next, when hiding an after observation:

Proposition 3.15.

∀ x′ • [ P | Q ] w [ P | ∀ v • Q [x′/v ] ]

Proof

z0 ? z ′1 ∈ ∀ x
′ • [ P | Q ]

z0 ? z ′1[x′/v ] ∈ [ P | Q ] z0.P
(1)

z0.z
′
1[x′/v ].Q

z0.z
′
1.Q [x′/v ]

∀ v • z0.z
′
1.Q [x′/v ]

z0 ? z ′1 ∈ [ P | ∀ v • Q [x′/v ] ]
(1)

∀ x′ • [ P | Q ] w [ P | ∀ v • Q [x′/v ] ]
(0)

�

In the other direction:

Proposition 3.16.

[ ∃ u • P [x/u] | ∀ u • Q [x/u] ] w ∀ x • [ P | Q ]

Proof

z0 ? z ′1 ∈ [ ∃u • P [x/u] | ∀u • Q [x/u] ]
(0)

z0.P [x/y]
(1)

∃u • z0.P [x/u]

∀ u • z0.z
′
1.Q [x/u]

z0.z
′
1.Q [x/y]

z0[x/y].z ′1.Q

z0[x/y] ? z ′1 ∈ [ P | Q ]
(1)

z0 ? z ′1 ∈ ∀ x • [ P | Q ]
[ ∃ u • P [x/u] | ∀ u • Q [x/u] ] w ∀ x • [ P | Q ]

(0)

�

And:

Proposition 3.17.

[ P | ∀ v • Q [x′/v ] ] w ∀ x′ • [ P | Q ]
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Proof

z0 ? z ′1 ∈ [ P | ∀ v • Q [x′/v ] ]
(0)

z0.P
(1)

∀u • z0.z
′
1.Q [x′/u]

z0.z
′
1.Q [x′/w ]

z0.z
′
1[x′/w ].Q

z0 ? z ′1[x′/w ] ∈ [ P | Q ]
(1)

z0 ? z ′1 ∈ ∀ x
′ • [ P | Q ]

[ P | ∀ v • Q [x′/v ] ] w ∀ x′ • [ P | Q ]
(0)

�

3.4. Ξ Schemas

We have the usual idea ofΞ-schemas:

Definition 3.4.
ΞT =df [∆T | true | θT = θ′T ]

The rules are straightforward:

Proposition 3.18.

t ? t ′ ∈ ΞT

t0 ? t ′1 ∈ ΞT

t0 = t1

�

3.5. The Skip Extension

We use this to define theskip-extension of a schema:

Definition 3.5. WhenT0 andT1 are disjoint, we define:

U PT0 � T1 =df U ∧ ΞT1

Naturally this is well-defined even when the types are not disjoint, but the purpose of this is, as described, to extend a
schema withskip and the definition has pathological effects in other circumstances.
The rules are straightforward:

Proposition 3.19.

t0 ? t ′1
.
∈U t0 =T t1

t0 ? t ′1 ∈ U � T
(U+� )

t ∈ U � T

t
.
∈U

(U−�0
) t0 ? t ′1 ∈ U � T

t0 =T t1
(U−�1

)

�

Theskip-extension ismonotonicwith respect to the refinement relation:

Proposition 3.20.
U0 w U1

U0 � T w U1 � T

�

3.6. Composition Schemas

In νZ we wish to composearbitrary specifications; even when the types of the operations do not match. In this regard
νZ differs from Z. For such compositions to make sense, it is necessary to match incompatible types and to ensure that
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operations do not arbitrarily adjust bindings in the process. The definition of schema composition inνZ is, therefore,
a little more complex than in Z. Nevertheless, it is possibleto specify composition in the core theory, using theskip-
extension operator.

Definition 3.6. Let TL = T1 − T0 with the form∆TL = T in
L
g T out ′

L
and let LetTR = T0 − T1 with the form

∆TR = T in
R
gT out ′

R
. Lett be a vector of fresh observations with the size of the alphabet of T out ′

0 gT out ′

L
(equivalently:

T in
1 g T in

R
).

U
P(T in

0 gT
out ′

0 )
0

o
9 U

P(T in
1 gT

out ′

1 )
1 =df ∃ t • (U0 � TL)[α(T out ′

0 g T out ′

L
)/ t ] ∧

(U1 � TR)[α(T in
1 g T in

R
)/ t ]

The following introduction and elimination rules are derivable for schema composition:

Proposition 3.21.

t0 ? t ′2
.
∈U0 t0 =TL

t2 t2 ? t ′1
.
∈U1 t2 =TR

t1

t0 ? t ′1 ∈ U0
o
9 U1

(U+o
9
)

�

Proposition 3.22.

t0 ? t ′1 ∈ U0
o
9 U1 t0 ? t ′2

.
∈U0, t0 =TL

t2, t2 ? t ′1
.
∈U1, t2 =TR

t1 ` P

P
(U−o

9
)

�

Composition schemas aremonotonicwith respect to the refinement relation:

Proposition 3.23.
U0 w U2 U1 w U3

U0
o
9 U1 w U2

o
9 U3

�

3.7. Restricted Chaos

This definition introduces a restricted form ofchaos : outsideP this schema blocks.

Definition 3.7.
chaosP =df [ ¬P | false ]

This leads to the following logical rules.

Proposition 3.24.

t0.P

t0 ? t ′1 ∈ chaosP
(chaos+P)

t0 ? t ′1 ∈ chaosP ¬t0.P

false
(chaos−P)

�

3.8. Schema Specialisation

We use restricted chaos to introduce the specialisation of aschema at a particular observation (it blocks elsewhere).

Definition 3.8. Let ET be the schema type corresponding to the observations contained inE . Let PT be the schema
type ofU , and let∆[xTx ] � T .

U [xVE ] =df chaos(x=E) ∧ U

This induces the following rules:
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Proposition 3.25.

t
.
∈U t .x = t .E

t ∈ U [xVE ]

t ∈ U [xVE ]

t
.
∈U

t ∈ U [xVE ]
t .x = t .E

�

Specialisation schemas aremonotonicwith respect to the refinement relation:

Proposition 3.26.
U0 w U1

U0[xVE ] w U1[xVE ]

�

3.9. Strengthening Preconditions

This operator has the effect of (in general) strengthening the precondition of a schemaU by stipulating an additional
conditionP .

Definition 3.9. Let TP be the schema type corresponding to the observations contained inP . Let PT be the schema
type ofU , and letTP � T .

U ↑ P =df chaosP ⇒ U

The operator is governed by induced logical rules.

Proposition 3.27.
t .P ` t ∈ U

t ∈ U ↑ P

t ∈ U ↑ P t .P

t ∈ U

�

Strengthening preconditions ismonotonicwith respect to the refinement relation:

Proposition 3.28.
U0 w U1

U0 ↑ P w U1 ↑ P

�

4. Specifying a Programming Language inνZ

It is central to the methodology ofνZ that it smoothly integrates specification and programming,and that it is possible
to develop programs from specifications. This is achieved byfirstly specifyinga programming language inνZ and then
inducing a corresponding program logic: refinement then automatically permits development from specifications to
programs. We will develop such a language incrementally in this section.

4.1. Skip

Definition 4.1. For any typeT .

skip =df ΞT

Rules forskip:

Proposition 4.1.

t ? t ′ ∈ skip
(skip+)

t0 ? t ′1 ∈ skip

t0 = t1
(skip−)

�



14 M. C. Henson, M. Deutsch and B. Kajtazi

The inequational refinement logic ofskip:

Proposition 4.2.
θT = θ′T ` t .Q

skip w [ T | true | Q ]
�

4.2. Assignment

Definition 4.2. Let V = TE − [xTx ]

x:= E =df [ true | x′ = E ] ∧ ΞV
Rules for assignment:

Proposition 4.3.

t ? t ′[x′/t .E ] ∈ x:= E
(:=+)

t0 ? t ′1 ∈ x:= E

t0[x/t0.E ] = t1
(:=−)

�

The inequational refinement logic for assignment:

Proposition 4.4. Let z be fresh.

z .z ′[x′/z .E ].Q

x:=E w [ true | Q ]
�

4.3. Conditional

We define a new operator, a conditional schema, in terms of conjunction and strengthening of preconditions:

Definition 4.3. Let PT0 andPT1 be the schema types ofU0 andU1 respectively. LetTD � T0 f T1.

if D then U0 else U1 =df U0 ↑D ∧ U1 ↑ ¬D

Rules for the conditional:

Proposition 4.5.

t .D ` z
.
∈U0 ¬t .D ` t

.
∈U1

t ∈ if D then U0 else U1
(if+)

t ∈ if D then U0 else U1 t .D

t
.
∈U0

(if−0 )
t ∈ if D then U0 else U1 t .(¬D )

t
.
∈U1

(if−1 )

�

Equations and inequations:

Proposition 4.6.
if true then U0 else U1

.
=U0

Proof Follow from specialisations of the introduction rule and the first elimination rule:

z
.
∈U0

false
(1)

z
.
∈U1

z ∈ if D then U0 else U1
(1)
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z ∈ if D then U0 else U1

z
.
∈U0

�

Proposition 4.7.

if false then U0 else U1
.
=U1

�

Proposition 4.8.

if D then [ P | D ∧ Q ] else [ P | ¬D ∧ Q ] w [ P | Q ]

Proof In what follows we writeφ for

z ∈ if D then [ P | D ∧ Q ] else [ P | ¬D ∧ Q ] w [ P | Q ]

D ∨ ¬D

z .P
(1)

φ z .D
(2)

z ∈ [ P | D ∧ Q ]
z .(D ∧ Q )

z .Q

z .P
(1)

φ z .(¬D )
(2)

z ∈ [ P | ¬D ∧ Q ]
z .(¬D ∧ Q )

z .Q

z .Q
(2)

z ∈ [ P | Q ]
(1)

�

4.4. Cases

The previous section can easily be generalised to case commands. We define a new operator, a case schema, in terms
of conjunction and strengthening of preconditions:

Definition 4.4. Let T = {· · · ci · · ·}.

cases ET in c0 : U
PT0

0 · · · cn : U PTn
n endcases =df U0 ↑ E = c0 ∧ · · · ∧ Un ↑ E = cn

Rules for the cases:

Proposition 4.9. Let i ∈ n + 1.

· · · t .(E = ci ) ` t
.
∈Ui · · ·

t ∈ cases E in c0 : U0 · · · cn : Un endcases
(cases+)

t ∈ cases E in c0 : U0 · · · cn : Un endcases t .(E = ci )

t
.
∈Ui

(cases−i )

�

Inequation:

Proposition 4.10. Let T = {· · · ci · · ·}.

cases ET in c0 : [ T | P | E = c0 ∧ Q ] · · · cn : [ T | P | E = cn ∧ Q ] endcases w [ T | P | Q ]
�
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4.5. Scope

Definition 4.5.

begin var x : Tx;U end =df ∃ x, x
′ • U

Proposition 4.11.
t ∈ U

t
.
∈ begin var x : Tx;U end

(begin+)

t ∈ begin var x : Tx;U end t ? 〈| xVy0, x
′Vy1 |〉 ∈ U ` P

P
(begin−)

�

We have refinement inequations for the block:

Proposition 4.12.

begin var x; [ P | Q ] end w [ ∀ u • P [x/u] | ∃ u , v • Q [x, x′/u , v ] ]

Proof Follows from propositions 2.14 and 2.15.
�

Proposition 4.13.

[ ∃ u • P [x/u] | ∀ u , v • Q [x, x/u , v ]) ] w begin var x; [ P | Q ] end

Proof Follows from propositions 2.16 and 2.17.
�

4.6. Procedure Call

This and the interpretation of procedures themselves are mutually dependent. Suppose thatf is a procedure (we will
see an example in the next section), then procedure call is trivially defined:

Definition 4.6.

f (E ) =df f [xVE ]

This leads to inference rules:

Proposition 4.14.

t
.
∈ f t .x = t .E

t ∈ f (E )

t ∈ f (E )

t
.
∈ f

t ∈ f (E )
t .x = t .E

�

It is necessary to analyse this in advance of procedures themselves, as it is implicated in the definition, as we will now
see.

4.7. Primitive Recursive Procedures Over Numbers

We define a new schema operator, primitive recursion over thenatural numbers, in terms of conjunction, strengthening
of preconditions, existential hiding, schema specialisation and recursive schemas.

Definition 4.7.
proc f (x) cases x in 0 : U0; m + 1 : U1(f (m)) endcases =df

µX • U0 ↑ x = 0 ∧ ∃ m • U1(X [xVm]) ↑ x = m + 1
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The idea is thatU1 is a schema whose alphabet includesm and which contains a free schema variableX whose type is
the type of the entire procedure.
And the rules.

Proposition 4.15. Introduction:

t .x = 0 ` t
.
∈U0 t .x = t .m + 1 ` t

.
∈U1(f (m))

t
.
∈ f

Proof

t .x = 0
(1)

....
t
.
∈U0

t
.
∈U0 ↑ x = 0

(1)

t .x = t .m + 1
(2)

....
t
.
∈U1(f (m))

t
.
∈U1(f (m)) ↑ x = m + 1

(2)

t
.
∈ ∃ m • U1(f (m)) ↑ x = m + 1

t
.
∈U0 ↑ x = 0 ∧ ∃ m • U1(f (m)) ↑ x = m + 1

t
.
∈ f

(µ+)

�

Proposition 4.16. Elimination:

t
.
∈ f t .x = 0

t
.
∈U0

t
.
∈ f t .x = m + 1

t
.
∈U1(f (m))

�

In what follows, we writeU [E ] for U [xVE ], whenx is understood.

Proposition 4.17. The following rule is derivable:

n ∈ N ` f (n) w U [n]
f w U

Proof Consider the following derivation:

z ∈ f
(1)

z .x = z .x

z ∈ f (z .x)

z .x ∈ N....
f (z .x) w U [z .x]

z ∈ U [z .x]
z ∈ U
f w U

(1)

�

And now, the key rule for program development for recursive programming: the rule for recursive synthesis:

Proposition 4.18. The following rule is derivable:

U0 w U [0] f (m) w U [m] ` U1(f (m)) w U [m + 1]
f w U
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Proof Consider the following derivation:

U0 w U [0]

z ∈ f (0)
(2)

z .x = 0
z ∈ f (0)

(2)

z ∈ f

z ∈ U0

z ∈ U [0]
f (0) w U [0]

(2)

δ....
f (m + 1) w U [m + 1]

f (n) w U [n]
(1)

f w U
(0)

whereδ is:

z ∈ f (m + 1)
(3)

z .x = m + 1
z ∈ f (m + 1)

(3)

z ∈ f

z ∈ U1(f (m))

f (m) w U [m]
(1)

....
U1(f (m)) w U [m + 1]

z ∈ U [m + 1]
f (m + 1) w U [m + 1]

(3)

�

4.8. Primitive Recursion Over Lists

The technique is easy to generalise. For example:

Definition 4.8.

proc f (x) cases x in Nil : U0; Cons m0 m1 : U1(f (m1)) endcases =df

µX • U0 ↑ x = Nil ∧ ∃ m0, m1 • U1(X [xVm1]) ↑ x = Cons m0 m1

The rule for recursive synthesis over lists:

Proposition 4.19. The following rule is derivable:

U0 w U [Nil] f (m1) w U [m1] ` U1(f (m1)) w U [Cons m0 m1]
f w U

�

4.9. Primitive Recursion Over Trees

Similarly for trees:

Definition 4.9.

proc f (x) cases x in Leaf m0 : U0; Node m1 m2 : U1(f (m1), f (m2)) endcases =df

µX • ∃ m0 • U0 ↑ x = Leafm0 ∧ ∃ m1, m2 • U1(X [xVm1],X [xVm2]) ↑ x = Node m1 m2

The rule for recursive synthesis over trees:

Proposition 4.20. The following rule is derivable:

U0 w U [Leaf m0] f (m1) w U [m1], f (m2) w U [m2] ` U1(f (m1, m2)) w U [Node m1 m2]
f w U

�

4.10. Primitive Recursion Over Arbitrary Free-Types

All these special cases can be generalised to syntax-directedfree types.
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Types of the formΥ are the names of the free types and are given by equations of the form:

Υ ::= · · · | ci 〈〈· · ·Υij · · ·〉〉 | · · ·

The terms of free-type:

tΥ ::= ci · · · t
Υij · · ·

The logic of free types permits the introduction of values inthe type, equality reasoning and finally, elimination
(generally by induction).

Proposition 4.21.
· · · zij ∈ Υij · · ·

ci · · · zij · · · ∈ Υ
(Υ+)

· · · zij ∈ Υij · · · · · · zkl ∈ Υkl · · ·

ci · · · zij · · · , ck · · · zkl · · ·
(Υ,)

ci · · · zij · · · = ci · · · yij · · ·

zij = yij
(Υ=)

· · · · · · zij ∈ Υij · · · , · · ·P [z/yk ] · · · ` P [z/ci · · · zij · · ·] · · ·

z ∈ Υ ` P
(Υ−)

where theyk are all those variables occurring in thezij with typeΥ.
�

Given a general free typeΥ, the corresponding recursive program scheme is:

Definition 4.10.
procΥ f (x ) cases x in · · · Hi · · · endcases

where theHi are the component cases:

Hi =df ci · · · mi · · · : Ui (· · · f (wk ) · · ·)

where thewk are those observations among themi with typeΥ.

The semantics in the general case is given by:

Definition 4.11.

procΥ f (x ) cases x in · · · Hi · · · endcases =df µX • · · · ∧ Ki (X ) ∧ · · ·

where:

Ki (X ) =df ∃ · · · mi · · · • Ui (· · ·X [xVwk ] · · ·) ↑ x = ci · · · mi · · ·

4.11. Guarded Commands

In this section, we extendνZ with the notion ofguarded commands. Our motivation lies in the investigation ofaction
systemsin formalisms such as the Refinement Calculus, the B-Method [1, 29] and Z [34, 31].
The formalism ofaction systemswas developed by Backet al.[4, 5] (as an extension of Dijkstra’s language of guarded
commands [22]) within the Refinement Calculus. These concepts were adapted within the B-Method by, for example,
Abrial [2], Butler et al. [9, 8] and Waldénet al. [32]. Similar work (mainly related to the specification of reactive
systems) in Z was done by, for example, Josephs [25], Strulo [30] and Miarkaet al. [27]. In all these frameworks,
the main concern is the issue of accommodatingboth refusalsandunderspecificationin the same account. In other
words, guards and preconditions must be able to coexist in the same specification, so as to employ both thechaotic
and theabortiveparadigms for refinement simultaneously.2

We shall demonstrate that the approach we have taken inνZ (motivated by our investigation in [21] and [14, ch.6]),

2 The chaotic and the abortive paradigms for refinement are sometimes also known as thecontractualandbehaviouralapproaches (respectively)
[12, ch.2-3]. We have, in previous work, examined thoroughly the concepts of both operation-refinement and data-refinement in these two paradigms.
Seee.g.[20, 17, 16, 15] for the investigation in the chaotic paradigm ande.g.[18, 19][14, ch.5,9] for the investigation in the abortive paradigm.
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Fig.1.The possible regions of operation behaviour in our framework of guarded commands.

in which the refinement logic is logically prior to the schemalogic, enables us to establish a logical framework for
guarded commands which encompasses the strong characteristics of the above frameworks: mutual existence of both
guards and preconditions in the same operation, accompanied by a powerful, andfully-monotonic, Z-like calculus of
schema operations.

4.11.1. Logic and Semantics

The approach we take in establishing the logic of guarded commands inνZ is more liberal than the approach employed
in [27]: firstly, we use classical logic, as opposed to the non-standardthree-valuedlogic employed inibid.; secondly,
we do not insist on the guard necessarily being weaker than the precondition. Thus, the realistic description of the
possible regions of the behaviour of a guarded operation is given in Fig. 1: The region in which both the guard and
the precondition hold isdefinedby the operation; outside the guard, the operation behavesmagically(regardless of
whether or not its precondition holds); and when the guard holds but the precondition doesn’t, the operation behaves
chaotically. These concepts are captured by the following definition:

Definition 4.12.
G −→ [ P | Q ] =df [ ¬G | G ] ∧ [ P | Q ]

Notice that when the guard is false the first component schemawill always bemagic, thus the whole schema expression
becomes magic; whereas when the guard is true the first component schema will always bechaos, thus the conjunction
with the actual operation denotes a selection of specified behaviours (which, of course, depends on its precondition
and postcondition).
This leads directly to the following introduction and elimination rules (we consider the more general case allowing
schema sets):

Proposition 4.22.

t .G t
.
∈U

t ∈ G −→ U
(−→+) t ∈ G −→ U

t .G
(−→−0 )

t ∈ G −→ U

t
.
∈U

(−→−1 )

�

Recasting these ideas within a single specification leads toa schema in which the guard implies the precondition and
is conjoined with the postcondition. Thus, the following equation holds:

Proposition 4.23.
G −→ [ P | Q ] = [ G ⇒ P | G ∧ Q ]
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Proof

z0 ? z ′1 ∈ G −→ [ P | Q ]
(1)

z0.G

δ....
z0.z

′
1.Q

z0.z
′
1.G ∧ Q

z0 ? z ′1 ∈ [ G ⇒ P | G ∧ Q ]
(2)

G −→ [ P | Q ] w [G ⇒ P | G ∧ Q ]
(1)

Whereδ stands for the following branch:

z0 ? z ′1 ∈ G −→ [ P | Q ]
(1)

z0 ? z ′1
.
∈ [ P | Q ]

z0.G ⇒ P
(2)

z0 ? z ′1 ∈ G −→ [ P | Q ]
(1)

z0.G

z0.P

z0.z
′
1.Q

For the other direction, consider the following derivationwhich requires thelaw of excluded middle:

z0.G ⇒ P ∨ z0.G ∧ ¬P
(LEM)

δ0....
z0 ? z ′1 ∈ G −→ [ P | Q ]

δ1....
z0 ? z ′1 ∈ G −→ [ P | Q ]

z0 ? z ′1 ∈ G −→ [ P | Q ]
(2)

[ G ⇒ P | G ∧ Q ] w G −→ [ P | Q ]
(1)

Whereδ0 is:

z0 ? z ′1 ∈ [ G ⇒ P | G ∧ Q ]
(1)

z0.G ⇒ P
(2)

z0.z
′
1.G ∧ Q

z0.G

z0 ? z ′1 ∈ [ G ⇒ P | G ∧ Q ]
(1)

z0.G ⇒ P
(2)

z0.z
′
1.G ∧ Q

z0.z
′
1.Q

z0 ? z ′1
.
∈ [ P | Q ]

z0 ? z ′1 ∈ G −→ [ P | Q ]

andδ1 is:

z0.G ∧ ¬P
(2)

z0.G

z0.P
(3)

z0.G ∧ ¬P
(2)

¬ z0.P

false

z0.z
′
1.Q

z0 ? z ′1
.
∈ [ P | Q ]

(3)

z0 ? z ′1 ∈ G −→ [ P | Q ]
�

4.11.2. Refinement Logic

In the approach developed in [27], an operation behaves chaotically (i.e. divergence including⊥) when its guard
holds and its precondition doesn’t hold, but it behavesabortively(i.e. strictly ⊥) outside its guard. This gives rise to
a notion of refinement in which not only preconditions may weaken and postconditions may strengthen, but also the
guard may be strengthen. This, of course, is very intuitive because strengthening the guard merely means substituting
undefined behaviour with abortive behaviour. However, in such an approach, the refinement rules must guarantee that
“the precondition is theupper boundfor strengthening the guard and the guard is thelower boundfor weakening the
precondition” [27]. This is in order to prevent abortive behaviour from substituting defined behaviour, on one hand,
and chaotic behaviour from substituting abortive behaviour, on the other hand.
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Conversely, in our framework the behaviour outside the guard ismagical(as shown in Fig. 1). In which case, not only is
it possible to strengthen the guard beyond the preconditionin a refinement step (because the specificationmagiclies at
the bottom of the refinement hierarchy in every framework which employs explicit preconditions and postconditions),
but also it is possible to weaken the precondition beyond theguard (because, either way, any new behaviour that is
outside the guard will be magical). Hence, we get the following basic refinement inequations for guarded commands.

Proposition 4.24. Weakening preconditions:

z .P1 ` z .P0

G −→ [ P0 | Q ] w G −→ [ P1 | Q ]

Proof

z0 ? z ′1 ∈ G −→ [ P0 | Q ]
(1)

z0.G

z0 ? z ′1 ∈ G −→ [ P0 | Q ]
(1)

z0 ? z ′1
.
∈ [ P0 | Q ]

z0.P1
(2)

....
z0.P0

z0.z
′
1.Q

z0 ? z ′1
.
∈ [ P1 | Q ]

(2)

z0 ? z ′1 ∈ G −→ [ P1 | Q ]
G −→ [ P0 | Q ] w G −→ [ P1 | Q ]

(1)

�

Proposition 4.25. Strengthening postconditions:

z .Q0 ` z .Q1

G −→ [ P | Q0 ] w G −→ [ P | Q1 ]

Proof

z0 ? z ′1 ∈ G −→ [ P | Q0 ]
(1)

z0.G

z0 ? z ′1 ∈ G −→ [ P | Q0 ]
(1)

z0 ? z ′1
.
∈ [ P | Q0 ] z0.P

(2)

z0.z
′
1.Q0....

z0.z
′
1.Q1

z0 ? z ′1
.
∈ [ P | Q1 ]

(2)

z0 ? z ′1 ∈ G −→ [ P | Q1 ]
G −→ [ P | Q0 ] w G −→ [ P | Q1 ]

(1)

�

Proposition 4.26. Strengthening the guard:

z .G0 ` z .G1

G0 −→ [ P | Q ] w G1 −→ [ P | Q ]

Proof

z0 ? z ′1 ∈ G0 −→ [ P | Q ]
(1)

z0.G0....
z0.G1

z0 ? z ′1 ∈ G0 −→ [ P | Q ]
(1)

z0 ? z ′1
.
∈ [ P | Q ]

z0 ? z ′1 ∈ G1 −→ [ P | Q ]
G0 −→ [ P | Q ] w G1 −→ [ P | Q ]

(1)

�
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Given the nice properties of guarded commands in our framework (see Fig. 1), it is interesting to note thatanyoperation
is equivalent to a disjunction of its guarded commands, formed with converse guards; this result is true foranyguard:

Proposition 4.27.
∀G • U = G −→ U ∨ ¬G −→ U

Proof We prove this using refinement:

z ∈ G −→ U ∨ ¬G −→ U
(1)

z ∈ G −→ U
(2)

z
.
∈U

z ∈ ¬G −→ U
(2)

z
.
∈U

z
.
∈U

(2)

G −→ U ∨ ¬G −→ U w U
(1)

For the other direction, consider the following derivationwhich requires thelaw of excluded middle:

z .G ∨ ¬ z .G
(LEM)

z .G
(2)

z
.
∈U

(1)

z ∈ G −→ U
z ∈ G −→ U ∨ ¬G −→ U

¬ z .G
(2)

z
.
∈U

(1)

z ∈ ¬G −→ U
z ∈ G −→ U ∨ ¬G −→ U

z ∈ G −→ U ∨ ¬G −→ U
(2)

U w G −→ U ∨ ¬G −→ U
(1)

�

4.11.3. Guarded Conditional

We define aguarded conditionaloperator, in terms of disjunction of two schemas guarded by converse guards:

Definition 4.13.
gif D then U

PT0

0 else U
PT1

1 =df D −→ U0 ∨ ¬D −→ U1

The following introduction and elimination rules are immediately derivable for the guarded conditional:

Proposition 4.28.

t .D t
.
∈U0

t ∈ gif D then U0 else U1
(gif+0 )

¬t .D t
.
∈U1

t ∈ gif D then U0 else U1
(gif+1 )

t ∈ gif D then U0 else U1 t ∈ D −→ U0 ` P t ∈ ¬D −→ U1 ` P

P
(gif−)

�

Using our usual strategy involving elimination rules, we now demonstrate that the above theory isequivalentto the
conditional theory we established in section 4.3. We begin by showing that every guarded conditional is a valid condi-
tional in the “if” theory.

Proposition 4.29. The following rules are derivable:

t ∈ gif D then U0 else U1 t .D

t
.
∈U0

(i)
t ∈ gif D then U0 else U1 ¬t .D

t
.
∈U1

(ii )

Proof For (i), consider the following derivation:

t ∈ gif D then U0 else U1

t ∈ D −→ U0
(1)

t
.
∈U0

t ∈ ¬D −→ U1
(1)

¬t .D t .D

false

t
.
∈U0

t
.
∈U0

(1)
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For (ii ), consider the following derivation:

t ∈ gif D then U0 else U1

t ∈ D −→ U0
(1)

t .D ¬t .D

false

t
.
∈U1

t ∈ ¬D −→ U1
(1)

t
.
∈U1

t
.
∈U1

(1)

�

Then by propositions 4.29(i) and (ii), and the rule (if+), the following theorem is immediate:

Theorem 4.30.
t ∈ gif D then U0 else U1

t ∈ if D then U0 else U1

�

Turning now to showing that every conditional in the “if” theory is a valid guarded conditional.

Proposition 4.31.

t ∈ if D then U0 else U1 t ∈ D −→ U0 ` P t ∈ ¬D −→ U1 ` P

P

Proof Consider the following derivation, which requires thelaw of excluded middle:

t .D ∨ ¬ t .D
(LEM)

t .D
(1)

t ∈ if D then U0 else U1 t .D
(1)

t
.
∈U0

t ∈ D −→ U0....
P

δ....
P

P
(1)

Whereδ stands for the following branch:

¬t .D
(1)

t ∈ if D then U0 else U1 ¬t .D
(1)

t
.
∈U1

t ∈ ¬D −→ U1....
P

�

Then by proposition 4.31, in addition to the rules (gif+0 ) and (gif+1 ), the following theorem is immediately derivable:

Theorem 4.32.
t ∈ if D then U0 else U1

t ∈ gif D then U0 else U1

�

Together, theorems 4.30 and 4.32 demonstrate that the concepts ofconditionalandguarded conditionalcontrol struc-
tures are equivalent.

4.11.4. Guarded Case Statement

We generalise the guarded conditional to guarded case statement. This is defined asparallel compositionof commands
whose guards are drawn from a given set of values:
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Definition 4.14. Let T = {· · · ci · · ·}.

gcases ET in c0 : U
PT0

0 · · · cn : U PTn
n endgcases =df

n
∨

i=0

E = ci −→ Ui

The following introduction and elimination rules are derivable for guarded cases:

Proposition 4.33. Let i ∈ n + 1.

t .(E = ci ) t
.
∈Ui

t ∈ gcases E in c0 : U0 · · · cn : Un endgcases
(gcases+i )

t ∈ gcases E in c0 : U0 · · · cn : Un endgcases · · · t ∈ E = ci −→ Ui ` P · · ·

P
(gcases−)

�

In light of theorems 4.30 and 4.32, in conjunction with the fact that the “cases” (section 4.4) and “gcases” theories
respectively generalise the theories of “if” (section 4.3) and “gif” (section 4.11.3), it is evident that the former
theories are also equivalent; the rest of the section is devoted to proving this result. We begin by showing that every
guarded case statement is also a valid case statement in the “cases” theory.

Proposition 4.34. Let i ∈ n + 1, then the following rule is derivable:

t ∈ gcases E in c0 : U0 · · · cn : Un endgcases t .(E = ci )

t
.
∈Ui

Proof Let k ∈ n + 1, wherek , i .

t ∈ gcases E in c0 : U0 · · · cn : Un endgcases

t ∈ E = ci −→ Ui
(1)

t
.
∈Ui

δ....
t
.
∈Ui · · ·

t
.
∈Ui

(1)

Whereδ stands for the following branch:

t ∈ E = ck −→ Uk
(1)

t .(E = ck ) t .(E = ci )
ck = ci

false

t
.
∈Ui

�

This (in conjunction with the rule (cases+)) leads directly to the following theorem:

Theorem 4.35.
t ∈ gcases E in c0 : U0 · · · cn : Un endgcases

t ∈ cases E in c0 : U0 · · · cn : Un endcases

�

Turning now to showing that every case statement is also a valid guarded case statement.

Proposition 4.36. Let i ∈ n + 1, then the following rule is derivable:

t ∈ cases E in c0 : U0 · · · cn : Un endcases · · · t ∈ E = ci −→ Ui ` P · · ·

P
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Proof

t ∈ cases E in c0 : U0 · · · cn : Un endcases
∨n

i=0 t .(E = ci ) · · ·

δ....
P · · ·

P
(1)

Whereδ stands for the following branch:

t .(E = ci )
(1)

t ∈ cases E in c0 : U0 · · · cn : Un endcases t .(E = ci )
(1)

t
.
∈Ui

t ∈ E = ci −→ Ui....
P

�

Then by proposition 4.36, in addition to the rules (gcases+i ), we get the following theorem immediately:

Theorem 4.37.
t ∈ cases E in c0 : U0 · · · cn : Un endcases

t ∈ gcases E in c0 : U0 · · · cn : Un endgcases

�

Theorems 4.35 and 4.37 together establish that the theoriesof casesandguarded casesare equivalent. This concludes
the analysis.

4.12. While Loop

4.12.1. Logic and Semantics

Definition 4.15.

whileD do U =df µX • D −→ U o
9 X ∨ ¬D −→ skip

The following introduction and elimination rules are soundfor the while loop:

Proposition 4.38.

¬z .D z
.
∈ skip

z ∈ while D do U
(while+0 )

Proof Let W beµX • D −→ U o
9 X ∨ ¬D −→ skip.

¬z .D z
.
∈ skip

z
.
∈ ¬D −→ skip

z ∈ D −→ U o
9 W ∨ ¬D −→ skip

z ∈ whileD do U
(µ+)

�

Proposition 4.39.

z .D z0 ? y ′
.
∈U z0 =TL

y y ? z ′1
.
∈ whileD do U y =TR

z1

z0 ? z ′1 ∈ while D do U
(while+1 )

Proof Let W beµX • D −→ U o
9 X ∨ ¬D −→ skip.
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z0.z
′
1.D

z0 ? y ′
.
∈U z0 =TL

y y ? z ′1
.
∈ whileD do U y =TR

z1

z0 ? z ′1 ∈ U o
9 W

z0 ? z ′1
.
∈D −→ U o

9 W

z0 ? z ′1 ∈ D −→ U o
9 W ∨ ¬D −→ skip

z0 ? z ′1 ∈ while D do U
(µ+)

�

Proposition 4.40.

z ∈ while D do U

¬z .D , z
.
∈ skip ` P

z .D , z0 ? y ′
.
∈U , z0 =TL

y , y ? z ′1
.
∈ while D do U , y =TR

z1 ` P

P
(while−)

Proof Let W beµX • D −→ U o
9 X ∨ ¬D −→ skip.

z ∈ while D do U
z ∈ D −→ U o

9 W ∨ ¬D −→ skip
(µ−)

δ0....
P

δ2....
P

P
(1)

whereδ0 is:

z ∈ D −→ U o
9 W

(1a)

z
.
∈U o

9 W

δ1....
P

P
(2)

whereδ1 is:

z
.
∈D −→ U o

9 W
(1a)

z .D z0 ? y ′
.
∈U

(2)
z0 =TL

y (2) y ? z ′1
.
∈W

(2)
y =TR

z1
(2)

....
P

whereδ2 is:

z
.
∈ ¬D −→ skip

(1b)

¬z .D

z
.
∈ ¬D −→ skip

(1b)

z
.
∈ skip

....
P

�

The following additional rules are derivable:

Lemma 4.41.
z ∈ while D do U ¬z .D

z ∈ skip

Proof

z ∈ while D do U z ∈ skip
(0)

¬z .D z .D
(0)

false

z ∈ skip

z ∈ skip
(0)
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�

Lemma 4.42.
z ∈ whileD do U z .D

z ∈ U o
9 while D do U

Proof

z ∈ whileD do U

z .D ¬z .D
(0)

false

z ∈ U o
9 whileD do U

δ0....
z ∈ U o

9 whileD do U

z ∈ U o
9 while D do U

(0)

whereδ0 is:

z0 ? y ′
.
∈U

(0)
z0 =TL

y (0) y ? z ′1
.
∈ while D do U

(0)
y =TR

z1
(0)

z ∈ U o
9 while D do U

�

4.12.2. Inequational Refinement Logic

Proposition 4.43.

¬z .D ` skip w U1[0]
z .D , whileD do U0[f (n)] w U1[f (n)] ` U0

o
9 while D do U0[f (n)] w U1[n]

whileD do U0 w U1

Proof
δ0....

z ∈ U1[0]
while D do U0[0] w U1[0]

(2)

δ2....
z ∈ U1[n]

while D do U0[n] w U1[n]
(3)

while D do U0[n] w U1[n]
(1)

whileD do U0 w U1
(0)

whereδ0 is:

z ∈ whileD do U0[0]
(2)

z
.
∈ while D do U0

δ1....
z .y = 0
¬z .D

z
.
∈ skip

4.41

δ1....
z .y = 0
¬z .D....

skip w U1

z
.
∈U1

δ1....
z .y = 0

z ∈ U1[0]

whereδ1 is:

z ∈ while D do U0[0]
(2)

z .y = 0

whereδ2 is:
δ4....

z ∈ U0
o
9 while D do U0[f (n)]

δ3....
U0

o
9 while D do U0[f (n)] w U1[n]

z ∈ U1[n]
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whereδ3 is:

z ∈ whileD do U0[n]
(3)

z .y = n n > 0
(1)

z .D while D do U0[f (n)] w U1[f (n)]
(1)

....
U0

o
9 whileD do U0[f (n)] w U1[n]

whereδ4 is:

z ∈ whileD do U0[n]
(3)

z
.
∈ while D do U0

δ5, δ6....
z ∈ U0

o
9 while D do U0[f (n)]

z ∈ U0
o
9 while D do U0[f (n)]

(4)

whereδ5 is:

¬z .D
(4)

z ∈ while D do U0[n]
(3)

z .y = n n > 0
(1)

z .D

false

z ∈ U0
o
9 while D do U0[f (n)]

whereδ6 is:

z0 ? w ′
.
∈U0

(4)
z0 =TL

w (4)

δ7....
w ? z ′1

.
∈ whileD do U0[f (n)] w =TR

z1
(4)

z ∈ U0
o
9 whileD do U0[f (n)]

whereδ7 is:

w ? z ′1
.
∈ while D do U0

(4)

z0 ? w ′
.
∈U0

(4)

f (z0.y) = w .y
(♣)

δ8....
z0.y = n

w .y = f (n)

w ? z ′1
.
∈ while D do U0[f (n)]

whereδ8 is:

z ∈ whileD do U0[n]
(3)

z0.y = n

�

Rule used to perform step (1)
P (0) n > 0,m < n ,P (m) ` P (n)

P (n)
(1)

z0 ? z ′1 ∈ U

f (z0.y) = z1.y
(♣)

4.12.3. General Refinement Logic

We generalise on the previous section in two aspects: first, the variant now depends on a particular state, rather than
on a single observation; secondly, the state observations are not necessarily numeric. This concept is easily attainedby
defining a functionf which associates every state of the system with a particularnumeric value. Namely:

f ∈ T → N

Then the following rule is derivable:
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Proposition 4.44.

skip w U1 ↑ ¬D
(while D do U0) ↑ (D ∧ f (θT ) = m) w U1 ↑ (D ∧ f (θT ) = m) `
U0

o
9 (whileD do U0) ↑ (D ∧ f (θT ) = m) w U1 ↑ (D ∧ f (θT ) = n)

whileD do U0 w U1

Proof Consider the following derivation which employscourse of valuesinduction:

δ0....
(while D do U0) ↑ ¬D w U1 ↑ ¬D

δ1....
(while D do U0) ↑ (D ∧ f (θT ) = x ) w U1 ↑ (D ∧ f (θT ) = x )

(while D do U0) ↑D w U1 ↑D

while D do U0 w U1

Whereδ0 stands for the following branch:

z ∈ (while D do U0) ↑ ¬D
(1)

¬z .D
(2)

z ∈ while D do U0

η....
z

.
∈U1

z .D
(3)

¬z .D
(2)

false

z
.
∈U1

z
.
∈U1

(3)

z ∈ U1 ↑ ¬D
(2)

(while D do U0) ↑ ¬D w U1 ↑ ¬D
(1)

Whereη is:

z ∈ skip
(3)

skip w U1 ↑ ¬D

z ∈ U1 ↑ ¬D ¬z .D
(3)

z
.
∈U1

Let ϕ0 andϕn respectively be:

(while D do U0) ↑ (D ∧ f (θT ) = 0) w U1 ↑ (D ∧ f (θT ) = 0)

and
(while D do U0) ↑ (D ∧ f (θT ) = n) w U1 ↑ (D ∧ f (θT ) = n)

thenδ1 stands for the following branch:

β0....
ϕ0

β1....
ϕn

(while D do U0 ↑ (D ∧ f (θT ) = x ) w U1 ↑ (D ∧ f (θT ) = x )
(4)

Whereβ0 is:

z ∈ (while D do U0) ↑ (D ∧ f (θT ) = 0)
(5)

z .(D ∧ f (θT ) = 0)
(6)

z ∈ while D do U0

α0....
z

.
∈U1

α1....
z

.
∈U1

z
.
∈U1

(7)

z ∈ U1 ↑ (D ∧ f (θT ) = 0)
(6)

(while D do U0) ↑ (D ∧ f (θT ) = 0) w U1 ↑ (D ∧ f (θT ) = 0)
(5)

andα0, α1 are respectively:

z ∈ skip
(7)

skip w U1 ↑ ¬D

z ∈ U1 ↑ ¬D ¬z .D
(7)

z
.
∈U1

z .D
(7)

z .(D ∧ f (θT ) = 0)
(6)

z .(f (θT ) = 0)
f (z ) = 0
¬z .D

(♣)

false

z
.
∈U1
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β1 stands for the following branch:

z ∈ (while D do U0) ↑ (D ∧ f (θT ) = n)
(8)

z .(D ∧ f (θT ) = n)
(9)

z ∈ while D do U0

γ0....
z

.
∈U1

γ1....
z

.
∈U1

z
.
∈U1

(10)

z ∈ U1 ↑ (D ∧ f (θT ) = n)
(9)

(while D do U0) ↑ (D ∧ f (θT ) = n) w U1 ↑ (D ∧ f (θT ) = n)
(8)

Whereγ0 is:

z .(D ∧ f (θT ) = n)
(9)

z .D ¬z .D
(10)

false

z
.
∈U1

Let ψ be:
z ∈ U0

o
9 (while D do U0) ↑ (D ∧ f (θT ) = m)

thenγ1 branch is:

(while D do U0) ↑ (D ∧ f (θT ) = m) w U1 ↑ (D ∧ f (θT ) = m)
(4)

....
U0

o
9 (while D do U0) ↑ (D ∧ f (θT ) = m) w U1 ↑ (D ∧ f (θT ) = n)

γ2....
ψ

z ∈ U1 ↑ (D ∧ f (θT ) = n) z .(D ∧ f (θT ) = n)
(9)

z
.
∈U1

Whereγ2 stands for the following branch:

z0 ? y ′
.
∈U0

(10)
z0 =TL

y (10)
y ? z ′1

.
∈ while D do U

(10)

y ? z ′1
.
∈ (while D do U0) ↑ (D ∧ f (θT ) = m) y =TR

z1
(10)

z ∈ U0
o
9 (while D do U0) ↑ (D ∧ f (θT ) = m)

�

5. Conclusions and Further Work

As we mentioned in the introduction, this expository paper concentrates entirely on the theoretical basis ofνZ. We
have showed how an extremely simple logic can be extended towards an expressive specification logic and a program
(development) logic. One of the benefits of this approach is its flexibility: one is not constrained by any particular
specification or programming language infrastructure. Theability to provide elegant rules for total correctness devel-
opment of procedures is also a strength: these rules resemble those which proved so useful in program development
within constructive theories (see, for example, [26]) but are here combined with the ability to synthesize imperative
programs.
Much infrastructural and pragmatic work remains to be done,both at the level of specification and program develop-
ment. At the pragmatic level in particular, much work is being undertaken by Kajtazi and this will be reported in his
PhD thesis.
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