-

View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by University of Essex Research Repository

Under consideration for publication in Formal Aspects ohuiting

The Specification LogicvZ

Martin C. Henson, Moshe Deutsch and Besnik Kajtazi

Department of Computer Science, University of Essex, WieenPark, Colchester, Essex CO4 3SQ, UK
E-mail: {hensm, mdeuts, bkaji@essex.ac.uk

Abstract. This paper introduces a wide-spectrum specification legid he minimal core logic is extended to a more
expressive specification logic which includes a schemautisdcsimilar (but not equivalent) to Z, some new additional
schema operators and extensions to a programming and praignzelopment logic.

1. Introduction

In this paper we introduce a wide-spectrum logic This is a very small specification logic based on a totalexirress
relational semantics with refinement as its fundamentatiaei.

The language which underlies the logic is Z-like, that isdg, sve have schemas and schema operators. A signifi-
cant diference is that operation schemas have two predicates, amlsEsmore the specification statements of the
Refinement Calculuse(g.[6] and [28]) or designs of the UTP [24]. This is, in fact, arfgitrivial difference, and
the language could easily be set up using single predichtnsas, if preferred. On the other hand, there are several
significant diferences betweerz and Z:

e Zis based on partial-correctness semantiog is based on #otal-correctness semantics.

Z permits refinement of over—specification®;does not.

Z schema operators are not monotomic schema operators are monotonic (anti-monotonic).
Z is based orquality, vZ is based omefinement

Z is aspecificatiolanguageyZ is wide-spectrum

Z is relatively inflexible;yZ is extensible.

Z is alanguagevZ is alogic.

vZ is very economical and expressive: the core language issveayl but capable of further development by definition.
After we introduce the theory itself, we go on in the sectithva follow to introduce a more expressive specification
language (specification of specification construct&Zinand then a programming language (specification of program-
ming constructs iZ). None of these constructs are fixed; it is possible to pmaiternative specification infrastruc-
ture and indeed alternative programming languages. Beedissa logic, the various definitions, for specification and
programming, inherit this and so we induce an extended Bpatidn logic and a programming logic alongside the
definitions. These combine to form a mathematical framevarknhe derivation of programs from specification.

In this paper we will concentrate entirely on the systemifitéis mathematical basis, and on methodologies for ex-
tending the core framework with additional features forcsfieation, for programming and for program development.
In future publications we will explore more pragmatic issugroviding techniques and examples to demonstrate how
to effectively specify, refine and implement systems within

Correspondence andffprint requests toMartin C. Henson, Department of Computer Science, Uniyet§ Essex, Wivenhoe Park, Colchester,
Essex CO4 3SQ, UK.

https://core.ac.uk/display/74372769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. C. Henson, M. Deutsch and B. Kajtazi

2. Corevz

vZ is interpreted within the logi;, the extension ofZ¢ introduced in [20] which includes elements in all types.
We assume familiarity with this theory (and notational cemtions); all this is also covered in [23].

2.1. Syntax ofvZ

The syntax of the corez framework is minimal. The type of asperation schemal/, isP T (written U 7) where T

is a schema type which has the fofimy V’. Generally we will, as is usual in Z, wrieV for V' v V. We will write
U (v) to indicate that variable may appear free in the schema expresgioh

Definition 2.1.
UPT o=

X7 — schema variable
[TIP|Q] — atomic specifications
~UFT — negation
v, v (T'=Tov T1) - disjunction
AxT e U 0 (T =To— Ty) - existential hiding
uXET o U(X)FT — recursive schemas

2.2. Semantics o¥Z

We first need to define refinement. In this framework it is syrgantainment.

Definition 2.2.
Uy " 23U " =4 LU0l Sr [Uh]

We also need to specify the universe of specification moadela given type. Part (ii) is based on [11] section 8.1.
Definition 2.3.

() magic*T =g [T truel false]
(i) Wrp =qf {IIUP T]] | magicET 2 U A U gmagicFAT™) 1 U}

Now we have the semantics of specifications.

Definition 2.4. In what follows, T* =4+ V, = V|. The types are omitted here, but are taken to be as specified in
syntax above.

(X1 =g X

[[[T|P|Q]]] =af (%2 € T*| %P = 2.2.Q)

[-U1 =g {z€T*|z=yLVzeU)

[UoV Uil =q {zeT*|ze[UolV ze [Uil}

[3x e Upll =¢ {z€eT*|AyeTyeyecllolAz=y!T}

[nX e UX)] =4 [HX e Wr |[UX)]2 X}

In the case of recursion, the schema variaklenust appear in @ositiveposition in U. That is: this is monotone
recursion. The notation. P indicates the usual distribution of the bindimghrough the propositio® so that its
component observationrsare replaced by.x. Note thatL .P = false for all P (L satisfies nothing, in particular it is
outside every precondition). Since types can be recoveoed the alphabets aP and @) for atomic schemas, we can
and willwrite[P | Q] for[T | P | Q] in the sequel (and suppress types) where possible.

1 When the variable has the tyffeT” and T is a schema type (that is: it is a variable over schemas) wiestige it in Zé, as we do invz, in
upper-case.

The Specification LogieZ 3

2.3. Logic ofvz
The semantics induces a logic for the constructs, as followthis introductory paper we omit the proofs.
2.3.1. Refinement

The rules for operation refinementi are as follows:

Proposition 2.1. Let z be a fresh variable.

z€lorzely ,_, .
U2 U Sl te U &)

[m]

2.3.2. Atomic Operation Schemas

The rules for atomic operation schemavihare as follows:

Proposition 2.2.
t0.P F to.1].Q U toxtie[P|Q] t.P
toxt;e[P|Q] to.1].Q

(U7
m]
The following inequations are derivable:

Proposition 2.3. Weakening of preconditions and strengthening of postdmmdi (respectively):
t.P1+t.Py t.Qotr t.Q1
[Pol@la[ri@] [PIQla[Plal]

m]
2.3.3. Negated Schemas

Note that negation inZ is not the relational complement: it is well-known that tha@vwerse of total-correctness
relations in this model is not closed under that operatieadsy.[11]). An alternative characterisation of the semantics
is available using a combination of relational complemdigjunction and magic.

Definition 2.5.
~U = U V magic
In any event, the rules for negation are derivable:

Proposition 2.4.

te U t € magic te-U t¢UrP temagicvP , _
u* — (UZ
te—|U() te-U (U%) P (U2)

m]
Negated schemas aa@ati-monotoniavith respect to the refinement relation:

Proposition 2.5.
U132 U
-Ugd-U1
m]

The notion satisfies double negation and excluded middle.

4 M. C. Henson, M. Deutsch and B. Kajtazi

Proposition 2.6.

telU te U
te—--U teU te=-UvV U

[m]

2.3.4. Disjunction Schemas

The rules for disjunction schemasia are derivable, as follows:

Proposition 2.7. Let i € 2.

te U; (U; teUyv U telUyrP tEUll—P(U\;)
te Ugv Uy i P
m]
Disjunction schemas amonotoniowith respect to the refinement relation:
Proposition 2.8.
U3 U, U,3Us
Uyv U2 U,V Us
m]
The inequational refinement logic of disjunction schemas:
Proposition 2.9.
[Pol Q] V[Pl Q] 2[PoA Pl QoV Q1]
m]
Proposition 2.10.
[Pov Pl QA@]3[Pol Q] Vv[Pil Q]
m]
2.3.5. Existential Hiding Schemas
The rules for existential hiding schemasihare derivable, as follows:
Proposition 2.11.
teU (U5) tedxe U t*QXSyDEUl—P(Ui)

tcdxe U P
O

The rule for existential hiding involvdsinding extensiomvhich is closely connected to binding substitution and to a
lemma which will be required extensively in the proofs of tkéinement inequations that follow. First we have the
definition of substitution for a binding.
Definition 2.6.

_ t1 when X0 = X1
tolx0/ t2] X1 = { to.X1 otherwise

We employ the notatioh. P andb.t (generalising binding selection) adapted from [33]. Swggpthatzg - - - z,,} is the
alphabet set of, thent. P is P[zg-- -z, /t.2z0- - t.Zy].

Lemma 2.12.
to[x/to.ta]. P = to. P[x/ 1]

The Specification LogieZ

Proof By induction on the structure of propositions and terms.
m]
In view of this, it is possible to express the existentiaingtiation rule as:

tedxe U t[x/yle UrP
P

(U3)
Existential hiding schemas angonotoniawith respect to the refinement relation:

Proposition 2.13.
U2 U
dxe UpZdxe U;

m]
There are inequations for refinement involving existerttiding. First, when hiding a before observation:

Proposition 2.14.
Axe[P| Q] 2[Vue Plx/u] | Fu e Q[x/u]]

Proof
) Y u e 2.P[x/u] (1)
zo*QXByD*zie[PlQ] 20.P[x/y]
wlx/yl x 4 €[P1 Q] 20[x/y].P

2[x/yl.2[.Q
20.21-Q[x/y]

, © ,
zo*zlGHXO[P|Q] Ju e 20.2].Q[x/u] @
Ju e 20.2{.Q[x/u])
2ok 2 €[Vue Plx/u]l | Tu e Q[x/u]] 0
Axe[P| Q] 2[Vue Plx/u] | Fu e Q[x/u]]
m]
Second, when hiding an after observation:
Proposition 2.15.
Ax e [P1Q]2[PI3ve Q[x/v]]
Proof
wnxz*k{x2whe[P|Q] @) .
zo*zi[x’/w]e[PlQ] ﬁ()

02X /0].Q
©) 20.21- Q[¥' [w]
zo*zl’eflx’O[P|Q] Jv e 2.2.Q[x'/v]
Jv e 2.2{.Q[x'/v]
: ; (€
zo*zle[Plflvo Q[x'/v]]
Ax e [P Q]2[P3ve Q[x/v]]

2

(©)

O
And now, in the other direction:

Proposition 2.16.
[Fue Plx/u]l |[Vue Q[x/u]] 2dxe[P| Q]

6 M. C. Henson, M. Deutsch and B. Kajtazi

Proof
2olx/yl.P @
© 20-P[x/y]
20x 2 €[Jue Plx/u] |V ue Q[x/u]] Fu e 2. P[x/u]
You e 2.2.Q[x/u]
20.21- Q[%/y]
20[x/y].2.Q)
wlx/yl *z €[P1Q]
wx{x2yhxze[PQ]
zo*ziezlxo[PlQ] ©)
[Fue Plx/u]l IVue Q[x/u]] 23xe[P| Q]
ID:inaIIy:

Proposition 2.17.
[PIVveQ[x/v]] 2% o[P]| Q]

Proof

0 —
k2 €[P|Vve Qx/v]] © 2.P @)
Vv e 2.2.Q[x/v]
20.21- Q% /w]
20.2[X [w].Q
T (1)
0 x X /vl e[P]Q]
px(xXwhkze[P|Q]
zo*zl’EHX’O[P|Q]

0
[PIVveQ[x/v]] 23X e[P| Q] ©
O
2.3.6. Recursive Schemas
The rules for recursive schemasyinh are derivable, as follows:
Proposition 2.18.
te UuX o U(X)) teuX e U(X)

TeuxeUx) ¥ TeuExeuvoy @)

3. Specifying a Specification Language imZ

The principles on whichkZ is based includeconomyfthe core system begin so small) aadensibility(the ease with
which the core system can be made more expressive). Sinodtbeystem is so inexpressive, a first ambition will
be to provide additional infrastructure which providesdaronsiderably more expressive specification language. We
cover some aspects of this in this section, beginning witaresions providing other standard schema operators.
Some of the operators which we consider here are familian ffo(though, because the semantics i§edit, the
logic of these operators departs from that in Z). In additisere will be variations on familiar operators, such as
composition: in this section we provide a notion of comgositwhich allowsarbitrary schemas to be composed,
even when those schemas do not match for type. Finally, wedate a range of quite new operators, unfamiliar in

The Specification LogieZ 7

Z, which we will see have some use when we turn to the topic @f@mming languages and program development
logics in later sections.

3.1. Conjunction Schemas

We can define schema conjunction in terms of disjunction agation, using the usual de Morgan definitions. We
omit the proofs, which are a little more involved than usdak to the more complex notion of negation we are obliged
to use.

Definition 3.1.
Uo A U =g4p =(=Up Vv = U1)
The usual rules are derivable.

Proposition 3.1. Let i € 2.
tely telh

te Uy A U -
telon Uy -
te U AN Uy

U+
(A) te U;

m]

Conjunction schemas aneonotoniawith respect to the refinement relation:

Proposition 3.2.
U3 U, U,3Us
UANUpr 32U, Us

m]
The inequational refinement logic of conjunction schemas:

Proposition 3.3.

[Pol Q) A[PI Q1] 3[PoA Pl QoA Q]
o

Proposition 3.4.

[Pol QI A[PLl Q1] 2[Pov Pl QoV Q1]
o

Proposition 3.5.
[PoVvPilQoA@Q]3[Pol Q)] A[PLI Q1]

3.2. Implication Schemas

We can define schema implication in terms of disjunction agghtion, using the usual de Morgan definitions.
Definition 3.2.
U= Ur=q ~Up v U
With the obvious rules derivable:
Proposition 3.6.

ZéUO"ZéUl(UJr) tely= U1 telp
z€Up=> U = te Uy

(U2)
o

Schema implication ismonotonicon the right, andnti-monotoni®n the left with respect to the refinement relation:

8 M. C. Henson, M. Deutsch and B. Kajtazi

Proposition 3.7.
U,3 Uy Uy 3U;
U= U133 U= Us

m]
The inequational refinement logic of schema implication:

Proposition 3.8.

[Pol Ql =[Pl Q] 2[PoA Pl Qo= 1]
o

Proposition 3.9.
[Po=Pil QoA Q1] 3[Pol Qo] =[P1] Q1]

3.3. Universal Hiding Schemas
Universal hiding is defined in terms of existential hidinglaregation, using the standard de Morgan definition. We
provide the proofs in detall, in this section, for illustoat.

Definition 3.3.
Vxe U=df —dxe U

And then the usual introduction and elimination rules amévable.
Proposition 3.10. Let z be a fresh variable. We assume thais the formg ;.
tx{x=22)e U
teVxe U
Proof Consider the following derivation, which requires th& of excluded middle

0
o=z O ;

lo=LVih#L te-dxe-U t€—|3.X0—|U (0)
te-dxe-U

wheredg is:
01

tedxe U &) fazse
false

t¢dxe U &)
te-dxe U

@)

and wherey; is:

3)

tx{x=22zpelU tHh=L) to #L ©)

= false false 3)

tx(x=22zpe U

tx{x=2z)e-U @)

O
Proposition 3.11. Let ¢ have the formy x .

teVxe U wveTy
tx{x=2vhe U

The Specification LogieZ

Proof Consider the following derivation, which requires the of excluded middle

do 01
=1V i #L tx{x=v)e U t*qxévpeu(o)
tx{x=v)e U
wheredg is:
1 2
to*dxavbéU() tO*QXEUDGTO() tox (xDv) =1 @
hhx{xv)e-U ©) to € To (x=v) =1 ve Ty
tox{x=Dvhe T* fo =L to #L v=_ v #EL
tox{x=>v) e Tp, false false 5
false 0 @
tx{x=2vhe U
ando; is:
EIE=TITA
tx{x=2vhe-U
te—-dxe=U tedxTx e =U to #L (O)
false
t*dxz}vbeUM)
O

Universal hiding schemas angonotonicwith respect to the refinement relation:

Proposition 3.12.
U3 Uy
Vxe UpdVxe U

O

We have an inequational logic of refinement for universairgd
First, when hiding a before observation:

Proposition 3.13.
Vxe[P|Ql2[TFue Plx/u]l | Jue Q[x/u]]

Proof
0
wxz eVYue[P|Q] © . P/ 2
wlx/yl xz [P Q] [x/y].P
2[x/yl.2{.Q
L 2.2 Q[%/Y]
Au e 20.P[x/u] (1) Ju e 20.2{.Q[x/u] .
Ju e 2.2.Q[x/u]))
zo*zie[ﬂuoP[x/u]lﬂuo Q[x/u]
0)
Vxe[P|Q]2[Iue Plx/u]l | Tue Q[x/u]]
,DAnd:

Proposition 3.14.
Vxe[PlQ]a[VuePlx/u]l |Vue Qx/u]]

10 M. C. Henson, M. Deutsch and B. Kajtazi

Proof
0
zo*z£€on[P| Q] ©) Vu e 2. P[x/u] 1)
wlx/yl x 2 €[P] Q] 20.P[2/y]
2w[x/y].2.Q
20.2{.Q[x/Y]
Yu e z.2.Q[x/u]
; 1)
2 * 2 € [Vue Plx/ul |Vue Q[x/u]]
(0)
Vxe[P|Q]2[VuePlx/u]|Vue Q[x/u]]
O

Next, when hiding an after observation:

Proposition 3.15.
VX' e[P1Q]2[PIVveQx/v]]

Proof

wxzeVx o[P|Q]
20 % z][x'[v] € [PI Q]
20.2[x'/v].Q
20.21. Q[x' /]
Vv e z.2.Q[x'/v]
- ; 1
2wk z €[PIVveQ[x/v]]
V' o[P1Q]2[P|VveQ[x/v]]

P 1

(©)

O
In the other direction:

Proposition 3.16.
[Fue Plx/u]l |[Vue Q[x/u]] 2Vxe[P| Q]

Proof

o _ P Y
zo*zie[HuOP[x/u]l\luoQ[x/u]] Au e 2.P[x/u]
Vu e z.2.Q[x/u]

2.2 Q[%/Y]

20[x/yl.2{.Q
wlx/yl x 7 e[P1Q]
zo*zie\/XO[Pl Q]
[Fue Plx/u] |Vue Qx/u]] IVxe[P| Q]

D

(©)

O
And:

Proposition 3.17.
[PIVveQ[x/v]]2Vx o[P| Q]

The Specification LogieZ 11

Proof

wxz e[P|VveQ[x/v]] © op Y
Vue z.2.Q[x /u]
20.2- QX' w]
wx Z[x /w] e[P] Q]
wxzeVx o[Pl Q]
[PIVveQ[x/v]] 2Vx [P Q]

1)

(©)

3.4. = Schemas

We have the usual idea &fschemas:
Definition 3.4.

ET =4 [AT | true | 0T = 6 T)
The rules are straightforward:

Proposition 3.18.
foxt; €ET
txt' eET to=1

3.5. The Skip Extension

We use this to define thekip-extension of a schema:
Definition 3.5. When Ty and T3 are disjoint, we define:
UPToo Ty =4 UANET,

Naturally this is well-defined even when the types are nqofi§ but the purpose of this is, as described, to extend a
schema withskip and the definition has pathologicdfects in other circumstances.
The rules are straightforward:

Proposition 3.19.
to % ti elU to=rt

— M(U%) toxtjeUoT
foxt e lUo

teU =7t

(U?) Uz,

O

The skip-extension ignonotoniawith respect to the refinement relation:

Proposition 3.20.
U3 U,
UpoT 3JUy0T

3.6. Composition Schemas

In vZ we wish to composarbitrary specifications; even when the types of the operations do atthmin this regard
vZ differs from Z. For such compositions to make sense, it is negessmatch incompatible types and to ensure that

12 M. C. Henson, M. Deutsch and B. Kajtazi

operations do not arbitrarily adjust bindings in the prec@he definition of schema compositionvn is, therefore,
a little more complex than in Z. Nevertheless, it is possiblspecify composition in the core theory, using #ke p-
extension operator.

Definition 3.6. Let T, = Ty — Ty with the formAT, = Ti" \% Tg“t’ and let LetTr = Ty — Ty with the form
ATg = T}'{” \4 T;;“t'. Lett be a vector of fresh observations with the size of the alurmhﬁgut’ \4 Tg“t' (equivalently:
Tin v Tim).
UiP’(lenyTlo“t) =4 T e (Uo<> TL)[Q(T5ut/ v Tgut’_)/ {] A

(Upo TR)[a(Ty" v T3/ t]

P(Tiny Tout’)
UO 0 0 g
The following introduction and elimination rules are datie for schema composition:
Proposition 3.21.

to*téé Uo tO=TL to tz*t]/_é Uy
to % ti e Upg Uy

=7y t1 , .
(u7)

m]
Proposition 3.22.

to*tie Uog Uy to*téé Uo, to =7, tz,tz*tié Unto=7, 1+ P

- (h)
m]
Composition schemas angonotoniowvith respect to the refinement relation:
Proposition 3.23.

U3 U, U,3Us

Uos U132 U283 Us
m]
3.7. Restricted Chaos
This definition introduces a restricted form @faos: outsideP this schema blocks.
Definition 3.7.

chaosp =qp [P | false]
This leads to the following logical rules.
Proposition 3.24.
* t7 € chaosp —to. P
fo.P (chaog) fox 1ty p h (chaos)

to * 1] € chaosp false

3.8. Schema Specialisation

We use restricted chaos to introduce the specialisatiorsofiama at a particular observation (it blocks elsewhere).

Definition 3.8. Let £ be the schema type corresponding to the observations nedtai . LetP 7' be the schema
type of U, and letA[xx] < T.

Ulx=E] =45 chaosg=p) A U

This induces the following rules:

The Specification LogieZ 13

Proposition 3.25.
teéU tx=tE LEUXSE] teU[xE]
t € Ulx>F] teU tx=tE
m]

Specialisation schemas ar®mnotoniawvith respect to the refinement relation:

Proposition 3.26.
U3 Uy
Uo[x=>E] 2 U1[x=F]

3.9. Strengthening Preconditions

This operator has thedfect of (in general) strengthening the precondition of a B&h& by stipulating an additional
conditionP.

Definition 3.9. Let T'» be the schema type corresponding to the observations oedtai P. LetP 7' be the schema
type of U, and let7p < T.

U1TP =g chaosp = U
The operator is governed by induced logical rules.

Proposition 3.27.
t.PrtelU teUTP t.P
teUTP teU

m]
Strengthening preconditionsrigsonotoniawith respect to the refinement relation:

Proposition 3.28.
Upg3d Uy
UDhTP3ULTP

4. Specifying a Programming Language inZ

It is central to the methodology of that it smoothly integrates specification and programmamng,that it is possible
to develop programs from specifications. This is achievefirbiy specifyinga programming language #Z and then
inducing a corresponding program logic: refinement theoraatically permits development from specifications to
programs. We will develop such a language incrementalligi;gection.

4.1. Skip

Definition 4.1. For any typeT.
skip =4 ET
Rules forskip:

Proposition 4.1.
fo * t; € skip

(skip®) o= (skip)

t x t’ € skip

14 M. C. Henson, M. Deutsch and B. Kajtazi

The inequational refinement logic ekip:

Proposition 4.2.
0T =0T+ t.Q
skip [T | true | Q]

4.2. Assignment

Definition 4.2. Let V = Ty — [x 73]

x:i=FE =4 [true | X = E] AEV
Rules for assignment:

Proposition 4.3.
. okt €xi=F ~
txt'[x'/t.E]ex:=F (:=7) to[x/t0.F] = t1 (:=7)

m]
The inequational refinement logic for assignment:
Proposition 4.4. Let z be fresh.

2.2'[%'[2.E].Q
x:=F 2 [true| Q]

4.3. Conditional

We define a new operator, a conditional schema, in terms géinotion and strengthening of preconditions:
Definition 4.3. LetP Ty andP T3 be the schema types éf and U; respectively. Letl'p < Ty A T1.

if D then Upelse Uy =g UpT D A UL T D
Rules for the conditional:

Proposition 4.5.
tDrze€ Uo -t.Drte U]_

I € if D then Upelse [, 1)
teif D then Ugelse Uy t.D . _ t €if D then Upelse Uy t.(=D) ,.
5 (ifp) 5 (ify)
te Uo te U]_

m]
Equations and inequations:

Proposition 4.6.
if true then Uy else U = Uy

Proof Follow from specialisations of the introduction rule and fhrst elimination rule:
— (1
false (1)

z2€lUy zel;
z €if D then Upelse U;

D

The Specification LogieZ 15

z€if D then Upelse Uz
z€ Uo

O

Proposition 4.7.
if false then Uy else Uy = U;

O

Proposition 4.8.
ifDthen [P|DAQlelse [P|-DAQ]2[P|Q]

Proof In what follows we writep for
zeif Dthen [P|D A Qlelse [P|-DAQ]2[P|Q]

P ze[P|DAQ] P ze[P|-D A Q]
z.(D A Q) z.(=D A Q)
Dv-D ZQZQ z.Q) 2
ze[P1Q]
O
4.4. Cases

The previous section can easily be generalised to case codsnd/e define a new operator, a case schema, in terms
of conjunction and strengthening of preconditions:

Definition4.4. Let T ={---¢; ---}.
cases ET in¢g : UéPTO ceeCp UST" endcases =4 UgTE=coA--- NU,TE =¢,
Rules for the cases:

Proposition 4.9. Leti € n + 1.

t(E = Ci) Fte Uz

; cases”
tecasesEincy: Uy -+ ¢, . U, endcases ()
tecasesEFinc: Up --- . U, endcases t.(F = ¢
. Yo C” n (¢i) (cases;)
te UZ
O
Inequation:

Proposition 4.10. Let T = {--- ¢; - - -}.

cases Bl inc: [T|P|E=cA Q] - ¢ :[TIP|E=c,AQ]endcases2[T|P|Q]

16 M. C. Henson, M. Deutsch and B. Kajtazi

4.5. Scope

Definition 4.5.
beginvarx: Ty; U end =4 dx,x ¢ U
Proposition 4.11.

teU
t €beginvarx: Ty; U end

(begin®)

t ebeginvarx: Ty;Uend tx{x2yo,xX=DypeUrP
P

(begin™)
m]
We have refinement inequations for the block:
Proposition 4.12.
beginvarx; [P| Q]end 2[Vu e P[x/u] | Ju,v e Q[x,x"/u,v]]

Proof Follows from propositions 2.14 and 2.15.
m]

Proposition 4.13.
[Fue P[x/u] |V u,ve Q[x,x/u,v])] 2beginvarx; [P| Q] end

Proof Follows from propositions 2.16 and 2.17.
m]

4.6. Procedure Call

This and the interpretation of procedures themselves ataattyidependent. Suppose thfais a procedure (we will
see an example in the next section), then procedure calially defined:

Definition 4.6.
J(E) =ar [[x2E]
This leads to inference rules:
Proposition 4.14.
tef tx=tE tEf(E) tef(E)
tef(E) tef tx=t.E

O

Itis necessary to analyse this in advance of proceduressttlees, as it is implicated in the definition, as we will now
see.

4.7. Primitive Recursive Procedures Over Numbers

We define a new schema operator, primitive recursion ovardhgral numbers, in terms of conjunction, strengthening
of preconditions, existential hiding, schema specidtiseind recursive schemas.

Definition 4.7.

proc f(x) casesxin 0 : Up; m+ 1 : Uy(f(m)) endcases =4
uX e lUpTx=0Adme Uy(X[z=m]) Tx=m+1

The Specification LogieZ 17

The idea is that/; is a schema whose alphabet inclugiemd which contains a free schema variaklevhose type is
the type of the entire procedure.

And the rules.
Proposition 4.15. Introduction:

tx=0rtely tx=tm+1rte Ui(f(m))
tef

Proof
2

tx=tm+1

t.x_zO(l) :

; EUGE)
te Uy 1 te U(fm) Tx=m+1
telUpTx=0 tedme Ui(f(m) Tx=m+1
telpTx=0Adme U3(f(m)Tx=m+1
. (u™)
tef

Proposition 4.16. Elimination:

tef tx=0 tef tx=m+1
te Uy t € Us(f (m))

In what follows, we writeU[E] for U[x= F], whenx is understood.

Proposition 4.17. The following rule is derivable:

n €N f(n) 3 Uln]

favu
Proof Consider the following derivation:
z2.x €N
zef & 2.X = 2.X
z € f(2.%) f(z.x) 2 Ulz.x]
z € Ulz.x]
ze U
20 D

m]
And now, the key rule for program development for recursisggpamming: the rule for recursive synthesis:

Proposition 4.18. The following rule is derivable:

Up2 U[0] f(m)2 Ulm] r U1(f(m)) 3 Ulm+ 1]
faU

18 M. C. Henson, M. Deutsch and B. Kajtazi

Proof Consider the following derivation:

@ =70)

z € f(0)
2zx=0 zef
Up 2 UI0] ze Uy)
z € U[0] ? :
f(0)z Ul0] fm+1)3 Ulm+ 1] 1)
OETIDPN
fau
wheres is:
z€flm+1) 3 z € flm+1) &) f(m) 2 Um] @
zx=m+1 zef
z € Ur(f(m)) Ur(f(m) 3 Um+ 1]
z€ Ulm+1] 3)
fm+1)3 Ulm+1]
m]

4.8. Primitive Recursion Over Lists

The technique is easy to generalise. For example:

Definition 4.8.

proc f(x) casesxinNil : Up; Consmgom; : Ui(f(my)) endcases =4
uX e UgTx=Nil A Amp,m;3 e Us(X[x=>m;]) T x = Cons mg my

The rule for recursive synthesis over lists:
Proposition 4.19. The following rule is derivable:

Up 2 U[Nil] f(m) 2 Ulm] + Us(f(m1)) 2 U[Cons mg my]
favu

4.9. Primitive Recursion Over Trees

Similarly for trees:

Definition 4.9.

proc f(x) cases x in Leafmg : Up; Node my mp : U1(f(my), f(mz)) endcases =4
uX edmge Uyl x =Leaf mg A Amg,mp o Uy(X[xDm], X[x=my]) T x = Node my my

The rule for recursive synthesis over trees:
Proposition 4.20. The following rule is derivable:

Up 3 UlLeafmo] f(mg) 3 Ulmy], f(mp) 3 Ump] + Us(f(my, mp)) 3 U[Node my mp]
B

4.10. Primitive Recursion Over Arbitrary Free-Types

All these special cases can be generalised to syntax-eliteee types

The Specification LogieZ 19

Types of the forni’ are the names of the free types and are given by equatione &jrtm:

T = | ¢ (XN TR |-
The terms of free-type:
t'Y' = Ci...tTZJ...

The logic of free types permits the introduction of valueghe type, equality reasoning and finally, elimination
(generally by induction).

Proposition 4.21.

e i € Yaiees ez € Yo ez € Yy v e
ey () e (1)
Ci Zij € C; Zij * Ck 2kl
Ci...zij...:ci...yij...
Zij = Yij (r-)
z€T+ P
where they;, are all those variables occurring in thg with typeY.

m]
Given a general free typg, the corresponding recursive program scheme is:
Definition 4.10.

procy f(x) casesx in --- H; --- endcases
where theH,; are the component cases:
Hi:dfci"'mi"': Ul(f(wk))

where thew;, are those observations among thewith type Y.
The semantics in the general case is given by:
Definition 4.11.
procy f(z) casesxin --- H; --- endcases =g uX ®--- A Kj(X)A---

where:
Kl(X)zdf EI...mZ..... U@'("'X[XSW]@]"')TX:Ci"'mi “e.

4.11. Guarded Commands

In this section, we extenelZ with the notion ofguarded command©ur motivation lies in the investigation attion
systemén formalisms such as the Refinement Calculus, the B-Methpaq] and Z [34, 31].

The formalism ofaction systemwas developed by Baak al.[4, 5] (as an extension of Dijkstra’s language of guarded
commands [22]) within the Refinement Calculus. These casaeere adapted within the B-Method by, for example,
Abrial [2], Butler et al. [9, 8] and Waldéret al. [32]. Similar work (mainly related to the specification ofintive
systems) in Z was done by, for example, Josephs [25], StBOpdnd Miarkaet al. [27]. In all these frameworks,
the main concern is the issue of accommodatiath refusalsandunderspecificationin the same account. In other
words, guards and preconditions must be able to coexisEirsdime specification, so as to employ bothdhaotic
and theabortiveparadigms for refinement simultaneously.

We shall demonstrate that the approach we have takeh fmotivated by our investigation in [21] and [14, ch.6]),

2 The chaotic and the abortive paradigms for refinement aretmms also known as thentractualandbehaviouralapproaches (respectively)
[12, ch.2-3]. We have, in previous work, examined thoroudie concepts of both operation-refinement and data-reénein these two paradigms.
Seee.g.[20, 17, 16, 15] for the investigation in the chaotic paradignde.g.[18, 19][14, ch.5,9] for the investigation in the abortivaradigm.

20 M. C. Henson, M. Deutsch and B. Kajtazi

G P
ﬂ o TTIT | ——
I
Chaos MMM — Magic =

%Deﬁned “-

Tl
It y
y
(LT ¥
1L
1L
>

TE

Magic

Fig.1. The possible regions of operation behaviour in our fram&wbdguarded commands.

in which the refinement logic is logically prior to the schetogic, enables us to establish a logical framework for
guarded commands which encompasses the strong charéciefshe above frameworks: mutual existence of both
guards and preconditions in the same operation, accontbbgia powerful, andully-monotoni¢ Z-like calculus of
schema operations.

4.11.1. Logic and Semantics

The approach we take in establishing the logic of guardedwanads in/Z is more liberal than the approach employed
in [27]: firstly, we use classical logic, as opposed to the-atamdardhree-valuedogic employed inbid.; secondly,

we do not insist on the guard necessarily being weaker thaprdcondition. Thus, the realistic description of the
possible regions of the behaviour of a guarded operatioivengn Fig. 1: The region in which both the guard and
the precondition hold islefinedby the operation; outside the guard, the operation behaaggcally (regardless of
whether or not its precondition holds); and when the guatdsbut the precondition doesn't, the operation behaves
chaotically These concepts are captured by the following definition:

Definition 4.12.
G—[P1Q]=y[-G1G]r[PIQ]

Notice that when the guard is false the first component schhalways bemagic thus the whole schema expression
becomes magic; whereas when the guard is true the first caenpschema will always behaos thus the conjunction
with the actual operation denotes a selection of specifibdbeurs (which, of course, depends on its precondition
and postcondition).

This leads directly to the following introduction and elimation rules (we consider the more general case allowing
schema sets):

Proposition 4.22.

t.G teU . te G — U
—*) =T =

teG— U _
t.G teU te@— U (_,
teqd U (.G (=)

(—0) teu
(]

Recasting these ideas within a single specification leadsstthema in which the guard implies the precondition and
is conjoined with the postcondition. Thus, the followingiatjon holds:

Proposition 4.23.
G—[PIQ]=[G=PIGAQ]

The Specification LogieZ 21

Proof

wxzeG@—[P|Q] @)
%.G %.7.Q
20.2{-G N Q @
wxqe[G=>PIGAQ]
G—[P|IQ]2[G=P|GAQ]
Wheres stands for the following branch:

D

1
/ 1)) zo*zl’eG—>[P|Q]()
wx4eCG—[P1Ql wa=5p @ %.G
wxze[PlQ] 2-P

20.2{.Q

For the other direction, consider the following derivatiohich requires théaw of excluded middte

do 01
w0 G PVaGh-P T aea S [P1Q] nxieG—[P1Q] -
zo*zieG—>[P|Q])
[G=PIGAQl2G—[P|Q]
Wheredy is:
) —
L wxz€[G=>PIGAQ] @) zo.G:P(Z)
wxze[G=>PIGAQ] @ zO.G:P(Z) 20.2,.G A Q
20.G wxz €[PlQ]
w*xzeG—[P|Q]
andeé; is:
— i @
(3) ZO.G/\—|P
false
20.G A =P 2 20.21-Q 3)
2.G wxz [Pl Q]
zo*zl’eG—>[P|Q]
[m}

4.11.2. Refinement Logic

In the approach developed in [27], an operation behavestichiy (i.e. divergence includingL) when its guard
holds and its precondition doesn’t hold, but it behaabertively(i.e. strictly L) outside its guard. This gives rise to

a notion of refinement in which not only preconditions may kexaand postconditions may strengthen, but also the
guard may be strengthen. This, of course, is very intuiteealise strengthening the guard merely means substituting
undefined behaviour with abortive behaviour. However, ithsan approach, the refinement rules must guarantee that
“the precondition is theipper boundor strengthening the guard and the guard isltiveer boundfor weakening the
precondition” [27]. This is in order to prevent abortive bglour from substituting defined behaviour, on one hand,
and chaotic behaviour from substituting abortive behavion the other hand.

22 M. C. Henson, M. Deutsch and B. Kajtazi

Conversely, in our framework the behaviour outside thedjisanagical(as shown in Fig. 1). In which case, not only is

it possible to strengthen the guard beyond the preconditiamefinement step (because the specificatiagiclies at

the bottom of the refinement hierarchy in every frameworkal@mploys explicit preconditions and postconditions),
but also it is possible to weaken the precondition beyondjtieed (because, either way, any new behaviour that is
outside the guard will be magical). Hence, we get the follmasic refinement inequations for guarded commands.

Proposition 4.24. Weakening preconditions:

z.P1+ 2. Py
G—[P1Q]2G—[P1Q]
Proof o
2
oxdeGolmia] mﬁ
wx2 €[Pl Q] 20.Po
1) ;
zo*zl’eG—>[P0|Q] 20.2(.Q @
%.G w*xz€[P1]Q]
w*xzel—[PQ] "
G—[P1Q]2G—[Pi1Q]
O
Proposition 4.25. Strengthening postconditions:
2.QoF 2.Q1
G—[PIQ]2G—[PIq]
Proof
wxz€G—[P]| Q] @)
x4 € [Pl Qo] b &
ZO-Zi.Qo
20 % 2 € G—)[P| QO] @D 20.21- Q1 2

.G o*xz €[P Q1]
zo*zieG—>[P|Q1])
G—[PlQ]l2G—[P|e]

m]
Proposition 4.26. Strengthening the guard:

Z.Go Fz2.Gp
Go—[PIQlaGi—[PIQ]

Proof

1
zo*zl’eGo—>[P|Q] @)

20.Go

1
zo*zl’eGo—>[P|Q] @

zo.:Gl zo*zié[P|Q]
wxz€G—[P|Q] O
Go—[PIQ]l2Gi—[P]Q]

The Specification LogieZ 23

Given the nice properties of guarded commands in our frame(gee Fig. 1), it is interesting to note tlaatyoperation
is equivalent to a disjunction of its guarded commands, &mrmith converse guards; this result is truedoyguard:

Proposition 4.27.
VGeU=G—UV-G—U

Proof We prove this using refinement:

zeG—>U(2) z€—|G—>U(2)

(D zeU zeU
.)
G—-UV-G—U2U

2€eG—>UV-G—U

For the other direction, consider the following derivatighich requires théaw of excluded middle

_ — (1 N — (1
z.G(Z) zéU() —|z.G(2) zéU()
2.GV-=z.G 2€eG—>UV-G—U 2e(—>UV-G—U

2€e—>UV-G—U @

U2G—UV-G—U

(1)
O
4.11.3. Guarded Conditional

We define ayuarded conditionabperator, in terms of disjunction of two schemas guardeddnyerse guards:
Definition 4.13.

gif D then U, " else U "* =4 D — UpV =D — U4
The following introduction and elimination rules are imnegdly derivable for the guarded conditional:
Proposition 4.28.

t.D telp (9if) -t.D tel;
tegif D then Uyelse U 9% t e gif D then Uyelse Uy

(9ify)

tegif D then Upelse Uy teD — Usgt P te-D— U+ P
P

(9if")

O

Using our usual strategy involving elimination rules, wevngemonstrate that the above theonewuivalentto the
conditional theory we established in section 4.3. We begishowing that every guarded conditional is a valid condi-
tional in the ‘i £” theory.

Proposition 4.29. The following rules are derivable:

tegif D then Ugelse Uy t.D M) tegif D then Upelse Uy -t
te Uy tely

Proof For (), consider the following derivation:

D (i)

te-D— U]_ (1)
-t.D t.D
teD— Uy (1) false

t € gif D then Uy else Uy te Uy te U
te U

)

24 M. C. Henson, M. Deutsch and B. Kajtazi

For (ji), consider the following derivation:

teD— U (1)
t.D =t.D
false te-D— Uy &)
t € gif D then Uyelse Uy tely tely

N

te Uh

m]
Then by propositions 4.29(i) and (ii), and the rulef{), the following theorem is immediate:

Theorem 4.30.
t e gif D then Upelse Uy

te€if D then Uyelse Uy

m]
Turning now to showing that every conditional in thief* theory is a valid guarded conditional.

Proposition 4.31.
teif D then Upelse U7 teD— Uptr P te-D— U+ P

P
Proof Consider the following derivation, which requires th& of excluded middle
L teif D then Upelse Uy t.D &)
75 D 1€ Up
teD— Uy 0
DV CEM P P
5 (2)

Wheres stands for the following branch:

! teif D then Upelse Uy -t.D @
o Le 0
t e —lD.—> U1

P
m]
Then by proposition 4.31, in addition to the ruled £§) and @if;), the following theorem is immediately derivable:

Theorem 4.32.
te€if D then Uy else Uy

t € gif D then Uy else Uz

O

Together, theorems 4.30 and 4.32 demonstrate that themsrafeonditionalandguarded conditionatontrol struc-
tures are equivalent.

4.11.4. Guarded Case Statement

We generalise the guarded conditional to guarded casesateThis is defined gsarallel compositiorof commands
whose guards are drawn from a given set of values:

The Specification LogieZ 25

Definition 4.14. Let T ={---¢; - - -}.

n
gcases ETincy: Uép To... Cn - UEZ’ Ty endgcases =g \/ E=c¢— U
i=0
The following introduction and elimination rules are datile for guarded cases:

Proposition 4.33. Leti € n + 1.

t.(E = Ci) te Ul

cases}

tegcases Fincy: Uy -+ ¢, : U, endgcases (9 2
tegcases Fincy: Ug -+ ¢, : U, endgcases --- teb=¢ — U +P --- _
Iz (gcases?)

[m]

In light of theorems 4.30 and 4.32, in conjunction with thetfdat the tases” (section 4.4) and §cases” theories
respectively generalise the theories aff* (section 4.3) and §if” (section 4.11.3), it is evident that the former
theories are also equivalent; the rest of the section istddvo proving this result. We begin by showing that every
guarded case statement is also a valid case statement inabes” theory.

Proposition 4.34. Let i € n + 1, then the following rule is derivable:

tegcases Fincy: Uy --- ¢, : U, endgcases t.(E = ¢;)
teU;
Proof Letk € n + 1, wherek # .
0
tEEZCi—>UZ‘(1)
tegcases Fincy: Up -+ ¢y . U, endgcases teU; teU;

te U @)

Wheres stands for the following branch:

teFE=c, — U @)
t(F = ck) t.(F = ¢;)
Cp =6
false
te U

m]
This (in conjunction with the ruledases*)) leads directly to the following theorem:

Theorem 4.35.
tegcases Fincgy: Uy -+ ¢, : U, endgcases
tecasesEincy: Uy -+ ¢, . U, endcases

m]
Turning now to showing that every case statement is alsoid gahrded case statement.
Proposition 4.36. Let i € n + 1, then the following rule is derivable:

tecasesEinc: Uy -+ ¢, : U, endcases --- teE=¢ — U+ P
P

26 M. C. Henson, M. Deutsch and B. Kajtazi

Proof

tecasesEincy: Uy -+ ¢, . U, endcases :
=0 7
5)

Wheres stands for the following branch:

x tecases Fincy: Uy -+ ¢, : U, endcases t.(E = ¢;) (1)
te K= ci — Ul

P
m]
Then by proposition 4.36, in addition to the rulge4ses;), we get the following theorem immediately:

Theorem 4.37.
tecasesEincy: Uy -+ ¢, . U, endcases
tegcases Fincgy: Uy -+ ¢, : U, endgcases

[m]

Theorems 4.35 and 4.37 together establish that the thedrdasesandguarded caseare equivalent. This concludes
the analysis.

4.12. While Loop
4.12.1. Logic and Semantics

Definition 4.15.
whileDdo U =4 puX oD — UgX V=D — skip
The following introduction and elimination rules are sodadthe while loop:

Proposition 4.38.

-2.D ze€skip
z€while Ddo U

(while})
Proof Let WheuX e D — U§X v =D — skip.

-2.D zéeskip

z€-D — skip
2eD — UsW Vv =D — skip
zewhile D do U

(™)
m]
Proposition 4.39.

2D wxy €U w=ry yxzecwhileDdoU y=r,2
20 % z; €while Ddo U

(while})

Proof Let W beuX ¢ D — U3X vV -D — skip.

The Specification LogieZ

wxy €U =1, 9 y*zl’éwhileDdoU Y=T7, 21
20.21.D wxz € UgW

pxzeD — UsW

wxz €D — UsWvVv-D — skip

29 % z{ €while D do U)
O
Proposition 4.40.
z €while Ddo U
-z.D, 2 € skip P
2D, 0%y €U, 0=1, Y,y *x zf €while Ddo U,y =7, 2 P
Iz (while™)
Proof Let WbheuX e D — Ug3X v =D — skip.
6o 02
z €ewhile Ddo U) Lo
zeD — UgW v =D — skip P P
> (1)
wheredg is:
01
DS ogw A9 5
2EUSW P
5 @)
whered; is:
D S oUW (1a)
2€D — Uy 2 S
2.D zo*y’éU() zozTLy(Z) y*zl’éW() Y =1, 2)
P
whereg; is:
— 1) ——————— (1)
z€-D —> skip (1) z €D — skip
-z.D z € skip
P
O
The following additional rules are derivable:
Lemma 4.41.
z€while Ddo U -z.D
z € skip
Proof
20 20 ©
) false
z€while Ddo U z € skip z € skip 0)

z € skip

27

28 M. C. Henson, M. Deutsch and B. Kajtazi

O
Lemma 4.42.
z€whileDdo U z.D
ze€ Ugwhile Ddo U
Proof
z.D =z.D ©) 5_0
false
zewhileDdoU ze UgwhileDdoU ze€ UgwhileDdoU ©0)
z€ Ugwhile Ddo U
wheredg is:
— (0 0
wn*xy €U © 20=1,Y ©) y*ziéwhileDdo U © Y =Tn 21 (0)
z€ Ugwhile Ddo U
O

4.12.2. Inequational Refinement Logic

Proposition 4.43.

-2.D F skip 3 U4[0]
z.D,while D do Up[f(n)] 2 Uh[f(n)] + Upgwhile D do Up[f(n)] 2 Ui[n]

while Ddo Uy 2 U3

Proof
50 (52

z € U1]0] B z € U[n] 3)
while D do Up[0] 2 U4]0] while D do Up[n] 2 Ui[n] 1)
while D do Up[n] 3 Ui[n] ©)
while Ddo Up 2 Uy

wheredg is:

01
01 .

z.y.= 0
-z.D

z €while D do Up[0] 2) Z.y.: 0
= ywhile D d —z.D
z€while 9 Us z 441 :
z € skip skipad Uy
z€lh z.y.z 0
z € Ul[O]

01

whereod; is:

z € while D do Up[0] 2
2zy=0

whereds is:
54 63

2 € Upswhile D do Uolf(n)] Usgwhile D do :Uo[f(n)] 3 Us[n]
z € Uy[n]

The Specification LogieZ 29

whereds is:
z €while D do Up[n] 3)
Zy=mn n>0 (1)
z.D while D do Up[f(n)] 2 Uh[f(n)]
Upswhile D do Up[f(n)] 2 Uiln]
whered, is:
05, 06
z €while D do Up[n] 3
z €while D do Up 2 € Upgwhile D do Up[f(n)] @
2 € Upgwhile D do Up[f(n)]
whereds is:
z e while D do Up[n] 3 1)
@ zy=mn n>0
-z.D z.D
false
z € Up3while D do Up[f(n)]
whereds is:
07
4 5
2% w' € Uy @ 20=1, W ORI z ewhile D do Up[f(n)] w=r, 21 (4)
z € Upgwhile D do Up[f(n)]
wheresy is:
——— (@ %
2 *xw € U :
Fan=wy @ ay-
: (4) 20.y) = w.y 20.y="n
w * z; €while D do Up w.y = f(n)
w % 2z, €while D do Up[f(n)]
wheredg is:
z €while D do Upy[n])
20y =n
O
Rule used to perform step (1)
P0) n>0,m<mn,P(m)r P(n) 1)
P(n)
*x 2z elU
%71_ (#)
f(0y) =2y

4.12.3. General Refinement Logic

We generalise on the previous section in two aspects: firstyariant now depends on a particular state, rather than
on a single observation; secondly, the state observatienss necessarily numeric. This concept is easily attalyed
defining a functiory which associates every state of the system with a partioulareric value. Namely:

feT >N

Then the following rule is derivable:

30 M. C. Henson, M. Deutsch and B. Kajtazi

Proposition 4.44.

(while Ddo Up) T (D AfOT)=m)2 U1 T (D A fOT)=m)+
Uo 8 (while D do Uo) 1 (D A f(OT) =m) 3 Ui 1 (D A £(8T) = n)

while Ddo Uy 2 U3
Proof Consider the following derivation which emplogsurse of valuesduction:
01

skipd U T-D

So :
(while D do Up) 1 (D A f(6T) =2) 3 Uy 1 (D A f(OT) =)
(while D do Up)T =D 3 Uy T =D (while Ddo U))TD 3 Ui 1 D

while Ddo Uy 2 U3

Wheres, stands for the following branch:

" D ® 5O
z € (while D do Up) T ~D D 5@ : false
z € while D do Uy z€l; z€ U &)
z€ Uy 1-D ®
(while Ddo Up) 1 -D 2 U1 -D
Wheren is:
z € skip ©) skip3 Uy 1-D 3
ze Uy 1T-D -z.D
zel

Let po andy,, respectively be:
(while D do Up) T (D A f(T)=0)2 Uy T (D A f(0T) = 0)

and
(while D do Up) 1 (D A f(OT)=n)2 U T(D A f(OT) = n)

thend; stands for the following branch:

Bo B1
(p:O Qo:n (4)
(while Ddo Up T(D Af(OT)=2)3 UL T(D A f(OT) =)
Whereg, is:
o a1
z € (while D do Up) T(D A f(OT) =0) ® z(D A f(OT) =0) ©) : :
z €ewhile D do Uy ze€lU; zelh
A (M
ze Uy 6)
S 1D A ET)=0) -

(while D do Up) T (D A f(OT)=0)2 Uy T (D A f(0T) = 0)
anday, a; are respectively:

SO AfeT =0 ©
Z(0T)=0)
f(z)=0
~eskip) skip3 141D o =D) D *
ze U 1-D -z.D ™ false

ZéUl ZEU]_

The Specification LogieZ 31

B1 stands for the following branch:

Yo Y1
z € (while D do Up) T (D A f(OT) = n) ® z.(D A f(OT) = n) © :
z ewhile D do Uy A ze€lU; zel (10)
ze Uy (9)
ze Uy 1(D A f(OT) =n) g
(while D do Up) 1 (D A f(6T)=n) 3 Ur 1 (D A f(OT) = n) ®
Wherey; is:
z.(D A f(OT)=n) © 10
z.D -z.D (10
false
z € U1
Lety be:
z € Up§(while D do Up) T (D A f(OT) = m)
theny, branch is:
(while D do Uo) T(D A f(6T) =m) 2 U1 T(D A f(OT) = m) “) >
Up §(while D do Up) T (D /\f(G:T):m)Q UpT(D A f(OT)=n) w 9
z2€ Uh T (D A f(OT)=n) z.(D A f(OT) =n) ©
z E U1
Wherey, stands for the following branch:
- (10
(10) y * 2z €while D do U
2wy € Uy 2=7, 7 19 sz echile Ddo Up) 1 (D A f(OT)=m) y=r, 2z 10

z € Up§(while D do Up) T (D A f(OT) =m)

5. Conclusions and Further Work

As we mentioned in the introduction, this expository paparaentrates entirely on the theoretical basisfWe
have showed how an extremely simple logic can be extendeattis/an expressive specification logic and a program
(development) logic. One of the benefits of this approaclsigléxibility: one is not constrained by any particular
specification or programming language infrastructure. dihibity to provide elegant rules for total correctness dleve
opment of procedures is also a strength: these rules resghtde which proved so useful in program development
within constructive theories (see, for example, [26]) nat bere combined with the ability to synthesize imperative
programs.

Much infrastructural and pragmatic work remains to be dboth at the level of specification and program develop-
ment. At the pragmatic level in particular, much work is lieimdertaken by Kajtazi and this will be reported in his
PhD thesis.

6. Acknowledgements

The authors are grateful to Steve Reeves and Lindsay Grovesiierous discussions and critical appraisal of this
work. We would like to acknowledge the support of the EPSR@realet Network Grant (Ref: GI$6997902) in

the development of this work, including comments from pguints at the January 2004 meeting in Bkt where

an earlier version of this material was presented.

32

M. C. Henson, M. Deutsch and B. Kajtazi

References

[1]
(2]
(3]
[4]

(5]
[6]
[7]
(8]

[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17)
[18]

[19]

[20]
[21]
[22]
(23]
[24]
[25]

[26]

J. R. Abrial. The B-Book Cambridge University Press, 1996.

J. R. Abrial. Extending B without Changing it (for Devgling Distributed Systems). In H. Habrias, edirpceedings

of the 1st Conference on the B Method, Nantes, France, 24e26rber, 1996pages 169-190. Institut de Recherche
en Informatique de Nantes (IRIN), 1996.

D. Azada and P. Muenchaisri, editosPSEC 2003: 10th Asia-Pacific Software Engineering ConfareChiangmai,
Thailand, December 10-12, 2003, Proceedin§&EE Computer Society Press, December 2003.

R. J. R. Back and R. Kurki-Suonio. Decentralization ob&ass Nets with Centralized Control. Rroceedings of
the 2nd Annual ACM Symposium on Principles of Distributech@ating, Montreal, Quebec, Canada, August, 1983
pages 131-142. ACM Press, 1983.

R.J. R. Back and K. Sere. Deriving an Occam ImplementatifcAction SystemsTechnical Report A-99. Department
of Computer Science, Abo Akademi University, Turku — Fhldanuary 1990.

R. J. R. Back and J. von WrighRefinement Calculus: A Systematic Introducti8pringer, 1998.

J. P. Bowen, S. Dunne, A. Galloway, and S. King, editaB. 2000: Formal Specification and Development in Z and
B, First International Conference of B and Z Users, York, Bgust 29 - September 2, 2000, Proceedingtume
1878 ofLecture Notes in Computer Scien&pringer, 2000.

M. J. Butler. An Approach to the Design of Distributed 8m®s with B and AMN. In J. P. Bowen, M. G. Hinchey, and
D. Till, editors,ZUM '97: The Z Formal Specification Notation, 10th Intermattal Conference of Z Users Reading,
UK, April, 1997 volume 1212 of ecture Notes in Computer Scienpages 223-241. Springer-Verlag, 1997.

M. J. Butler and M. Waldén. Distributed System Develaprhin B. Technical Report TUCS-53. Turku Centre for
Computer Science, Abo Akademi University, Turku — Finl@atober 1996.

D.Bert, J. P. Bowen, S. King, and M. Waldén, editoB 2003: Formal Specification and Development in Z and
B, Third International Conference of B and Z Users, Turkwl&nd, June 4-6, 2003, Proceeding®lume 2651 of
Lecture Notes in Computer Scien&pringer, 2003.

W. P. de Roever and K. Engelhar@tata Refinement: Model-Oriented Proof Methods and Their @oison Prentice
Hall International, 1998.

J. Derrick and E. A. BoitenRefinement in Z and Object-Z: Foundations and Advanced égifgins Formal Ap-
proaches to Computing and Information Technology — FAC[Fir®er, May 2001.

J. Derrick and E. A. Boiten, editorREFINE 2005 International Workshpglectronic Notes in Theoretical Computer
Science. BCS-FACS, April 2005. To appear.

M. Deutsch.An Analysis of Total Correctness Refinement Models for &drelation SemantichD thesis, Univer-
sity of Essex, 2005.

M. Deutsch and M. C. Henson. An Analysis of Backward Sation Data-Refinement for Partial Relation Semantics.
In APSEC 2003 [3]pages 38—48, 2003.

M. Deutsch and M. C. Henson. An Analysis of Forward Siatign Data Refinement. BB 2003 [10] pages 148-167,
2003.

M. Deutsch and M. C. Henson. An analysis of total comess refinement models for partial relation semantics II.
Logic Journal of the IGPL11(3):319-352, 2003.

M. Deutsch and M. C. Henson. An Analysis of OperatiorfiRement in an Abortive Paradigm. REFINE 2005
[13], 2005.

M. Deutsch, M. C. Henson, and S. Reeves. Results on Hd@tepwise Design in Z. In P. Strooper and P. Muen-
chaisri, editorsAPSEC 2002: 9th Asia-Pacific Software Engineering ConfazeGold Coast, Queensland, Australia,
December 4-6, 2002, Proceedingages 33—42. IEEE Computer Society Press, December 2002.

M. Deutsch, M. C. Henson, and S. Reeves. An analysistaf torrectness refinement models for partial relation
semantics ILogic Journal of the IGP.11(3):287-317, 2003.

M. Deutsch, M. C. Henson, and S. Reeves. Modular reagani Z: scrutinising monotonicity and refinemetuni-
versity of Essex, technical report CSM-407 (under consititen of FACJ) December 2003.

E. W. Dijkstra. A Discipline of ProgrammingPrentice Hall, 1976.

M. C. Henson and S. Reeves. Investigatind Agic and Computationl0(1):43-73, 2000.

C.A.R Hoare and J. HaJnifying Theories of Programmindrentice Hall International, 1998.

M. B. Josephs. Specifying Reactive Systems im@&chnical Monograph PRG-TR-19-91. Oxford University Cotp
ing Laboratory 1991.

P. Martin-Lof. Constructive mathematics and compuyieogramming. InLogic, Methodology and Philosophy of
Science V,pages 153-175. North Holland, 1982.

The Specification LogieZ 33

[27]

(28]
[29]
[30]

[31]
[32]

[33]
[34]

R. Miarka, E. A. Boiten, and J. Derrick. Guards, Predtinds, and Refinement in Z. IAB 2000 [7] pages 286-303,
2000.

C. C. Morgan.Programming from Specification®rentice Hall International, 2nd edition, 1994.

S. SchneiderThe B-Method — An IntroductiorCorrectness of Computing. Palgrave, 2001.

B. Strulo. How Firing Conditions Help Inheritance. IR Bowen and M. G. Hinchey, edito@JM '95: The Z Formal
Specification Notation, 9th International Conference of get$ Limerick, Ireland, September 7-9, 1998lume 967
of Lecture Notes in Computer Scienpages 264-275. Springer-Verlag, 1995.

I. Toyn, editor.Z Notation: Final Committee Draft, CD 13568.Z Standards Panel, 1999.

M. Waldén and K. Sere. Refining Action Systems withiiTBel. In M. Naftalin, T. Denvir, and M. Bertran, editors,
FME '96: Industrial Benefit and Advances in Formal Methods] gternational Symposium of Formal Methods
Europe, Oxford, UK, March 18-22, 1996, Proceedingslume 1051 ofLecture Notes in Computer Sciengages
84-103. Springer, 1996.

J. Woodcock and S. BrieriW: A logic for Z. In Proceedings of ZUM '91, 6th Conf. on pringer Verlag, 1992.

J. C. P. Woodcock and J. Daviddsing Z: Specification, Refinement and Prdefentice Hall, 1996.

