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Abstract

This technical report reviews recent progress
in human movement tracking systems in general,
and patient rehabilitation in particular. Major
achievements in previous working systems are
summarized. Meanwhile, problems in motion
tracking that remain open are highlighted along
with possible solutions. Finally, discussion is
made regarding challenges which remain and a
design specification is proposed for a potential
tracking system.

1 Introduction

Evidence shows that, in 2001-02, 130,000 peo-
ple in the UK experienced a stroke [62] and re-
quired admission to hospital. More than 75% of
these people were elderly, who required locally
based multi-disciplinary assessments and appro-
priate rehabilitative treatments after they were
dismissed from hospital [35], [48]. As a con-
sequence, this increased greatly the demand on
healthcare services, and expense in the national
health service. To enhance the health service,
people intend to use intelligently devised equip-
ment to conduct patient rehabilitation in the pa-
tient’s home rather than in a hospital that may
be geographically remote. These systems are ex-
pected to reduce the requirement for face-to-face
therapy between therapy experts providing vision
and audio supports, and patients.

The goal of rehabilitation is to enable a person
who has experienced a stroke to regain the high-
est possible level of independence so that they can
be as productive as possible. Since stroke patients
often have complex rehabilitation needs, progress
and recovery characteristics are unique for each
person. Although a majority of functional abili-
ties may be restored soon after a stroke, recovery
is an ongoing process. Therefore, home-based re-
habilitation systems are expected to have adaptive
settings designed to meet the requirements of in-
dividuals, automatic operation, an open human-
machine interface, rich database for later evalu-
ation, and compactness and portability. In fact,

Figure 1. A rehabilitation system at the
Massachusetts Institute of Technology (MIT),
USA.

rehabilitation is a dynamic process which uses
available facilities to correct any undesired mo-
tion behavior in order to reach an expectation (e.g.
ideal position).

During the rehabilitation process, the move-
ment of stroke patients needs to be localized and
learned so that incorrect movements can be in-
stantly modified or tuned. Therefore, tracking
these movements becomes vital and necessary
during the course of rehabilitation. This report
details a survey of technologies deployed by hu-
man movement tracking systems that consistently
update the spatiotemporal information of patients.
Previous systems (one of them shown in Figure
1) have proved that, to some extent, properly con-
ducted designs are capable of improving the qual-
ity of human movement, but many challenges
still remain due to complexity and uncertainty in
movement. In the following sections, a compre-
hensive review of this type of systems is provided.

The rest of this report is organized as follows.
Section 2 outlines the four main types of tech-
nologies used in human movement tracking. Sec-
tion 3 presents non-vision based human move-
ment tracking systems, which have been commer-
cialized. Marker-based visual tracking systems
are introduced in Section 4, and markerless visual
systems described in Section 5. Section 6 pro-
vides robot-guided tracking system concepts and
a description of their application in the rehabili-
tation procedure. A research proposal based on
previous work at the University of Essex, and lit-
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Figure 2. Illustration of a real human movement tracking system (courtesy of Axel Mulder, Simon
Fraser University).

erature is provied in Section 8. Finally, conclu-
sions are provided in Section 9.

2 Sensor technologies

Human movement tracking systems generate
real-time data that represents measured human
movement [80], based on different sensor tech-
nologies. For example, Figure 2 illustrates a hy-
brid human movement tracking system. Retriev-
ing such sensing information allows a system to
efficiently describe human movement, e.g. arm
motion. However, it is recognized that sensor
data encoded with noise or error due to relative
movement between the sensor and the objects to
which it is attached. It is therefore essential to un-
derstand the structure and characteristics of sen-
sors before they are applied to a tracking sys-
tem. According to sensor location on a human
body, tracking systems can be classified as non-
vision based, vision based with markers, vision
based without markers, and robot assisted sys-
tems. These systems are described one at a time
in the following sections.

2.1 Non-vision based tracking

In non-vision based systems, sensors are at-
tached to the human body to collect movement
information. Their sensors are commonly classi-
fied as mechanical, inertia, acoustic, radio or mi-
crowave and magnetic sensing. Some of them
have a small sensing footprint that they can
monitor small amplitudes such as finger or toe
movement. Each kind of sensor has advantages
and limitations. Limitations include modality-
specific, measurement-specific and circumstance-
specific limitations that accordingly affect the use
of the sensor in different environments [108].

For example, as part of inertia sensors ac-
celerometer sensors (Figure 3) convert linear ac-
celeration, angular acceleration or a combination
of both into an output signal [31]. There are three
common types of accelerometers: piezoelectric
which exploit the piezoelectric effect whereby a
naturally occurring quartz crystal is used to pro-
duce an electric charge between two terminals;
piezoresistive operating by measuring the resis-
tance of a fine wire when it is mechanically de-
formed by a proof mass [71]; and variable capac-
itive where the change in capacitance is propor-
tional to acceleration or deceleration [110]. An
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Figure 3. Illustration of a piezoresistive sen-
sor.

example of accelerometers is given in Figure 4.
Unfortunately, these sensors demand some com-
puting power, which possibly increases response
latency. Furthermore, resolution and signal band-
with are normally limited by the interface cir-
cuitry [28].

2.2 Vision based tracking with markers

This is a technique that uses optical sensors,
e.g. cameras, to track human movements, which
are captured by placing identifiers upon the hu-
man body. As human skeleton is a highly ar-
ticulated structure, twists and rotations make the
movement fully three-dimensional. As a conse-
quence, each body part continuously moves in
and out of occlusion from the view of the cam-
eras, leading to inconsistent and unreliable track-
ing of the human body. As a good solution to
this situation, marker-based vision systems have
attracted the attention of researchers in medical
science, sports science and engineering.

One major drawback of using optical sensors
and markers, however, is that they are difficult to
use to accurately sense joint rotation, leading to
the infeasibility of representing a real 3-D model
for the sensed objects [102].

Figure 4. Entran’s family of miniature ac-
celerometers.

2.3 Vision based tracking without markers

This technique exploits external sensors like
cameras to track the movement of the human
body. It is motivated by facts addressed in marker
based vision systems [1]: (1) Identification of
standard bony landmarks can be unreliable. (2)
The soft tissue overlying bony landmarks can
move, giving rise to noisy data. (3) The marker
itself can wobble due to its own inertia. (4) Mark-
ers can even come adrift completely.

A camera can be of a resolution of a million
pixels. This is one of the main reasons that such
an optical sensor s attracted people’s attention.
However, such vision based techniques require in-
tensive computational power to achieve efficiently
and to reduce the latency of data [32]. Moreover,
high speed camera’s are also required, as conven-
tionally less than sixty frames a second provides
an insufficient bandwith for accurate data repre-
sentation [24].

2.4 Robot assisted tracking

Recently, voluntary repetitive exercises admin-
istered with the mechanical assistance of robotic
rehabilitators has proven effective in improving
arm movement ability in post-stroke populations.
During the course of rehabilitation, human move-
ment is reflected by using sensors attached to
the body, which consist of electromechanical and
electromagnetic sensors. Electromechanical sys-
tems prohibit free movements and involve discon-
necting sensors from the human body. The elec-
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tromagnetic approach provides more freedom for
human movement, but is seriously affected by di-
rectional sensors.

3 Human movement tracking: non-
vision based systems

Understanding and interpreting human behav-
ior has attracted attention of therapists and bio-
metric researchers due to its impact on the re-
covery of patient post disease. So, people need
to learn dynamic characteristics about the actions
of certain parts of the body, e.g. hand-gestures
and gait analysis. Tracking actions is an effec-
tive means that consistently and reliably repre-
sents human dynamics against time. This purpose
can be reached through the use of electromechan-
ical or electromagnetic sensors. This is so-called
“non-vision based tracking”. Among the sensors
and systems to be introduced below, MT9 based,
G-link based and MotionStar systems have wire-
less properties, indicating that they are not limited
in space.

3.1 MT9 based

The MT9 [64] of Xsens Motion Tech, is a dig-
ital measurement unit that measures 3-D rate-of-
turn, acceleration and earth-magnetic field, as re-
ferred to in Figure 5. Combined with the MT9
Software it provides real-time 3-D orientation
data in the form of Euler angles and Quaternions,
at frequencies up to 512 Hz and with an accuracy
better than 1 degree root-mean-square (RMS).

The algorithm of the MT9 system is equiva-
lent to a sensor fusion process where the measures
of gravity through accelerometers and magnetic
north via magnetometers compensate for increas-
ing errors from the integration of the rate of turn
data. Hence, this drift compensation is attitude
and heading referenced. In a homogeneous earth-
magnetic field, the MT9 system has 0.05 degrees
RMS angular resolution; < 1.0 degrees static ac-
curacy; and 3 degrees RMS dynamic accuracy.

Due to its compact size and reliable perfor-
mance, the MT9 has easily been integrated into
the field of biomechanics, robotics, animation,

Figure 5. Illustration of MT9.

and virtual reality, etc. However, a MT9-based
tracker with six MT9 units costs about 16,000 eu-
ros.

3.2 G-link

G-Link of MicroStrain is a high speed, triax-
ial accelerometer node, designed to operate as
part of an integrated wireless sensor network sys-
tem [2], as shown in Figure 6. The Base Sta-
tion transceiver may trigger data logging (from
30 meters), or request previously logged data to
be transmitted to the host PC for data acquisi-
tion/display/analysis. Featuring 2 KHz sweep
rates, combined with 2 Mbytes flash memory,
these little nodes pack a lot of power in a small
package. Every node in the wireless network
is assigned a unique 16 bit address, so a single
host transceiver can address thousands of multi-
channel sensor nodes. The Base Station can trig-
ger all the nodes simultaneously, and timing data
is sent by the Base Station along with the trigger.
This timing data is logged by the sensor nodes
along with sensor data.

G-Link may also be wirelessly commanded to
transmit data continually, at 1 KHz sweep rates,
for a pre-programmed time period. The contin-
uous, fast wireless transmission mode allows for
real time data acquisition and display from a sin-
gle multichannel sensor node at a time. G-link
has two acceleration ranges: +/- 2 G’s and +/- 10
G’s, whilst its battery lifespan can be 273 hours.
Furthermore, this product has a small transceiver
size: 25×25×5 mm

2. A G-Link starter kit, inl-
cuding two G-Link data-logging transcevers (+/-
10 G full scale range), one basestation, all nec-
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Figure 6. A G-link unit.

essary software and cables, costs about 2,000 US
dollars.

As a wireless sensor, 3DM-G combines an-
gular rate gyros with three orthogonal DC ac-
celerometers, three orthogonal magnetometers to
output its orientation. This product can be oper-
ated over the full 360 degrees of angular motion
on all three axes with +/- 300 degrees/sec angular
velocity range, 0.1 degrees repeatability and +/-
5 degrees accuracy. A gyro enhanced 3-axis ori-
entation system starter kit 3DM-G-485-SK, con-
sisting of one 3DM-G-485-M orientation module,
one 3DM-G-485-CBL-PWR communication ca-
ble and power supply, a 3MG-G Software Suite
for Win 95/98/2000/XP and a user manual, costs
1,500 US dollars (approx.).

3.3 MotionStar

MotionStar is a magnetic motion capture sys-
tem produced by the Ascension Technology Cor-
poration in the USA. This system applies DC
magnetic tracking technologies, which are signif-
icantly less susceptible to metallic distortion than
AC electronmagnetic tracking technologies. It
provides real-time data output, capturing signif-
icant amounts of motion data in short order. Re-
gardless of the number of sensors tracked, one can
get up to 120 measurements per sensor per sec-
ond. This system achieves six degree-of-freedom
measurements, where each sensor calculates both
position (x, y, z) and orientation (azimuth, eleva-
tion, roll) for a full 360 degrees coverage without

Figure 7. Motionstar Wireless 2.

Figure 8. InterSense IS-300 Pro.

the “line of sight” blocking problems of optical
systems. There are 6 data points sampled by each
sensor so fewer sensors are demanded. The com-
munication between the console and the sensors
is wireless.

MotionStar Wireless 2 (Figure 7) is a magnetic
tracker for capturing the motion of one or more
performers. Data is sent via a wireless communi-
cations link to a base-station. It holds such good
performance as: (1) translation range: +/- 3.05 m;
(2) angular range: all attitude - +/- 180 deg for Az-
imuth and Roll, +/- 90 deg for Elevation; (3) static
resolution (position): 0.08 cm at 1.52 m range; (4)
static resolution (orientation): 0.1 RMS at 1.52 m
range. Unfortunately, the communication range is
only 12 feet (radius).

A vital drawback is that this system with six
sensors costs around 56,000 US dollars.

3.4 InterSense

InterSense has its updated product IS-300 Pro
Precision Motion Tracker shown in Figure 8. This
system virtually eliminated the jitter common to
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other systems. It is featured with update rates of
up to 500 Hz, steady response in metal-cluttered
environments. The signal processor was small
enough to wear on a belt for tetherless applica-
tion. Furthermore, this system was the only one
which predicted motion up to 50 ms and compen-
sated for graphics rendering delays and further
contributed to eliminating simulator lag. There-
fore, it has been used successfully to implement
feed-forward motion prediction strategies.

3.5 Polhemus

Polhemus [3] is the number one global provider
of 3-D position/orientation tracking systems, dig-
itizing technology solutions, eye-tracking sys-
tems and handheld three-dimensional scanners.
The company was founded in 1969 by Bill Pol-
hemus in Grand Rapids, MI. In early 1971 Polhe-
mus moved to the Burlington area. Polhemus pro-
vided several novel fast and easy digital tracking
systems: LIBERTY, FASTRAK and PATRIOT.

3.5.1 LIBERTY

This was the forerunner in electromagnetic track-
ing technology (Figure 9). LIBERTY computed
at an extraordinary rate of 240 updates per second
per sensor with the ability to be upgraded from
four sensor channels to eight, by the addition of
a single circuit board. Also, it had a latency of
3.5 milliseconds, a resolution of .00015 in (0.038
mm) at 12 in. (30 cm) range; and a 0.0012 ori-
entation. The system provided an easy, intuitive
user interface. Application uses were boundless,
from biomechanical, and sports analysis, to vir-
tual reality.

3.5.2 FASTRAK

FASTRAK was a solution for accurately comput-
ing position and orientation through space (Figure
10). With real time, six-degree-of-freedom track-
ing and virtually no latency, this award-winning
system was ideal for head, hand, and instrument
tracking, as well as biomedical motion and limb
rotation, graphic and cursor control, stereotaxic

Figure 9. Illustration of LIBERTY by Polhe-
mus.

Figure 10. Illustration of FASTRAK by Polhe-
mus.

localization, telerobotics, digitizing, and pointing.

3.5.3 PATRIOT

PATRIOT was a cost effective solution for six-
degree-of-freedom tracking and 3-D digitizing.
A good answer for the position/orientation sens-
ing requirements of 3-D applications and environ-
ments where cost is a primary concern, it was
ideal for head tracking, biomechanical analysis,
computing graphics, cursor control, and stero-
taxic localization. See Figure 11.

3.6 HASDMS-I

Human Performance Measurement, Inc. pro-
vided the HASDMS-I Human Activity State De-
tection and Monitoring System [4]. The Model
HASDMS-I is a system designed to detect and log
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Figure 11. Illustration of PATRIOT by Polhe-
mus.

selected human activity states over prolonged pe-
riods (up to 7 days). It consists of a Sensing and
Logging Unit (SLU) and Windows-based Host
Software that runs on a user supplied PC. The sys-
tem is based on the observation that while humans
engage in activities which are often quite com-
plex dynamically and kinematically, there are dis-
tinct patterns that lead us to identify these activ-
ities with specific words such as standing, walk-
ing, etc. Such words are referred to as “activity
states”.

The HASDMS-I was designed to provide the
greatest activity discrimination with the smallest
possible sensor array (i.e., one sensing site on
the body). The SLU is a compact, battery pow-
ered instrument with special sensors and a mi-
croprocessor that is mounted to the lateral aspect
of the monitored subject’s thigh. It detects four
unique activity states: (1) lying-sitting (grouped),
(2) standing, (3) walking, and (4) running. A fifth
state (”unknown”) is also provided to discrimi-
nate unusual patterns from those which the sys-
tem is designed to detect.

The SLU is first connected to a Host PC (via
a simple serial port connection) for initialization
and start-up. It is then attached to a subject for an
unsupervised monitoring session. When the ses-
sion is complete, the SLU is again connected to
the Host PC and logged data is uploaded to the
host software for databasing, display, and analy-
sis. Several standard activity summaries are pro-
vided including (1) the percent time spent in dif-
ferent states and (2) the total amount of time

Figure 12. HASDMS-I from Human Perfor-
mance Measurement, Inc.

Figure 13. Illustration of a glove-based proto-
type (image courtesy of KITTY TECH).

(hours, minutes, seconds) spent in different states.
In addition, an Activity State History Graph de-
picts the type and duration of each state in a time-
sequenced, scrollable window. Activity state data
can be printed or exported in the form of an ASCII
text file for any other user-specified analyses. The
HASDMS-1 system is shown in Figure 12.

3.7 Glove-based analysis

Since the late 1970s people have studied glove-
based devices for the analysis of hand gestures.
Glove-based devices adopt sensors attached to a
glove that transduces finger flexion and abduction
into eletrical signals to determine the hand pose
(Figure 13).

The Dataglove (originally developed by VPL
Research) was a neoprene fabric glove with two
fiber optic loops on each finger. Each loop was
dedicated to one knuckle and this can be a prob-
lem. If a user has extra large or small hands, the
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loops will not correspond very well to the actual
knuckle position and the user will not be able to
produce very accurate gestures. At one end of
each loop is an LED and at the other end is a
photosensor. The fiber optic cable has small cuts
along its length. When the user bends a finger,
light escapes from the fiber optic cable through
these cuts. The amount of light reaching the pho-
tosensor is measured and converted into a mea-
sure of how much the finger is bent. The Data-
glove requires recalibration for each user [117].

The CyberGlove system included one Cyber-
Glove [5], an instrumentation unit, a serial cable
to connect to your host computer, and an exe-
cutable version of the VirtualHand graphic hand
model display and calibration software. Many
applications require measurement of the position
and orientation of the forearm in space. To ac-
complish this, mounting provisions for Polhemus
and Ascension 6 degrees of freedom tracking sen-
sors are available for the glove wristband. Track-
ing sensors are not included in the basic Cyber-
Glove system. The CyberGlove had a software
programmable switch and LED on the wristband
to permit the system software developer to pro-
vide the CyberGlove wearer with additional in-
put/output capability. The instrumentation unit
provided a variety of convenient functions and
features including time-stamp, CyberGlove sta-
tus, external sampling synchronization and analog
sensor outputs.

Based on the design of the DataGlove, Power-
Glove was developed by Abrams-Gentile Enter-
tainment (AGE Inc.) for Mattel through a licens-
ing agreement with VPL Research. PowerGlove
consists of a sturdy Lycra glove with flat plas-
tic strain gauge fibers coated with conductive ink
running up each finger; which measure change in
resistance during bending to measure the degree
of flex for the finger as a whole. It employs an
ultrasonic system (back of glove) to track the roll
of the hand (reported in one of twelve possible
roll positions), ultrasonic transmitters must be ori-
ented toward the microphones to get an accurate
reading; pitching or yawing hand changes orien-
tation of transmitters and signal would be lost by
the microphones; poor tracking mechanism. (4D

- x, y, z, roll).
Similar technologies can be referred to 5DT

DataGlove [6], PINCH Gloves [7], and Hand
Master [8].

3.8 Non-commercial systems

The commercial systems described earlier ac-
commodate stable and consistent technologies.
Nevertheless, they are sold with high prices. This
extremely limits the applications of these systems
in the community. As a result, people intend to
propose some affordable, compact and friendly
systems instead. In this context, an example is
given as follows.

Dukes [45] developed a compact system which
comprised two parts, an embedded hand unit that
encapsulated the necessary hardware for captur-
ing human arm movement and a software inter-
face implemented in a computer terminal for dis-
playing the collected data.

Within the embedded hand unit a microcon-
troller gathered data from two accelerometers.
The collected data was then transmitted to the
computer terminal for the purpose of analysis.
The software interface was implemented to col-
lect data from the embedded hand unit. The data
was presented to the user both statically and dy-
namically in the form of a three dimensional an-
imation operation. The whole system success-
fully captured human movement. Moreover, the
transference of data from the hand unit to the ter-
minal was consistently achieved in an asynchro-
nized mode. In the computer terminal, the col-
lected data was clearly illustrated for represent-
ing the continuous sampling of the FM transmit-
ter and receiver modules, demonstrated in Figure
14.

However, the animation shown in the termi-
nal failed to correct display human movement in
terms of distance travelled and speed of move-
ment. This is due to the direct output of the data
from the accelerometers without any calculation
with respect to the distance. To perform a correct
demonstration, this data needs to be resampled
and further processed in the terminal based on the
travelled distance and its corresponding time.
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Figure 14. Demo of Dukes’s approach: (a) collected data on x-axis, and (b) collected data on y-axis.

3.9 Other techniques

Acoustic systems collect information by trans-
mitting and sensing sound waves, where the flight
duration of a brief ultrasonic pulse is timed and
calculated. These systems are being used in med-
ical applications, [46], [83], [91], but have not
been used in motion tracking. This is due to in-
herent drawbacks corresponding to the ultrasonic
systems: (1) the efficiency of an acoustic trans-
ducer is proportional to the active surface area so
large devices are demanding; (2) to improve the
detected range the frequency of ultrasonic waves
must be low (e.g. 10Hz) but this affects system
latency in continuous measurement; (3) acoustic
systems require a line of sight between the emit-
ters and the receivers.

Radio and microwaves are normally used in
navigation systems and airports landing aids
[108] although they have no application in the
human motion tracking. Electromagnetic wave-
based tracking approaches can provide range in-
formation by calculating the radiated energy dis-
sipated in a form of radius r as 1/r2. For exam-
ple, using a delay-locked loop (DL) the Global
Positioning System (GPS) can achieve a resolu-
tion of 1 meter. Obviously, this is not enough
for the human motion that is usually of 40-50 cm
displacements per sec. The only radio frequency-
based precision motion tracker can be of a surpris-
ingly good resolution of a few millimeters, but it
used large racks of microwave equipment and was
demonstrated in an empty room. That is to say, a
hybrid system is potential to obtain higher resolu-
tion but incurs integration difficulties.

4 Vision based tracking systems with
markers

In 1973 Johansson explored his famous Mov-
ing Light Display (MLD) psychological experi-
ment to perceive biological motion [69]. He at-
tached small reflective markers to the joints of
human subjects, which allow these markers to
be monitored during trajectories. This experi-
ment became the milestone of human movement
tracking. Although Johansson’s work established
a solidate theory for human movement track-
ing, it still faces the challenges such as errors,
non-robustness and expensive computation due to
environmental constraints, mutual occlusion and
complicated processing. However, tracking sys-
tems with markers minimize uncertainty of sub-
ject movements due to the unique appearance of
the markers. Consequently, plenty of marker-
based tracking systems are nowadays available in
the market. Study of these systems allows their
advantages to be exploited in a further developed
platform.

4.1 Qualisys

A Qualisys motion capture system depicted in
Figure 15 consists of 1 to 16 cameras, each emit-
ting a beam of infrared light [9]. Small reflective
markers are placed on the object or person to be
measured. The camera flash infrared light and the
markers reflect it back to the camera. The cam-
era then measures a 2-dimensional position of the
reflective target by combining the 2-D data from
several cameras a 3D position is calculated. The
data can be analyzed in Qualisys Motion Manager
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Figure 15. An operating Qualisys system.

Figure 16. Reflective markers used in a real-
time VICON system.

(QMM) or is exported in several external formats.

This system can be combined with Visual3D,
an advanced analysis package for managing and
reporting optical 3-D data, to track each segment
of the model. The pose (position and orientation)
of each segment is determined by 3 or more non-
collinear points attached to the segment. For bet-
ter accuracy, a cluster of targets can be rigidly at-
tached to a shell. This prevents the targets from
moving relative to each other. This shell is then
affixed to the segment. The kinematics model
is calculated by determining the transformation
from the tracking targets recorded to a calibration
pose.

4.2 VICON

VICON, a 3-D optical tracking system, was
specifically designed for use in virtual and im-
mersive environments [63]. By combining Vicons
high-speed, high-resolution cameras with new au-
tomated Tracker software, the system delivers im-
mediate and precision manipulation of graphics
for first person immersive environments for mil-
itary, automotive, and aerospace visualizations.
Precise, low-latency and jitter free motion track-
ing, though key to creating a realistic sense of im-
mersion in visualizations and simulations, has not
been possible previously due to lag, inaccuracies,
unpredictability and unresponsiveness in electro-
magnetic, inertial and ultrasonic tracking options.

The VICON Tracker, which offers wireless, ex-
treme low-latency performance with six degrees
of freedom (DOF) and zero environmental inter-
ference, outclasses these obsolescent systems, yet
is the simplest to set up and calibrate. Targets are
tracked by proprietary CMOS VICON cameras
ranging in resolution from 640x480 to 1280x1024
and operating between 200-1000 Hz. The en-
tire range of cameras are designed, developed and
built specifically for motion tracking.

At the heart of the system, the VICON Tracker
software automatically calculates the center of ev-
ery marker, reconstructs its 3-D position, identi-
fies each marker and object, and outputs 6 DOF
information typically in less than 7 milliseconds.
The strength of Vicon Tracker software lies in its
automation. The very first Tracker installation re-
quires about an hour of system set-up; each fol-
lowing session requires only that the PC running
the software be switched on. Objects with three
or more markers will automatically output mo-
tion data that can be applied to 3-D objects in real
time, and integrated into a variety of immersive 3-
D visualization applications, including EDS Jack,
Dassault Delmia, VRCOM, Fakespace, VRCO
Track D and others. Figure 16 shows that reflec-
tive markers within a real-time VICON system
are applied to two subjects.
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Figure 17. CODA system.

4.3 CODA

CODA is an acronym of Cartesian Opto-
electronic Dynamic Anthropometer, a name first
coined in 1974 to give a working title to an early
research instrument developed at Loughborough
University, United Kingdom by David Mitchelson
and funded by the UK Science Research Council
[10], illustrated in Figure 17.

The system was pre-calibrated for 3-D mea-
surement, which means that the lightweight sen-
sor can be set up at a new location in a matter of
minutes, without the need to recalibrate using a
space-frame. Up to six sensor units can be used
together and placed around a capture volume to
give extra sets of eyes and maximum redundancy
of viewpoint. This enables the Codamotion sys-
tem to track 360 degree movements which often
occur in animation and sports applications. The
active markers were always intrinsically identi-
fied by virtue of their position in a time multi-
plexed sequence. Confused or swapped trajecto-
ries can never happen with the Codamotion sys-
tem, no matter how many markers are used or how
close they are to each other.

The calculation of the 3-D coordinates of mark-
ers was done in real-time with an extremely low
delay of 5 milliseconds. Special versions of the
system were available with latency shorter than
1 millisecond. This opens up many applications
that require real-time feedback such as research

Figure 18. ReActor2 system.

in neuro-physiology and high quality virtual re-
ality systems as well as tightly coupled real-time
animation. It was also possible to trigger external
equipment using the real-time Codamotion data.
At a three metre distance, this system has such
good accurate parameters as follows: +/-1.5 mm
in X and Z axes, +/- 2.5 mm in Y axis for peak-
to-peak deviations from actual position.

4.4 ReActor2

As products of Ascension Tech. Corporation
ReActor2 digital active-optical tracking systems
shown in Figure 18 capture the movements of an
untethered performer C free to move in a cap-
ture area bordered by modular bars that fasten
together. The digital detectors embedded in the
frame provide full coverage of performers while
minimizing blocked markers. The Instant Marker
Recognition instantly reacquires blocked markers
for clean data. This means less post processing
and a more efficient motion capture pipeline [11].

Up to 544 new and improved digital detec-
tors embedded in a 12-bar frame and over 800
active LEDs flashing per measurement cycle for
complete tracking coverage. A sturdy, ruggedi-
zed frame eliminiates repetitive camera calibra-
tion and tripod alignment headaches. Set up the
system once and start capturing data immediately.

4.5 ELITE Biomech

ELITE Biomech from BTS of Italy is based
on the latest generation of ELITE systems:
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Figure 19. Demo of ELITE Biomech’s out-
comes.

ELITE2002. ELITE2002 performs a highly accu-
rate reconstruction of any type of movement, on
the basis of the principle of shape recognition of
passive markers.

3D reconstruction and tracking of markers
starting from pre-defined models of protocols are
widely validated by the international scientific
community. Tracking of markers based on the
principle of shape recognition allows the use of
the system in extreme conditions of lighting. This
system is capable of managing up to 4 force plat-
forms of various brands, and up to 32 electro-
myographic channels. It also runs in real time
recognition of markers with on-monitor-display
during the acquisition, and real time processing of
cinematic and analog data, demonstrated in Fig-
ure 19.

4.6 APAS

The Ariel Performance Analysis System
(APAS) [12] is the premier products designed,
manufactured, and marketed, by Ariel Dynamics,
Inc. It is an advanced video-based system op-
erating from the Windows 95/98/NT/2000 envi-
ronments. Specific points of interest are digitized
with user intervention or automatically using con-
trasting markers. Additionally, analog data (i.e.
force platform, EMG, goniometers etc.) can be
collected and synchronized with the kinematic
data. Although the system has primarily been
used for quantification of human activities, it has

Figure 20. The Polaris system.

also been utilized in many industrial, non-human
applications. Optional software modules include
real-time 3D (6 degree of freedom) rendering ca-
pabilities and full gait pattern analysis utilizing all
industry standard marker sets.

4.7 Polaris

The Polaris system (Northern Digital Inc.) [13]
is of real-time tracking flexibility for comprehen-
sive purposes, including academic and industrial
environments. This system optimally combines
simultaneous tracking of both wired and wireless
tools (Figure 20).

The whole system can be divided into two
parts: the position sensors and passive or ac-
tive markers. The former consist of a couple of
cameras that are only sensitive to infrared light.
This design is particularly useful when the back-
ground lighting is varying and unpredictive. Pas-
sive markers are covered by reflective materials,
which are activated by the arrays of infrared light-
emitting diodes surrounding the position sensor
lenses. In the meantime, active markers can emit
infrared light themselves. The Polaris system is
able to provide 6 degrees of freedom motion in-
formation. With proper calibration, this system
may achieve 0.35 mm RMS accuracy in position
measures. A basic Polaris with a software devel-
opment kit (SDK) costs about $2000.

However, similar to other marker-based tech-
niques, the Polaris system cannot sort out the oc-
clusion problem due to the existence of the line
of sight. Adding extra position sensors possibly
mitigates the trouble but also increases computa-
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(c) (d)

Figure 21. Demo of Tao and Hu’s approach:
(a) markers attached to the joints; (b), (c) and
(d) marker points captured from three cam-
eras.

tional cost and operational complexity.

4.8 others

Other commercial marker-based systems are
given in [14], [15], [16].

By combining with the commercial marker-
based systems, people have developed some hy-
brid techniques to implement human motion
tracking. These systems, although still in the
experimental stage, already demonstrate encour-
aging performance. For example, Tao and Hu
[103] built a visual tracking system, which ex-
ploited both marker-based and marker-free track-
ing methods. The proposed system consisted of
three parts: a patient, video cameras and a PC.
The patient’s motion was filmed by video cam-
eras and the captured image sequences were in-
put to the PC. The software in the PC com-
prised of three modules: motion tracking mod-
ule, database module and decision module. The
motion tracking module was formulated in an
analysis-by-synthesis framework, which was sim-
ilar to the strategy introduced by O’Rourke and
Badler [82]. In order to enhance the predic-
tion component, a marker-based motion learn-
ing method was adopted: small retro-reflective

ball markers were attached to the performer’s
joints, which reflected infrared light so that cam-
eras picked up the bright points indicating the
cameras’ positions. The 3-D position of each
marker was calculated by corresponding a 2-D
marker point in an image plane via the epipo-
lar constraint. The skeleton motion of the per-
former was then deduced [37]. By using the per-
spective camera models, the 3-D model recovered
previously was projected into 2-D image planes,
which behaved as the prediction of the matching
framework. The performance of this approach is
demonstrated in Figure 21.

5 Vision based tracking systems
without markers

In the previous section, we described the fea-
tures of the marker-based tracking systems, which
are restritive to some degree due to the mounted
markers. As a less restritive motion capture tech-
nique, markerless based systems are capable of
overcoming the mutual occlusion problem as they
are only concerned about boundaries or features
on human bodies. This is an active and promis-
ing but also challenging research area in the last
decade. The research with respect to this area is
still ongoing due to unsolved technical problems.

From a review’s point of view, Aggarwal and
Cai [17] classified human motion analysis as:
body structure analysis (model and non-model
based), camera configuration (single and multi-
ple), and correlation platform (state-space and
template matching). Gavrila [51] claimed that the
dimensionality of the tracking space, e.g. 2-D or
3-D, be mainly focused. To be coincident with
these exiting definitions, we suggest to contain all
these issues in this context.

5.1 2-D approaches

As a commonly used framework, 2-D motion
tracking only concerns the human movement in
an image plane, although sometimes people in-
tend to project a 3-D structure into its image plane
for processing purposes. This approach can be
catalogued with and without explicit shape mod-
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Figure 22. Demonstration of Pfinder by Wren, et al.

els.

5.1.1 2-D approches with explicit shape mod-
els

Due to the arbitrary movements of humans self-
occlusion exists during human trajetories. To
sort out this problem, one normally uses a pri-
ori knowledge about human movements in 2-D by
segmenting the human body. For example, Wren
et al. [109] presented a region-based approach,
where they regarded the human body as a set of
“blobs” which can be described by a spatial and
color Gaussian distribution. To initialize the pro-
cess, a foreground region can be extracted given
the background model. The blobs, representing
human hands, head, etc., are then placed over the
foreground region instead. A 2-D contour shape
analysis was undertaken to identify various body
parts. The working flowchart is referred to Figure
22.

Akita [18] explored an approach to segment
and track human body parts in common circum-
stances. To prevent the body tracking from col-
lapsing, he presumed the human movements are
known a priori in some kind of “key frames”. He
followed the tracking order, legs, head, arms, and
trunk, to detect the body parts. However, due to
simplification his model works in some special
situations.

Long and Yang [75] advocated that the limbs
of a human silhouette could be tracked based on
the shapes of the antiparallel lines. They also
conducted experimental work to cope with oc-
clusion, i.e. disappearance, merging and split-
ting. Kurakake and Nevatta [74] attempted to

Figure 24. Computer game on-chip by Free-
man, W. et al.

obtain joint locations in images of walking hu-
mans by establishing correspondence between ex-
tracted ribbons. Their work assumed small mo-
tion between two consecutive frames, and feature
correspondence was conducted using various ge-
ometric constraints.

Shimada et al. [95] suggested to achieve rapid
and precise estimation of human hand postures by
combining 2-D appearance and 3-D model-based
fitting. First, a rough posture estimate was ob-
tained by image indexing. Each possible hand ap-
pearance generated from a given 3-D shape model
was labeled by an index obtained by PCA com-
pression and registered with its 3-D model pa-
rameters in advance. By retrieving the index of
the input image, the method obatined the matched
appearance image and its 3-D parameters rapidly.
Then, starting from the obtained rough estimate,
it estimated the posture and moreover refined the
given initial 3-D model by model-fitting.
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Figure 23. Human tracking in the approach of Baumberg and Hogg.

5.1.2 2-D approaches without explicit shape
models

This is a more often addressed topic. Since human
movements are non-rigid and arbitrary, bound-
aries or silhouettes of human body are viable and
deformable, leading to difficult description for
them. Tracking human body, e.g. hands, is nor-
mally achieved by means of background substrac-
tion or color detection. Furthermore, due to the
unavailability of models one has to attend low
level image processing such as feature extraction.

Baumberg and Hogg [21] considered using Ac-
tive Shape Model (ASM) for tracking pedestri-
ans (Figure 23). B-splines were used to repre-
sent different shapes. The foreground region was
first extracted by substracting the background. A
Kalman filter was then applied to accomplish the
spatio-temporal operation, which is similar to the
work of Blake et al [26]. Their work was then ex-
tended by automatically generating an improved
physically based model using a training set of ex-
amples of the object deforming, tuning the elastic
properties of the object to reflect how the object
actually deforms. The resulting model provides
a low dimensional shape description that allows
accurate temporal extrapolation at low computa-
tional cost based on the training motions [22].

Freeman et al. [49] developed a special de-
tector for computer games on-chip (Figure 24),
which is to infer useful information about the po-
sition, size, orientation, or configuration of the
human body parts. Two algorithms were used,
one of which used image moments to calculate
an equivalent rectangle for the current image, and

the other used orientation histograms to select the
body pose from a menu of templates.

Cordea et al. [39] discussed a 2.5 dimensional
tracking method allowing real-time recovery of
the 3-D position and orientation of a head mov-
ing in its image plane. This method used a 2-D
elliptical head model, a region- and edge-based
matching algorithms, and a Linear Kalman Filter
estimator. The tracking system worked in a realis-
tic situation without makeup on the face, with an
uncalibrated camera, and unknown lighting con-
ditions and background.

Fablet and Black [47] proposed a solution
for the automatic detection and tracking of hu-
man motion using 2-D optical flow information,
which provided rich descriptive cues, while be-
ing independent of object and background ap-
pearance. To represent the optical flow patterns
of people from arbitrary viewpoints, they devel-
oped a novel representation of human motion us-
ing low-dimensional spatio-temporal models that
were learned using motion capture data of hu-
man subjects. In addition to human motion (the
foreground) they modelled the motion of generic
scenes (the background); these statistical models
were defined as Gibbsian fields specified from the
first-order derivative of motion observations. De-
tection and tracking were posed in a principled
Bayesian framework which involved the compu-
tation of a posterior probability distribution over
the model parameters. A particle filter was then
used to represent and predict this non-Gaussian
posterior distribution over time.The model param-
eters of samples from this distribution were re-
lated to the pose parameters of a 3-D articulated
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model.

5.2 3-D approaches

These approaches attempted to recover 3-D ar-
ticulated poses over time [51]. People usually
project a 3-D model into a 2-D image for substan-
tial processing. This is due to the application of
image appearance and dimensional reduction.

5.2.1 3-D modelling

Modelling human movements a priori allows
the tracking problem to be minimized: the fu-
ture movements of the human body can be
predicted regardless of self-occlusion or self-
collision. O’Rourke and Badler [82] discovered
that the prediction in state space seemed more sta-
ble than that in image space due to the incorpo-
rated semantic knowledge in the former. In their
tracking framework, four components were inl-
cuded: prediction, synthesis, image analysis, and
state estimation. This strategy has been applied to
most of the existing tracking systems.

Model-based approaches contain stick figures,
volumetric and a mixture of models.

5.2.2 Stick figure

The stick figure is the representation of the skele-
tal structure, which is normally regarded as a col-
lection of segments and joint angles (Figure 25).
Bharatkumar et al [23] used stick figures to model
the lower limbs, e.g. hip, knees, and ankles. They
applied a medial-axis transformation to extract 2-
D stick figures of the lower limbs.

Chen and Lee [37] first applied geometric pro-
jection theory to obtain a set of feasible pos-
tures from a single image, then made use of the
given dimensions of the human stick figure, phys-
iological and motion-specific knowledge to con-
strain the feasible postures in both the single-
frame analysis and the multi-frame analysis. Fi-
nally a unique gait interpretation was selected by
an optimization algorithm.

Huber’s human model [65] was a refined ver-
sion of the stick figure representation. Joints were
connected by line segments with a certain degree

Figure 25. Stick figure of human body (image
courtesy of Freeman, W.T.).

of constraint that could be relaxed using “virtual
springs”. This model behaved as a mass-spring-
damper system. Proximity space (PS) was used
to confined the motion and stereo measurements
of joints, which started from the human head and
extended to arms and torso through the expansion
of PS.

By modelling a human body with 14 joints
and 15 body parts, Ronfard et al. [93] at-
tempted to find people in static video frames using
learned models of both the appearance of body
parts (head, limbs, hands), and of the geome-
try of their assemblies. They built on Forsyth
and Fleck’s general ‘body plan’ methodology and
Felzenszwalb and Huttenlocher’s dynamic pro-
gramming approach for efficiently assembling
candidate parts into ‘pictorial structures’. How-
ever they replaced the rather simple part detec-
tors used in these works with dedicated detectors
learned for each body part using Support Vector
Machines (SVMs) or Relevance Vector Machines
(RVMs). RVMs are SVM-like classifiers that of-
fer a well-founded probabilistic interpretation and
improved sparsity for reduced computation. Their
benefits were demonstrated experimentally in a
series of results showing great promise for learn-
ing detectors in more general situations.

Further technical reports are given in [50], [61],
[67], [81], [86].
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5.2.3 Volumetric modeling

Elliptical cylinders are one of the volumetric
models that model human body. Hogg [60] and
Rohr [92] extended the work of Marr and Nishi-
hara [78], which used elliptical cylinders for rep-
resenting the human body. Each cylinder con-
sisted of three parameters: the length of the axis,
the major and minor axes of the ellipse cross sec-
tion. The coordinate system originated from the
center of the torso. The difference between the
two approaches is that Rohr used eigenvector line
fitting to project the 2-D image onto the 3-D hu-
man model.

Rehg et al. [87] represented two occluded fin-
gers using several cylinders, and the center axes
of cylinders were projected into the center line
segments of 2-D finger images. Goncalves et al.
[52] modelled both the upper and lower arm as
truncated circular cones, and the shoulder and el-
bow joints were presumably spherical joints. A
3-D arm model was projected to an image plane
and then fitted to the blurred image of a real arm.
The maching was acheived by minimizing the er-
ror between the model projection and the real im-
age adapting the size and the orientation of the
model.

Chung and Ohnishi [38] proposed a 3-D
model-based motion analysis which used cue cir-
cles (CC) and cue sphere (CS). Stereo match-
ing for reconnstructing the body model was per-
formed by finding pairs of CC between the pair
of contour images investigated. A CS needed to
be projected back onto two image planes with its
corresponding CC.

Theobalt et al. [105] suggested to combine ef-
ficient real-time optical feature tracking with the
reconstruction of the volume of a moving sub-
ject to fit a sophisticated humanoid skeleton to
the video footage. The scene is observed with 4
video cameras, two connected to one PC (Athlon
1GHz). The system consisted of two parts: a
distributed tracking and visual hull reconstruction
system (online component), and a skeleton fitting
application that took recorded sequences as input.
For each view, a moving person was separated
from background by a statistical background sub-

Figure 26. Volumetric modelling by Theobalt,
C.

traction. In the initial frame, the silhouette of the
person seen from the 2 front view cameras was
separated into distinct regions using a General-
ized Voronoi Diagram Decomposition. The lo-
cations of its hands, head and feet could now be
identified. In the front camera view for all video
frames after initialization the locations of these
body parts could be tracked and their 3-D location
reconstructed. In addition a voxel-based approx-
imation to the visual hull was computed for each
time step. The experimental volumetric data was
given in Figure 26.

5.3 Camera configuration

The tracking problem can be tackled by proper
camera setup. Literature has been linked with a
single camera and a distributed-camera configu-
ration. Using multiple cameras does require a
common spatial reference to be employed, and a
single camera does not have such a requirement.
However, a single camera from time to time suf-
fers from the occlusion of the human body due
to its fixed viewing angle. Thus, a distributed-
camera strategy is a better option of minimizing
such a risk.
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5.3.1 Single camera tracking

Polana and Nelson [84] observed that the move-
ments of arms and legs converge to that of the
torso. Each walking person image was bounded
by a rectangular box, and the centroid of the
bounding box was treated as the feature to track.
Positions of the center point in the previous
frames were used to estimate the current position.
As such, correct tracking was conducted when the
two subjects were occluded to each other even in
the middle of the image sequences.

Sminchisescu and Triggs [98] present a method
for recovering 3-D human body motion from
monocular video sequences using robust image
matching, joint limits and non-self-intersection
constraints, and a new sample-and-refine search
strategy guided by rescaled cost-function covari-
ances. Monocular 3-D body tracking is challeng-
ing: for reliable tracking at least 30 joint param-
eters need to be estimated, subject to highly non-
linear physical constraints; the problem is chron-
ically ill-conditioned as about 1/3 of the d.o.f.
(the depth-related ones) are almost unobservable
in any given monocular image; and matching an
imperfect, highly flexible, self-occluding model
to cluttered image features is intrinsically hard.
To reduce correspondence ambiguities they used
a carefully designed robust matching-cost met-
ric that combined robust optical flow, edge en-
ergy, and motion boundaries. Even so, the am-
biguity, nonlinearity and non-observability made
the parameter-space cost surface be multi-modal,
unpredictable and ill-conditioned, so minimizing
it is difficult. They discussed the limitations of
CONDENSATION-like samplers, and introduced
a novel hybrid search algorithm that combined
inflated-covariance-scaled sampling and continu-
ous optimization subject to physical constraints.
Experiments on some challenging monocular se-
quences showed that robust cost modelling, joint
and self-intersection constraints, and informed
sampling were all essential for reliable monocu-
lar 3-D body tracking.

Bowden et al. [29] advocated a model based
approach to human body tracking in which the
2-D silhouette of a moving human and the cor-

responding 3-D skeletal structure were encap-
sulated within a non-linear Point Distribution
Model. This statistical model allowed a direct
mapping to be achieved between the external
boundary of a human and the anatomical position.
It showed that this information, along with the po-
sition of lanmark features, e.g. hands and head,
could be used to reconstruct information about
the pose and structure of the human body from
a monoscopic view of a scene.

Barron and Kakadiaris [20] present a simple,
efficient, and robust method for recovering 3-D
human motion capture from an image sequence
obtained using an uncalibrated camera. The pro-
posed algorithm included an anthropometry ini-
tialization step, assuming that the similarity of ap-
pearance of the subject over the time of acquisi-
tion led to the minimum of a convex function on
the degree of freedom of a Virtual Human Model
(VHM). The method searched for the best pose in
each image by minimizing discrepancies between
the image under consideration and a synthetic im-
age of an appropriate VHM. By including on the
objective function penalty factors from the image
segmentation step, the search focused on regions
that belong to the subject. These penalty factors
converted the objective function to a convex func-
tion, which guaranteed that the minimization con-
verged to a global minimum.

To reduce side-effects of hard kinematic con-
straints, Dockstader et al. [44] proposed a new
model-based approach toward three-dimensional
(3-D) tracking and extraction of gait and hu-
man motion. They suggested the use of a hi-
erarchical, structural model of the human body
that introduced the concept of soft kinematic con-
straints. These constraints took the form of a pri-
ori, stochastic distributions learned from previ-
ous configurations of the body exhibited during
specific activities; they were used to supplement
an existing motion model limited by hard kine-
matic constraints. Time-varying parameters of the
structural model were also used to measure gait
velocity, stance width, stride length, stance times,
and other gait variables with multiple degrees of
accuracy and robustness. To characterize track-
ing performance, a novel geometric model of ex-
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Figure 27. Human motion tracking by Black,
M.J. et al.

pected tracking failures was then introduced.
Yeasin and Chaudhuri [113] proposed a simple,

inexpensive, portable and real-time image pro-
cessing system for kinematic analysis of human
gait. They viewed this as a feature based multi-
target tracking problem. They tracked the arti-
ficially induced features appearing in the image
sequence due to the non-impeding contrast mark-
ers attached at different anatomical landmarks of
the subject under analysis. The paper described a
real-time algorithm for detecting and tracking fea-
ture points simultaneously. By applying a Kalman
filter, they recursively predicted tentative features
location and retained the predicted point in case
of occlusion. A path coherence score was used for
disambiguation along with tracking for establish-
ing feature correspondences. Experimentations
on normal and pathological subjects in different
gait was performed and results illustrated the ef-
ficacy of the algorithm. Similar algorithms to this
one can be found in [115] and [114].

Further to the application of optical flow in the
motion learning, Black et al. [25] proposed a
framework for learning parameterized models of
optical flow from image sequences. A class of
motion is represented by a set of orthogonal ba-
sis flow fields that were computed from a train-
ing set using principal component analysis. Many
complex image motion sequences can be repre-
sented by a linear combination of a small number

of these basis flows. The leared motion models
may be used for optical flow estimation and for
model-based recognition. They described a ro-
bust, multi-resolution scheme for directly com-
puting the parameters of the learned flow mod-
els from image derivatives. As examples they in-
cluded learning motion discontinuities, non-rigid
motion of humans, and articulated human mo-
tion. Later, Sidenbladh [96] et al., also in [97],
extended the work of [25] to a generative prob-
abilistic method for tracking 3-D articulated hu-
man figures in monocular image sequences (see
the example shown in Figure 27). These ideas
similar to [66] that obtained further extension in
[111], [112].

5.3.2 Multiple camera tracking

To enlarge the monitored area and to avoid the
disappearance of subjects, a distributed-camera
strategy is set up to solve the ambiguity of
mactching when subjects are occluded to each
other. Cai and Aggarwal [34] used multiple points
belonging to the medial axis of the human upper
body as the feature to track. These points were
sparsely sampled and assumed to be independent
of each other. Location and average intensity of
feature points were integrated to find the most
likely match between two neighboring frames.
Multivariate Gaussian distributions were presum-
ably addressed in the lcass-conditional probabil-
ity density function of features of candidate sub-
ject images. It was shown that using such a sys-
tem with three cameras indoors led to real time
operation.

Sato et al. [94] represented a moving person
as a combination of blobs of its body parts. All
the cameras were calibrated in advance regarding
the CAD model of an indoor environment. Blobs
were corresponded using their area, brightness,
and 3-D position in the world coordinates. The
3-D position of a 2-D blob was estimated on the
basis of its height retrieved from the distance be-
tween the weight center of the blob and the floor.

Ringer and Lasenby [90] proposed to use mark-
ers placed at the joints of the arm(s) or leg(s) be-
ing analyzed, referred to Figure 28. The location
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Figure 28. Applications of multiple cameras in human motion tracking by Ringer and Lasenby.

of these markers on a camera’s image plane pro-
vided the input to the tracking systems with the
result that the required parameters of the body
could be estimated to far greater accuracy that one
could obtain in the markerless case. This scheme
used a number of video cameras to obtain com-
plete and accurate information on the 3-D loca-
tion and motion of bodies over time. Based on
the extracted kinematics and measurement mod-
els, the extended Kalman filter (EKF) and particle
filter tracking strategies were compared in their
applications to update state estimates. The results
justified that the EKF was preferred due to its less
computational demands.

Rodor et al. [27] introduced a method for
employing image-based rendering to extend the
range of use of human motion recognition sys-
tems. Input views orthogonal to the direction
of motion were created automatically to con-
struct the proper view from a combination of
non-orthogonal views taken from several cam-
eras. Image-based rendering was utilized in two
ways: (1) to generate additional training sets for
these systems containing a large number of non-
orthogonal views, and (2) to genrate orthogo-
nal views from a combination of non-orthogonal
views from several cameras.

Multiple cameras are needed to completely
cover an environment for monitoring activity. To
track people successfully in multiple perspec-
tive imagery, one has to establish correspondence
between objects captured in multiple cameras.
Javed et al. [68] presented a system for track-

ing people in multiple uncalibrated cameras. The
system was able to discover spatial relationships
between the camera field of views and uses this
information to correspond between different per-
spective views of the same person. They explored
the novel approach of finding limits of field of
view of a camera as visible in other cameras. This
helped disambiguate between possible candidates
of correspondence.

5.4 Segmentation of human motion

Spatio-temporal segmentation, illustrated in
Figure 29, is vital in vision related analysis due
to the required reconstruction of dynamic scenes.
Spatial segmentation attempts to extract mov-
ing objects from their backgorund, and divide
a complicated motion stream into a set of sim-
ple and stable motions [55]. In order to fully
depict human motion in constraint-free environ-
ments, people have explored a variety of motion
segmentation strategies which consisted of both
model-based and appearence-based approaches
[55], [116], [77], [54], [99]. Nevertheless, it
does not mean that segmentation is independently
achieved. Instead, motion segmentation is nor-
mally encoded within the tracking procedure and
performs like an assistive tool and descriptor.

Gonzalez et al. [53] estimated motion flows of
features on human body using a standard tracker.
Given a pair of subsequent images, an affine fun-
damental matrix was estimated by four pairs of
corresponding feature points such that number of
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Figure 29. Segmentation of human body by
Theobalt, C.

other feature points undergoing the affine mo-
tion modelled by the matrix should be maximized
[118]. In the remaining subsequent frames, fea-
ture points corresponding to those used for the
first fundamental matrix continued to estimate an
affine motion model. At the last pair of frames,
it led to a set of feature points identified as those
belonging to a same limb and hence undergoing
a same motion over the whole sequence. By re-
peating this estimate-and-sortout process over the
remaining feature points, different limb motions
were finally segmented.

To obtain a high level interpretation of human
motion in a vedio stream one has to first detect
body parts. Hilti et al. [59] proposed to com-
bine both pixel-based skin color segmentation
and motion-based segmentation for human mo-
tion tracking. The motivation of using skin color
was raised due to its orientation invariant and fast
detection. The human face normally presents a
large skin surface in a flesh-tone, which is quite
similar from person to person and even across var-
ious races [100]. Using hue and saturation (HS) as
inputs, a color map was changed to a filtered im-
age, where each pixel is associated with a likeli-
hood of being [85]. For compensating the impacts
of lighting changes, the motion-based segmenta-
tion was implemented and adaptive to exogenous
changes.

Bradski and Davies [30] present a fast and sim-
ple method using a timed motion history image

(tMHI) for representing motion from gradients in
successively layered silhouettes. The segmented
regions were not “motion blobs” but motion re-
gions that were naturally connected to parts of
moving objects. This movivated by the fact that
segmentation by collecting “blobs” of similar di-
rection motion frame to frame from optical flow
[41] did not gurantee the correspondence of the
motion over time. By labeling motion regions
connected to the current silhouette using a down-
ward stepping floodfill, areas of motion were di-
rectly attached to parts of the object of interest.

Moeslund and Granum [79] suggested to use
colour information to segment the hand and head.
To the sensitivity of orignal RGB-based colours
to the intensity of lightling, they used chromatic
colours which were normalised according to the
intensity. In order to determine dance motion, hu-
man observers were shown video and 3-D motion
capture sequences on a video display [70]. Ob-
servers were asked to define gesture boundaries
within each microdance, which was analyzed to
compute the local minima in the force of the body.
At the moment of each of these local minima, the
force, momentum, and kinetic energy parameters
were examined for each of lower body segments.
For each segment a binary triple was computed.
It provided a complete characterization of all the
body segments at each instant when body accel-
eration was at a local minimum.

6 Robot-guided tracking systems

In this section, one can find a rich variety of re-
habiliation systems that are driven by electrome-
chanical or electromagnetic tracking strategies.
These systems, namely robot-guided systems
hereafter, incorporate sensor technologies to con-
duct “move-measure-feedback” training strate-
gies.

6.1 Discriminating static and dynamic activities

To distinguish static and dynamic activities
(standing, sitting, lying, walking, ascending
stairs, descending stairs, cycling), Veltink et al.
[107] presented a new approach to monitoring
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ambulatory activities for use in the domestic
environment, which uses two or three uniax-
ial accelerometers mounted on the body. They
achieved a set of experiments with respect to the
static or dynamic characteristics. First, the dis-
crimination between static or dynamic activities
was studied. It was illustrated that static activi-
ties could be distinguished from dynamic activi-
ties. Second, the distinction between static activ-
ities was investigated. Standing, sitting and ly-
ing could be distinguished by the output of two
accelerometers, one mounted tangentially on a
thigh, and the other sited on the sternum. Third,
the distinction between a few cyclical dynamic
activities was conducted.

As a result, it was concluded that the “discrim-
ination of dynamic activities on the basis of the
combined evaluation of the mean signal value and
signal morphology is therefore proposed”. This
ruled out the standard deviation of the signal and
the cycle time as the indexes of discriminating
activities. The performance of the dynamic ac-
tivity classification on the basis of signal mor-
phology needs to be improved in the future work.
The authors revealed that averaging adjacent mo-
tion cycles might reduce standard deviations of
signal correlation so as to improve measure per-
formance. As a futher study, Uiterwaal et al.
[106] developed a measurement system using ac-
celerometry to assess a patient’s functional phys-
ical mobility in non-laboratory situations. Ev-
ery second the video recording was compared to
the measurment from the proposed system, and it
showed that the validity of the system was up to
93%.

6.2 Typical working systems

6.2.1 Cozens

To justify whether motion tracking techniques can
assist simple active upper limb exercises for pa-
tients recovered from neurological diseases, i.e.
stroke, Cozens [40] reported a pilot study of us-
ing torque attached to an individual joint, com-
bined with EMG measurement that indicated the
pattern of arm movement in exercises. Evidence
depicted that greater assistance tended to be given

Figure 30. The MANUS in MIT.

to patients with more limited exercises capacity.
However, this work was only able to demonstrate
the principle of assisting single limb exercise us-
ing 2-D based technique. Therefore, a real system
was expected to be developed for realistic ther-
apeutic exercises, which may contain “three de-
grees of freedom at the shoulder and two degrees
of freedom at the elbow”.

6.2.2 MANUS

To find out whether exercise therapy influences
plasticity and recovery of the brain following a
stroke, a tool is demanded to control the amount
of therapy delievered to a patient, where appro-
priate, objectively measuring the patient’s per-
formance. In other words, a system is required
to “move smoothly and rapidly to comply with
the patients’ actions” [73]. Furthermore, abnor-
mally low or high muscle tone may misguide a
therapy expert to apply wrong forces to achieve
the desired motion of limb segments. To address
these problems, a novel automatic system, named
MIT-MANUS (Figure 30), was designed to move,
guide, or perturb the movement of a patient’s up-
per limb, whilst recording motion-related quanti-
ties, e.g. position, velocity, or forces applied [73]
(Figure 31). The experimental results were so
promising that the commercializing of the estab-
lished system were under construction. However,
it was described that the biological basis of recov-
ery and individual patients’ needs should be fur-
ther studied in order to improve the performance
of the system in different circumstances. These
findings were also justified in [72].
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Figure 31. Image courtesy of Krebs, H.I.

6.2.3 Taylor and improved systems

Taylor [104] described an initial investigation
where a simple two DOFs arm support was built
to allow movements of shoulder and elbow in a
horizontal plane. Based on this simple device, he
then suggested a five exoskeletal system to allow
activities of daily living (ADL) to be performed in
a natural way. The design was validated by tests
which showed that “configuration interfaces prop-
erly with the human arm”, resulting in the trivial
addition of goniometric measurment sensors for
identification of arm position and pose.

Another good example was shown in [89],
where a device was designed to assist elbow
movements. This elbow exerciser was strapped
to a lever, which rotated in a horizontal plane. A
servomotor driven through a current amplifier was
applied to drive the lever, where a potentiome-
ter indicated the position of the motor. Obtain-
ing the position of the lever was achieved by us-
ing a semi-circular array of light emitting diodes
(LEDs) around the lever. However, this system re-
quired a physiotherapist to activate the arm move-
ment and to use a force handle to measure forces
applied. This system was meanless to patients as
realistic physiotherapy exercises normally occur
in three dimensions. As a suggestion, a three DOF
prototype was rather advised.

To cope with the problem arisen from individ-
uals with spinal cord injuries Harwin and Rah-
man [56] explored the design of a head controlled
force-reflecting master-slave telemanipulators for
rehabilitation applications. This approach was

further expanded for a similar class of assistive
devices that may support and move the person’s
arm in a programmed way. Enclosed within the
system, a test-bed power assisted orthosis con-
sisted of a six DOF master with the end effec-
tor replaced by a six axis force/torque sensor. A
splint assembly was mounted on the force torque
sensor and supported the person’s arm. The base
level control system first substract the weight of
the person’s arm from the whole measurement.
Control algorithms were established to relate the
estimation of the patient’s residual force to system
position, velocity and acceleration [101]. These
characteristic parameters are desired in regular
movement analysis. Similar to this technique,
Chen et al. [36] provided a comprehensive jus-
tification for their proposal and testing protocols.

6.2.4 MIME

Burgar et al. [33] and [76] summarized systems
for post-stroke therapy conducted at the Depart-
ment of Veterans Affairs Palo Alto in collabora-
tion with Stanford University. The original prin-
ciple had been established with two or three DOF
elbow/forearm manipulators. Amongst these sys-
tems, the MIME shown in Figure 32 was more
attractive due to its ability of fully supporting
the limb during 3-D movements, and self-guided
modes of therapy. Subjects were seated in a
wheelchair close to an adjustable height table. A
PUMA-560 automation was mounted beside the
table that was attached to a wrist-forearm ortho-
sis (splint) via six-axis force transducer. These
position digitizer quntified movement kinematics.
Clinical trials justified that the better improve-
ments occurred in the elbow measures by the
biomechanical measures than the clinical ones.
The disvantage of this system is that it could not
allow the subject to freely move his/her body.

6.2.5 ARM-Guide

A rehabilitator namely the “ARM guide” [88] was
presented to diagnose and treat arm movement
impairment following stroke and other brain in-
juries. Some vital motor impairment, such as ab-
normal tone, incoordination, and weakness, could
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Figure 32. The MIME in MIT.

be evaluated. Pre-clinical results showed that
this therapy produced quantifiable benefits in the
chronic hemiparetic arm. In the design, the sub-
ject’s forearm was strapped to a specially de-
signed splint that “slides along the linear con-
straint”. A motor drove a chain drive attached
to the splint. An optical encoder mounted on the
motor indicated the arm position. The forces pro-
duced by the arm were measured by a 6-axis load
cell addressing between the splint and the linear
constraint. The system needs to be further de-
veloped in efficacy and practicality although it
achieved a great success.

6.3 Other relevant techniques

Although the following example might not be
relevant to the arm training systems, it still pro-
vides some hints for constructing a motion track-
ing system. Hesse and Uhlenbrock [58] intro-
duced a newly developed gait trainer allowing
wheelchair-bound subjects to take repitive prac-
tice of a gait-like movement without overstress-
ing therapists. It consisted of two footplates po-
sitioned on two bars, two rockers, and two cranks
that provided the propulsion. The system gener-
ated a different movement of the tip and of the
rear of the footplate during the swing. Else, the
crank propulsion was controlled by a planetary
symtem to provide a ratio of 60 percent to 40
percent between stance and swing pahses. Two
cases of non-ambulatory patients who regained
their walking ability after 4 weeks of daily train-
ing on the gait trainer were positively reported.

A number of projects have been undertaken for
human arm trajectories. However, to make the

proposed systems feasible to non-trained users,
further studies need to be performed for the de-
velopment of a patient interface and therapist
workspace. For example, to improve the perfor-
mance of haptic interfaces, many researchers ex-
hibited their successful prototype systems, e.g.
[19], [57]. Hawkins et al. [57] set up an exper-
imental apparatus consisting of a frame with one
chair, a wrist connection mechanism, two embed-
ded computers, a large computer screen, and ex-
ercise table, a keypad and a 3 DOF haptic inter-
face arm. The user “was seated on the chair with
their wrist connected the haptic interface through
the wrist connection mechanism. The device end-
effector consisted of a gimbal wich provides an
extra three DOF to facilitate wrist movement.”
These tests encourage a novel system to be ex-
plored so that a patient can move his/her arm con-
sistantly, smoothly, and correctly. Also, a friendly
and human-like interface between the system and
the user can be obtained afterwards.

Comprehensive reviews on rehabilitation sys-
tems are given in the literature [42] and [43].

7 Discussion

7.1 Remaining challenges

The characters of the previous tracking systems
have been summarized earlier. It is demanding to
understand the key problems addressed in these
systems. Identifying the remaining challenges in
the previous systems allows people to specify the
aims of further development in the future work.

All the previous systems required therapists to
attend during training courses. Without the help
of a therapist, any of these systems either was
unable to run successfully or just lost controlling
commands. The developed systems performed as
supervised machines that simply followed orders
from the on-site therapists. Therefore, they did
not feasibly achieve patient-guided manipulation
therapy so they can not be directly used in homes
yet.

The second challenge is cost. People in-
tended to build up complicated systems in order
to achieve multi-purposes. This leads to expen-
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sive components applied to the designed systems.
Some of these systems also consisted of particu-
larly designed movement sensors, which limit the
further development and broad application of the
designed systems.

Inconvenience is another obvious challenge ad-
dressed in the previous systems. Most systems
demanded people sit in front of a table or in a
chair. This configuration constrains people in mo-
bility so they are not helpful at enhancing the
overall training of human limbs.

Due to the large working space requested for
these systems patients had to prepare spacious re-
covery rooms for setting up these syetems. As
a consequence, this prevents people, who have
less accommodation space, from using such sys-
tems to regain their mobility. Alternatively, a tele-
metric and compact system coping with the space
problem shall be instead proposed.

Poor performance of human-computer inter-
face (HCI) designed for these syetems has been
recognized. Unfortunately, people seldom touch
this issue as the other main technical problems
had not been solved yet. However, a bad HCI
might stop post-stroke patients actively using any
training system.

Generally speaking, when one considers a re-
covery system, such six issues need to be taken
into account: cost, size, weight, functional per-
formance, easy operation, and automation.

7.2 Design specification for a proposed system

Consider a system that looks at the limb reha-
bilitation training for the stroke-suffered patients
during their recovery. The designer has to be
mainly concerned with such specified issues as
follows:

Real time operation of the tracking system
is required in order that arm movement can be
recorded simultaneously;

Human movement must not be limited in a par-
ticular workspace so telemetry is considered for
transmitting data from the mounted sensors to the
workstation;

The proposed system shall not bring any cum-
bersome tasks to a user;

Human movement parameters shall be properly
and accurately represented in the computer termi-
nal;

A friendly graphical interface between the sys-
tem and the user is vital due to its application in
home-based situations.

The whole system needs to be flexibly attached
or installed in a domestic site.

8 Conclusions

A number of applications have already been de-
veloped to support various health and social care
delivery. It has been justified that the rehabilita-
tion systems are able to assist or replace face to
face therapy. Unfortunately, evidence also shows
that human movement has a very complicated
physiological nature, which prevents futher de-
velopment of the existing systems. People hence
need to have an insight into the formulation of hu-
man movement. Our proposed project will cope
with this technical issue by attempting to grasp
human motion at each moment. Achieving such
an accurate localization of the arm may lead to
efficient, convenient and cheap kinetic and kine-
matic modelling for movement analysis.
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