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Abstract — For robotic manipulators that are redundant or with high degrees of freedom, an analytical solution to the inverse
kinematics is very difficult or impossible. As alternative approaches, neural networks and optimal search methods have been widely
used for inver se kinematics modeling and control in robotics. This paper presentsa first analytical solution to the inver se kinematics of
a widely used robotic arm (Pioneer 2 robotic arm), which, combined with an optimal search method, provides an effective solution to
the modeling and control of the Pioneer 2 robotic arm.

Keywords: | nverse kinematics, manipulator control, modeling and control, optimization, robotic arm.

l. INTRODUCTION

Inverse kinematics modeling has been one of the main problems in robotics research. The most popular method for controlling
robotic arms is till based on look-up tables that are usudly designed in a manua manner [1]-[3]. Alternative methods include
neura networks [4]-[11] and optima search [12], which often encounter problems caused by the fact tha the inverse kinematics
systems of most robotic arms are multi-valued and discontinuous functions [9]. For robotic manipulators that are redundant or with
high degrees of freedom (dof), there are hardly effective solutions to the inverse kinematics problem except for the manually
designed look-up table method that is limited to applications with a priori known trgjectory movements. The Pioneer 2 robotic arm
(P2Arm) developed by ActivMedia Robotics has been widely used for robotics research, teaching, and development
(http://robots.activmedia.comV). However, to date there is no andytica inverse kinematics solution for the P2Arm.

This paper derives an amost complete andytica inverse kinematics model which, combined with an optima search method, is
able to control aP2Arm to any given position and orientation in its reachable space so that the P2Arm gripper mounted on amobile
robot can be controlled to move to any reachable position in an unknown environment. In Section I, the P2Arm inverse kinematics
model is derived in an anaytical way. Section Il presents an optimal search method as a complementary approach for the P2Arm
inverse kinematics control. Section IV proposes a hybrid approach that combines the anayticd inverse kinematics model with an
optimal search method for inverse kinematics modeling and control. Experimental results with discussons are given in Section V
and conclusions are included in Section V1.

Il.  DERIVATION OF THE P2ARM KINEMATICS

A. Forward Kinematics

P2Armis a 5-dof robotic arm with a gripper, as shown in Figure 1. All itsjoints are revolute. Driven by 6 servomotors, the arm
can reach up to 50 cm from the center of itsrotating base to the tip of its dosed fingers. The Denavit-Hartenberg (DH) convention
and methodology [1]-[3] are used in this section to derive its kinematics. The coordinate frame assignment and the DH parameters
aredepicted in Figure 2 and listed in Table 1, respectively. Detals about the definitions of the coordinates and DH parameters can
be found in our technical report [13].

Figure 1 P2Arm and the robot configuration [14]

TABLEI.  DENAVIT-HARTENBERG PARAMETERS FOR THE P2ARM
Link /Joints [} d (cm) a(cm) a y
1/0-1 01 0 al=6.875 | 90° | 0°
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2/1-2 02 0 a2=16 0 0°

3/2-3 63 0 0 0 90°
4/2-4 64 d4=13.775 | O 0 -90°
5 / 4-endpoint 05 0 ab=11.321 | O 90°

Figure 2 Coordinate frame assignment

Based on the DH convention, the transformation matrix from joint nto joint n+1, is given by:
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The general transformation matrix from the first joint to the last joint of the P2Arm can be derived by multiplying al the individud

transformati on matrices, which is as follows:
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where s=9n(4), ¢=cos(8), sxp=Sn(&+ &), and cz=cos(G+ &). On the other hand, if the position and orientation of the end-
effector are given, then the general transformation matrix can be represented as fol lows:

n, o, a, p, COS@COSy COoS@sinysing —sin gcosa
n, o, a, Pp,|_|singcosy singsinysina +cospcosa
n, o, a, p, | -siny cosysina

0 0 0 1 0 0

cosgsinycosa +singsina  p,
sngsinycosa —cosgsina  p,

cosycosa
0

p,
1 ©)

where p,, p,, and p, are the coordinates indicating the spatial position of the end-effector, and a, ), and @ represent the orientation
in terms of the Euler angles ZY X convention. By equalizing the matricesin (2) and (3), the following equations are derived:

px = a5 (C1C23C5 + S2].5455 - C1523C455) + Cl(d4c23 + a2C2 + a‘l)

(@)
Py = 85(SCACs + CS,S ~ S55C,S5) +81(d,C +2,C, + ) ®)
P, = 85(SyCs + CxC,Ss) +d,S,s +a,S, (6)
N, = —S,C; —C;S;S, (7)
N, =CC, —SSyS, ®)
N, =CyS, 9)
0, = —C,CpS; +5,5,C5 — C;S,5C,Cs (10)
0, ==5,CpS; ~C;S,Cs ~ $,5,5C,Cs (11)
0, = =S58 + C5C,Cs (12)
A, = S,C: +CxC,Ss (13)

a =atan2(o,,0,)

if(n,=0&n, =0)=>qy=7m/2

9=0 (14)
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a = atan2(o,,a,)
if (n, Z0or n, #0) = {y =atan2(-n,,,/n; +n})

p=aan2(n,,n,) (15)

From (4)-(15), the position and orientation of the P2Arm end-effector can be calculated if al the joint angles are given. Thisisthe
solution to the forward kinematics.

B. InverseKinematics
Although it is very difficult, the inverse kinematics sol ution can be found by manipulating the following equation:

Ny O 8 Py 8,14 ~C;SpS,  -CiCp;Ss +5,5,C5 ~ C;S3C,C
Ny Oy 8 Py _| CCs755,5, ~5,C555 ~C1S,Cs ~555C,Cs
n, o, a, p, CxS, = S,385 +CC,Cq

0 0 o0 1 0 0

85(C,CpCs + 5,545 ~ C155C,4S5)

C,C,C: +S,S,S: —C,S,,C,S,
1C23C5 +5,5,S5 ~ C;S3C4Sg +¢,(d,C,, +a,C, +2,)
85 (S,C5Cs +C1S4S5 —5,5,5C,S5)

S1CCs €15, S5 ~ 5,55C,Ss
+5,(d,Cpn +@,C, t@,)

S23Cs + C23C4Ss 85(Sy3C5 +C5C4S5) +d, Sy +8,5,

0 1

- (16)

For instance, after multiplying both sides by the inverse matrix of 0Ai, some elements in the matrices will contain one joint

variable only. Paring those eements in both sides will produce possible solutions to some joint variables. This process can be
repested until solutions for al thejoint angles are obtained. More details about this process can be found in [13].

If the position and orientation of the P2Arm end-effector are given, potentid inverse kinematics solutions can be obtained in
terms of the following assumptions:

a) Assuming sin(&)>=0and sin(&,)>0:

61 =adan 2((a5ay - py) [s-gn(ay px - ax py)i

(aSax - px) ‘]jgn(ay px - ax py)) (17)
6, = atan2(a,s, -a,c,,0,S —0,¢;) (18)
6, = atan2((o,s, _chl)/CS’nyCl -ns) (19)
52 = atanz((ascs + dA)(nxCl + nysl) * P,S; —35N,C,Ss,

SA(pxCl + PyS ~ a:L) - nz(ascs + d4) - aSCASS(nxCl + nysl)) (20)

93 = atan 2((_nx0102 - nyslc2 - nzsz) [Sign(sﬂ.)!
(-n,G:S, ~N,S;s, +n,c,) (Hgn(s,)) 1)

b) Assuming sin(&)<=0 and sin(&,)<0:
91 = dan 2((a5ay - py) [s-gn(ay px - ax py)!

(aSax - px) Egn(ay px - ax py)) (22)
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6; =aan2(a,c, -a,s,,0,¢, —0,S,)

6, = atan2((o,s, _chl)/CS’nyCl -ns)

6, =atan2(asn,c,s; — (ascs +d,)(n,c, + nysl) = PS4

nz(asc; +d,) +asc,s;(n,c, + nysl) =s,(p,c + PyS ~ a,))

93 =atan 2((_nx0102 - ny5102 - nzsz) [Sign(sﬂ.)!
(_nxclsZ - ny5152 + nzcz) B;ign(szl))

¢) Assuming sin(&)<=0and sin(&,)>0:

91 = dan 2(( py - aSay) [s-gn(ay px - ax py)!
(P« —asa) [gn(a, px —a.py))

6; =aan2(a,s, —a,c,,0,S, —0,C,)
6, = atan2((o,s, _chl)/CS’nyCl -ns)

6, = atan2((asC; +d,)(n,c, + nysl) *P,S, ~asn,C, S5,
Si(PiCy + PyS — a;) —nz(asC; +d,) —a5C,Ss (N, + nysl))

93 =atan 2((_nx0102 - ny5102 - nzsz) [Sign(sﬂ.)!
(_nxclsZ - ny5152 + nzcz) B;ign(szl))

d) Assuming sin(&)>=0and sin(&,)<0:

91 = dan 2(( py - aSay) [s-gn(ay px - ax py)!
(P« —asa) [gn(a, p, —a.py))

6; =aan2(a,c, -a,s,,0,¢, —0,S,)
6, = atan2((o,s, _chl)/CS’nyCl -ns)

6, = atan2(a;n,c,s; — (asc; +d,)(n,c, + nysl) = P;Sy,

nz(agc; +d,) +asc,s5(n,c, + nysl) =5,(pC, + pyS — a,))

93 =atan 2((_nx0102 - ny5102 - nzsz) [Sign(sﬂ.)!
(_nxclsZ - ny5152 + nzcz) B;ign(szl))

€) Assuming sin(&,)=0:

6 =aan2(-n,,n,)
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2, ,2 .2 _
8, =an2(r, r,) —acos( " T T Tdiy oy

2 2
28,41 +T1, (38)

2 2 _ 2 _ 2
a2+d4 rx rz

8, = ir—acog( )

2a2d 4 (39)

8,=0 (40)

g, =aan2(a,,0,) -6, -6, +2m,n (41)

wherer =p /¢, -a,0,-a, Of r, = p, /s -a,0, -a, if ¢ istoo smdl, and r, = p, -a.a,, M, M= -1, 0, or 1. For a similar
reason, if ¢cs istoo small, equations (19), (24), (29), and (34) should be replaced by

6, =atan2((a,s, ~a,)/s,n,¢, ~Nn,S) @)

In case e), if the solution is checked as incorrect, (38) and (39) should be replaced by

2 2 2 2
N+ +a _d4)+2ml”

2 2
2a,4/r; +r1, (43)

2 2 _ 2 _ 2
6, =-m+ aoos(—az tdior )
28,0, (44)

g, =aan?2(r,,r,) +acoy(

The solution under the assumption of Sn(&)=0 is aso available. However, this solution provides the same joint angles as those
provided by @), b), ) or d). It should be noted that before the joint angles are solved we do not know which assumption is correct.
Our drategy for choosing the correct solution is to try al the potentid solutions and check using the forward kinematics which
solution produces the given position and orientation correctly. Due to the inaccuracy problem caused by aan2(y, x), when
X =Yy =0, there could be no correct solution among dl the potentia solutions for some given positions and orientations. How

serious this problem is will be investigated in Section V, and an dternative approach in case this problem exists is developed in the
next section.

I1l.  INVERSE KINEMATICS SOLUTION BY OPTIMAL SEARCH

When the analytical inverse model gives an incorrect solution, a common dternative approach is optima search that finds a
solution by minimizing the error between the desired and current positions and orientations:

1
E= 7de5ired - Xcurrent HZ

2 (45)

where the current end-effector position and orientation Xcyrrent IS calculated by the forward kinematics equations (4)-(15). The
updating of joint angles can be carried out as follows based on a gradient-descent agorithm:
0(t+1) =0(0) 79825 =00+ 13T (X cesres = X uren) (46)

where 17 isasmall positive number controlling the search step, J isthe Jacobian matrix of the manipul ator:
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[op,/ op,/ Op,/ b,/ 9p/ |
06, 06, 00, 06, 06,

ap, ap, ap, ap, ap,
00, 00, 006, 06, 06,
OFV OFV ap, OFV op,

J= 06, 00, 00, 06, 06,
da oa oa oa
00, 00, 006, 06,

oy oy ay oy oy
06, 06, 06, 006, 006,

g g o 0@ 0@

| /06, 06, 06, 08, a4, | (47)

The derivatives in the Jacobian matrix can be easily derived using the forward kinemeatics equations. The gradi ent-descent-based
search will stop either when a preset maximum number of epochs have been reached or when the correctness criterion has been
met. Another optimal search drategy is to design a trgjectory between the desired and current positions and orientations. The
pseudo-inverse of the Jacobian matrix is applied to update the joint angles in each step following the trgjectory [9]. However, this
strategy does not work properly due to the singularity of the Jacobian matrix when the dof of the robotic arm isless than 6. More
effort for improving the optimal search performance, e.g., using adaptive search steps, will be made and will be reported in the find
version of this paper.

IV. A HYBRID APPROACH FOR P2ARM INVERSE KINEMATICS CONTROL

The results of testing the derived anayticd inverse kinematics model show that it can provide inverse solutions for amost any
given positions and orientations within the reachable space, with the advantages of high speed and high accuracy over neura
networks and optimal search methods. However, on some rare occasions, the anaytica inverse mode provides completely wrong
solutions due to the inaccuracy problem in atan2 function, which is a disadvantage of the anayticd inverse model over neurd
networks and optima search methods. In order to avoid this disadvantage of the andytical model, we use a hybrid approach, as
shown in Figure 3.

X, Analytical Inverse | & Correctness 0 Am
Kinematics Model Criterion
ec ef
Gradient-Descent
Search

Figure 3 A hybrid approach to inverse kinematics control

Given a position and orientation x4, the analytical inverse modd will provide ajoint angle vector .. Its corresponding position
and orientation will be calculated usng the forward kinematics modd. If this solution meets the correctness criterion, the joint
angles will be sent to the robotic arm as control commands, otherwise, an optima search will be conducted to get a satisfactory
solution, which will be checked and sent to the robotic arm if correct.

The correctness criterion used here is defined as follows:
‘X_ )"(‘2 +‘y_ 9‘2 +‘Z_ 2‘2 s eposition

la-d|<e,

y_ }4 < eorientation ’ ¢7_ 4 < eorientation

rientation

(48)
where (X, ¥, z, a, ¥ @ represents the given position and orientation, the variables with * represent the reached position and
orientation by the inverse kinematics control, and €yesition 8N Eyrientation A€ €rror thresholds for position and orientation respectively.

Usualy the optima search will take ardatively longer time in comparison with the analytical solution. This is a shortcoming
for redl-time control. However, the optimal search is hardly activated, as shown in the experimental resultsin Section V.
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V. EXPERIMENTAL RESULTS

The testing position and orientation data were generated using the forward kinematics model with random joint angles that are
within physicaly limited ranges so that they are guaranteed to be reachable. The experiments were conducted using both the
simulated arm moded and the red P2Arm. Asthe andytical inverse method is able to provide accurate solutions, we Set €ygtion=1CmM
and Eyientation=1° in the correctness criterion for the analytica solution. For the optimal search solution, we set stion=1cm and
Erienaion=10°, because it is difficult for the optimal search to achieve very high orientation accuracy. We have conducted
experiments with multiple runs, each run was based on 1 million or 10 million positions and orientations. Table 2 shows some
average performance of the anaytical inverse model and the hybrid approach. It can be seen from the table that the inverse
kinematics problem of the P2Arm has been amost perfectly solved. We noticed that al the errors correspond to positions and
orientations generated by g, = +90° and g, = -g,, which result in n=n,=0,=a,=0 and thus make the orientaion angles caculaed
by (14) and (15) uncertain. Therefore the errors are not actualy caused by the inverse process. These errors could be removed by

using (ny, ny, N, 0, Oy, O, &, &, &, to represent the orientation rather than (a, i @. Thiswill beinvestigated further and the results
will beincluded in the final version of this paper.

TABLE II. ERRORSIN THE P2ARM INVERSE KINEMATICS SOLUTIONS
No. of testing No. of errors from No. of errors from
positions & analytical inverse hybrid approach
orientations alone (percentage) (percentage)
1,000,000 5 (0.0005%) 2 (0.0002%)
10,000,000 50 (0.0005%) 23 (0.00023%)

VI. CONCLUSIONS

An andytica inverse kinematics model for a widely used robotic arm, P2Arm, is firstly derived in this paper. A hybrid
approach combining the derived anaytica inverse kinematics model with an optimal search method is adopted, which provides
an amost perfect solution to the P2Arm inverse kinematics problem. We believe that the solution developed in this paper will
make the P2Arm more useful in applications with unpredictable trgectory movements in unknown environments. The methods
used for deriving the inverse kinematics model for the P2Arm could be applied to other types of robotic arms. Future work would
include looking for better andytical inverse kinematics models as the model derived in this paper is not a unique solution,
improving the optimal search agorithm, integrating with neural networks, and the robustness analysis of the proposed gpproach.

Our software for the P2Arm control based on the derived inverse kinematics modd will be made available to the public after
this paper is published.
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