
Date: 24-Feb-03 
 
Technical report CSM-382 
Department of Computer Science, University of Essex, United Kingdom 

The Integrated Architecture Environment: 
A Two-Tier Programming Tool 

RESEARCH PROPOSAL 

Amnon H. Eden  
 

Planned in collaboration with Rick Kazman, Software Engineering Institute, Pittsburgh, PA 

Abstract 

We describe a software development environment that supports Two-Tier Programming 
(TTP): An approach that redefines programming as the integration of conventional imple-
mentation with design specifications. The TTP tool maintains a comprehensive represen-
tation of programs by integrating specifications in two ties: 

1. Design specifications are represented as a library of design specifications defined 
formally in a visual specification language (LePUS); 

2. The implementation, which strictly adheres to conventional programming prac-
tices. 

A mapping associates design specifications with their instances and facilitates the co-
ordination of changes between the two tiers. 

Index terms. Software design and architecture, object oriented programming, formal specifica-
tion, design patterns, verification and validation, automated software engineering, visualization. 
 
Related documents 
A. H. Eden (2002). "LePUS: A Visual Formalism for Object-Oriented Architectures". The 6th 
World Conference on Integrated Design and Process Technology, Pasadena, California, June 22—28, 
2002. 
A. H. Eden (2001). "Formal Specification of Object-Oriented Design." International Conference on 
Multidisciplinary Design in Engineering CSME-MDE 2001, Montreal, Canada, November 21—22, 
2001. 
A. H. Eden, R. Kazman (2003). “Two-Tier Programming.” Under preparation. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74372758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

- 2 - 

1. Two-Tier Programming 
Two-tier programming [Eden & Jahnke 02] is an emerging paradigm according to which the very rep-
resentation of a computer program should integrate design specifications along with the implemen-
tation. Thus, a two-tier program constitutes specifications in at least two tiers of specification: 

1. Intensional specifications [Eden & Kazman 03a], or design specifications, are formulas 
which may be instantiated in an unbounded number of contexts (“design models”). 

2. The implementation is represented in a conventional programming language. 

The representation of a traditional program consists of text in a 3rd generation programming lan-
guage (“source code”), commonly distributed over a number of ASCII files accompanied with 
“build” information. Serious problems arise from such practice, most notably architectural drift 
[Perry & Wolf 92] and traceability, which hamper the continuous evolution of programs. 
In contrast, a two-tier program tightly integrates design information into its very representation. 
Thus, the “compilation” of a TTP (i.e., its static validation) requires also the verification of the de-
sign requirements. The mapping between the intensional design specifications and their instances in 
the source code is supported via a coordination layer, which simply consists of a list of pairs in the 
form: 〈constant, variable〉. 

Architectural consistency 

To ensure consistency between the design and the implementation, the TTP approach dictates a 
step-wise construction process of software along the following lines: 
 

1. Two-tiers. The representation of the program is divided into two layers of specifications: 

a. An intensional tier consists of intensional formulas which capture design specifica-
tions. 

b. The extensional tier consists of the implementation, which is source code written in 
a traditional programming language. 

A coordination layer maps each intensional formula with each one of its instances in the 
source code. 

2. Undisturbed Coding. Coordination does NOT depend on extending or adding the im-
plementation (e.g., it does not require embedded comments or language extensions.) Our 
implementation will allow the programmer to freely switch from conventional program-
ming to the architectural specifications at any point in the development. 

3. Quanta of Change. Changes are made to the program in small units. 

4. Locality. Each quantum of change is restricted to only one tier of specifications. 

5. Consistency. Consistency between the representation tiers is restored after each quan-
tum of change, before any other change may take place. 



 

- 3 - 

2. Nomenclature 
The following definitions are extracted from a number of resources, most prominently: “A Theory 
of Object-Oriented Design” [Eden 02] and “Architecture, Design, Implementation” [Eden & 
Kazman 03a]. For the complete, formal definition, please refer to these sources. 
design schema: A LePUS diagram 
design model: A finite structure in mathematical logic which consists of ground entities (usually, of 

types Class and Routine) and ground relations 
domain is the set of all entities of a certain property. The symbols F and C are used to represent 

the domains of ground routines and ground classes respectively. We use the notation P(T) to rep-
resent the (“derived”) domain of sets of entities of type T. 

first-order language: A statically-typed OOP language, Java™ in our case. 
formula: A design specification written in LePUS in our case. 
second-order language: A language for writing design specifications, LePUS in our case. 

3. General Requirements 
User The TTP tool is a development environment that is meant to support assist users who are 
both programmer and designer. More specifically, the Integrated Architectural Environment  (IAE) 
should support the following: 

1. Implementation: Any kind of traditional programming activity, such as editing, compi-
lation and debugging. 

• Auxiliary code comprehension techniques would be welcome, such as javadoc or 
any other static browser. 

2. Design: Comprehensive support in design specifications, specifically statically-analyzed 
properties in association with properties expressed by design patterns and architectural 
styles: 

(a) Specification (e.g., of the State pattern) 

(b) Association (e.g., of the State with its instances in the implementation)  

3. Verification of design properties (e.g., that the designated instances of the State pattern 
satisfy the specification) 

Figure 1 illustrates the services the IAE supports. Below we elaborate on each element thereof. 
Figure 2 depicts a screen shot of the tool at work. 



 

- 4 - 

«»
«» Traditional

"programming"

«»
«»

View«» «»

regenerate

class BorderDec
 extends Dec {
   void Draw() {
     // do_smthng();
     Dec.Draw();
   }
   int BorderWidth;
}

Source code

abstract class
Dec {
   void Draw() {}
}

Design model
Dec

ADec.Draw

BorderDec

In
he

rit
→

BorderDec
.Draw

Member
→

Fo
rw

ar
d

→

int

→
Memb

er

Member
→

Design library

«»
«»

Browse,
hyperlink

Design
documentation

« » « »

Specify

«» «»

Associate

components

component

OperationsA

Operations

decorator

OperationsA

components

Operations

Concrete design

«»«»

Associate

Programmer +
designer

Dec

Draw

BorderDec

Draw

 
Figure 1. A use-case diagram capturing the user’s interactions with different parts of the TTP 

tool. 



 

- 5 - 

3.1 General 
The subject matter of the IAE should be handled via projects, which consist a collection of references 
to the specifications of a specific Java program. A project should consist of references as follows: 

Two Tier Programming: C++ X2_

File     Edit     View     Format     Help

Requests-Imp Pattern: State X2_

States
context

Requests-Handle Requests-Imp

Pattern Instances: State

States

Requests-Imp

X2_

TCPState
TCPEstablished
TCPOpen

5

6

class TCPClosed : public TCPState {
public:
   static TCPState* Instance();
   virtual void
ActiveOpen(TCPConnection*);
   virtual void
PassiveOpen(TCPConnection*);
   // ...
};

Class TCPClosed X2_

class TCPEstablished : public TCPState {
public:
   static TCPState* Instance();
   virtual void Transmit(TCPConnection*, TCPOctetStream*);
   virtual void Close(TCPConnection*);
};

Class TCPEstablished X2_

class TCPState {
public:
   virtual void Transmit(TCPConnection*, TCPOctetStream*);
   virtual void ActiveOpen(TCPConnection*);
   virtual void PassiveOpen(TCPConnection*);
   virtual void Close(TCPConnection*);
   virtual void Synchronize(TCPConnection*);
   virtual void Acknowledge(TCPConnection*);
   virtual void Send(TCPConnection*);
protected:
   void ChangeState(TCPConnection*, TCPState*);
};

Class TCPState X2_

ActiveOpen
PassiveOpen
Close 6

5

 
Figure 2. Sample screen shot of the TTP tool 



 

- 6 - 

♦ Implementation: 
1. Java source code files (possibly in the form of path expression and a regular expres-

sion)  
2. Executable build information (implementation-dependent) 
3. A design model for the relevant portion of the source code (Figure 4) 

♦ Design specifications, in either one of the forms: 
1. A library of open formulas (i.e., with free variables) 
2. Closed formulas (i.e., literals are only constant expressions) 

♦ Association relation mapping the design with the implementation (“coordination layer”). 
At any instance, at most one project can be open. 

No project Project open

Project name

open project

close project

 
Figure 3. A state diagram for the IAE 

3.2 Implementation 
Implementation should be specified using traditional .java source code files along with the librar-
ies and all the build information needed to create a complete executable (or the byte-code equiva-
lent). No other kind of information must exist in the source code other than what ordinary Java 
programs contain. In particular, we do not expect comments embedded in the program. 
Source code should be accessible for editing, compilation, debugging, and old-fashioned means of 
browsing (javadoc) as frequently as the user may be arbitrarily wish. 
The IAE should generate a design model from the given source code and represent it both visually 
and textually. Figure 4 depicts an example for a visual depiction of a design model. 



 

- 7 - 

abstract class Dec { 
   abstract void Draw(); 
} 
 

class BorderDec extends Dec { 
   void Draw() {  
 // do_something(); 

      Dec.Draw(); //... 
   } 
   int BorderWidth; 
} 

 

Dec
ADec.Draw

BorderDec

In
he

rit
→

BorderDec
.Draw

Member
→

Fo
rw

ar
d

→

int

→
Member

Member
→

 
Figure 4. Java™ code excerpt and a visual depiction of its design model 

3.3 Design 
Design specification should support specification in both symbolic and visual version of LePUS. A 
specifications may include declarations of variables and constants of a specific domain, and any 
number of well-formed clauses, which consist of any combination of the language’s predefined 
predicates over relations and operators. Table 1 depicts a well-formed LePUS expression which 
consists of three declarations, two predicates, and two instances of the selection operator. Figure 5 
depicts the visual version of the same expression. 



 

- 8 - 

Table 1. A simple LePUS expression (symbolic representation). 

Dec, component : C 
Draw, Operations : P(S) 

Inherit(component, dec) 
Forward↔(Operations⊗component, Draw⊗Dec) 

Dec

DrawA

component

Operations

 
Figure 5. Visual depiction of the LePUS expression in Table 1 

A LePUS formula is a design specification interpreted as follows: 
♦ Constants (e.g., dec) appearing anywhere represent an entity in the design model by the 

respective name, if exists; otherwise, verification fails. 
♦ An expression with free variables (such as component) is interpreted only in the context 

of a specific association, if exists in the coordination layer. 

3.4 Association 
Ground constants are the only literals that can be directly interpreted. Other then these, we need 
consider the interpretation of the following two types of literals: 

♦ Variables: An association states that a part of the design model should conform to (is an 
“instance” of) a certain formula.  

♦ Higher-dimension constants: The association states which ground entities in the de-
sign model are represented as a higher-dimension constant. 

Each association provides interpretation to the variables and higher-dimension in a single LePUS 
expression.  
Signature variables are not associated as such; instead, each occurrence of the selection operator 
with any variable requires an assignment. 



 

- 9 - 

 

Table 2. A sample association assigning interpretations from the design model in Figure 4 to the 
expression in Table 1. 

component, BorderDec 
Operations⊗component, BorderDec.Draw 
Draw⊗Dec, Dec.Draw 
 
There are further issues to consider with relation to the association of signature and class hierarchy 
variables. 

3.5 Verification 
The purpose of a verification is to certify that the associations are valid. For example, that constants 
have a respective interpretation (in the design model) and that the interpretations of all expressions 
are true in the design model. If a verification fails, the point of failure (association and formula) 
should be made clear. 

References 
A. H. Eden (2002). "LePUS: A Visual Formalism for Object-Oriented Architectures". The 6th 
World Conference on Integrated Design and Process Technology, Pasadena, California, June 22—28, 
2002. 
A. H. Eden (2001). "Formal Specification of Object-Oriented Design." International Conference on 
Multidisciplinary Design in Engineering CSME-MDE 2001, Montreal, Canada, November 21—22, 
2001. 
A. H. Eden. "A Theory of Object-Oriented Design." Information Systems Frontiers, Vol. 4, No. 4 
(Nov.-Dec. 2002) Kluwer Academic Publishers. 
A. H. Eden, J. Jahnke (2002). "Coordinating Software Evolution Via Two-Tier Programming." 
Coordination 2002, Lecture Notes in Computer Science, Vol. 2315, pp. 149-159. Arbab F.; Talcott C 
(Eds.) Berlin, Germany: Springer. 
A. H. Eden, R. Kazman (2003a). "Architecture, Design, Implementation." International Conference 
on Software Engineering – ICSE. Portland, OR, May 3-10, 2003. 
A. H. Eden, R. Kazman (2003b). “Two-Tier Programming.” Under preparation. 
D. E. Perry, A. L. Wolf. "Foundation for the Study of Software Architecture." ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 17, No. 4 (Oct. 1992), pp. 40-52. 
 


