
Using A Network of workstations to enhance Database
Query Processing Performance

Mohammed Al Haddad, Jerome Robinson

Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester,
CO4 3SQ, United Kingdom
mjalha@essex.co.uk

Abstract. Query processing in database systems may be improved by applying
parallel processing techniques. One reason for improving query response time
is to support the increased number queries when databases are made accessible
from the Internet.

1 Introduction

Applying parallel processing techniques, like Parallel Query Processing in database
systems, will improve the database query answering time, and hence the overall
response time of a query. The need for this improvement has become apparent due to
the increasing size of the relational database as well as the support of high level query
languages like SQL which allows users to present complex queries.
    Commercially available Parallel Processing servers are expensive systems and do
not present a viable solution for small size businesses, therefore we are interested in
trying to find alternative parallel processing methods. Such method as described in
this paper is by the utilization of a network of workstations. It has been observed that,
up to 80% of workstations are idle depending on the time of the day [1].
     Parallel Virtual Machine is software that allows utilization of networked
workstations as a single computational resource.
     We present in this paper the effective use of Parallel Virtual Machine in enhancing
the performance of Parallel Query Processing, with the use of a proposed Parallel
Query Interface PQI, which is explained in section 4.2. We also demonstrate the cost
effectiveness of the proposed Expandable Server Architecture ESA, which uses the
shared nothing architecture. The shared nothing architecture is a relatively
straightforward to implement, and more importantly has demonstrated both scalability
and reliability. It has also proved to be a cheap way of connecting processors to build
parallel database system that could be affordable to small businesses in contrast to the
high cost of the most commercially available parallel database systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74372691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Mjalha@essex.co.uk


2 Parallel Architecture

Parallel database systems constitute a combination of database management and
parallel systems to increase performance and availability. Parallel systems provide
much better price / performance than their mainframe counterparts.  These advantages
could be categorised as follows: high performance - obtained by operating system
support, parallelism and load balancing-, high availability - obtained by data
replication - and Extensibility – obtained by smooth expansion of processing and
storage power to the system [5].

2.1 Parallel Database System

A parallel database system can be built by connecting together several processors,
memory units, and disk devices through a network [2]. Depending upon how the
different components are interconnected they can be categorised under three main
classes [3]: shared-nothing, shared-disk, and shared-everything. Each architecture
consists of processors, memory units, disk units, local buses, and a global
interconnections network. In the experiment described in this paper, the shared-
nothing architecture is used, where all processors are connected via Ethernet
interconnection network.
    Because none of the components in the shared-nothing architecture are shared, the
need for a complex interconnection network is removed. In contrast, the shared-
memory and shared disk systems needs a powerful interconnection network because it
has to transmit large quantities of data. The shared-everything and shared-disk
architectures are not suitable for large systems due to the interconnection bandwidth
limitations. The shared-nothing architecture is popular for its scalability and
reliability.

3 Parallel DBMS Techniques

A successful implementation of parallel architecture heaviliy relies on the parallel
techniques used. This research mainly focuses on two main components, namely
partitioning and query parallelism techniques.

3.1 Partitioning

In relational database schema, relations (Tables of data items) can be fragmented into
a number of parts stored on different disks associated with different processors.
The three most common ways of partitioning the data are: Hash partitioning: This
method is suited for sequential and associative access as the tuples will be placed
amongst different fragments using some hash functions mapped on an attribute or
attributes of the relation. The advantage of this strategy is that the scan will be
directed to only one workstation’s disk instead of all of them.  Range Partitioning



(clustering):  Tuples with the same value of attribute and are frequently accessed are
placed together. This method suits sequential and associated access, but clustering can
lead to a few problems during that access, such as data skew.  Round Robin: Tuples
are distributed in a round robin fashion. The round robin strategy works well when
majority of the queries involve the whole relation to be accessed sequentially. But,
bottleneck may be created when tuples have a common value for a particular attribute.
Relational data base schema has a number of tables, in this experiment the
partitioning was created by allocating each table into a different node, as can be seen
in section 4.1.

3.2 Query Parallelism

Query parallelism can be obtained by two main approaches, inter-query parallelism
and intra-query Parallelism. Inter-query parallelism enables the parallel execution of
multiple queries generated by concurrent transactions, and aims to increase the
transactional throughput, while intra-query Parallelism aims to decrease response
time. Intra-query parallelism could be composed by using inter-operator which is
obtained by executing in parallel several operators of the query tree on several
processors, and intra-operator, where the same operator is executed by many
processors, each one working on a subset of the data.
    In our experiment, a Parallel Query Interface (PQI) has been designed to facilitate
the use of both of the approaches explained above, where a series of user’s queries
can be served at the same time. Each query can then be decomposed to sub-queries
and executed concurrently, as explained in  section 4.2

4 Experimental Environment and Results

In this experiment, Parallel Query Interface PQI was designed, and applied on the
proposed Expandable Server Architecture. Different scenarios were produced (Central
database on a single workstation with PQI and without PQI) in order to measures the
performance of the query.
    In this experiment, the TPC-D benchmark databases sets and their queries were
used as well POSTGRES. The complexity of these queries are explained in [4].
POSTGRES [8] is an extended relational database system still being developed at
Berkeley. It is well suited for handling massive amounts of data, it also supports large
objects that allow attributes to span multiple pages and contains a generalized storage
structure that supports huge capacity storage devices as tertiary memory [9].
The commercial parallel systems are very expensive, thus in this experiment a Virtual
Parallel Machine (PVM) is used. This provides a cost-effective solution for small
businesses.
    In this experiment, a group of six workstations PIII 450 with 128 MB RAM, 20 GB
hard disk linked with 100 MB/s network are connected via a LAN, which provides
better cost/performance.



4.1 Expandable Server Architecture  (ESA)

The fundamental objective of database technology is to retrieve the data in as short a
time as possible.
This Architecture has been designed to accomplish that by utilizing the resources of
any Local Area Network (LAN) such as a small business. This means that we are
making use of all the workstations that are connected in the LAN and saving the small
business, for example, from buying a multi processor server machine along with all its
software tools.  Using some or all those available resources in LAN, PVM is
responsible for connecting them in order to perform any task in the best possible way.
Performing any query in those selected resources in done using Parallel Query
Interface (PQI) see figure 3, which uses a parallel mechanism to increase the
performance and efficiency of retrieving the query. Also, by expanding the server,
i.e., dividing up the database and spreading it over the LAN, we are speeding up the
retrieval by accessing the data using the parallel mechanism for users’ queries. Instead
of loading up the main server and loosing time accordingly while retrieving any data.
This method reduces the communication overhead. As a result, there is a big
performance benefit from reduced transaction latency and server workload.
Our system promises much higher flexibility in distribution of workload among nodes
because any node can access the data at equal cost.

4.2 Parallel Query Interface (PQI)

The main function of Query Processing is to transform a high-level declarative query
into an equivalent lower-level procedural query. The transformation must achieve
both correctness and efficiency [5]. The well-defined mapping from relational
calculus to relational algebra makes the transformation correct, efficient and easy, but
producing an efficient execution strategy is more involved. The lower-level query
actually implements the execution strategy for the query. Since each equivalent
execution strategy can lead to a very different consumption of computer resources, the
main difficulty is to select the execution strategy that minimises resources
consumption. On the other hand, our Expandable Server Architecture ESA and
Parallel Query Interface PQI (Coordinator Process) has all the relations allocated in
different sites, we simply send each sub-query into the corresponding site. See figure
2. When a new user’s query arrives, an arbitrary processing node receives it and
becomes the coordinator in charge of optimization and supervision for this query. The
coordinator first determines the degree of parallelism for the query by decomposing
the query into sub-queries according to the join predicate and selection predicate. By
determining the number of Processing Nodes (PNs) for scan and join as well as the
number of disks that hold the buckets that are derived, and through message passing
each operator can process the output of the previous one without delay.
    The number of buckets is computed based on attribute value that has been retrieved
from the corresponding disk and stored on the table_info at run time. When the
buckets are processed separately, the coordinator will use the information from the
table_info to command the PN, which holds the small buckets to sort them by



Quicksort algorithm. It will then send them to the according process to be joined,
using a binary merge algorithm, according to the join predicate, see figure 1.
When the size of the buckets exceeds the main memory of any PN, a delay will be
caused in the processing of the query, as can be observed from section 5. One way of
avoiding disk contention, is to look at the inner and outer queries that are accessing
the same data and use data fragmentation as in [7].

Figure. 1 Parallel Query Interface (PQI) applied in Expandable Server Architecture (ESA)

scan

Coordinator

scan scan scan scan

Join Join

Join

Join



Figure. 2. Parallel Query Interface (PQI)

The coordinator node which applies the Parallel Query Interface PQI, executes the following:
Let Q :={Q_Outer, Q_Inner} // Q is the standard TPC-D benchmark queries, and contains:

// Q_Outer which is the outer sub-selection in the Q, and
// Q_Inner, which is the inner sub-selection in Q.

PN := { PN0, PN1, …PNx} // it the processes Id which is being spawned
Let S_Q_outer := { O1, O2…,On } //  is the result executing the outer query
Let S_Q_inner := { I1, I2…,Im }     //  is the result executing the inner query
Let AV // Attribute Value
Let table_info // is the file where we save all the AV
Decompose the S_Q_outer and S_Q_inner // by: Gather all the predicates according to their

    //table name for the S_Q_outer and  S_Q_inner.
    // join Predicates (compare two attribute ),

Predicates
   //for select (value).

Spawn PNs to fetch each query in S_Q_outer and S_Q_inner
Keep track of the PN
Up date the table_info //by save the AV
The coordinator is in the listening status waiting for receiving PN form slaves’ processes
DO {
If Receive PN_idouter   

Check table_info // to compare the size of the buckets
Find the smaller bucket // out of the buckets which based on the join predication

  Command that PN to start sorting //check if its already sorted) their table
 Send it correspond PN //using predicate join as counsellor.

 Command the corresponding PN to start joining // using binary-merging according to
}        //their predicate join}

Till we get Q_outer // it is the final join for the outer query

DO {
If Receive PN_idinner {

Check table_info    // to compare the size of the buckets
Find the smaller bucket    // out of the buckets which based on the join predication
Command that PN to start sorting  //check if its already sorted) their table
Send it correspond PN //using predicate join as counsellor.
Command the corresponding PN to start joining // using binary-merging according to their

   Predicate join }
}
Till we get Q_inner  // it is the final join for the inner query
Finally join Q_outer with Q-inner  //according to their predicate join



4.3 Experimental Results

In this experiment, query Q2 in the TPC-D benchmark, which is a correlated sub-
query based on a 5-table join in both outer query and inner query [4], was performed
in three different environments: ESA, Single workstation with imbedded Postgresql
and without support of PQI and single workstation with support of PQI.
    In order to effectively optimize queries in a distributed environment, it is necessary
to have a reasonably accurate model that estimates the response time. Where the
response time of a query is defined to be the elapsed time from the initiation of query
execution until the time that the last tuple of the query result is displayed at the user’s
site.  As can be seen from figure 3, the elapsed time obtained from ESA is 88 sec.
while at the workstation with support of PQI it was 177 sec. and at the workstation
without support of PQI it was 236sec, see figure 3.
    In the ESA environment, the sub-queries were executed in parallel, which saved
considerable time in comparison with the other environments. In the case where one
workstation was used with the support of PQI, the sub-queries were executed
sequentially and the time of each execution was added up to give the overall response
time of the main query. Finally, the case of one workstation without the support of
PQI, the time was spent on the query process trying to find the best strategy plan for
the execution of the query and on the sequential access of the data

Figure. 3 Elapsed Time at three different environments; ESA, Workstation with support of PQI
and Workstation without support of PQI

0

50

100

150

200

250

El
ap

se
 T

im
e 

(s
ec

on
ds

)

W_without PQI W_with PQI  ESA

Elapsed Time at Three Different Environments



5 Parallel Virtual Machine (PVM)

The PVM communication model assumes that any task can send a message to any
other PVM task and that there is no limit to the size or number of such messages.
While all hosts have physical memory limitations that limits potential buffer space,
the communication model does not restrict itself to a particular machine's limitations
and assumes sufficient memory is available.
    The PVM communication model provides asynchronous blocking send,
asynchronous blocking receive, and nonblocking receive functions. A blocking send
returns as soon as the send buffer is free for reuse, and an asynchronous send does not
depend on the receiver calling a matching receive before the send can return. There
are options in PVM 3 that request that data be transferred directly from task to task. In
this case, if the message is large, the sender may block until the receiver has called a
matching receive. A nonblocking receive immediately returns with either the data or a
flag that the data has not arrived, while a blocking receive returns only when the data
is in the receive buffer.
    Message buffers are allocated dynamically. Therefore, the maximum message size
that can be sent or received is limited only by the amount of available memory on a
given host. There is only limited flow control built into PVM 3.3. PVM may give the
user “a can't get memory” error when the sum of incoming messages exceeds the
available memory, but PVM does not tell other tasks to stop sending to this host [6].
From figures 4, which represent the sending time for a range of data sets over
different number of hosts, it shows  that, the curves start off at a large sending time
when the data is sent to one host and then the time reduces as the number of hosts
increases. The curves eventually level off when the data are sent to about 5 hosts. The
reason for this phenomenon, is that the size of the data when distributed over 5
machines fits totally in the buffer of the machines. This  means time spent on page
swapping when large sets of data are dealt with, is saved and there is less traffic to
each machine. This complies with the way PVM communication model operates as
explained above.



Figure 4 Sending time of 11 sets of data over 8 Hosts

6 Conclusion

In this paper, PVM has clearly demonstrated its ability to use networked workstations
as a single computational resource, hence, exploiting parallelism.
Experiments measuring the scalability of PVM show that there is a limitation to the
size of data that could be sent to one workstation. This limitation is caused by the
restricted size of the memory that could hold the data, which will increase the sending
time as page swapping will take place. The sending time is reduced as the number of
workstations is increased and the size of data is decreased, which allows the data to be
distributed and dealt with in a shorter time.
    Moreover, PVM shows significant improvement in performance by applying the
proposed designed Parallel Query Interface PQI in various scenarios, namely
Expandable Server Architecture ESA, a central database (in a single workstation)
with support of PQI, and a central database (in a single workstation) without support
of PQI. The experimental results clearly show that query performance seems to work
best with ESA. The Expandable Server Architecture (ESA) uses the shared-nothing
architecture that is popular for its scalability and reliability in connecting its
processors. It is a cheap way of building a parallel database system that could be
affordable to small businesses in contrast to the high cost of most commercially

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Hosts

358170

390731

423292

455853

488414

520975

618658

716341

781463

814024

846585



available parallel database systems.  The proposed PQI in this paper suggests several
directions for future research, utilization of more workstations using PVM, enabling
better load balancing and distributed partitioning.

References

1. M. Mutka and M. Livny.: The Available Capacity of a Privately Owned Workstation
Environment. Performance Evaluation, Vol. 12, No. 4 (July 1991) pp. 269-284

2. Sivarama P. Dandamudi and Gautam Jain.: Architectures for Parallel Query Processing on
Networks of Workstations”. Proc. Int. Conf. Parallel and Distributed Computing Systems,
New Orleans, 1997.

3. D. Dewitt and J. Gray.:Parallel Database Systems: The Future of High Performance
Database System Comm. ACM, Vol. 35, No. 6 (June 1992)  pp. 85-98

4. Carrie Ballinger.: Relevance of the TPC-D Benchmark  Queries: The Questions You Ask
Every Day. NCR Parallel System, www.tpc.org/articals/TPCDart1.97.html (1997)

5. M. Tamer Ozsu, Patrick Valduriez.: Principles of Distributed Database System. Second
edition, ISBN 0-13-659707-6, Prentice Hall ,2000.

6. Geist et al, 1994 A Geist, A Beguelin, J Dongarra, W Jiang, R Manchek and V Sunderam
(1994), PVM.: Parallel Virtual Machine A users’ guide and tutorial for Networked Parallel
Computing.ed. J Kowalik, MIT Press (1994) Also available on-line:
http://www.netlib.org/pvm3/book/pvm-book.html

7.  Michael J. Franklin, Bjorn Thor Jonsson and Donald Kossmann.: Performance Tradeoffs
for Client-Server Query Processing, ,. SIGMOD Conf. 1996: 149-160

8. Michael Stonebraker and Greg Kemnitz.: The POSTGRES next generation database
management system. Communications of ACM, 34 (1991)

9. Michael Allen Olson.: Extending the POSTGRES database system to manage tertiary
storage. Master’s thesis, University of California, Berkeley (1992)

10. Claire Mosher.: Postgres Reference Manual, version 4. Electronics Research Laboratory,
University of California, Berkeley, CA-94720 (1992) No. UCB/ERL M92/85

11. S. Ganguly, A. Gerasoulis, and W. Wang.: Partitioning Pipelines with Communication
Costs. In Proc. Of the 6th Intl. Conference on Information Systems and Data Management
(CISMOD’95), Bombay, India (November 1995)

12. M. Mehta and D.J.DeWitt.: Managing Intra-operator Parallelism in Parallel Database
Systems. Proc. 21st Intl. Conference on Very Large Data Bases, Zurich, Switzerland
(September 1995)

13. A.N. Wilschut, J. Flokstra, and P. M. G. Apers.: Parallel Evaluation of Multi-join Queries.
Proc. 1995 ACM SIGMOD Intl. Conference on Management of Data, San Jose, California
(May 1995)

14. Rahm, E.: Dynamic Load Balancing in Parallel Database Systems. Proc. EURO-PAR 96,
Lyon (1996), Springer-Verlag, Lecture Notes in Computer Science 1123, S.37-52, August
1996

15. Scheneider, D. A., DeWitt, D. J.: A Performance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Multiprocessor Environmnet.  Proc. ACM SIGMOD,
Portland (1989).

http://www.netlib.org/pvm3/book/pvm-book.html

