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Abstract

A vector-valued signal in N dimensions is a sig-
nal whose value at any time instant is an N -
dimensional vector, that is, an element of RN . The
sum of an arbitrary number of such signals of the
same frequency is shown to trace an ellipse in N -
dimensional space, that is, to be confined to a plane.
The parameters of the ellipse (major and minor
axes, represented by N -dimensional vectors; and
phase) are obtained algebraically in terms of the
directions of oscillation of the constituent signals,
and their phases. It is shown that the major axis of
the ellipse can always be determined algebraically.
That is, a vector, whose value can be computed
algebraically (without decisions or comparisons of
magnitude) from parameters of the constituent sig-
nals, always represents the major axis of the ellipse.
The ramifications of this result for the processing
and Fourier analysis of signals with vector values
or samples are discussed, with reference to the def-
inition of Fourier transforms, particularly discrete
Fourier transforms, such as have been defined in
several hypercomplex algebras, including Clifford
algebras. The treatment in the paper, however, is
entirely based on signals with values in R

N . Al-
though the paper is written in terms of vector sig-
nals (which are taken to include images and volu-
metric images), the analysis clearly also applies to
a superposition of simple harmonic motions in N
dimensions.

1 Introduction

This paper is concerned with the analysis of vector-
valued signals, in particular, it is concerned with
harmonic analysis of such signals in terms of si-
nusoidally varying frequency components. The pa-
per employs straightforward mathematics, usingN -
dimensional vectors, and the concepts of norm and
inner product, and elementary trigonometric func-
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tions. The results presented are not claimed to be
profound, nevertheless, they do not appear to be
available in the literature, to the knowledge of the
author.

1.1 Vector-valued signals

A real-valued signal f(t) has a value at each instant
in time, t, which is an element of R, the set of real
numbers. In practice, such a signal may be discre-
tised in time and in amplitude (this is said to be a
digital signal). In this paper, we consider the math-
ematics of signals without concern for discretisation
in time or amplitude, but it should be understood
that the theory presented here, although expressed
in terms of continuous time/continuous amplitude
signals, is not invalidated by discretisation.

A vector-valued signal has values at each time
instant which are N -dimensional vectors, that is el-
ements of RN . We place no restriction on N , which
can be any positive integer (in the case N = 1 of
course, the results reduce to the classical case of
real-valued signals, and for N = 2, the results are
valid for signals with complex values, although we
express them in the paper using vectors in R

2).

Although we express the results in the paper in
terms of signals which are functions of time (for
simplicity) the results are, of course, valid for sig-
nals which are functions of some other variable, and
in particular, the results may be simply extended
to images (or volumetric images) with pixels (or
voxels) which have values in R

N .

At the risk of overstressing the point, we empha-
sise that the values of the signal are vectors. The
signal itself is a time-series of vector values. We
are not discussing in this paper vectors containing
a whole signal, nor by the dimensionality N do we
mean the number of dimensions of the signal (1 for
a time series, 2 for images, 3 for volumetric images,
etc.). This point was discussed at greater length
in [1] to which we refer the reader (see particularly
Table 1, where the concept of vector as presented
in the current paper corresponds to the column on
the left of the table, labelled ‘Components per sam-
ple’).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74372685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1404.2492v1


1.2 Frequency components

The central concern of this paper is to understand
the meaning of the concept of a frequency compo-
nent of a vector-valued signal. The classical the-
ory of Fourier analysis applied to real-valued sig-
nals expresses a signal in terms of a summation
of sinusoidal signals of various frequencies which
are scaled in amplitude and shifted in time (phase
shifted). (We are omitting here, for simplicity, the
differences between Fourier series, Fourier integrals
or transforms, and discrete Fourier transforms, be-
cause these differences are not relevant to the dis-
cussion that follows.) In the case of signals with
real values, Fourier analysis represents a signal by
a sum of scaled and shifted pairs of complex con-
jugate exponentials (representing positive and neg-
ative frequencies). The sum of these scaled and
shifted exponentials reconstructs the signal which
has been analysed, the imaginary parts cancelling
out to yield a real result. Once we move from a
real-valued signal to a complex-valued signal, the
picture becomes more complicated, and less well
presented in the literature. However, the same idea
applies in this case, except that the pair of complex
exponentials are no longer complex conjugates, and
when added, their imaginary parts do not cancel
out. The results in this paper show that it is not
difficult to understand how a complex signal may
be represented in terms of frequency components.
Beyond N = 2, the picture is less clear.

We show that the concept of a frequency compo-
nent can be simply understood in terms of an ellip-
tical path through the space of the N -dimensional
signal values traversed ν times per second, where ν
is the frequency of the component in hertz. The el-
lipses are composed of the sum of a cosinusoidal and
a sinusoidal oscillation in a plane, regardless of the
value of N (excluding N = 1 of course). A canonic
decomposition of this ellipse into orthogonal cosi-
nusoidal and sinusoidal components is given. This
seems to the author a remarkable result, because it
means that the geometric interpretation of the con-
cept of frequency component does not change as one
increases the dimensionality of the signal values.
This in turn means that harmonic analysis into si-
nusoidal frequency components is essentially of the
same character regardless of N , and this has signif-
icant ramifications for the construction of Fourier
transforms of vector-valued signals, which we dis-
cuss in § 3 of the paper.

1.3 Polarization

A signal with samples in two or more dimensions
may be polarized. The concept of polarization is

well-known in physics, particularly for electromag-
netic waves including light, and seismic waves prop-
agating through rock. For a discussion of signal
polarization (for the complex, or two-dimensional,
case only), see [2, 3].

It will become clear in this paper that every fre-
quency component of a vector signal as discussed
in this paper is polarized, because it is confined to
a plane in the N dimensional space of the signal
values. Special cases are linear polarization (the
signal values oscillate along a line in N -dimensional
space); circular polarization (the signal values os-
cillate around a circular path in N -dimensional
space); elliptical polarization (the general case: the
signal values oscillate around an elliptical path in
N -dimensional space). In the second and third
cases, there is also a direction of polarization (the
sense in which the values traverse the circle/ellipse:
clockwise or anti-clockwise).

The question of whether a signal (as opposed to a
single frequency component of a signal) is polarized
is outside the scope of this paper.

1.4 Vector sensors

A vector signal may be captured by a vector sen-
sor, that is a sensor with the ability to capture
orthogonal components of an incident wave. Ex-
amples include vector geophones, 3-axis accelerom-
eters, and gyroscopes. Since the physical world is
3-dimensional, vector signals with 3-dimensions are
more common than those with higher dimensions.
Notice that we do not consider waves: once a wave
impinges on a vector sensor, information about the
wave is reduced to oscillation in N dimensions as
detected by the sensor. To capture more infor-
mation from the wave, for example to permit es-
timation of the direction of arrival, it is necessary
to utilise an array of sensors, which is outside the
scope of this paper.

1.5 Prior work

The ideas presented in this paper have been de-
veloped from some prior work along similar lines
for the case of signals with complex values. Re-
search by Andrew McCabe, Terry Caelli and their
co-workers in the late 1990s [4, 5] showed how har-
monic analysis of images with complex pixels could
be understood in terms of elliptical paths in the
complex plane (they called this idea spatiochro-
matic image analysis because their complex pixels
represented chrominance, the aspect of a colour im-
age that represents colour). This idea was extended
to three-dimensions (again in the context of colour
images) in a 2007 paper by Todd Ell and the author
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[6]. This paper analysed quaternion Fourier trans-
forms of colour images and showed that the Fourier
domain representation of the image consists of el-
liptical paths through the space of the pixel values
(colour space). The present paper generalises these
ideas to N dimensions, and shows that the same
mathematics applies in any number of dimensions,
not just 2, 3, or 4.

1.6 Notation

Throughout this paper we use the following nota-
tions:

• vectors (in an arbitrary number of dimensions,
N > 1) are indicated in bold type, as u;

• the modulus of a vector is indicated as |u|, and
is the magnitude or length of the vector (the
square root of the sum of the squared Cartesian
components);

• the inner product of two vectors is indicated
as 〈u,v〉. It is equal to |u| |v| cos θ, where θ is
the angle between the two vectors.

• the norm of a vector is indicated as ‖u‖, and
means the square of the magnitude of the vec-
tor, that is ‖u‖ = |u|2. The norm may also be
computed as ‖u‖ = 〈u,u〉.

2 Elliptical paths

In this section, we show that a sum of sinusoidal sig-
nals of the same frequency in N dimensions takes
the form of an elliptical path through the space of
the signal values, that is, the signal values are con-
fined to a plane. This result holds no matter how
many such signals are added, and irrespective of
their relative amplitudes, phases, and orientations
in N -dimensional space. An alternative interpreta-
tion is that the fundamental definition of oscillation
at a given frequency, in N dimensions, is an oscil-
lation along an elliptical path in the space of the
signal values, traversed ν times per second for a
signal with a frequency of ν Hz.

We first define what we mean by a sinusoidal sig-
nal in an N -dimensional Euclidean space.

Definition 1. A sinusoidal signal in N dimen-
sions may be represented in the form: f(t) =
n sin (ωt+ φ), where n is a vector in the N -
dimensional space, ω is the angular frequency of
the sinusoid, and φ is an initial phase at t = 0. ω
and φ are real.

The signal f(t) clearly oscillates sinusoidally
along a line in N -dimensional space defined by n.

Note that n is not necessarily a unit vector, hence
the amplitude of the oscillation is represented by
the modulus of n. A single signal of this form is re-
ferred to as linearly polarized. A more general case,
however, and the central concern of this paper, is
a superposition of an arbitrary number of signals
taking the same form, but with different parame-
ters apart from the frequency, in particular, with
different directions and amplitudes of oscillation in
N -dimensional space, and different initial phases.
We show in Theorem 1 that such a superposition
yields, in general, a signal that traces over time an
elliptical path in a plane in N -dimensional space,
regardless of the value of N . In Theorem 2 we give
a parameterisation of the ellipse in terms of major
and minor axes.

Theorem 1. The sum of an arbitrary number, K,
of signals as defined in Definition 1, with differ-
ing amplitudes, phases, and directions of oscilla-
tion, but the same angular frequency:

f(t) =

K
∑

i=1

ni sin (ωt+ φi) (1)

may be expressed as:

f(t) = c sin(ωt) + s cos(ωt) (2)

where c and s are vectors given by:

c =

K
∑

i=1

ni cosφi, s =

K
∑

i=1

ni sinφi.

Since the sum oscillates in two directions only, it
always lies within a plane in N -dimensional space.

Proof. Expanding the sine function in (1) we ob-
tain:

f(t) =

K
∑

i=1

ni [sin(ωt) cosφi + cos(ωt) sinφi]

=

K
∑

i=1

ni cosφi sin(ωt) +

K
∑

i=1

ni sinφi cos(ωt)

which gives (2).

Notice that, in this formulation, the value of the
signal at t = 0 is given by the vector s.

Notice that we now know c and s in terms of the
vectors and phases that define the sum. Therefore
we also know their moduli, and the cosine of the
angle between them from the inner product. Note
that, in general, c and s are not orthogonal. No-
tice also that the two vectors in this result are not
necessarily the major and minor axes of the ellipse,

3



and although they are sufficient to parameterise the
ellipse, they are not a convenient parameterisation.
A better parameterisation would use two vectors
aligned along the major and minor axes and this is
what we seek next, since it expresses the oscillation
in the plane in terms of two perpendicular oscilla-
tions, such that one of them has the largest possible
amplitude. Let the vector a be aligned along the
major axis of the ellipse, and the vector b be aligned
perpendicular to a along the minor axis. We must
find a and b in terms of c and s.

Theorem 2. The sum of an arbitrary number, K,
of signals as defined in Theorem 1 may be expressed
in terms of the major and minor axes of the ellipse
as:

f(t) = a sin(ωt+ ψ) + b cos(ωt+ ψ) (3)

where a and b are orthogonal vectors defining the
major and minor axes of the ellipse respectively
(that is a ⊥ b, and ‖a‖ − ‖b‖ ≥ 0). The vectors a

and b are given by:

a = c cosψ + s sinψ, (4)

b = −c sinψ + s cosψ, (5)

and ψ is given by:

1

2
tan 2ψ =

〈c, s〉
‖c‖ − ‖s‖ . (6)

Notice that in contrast to the formulation in The-
orem 1, in this case a and b are orthogonal by def-
inition, and the sine and cosine are in quadrature
because of the common phase ψ. The vectors a and
b must be the major and minor axes of the ellipse
because the sine and cosine are in quadrature, but
it is not obvious that a is the major axis, however
we demonstrate in the proof that this is always so.

Proof. We show how to construct a and b by find-
ing ψ, subject to the constraint a ⊥ b. We then
show that the result satisfies ‖a‖ − ‖b‖ ≥ 0.

Expand the cosine and sine in (3):

f(t) = a (sin(ωt) cosψ + cos(ωt) sinψ)

+ b (cos(ωt) cosψ − sin(ωt) sinψ)

Regrouping the terms we obtain:

= (a cosψ − b sinψ) sin(ωt)

+ (a sinψ + b cosψ) cos(ωt)

Comparing this result with (2), we find that:

c = a cosψ − b sinψ

s = a sinψ + b cosψ

We can write this in matrix-vector form as:
(

cosψ − sinψ
sinψ cosψ

)(

a

b

)

=

(

c

s

)

and we recognise the matrix as an orthogonal rota-
tion matrix 1 with unit determinant. Hence we can
express the orthogonal vectors a and b in terms of
the non-orthogonal vectors c and s as follows:

(

a

b

)

=

(

cosψ sinψ
− sinψ cosψ

)(

c

s

)

which gives (4) and (5).
It remains to find ψ, for which we make use of the

properties of the inner product [7], in particular:

〈u + v,w〉 = 〈u,w〉 + 〈v,w〉 (7)

〈αu,v〉 = α 〈u,v〉 (8)

〈u,v〉 = 〈v,u〉 (9)

where u, v and w are vectors, and α is a scalar.
Since we have defined a and b to be orthogonal,

we know that 〈a, b〉 = 0, and hence from (4) and
(5) we have:

〈c cosψ + s sinψ,−c sinψ + s cosψ〉 = 0 (10)

Applying (7) to (10), we obtain:

〈c cosψ,−c sinψ + s cosψ〉
+ 〈s sinψ,−c sinψ + s cosψ〉 = 0

and making use of (9) we can then use (7) again on
each of these inner products, giving:

−〈c cosψ, c sinψ〉 + 〈s sinψ, s cosψ〉
+ 〈c cosψ, s cosψ〉 − 〈s sinψ, c sinψ〉 = 0

Factoring out the scalars using (8), and noting that
〈u,u〉 = ‖u‖:

sinψ cosψ (‖s‖ − ‖c‖)

+
(

cos2 ψ − sin2 ψ
)

〈c, s〉 = 0

Finally, the double angle formulae reduce this to:

1

2
sin 2ψ (‖s‖ − ‖c‖) + cos 2ψ 〈c, s〉 = 0

Re-arranging, we obtain (6), from which ψ can be
found from c and s.

The second part of the proof shows that a is al-
ways the major axis of the ellipse by demonstrating
that the sign of ‖a‖ − ‖b‖ is never negative.

1The rotation is not in the plane of the ellipse in signal

space, but in the space of the vectors
(

a b
)

T
and

(

c s
)

T
.
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Applying the cosine rule2 on (4) we get:

‖a‖ = ‖c‖ cos2 ψ + ‖s‖ sin2 ψ + 2 〈c, s〉 sinψ cosψ

= ‖c‖ cos2 ψ + ‖s‖ sin2 ψ + 〈c, s〉 sin 2ψ

and on (5) we get:

‖b‖ = ‖s‖ cos2 ψ + ‖c‖ sin2 ψ − 2 〈c, s〉 sinψ cosψ

= ‖s‖ cos2 ψ + ‖c‖ sin2 ψ − 〈c, s〉 sin 2ψ

Taking the difference ‖a‖ − ‖b‖ we obtain:

(‖c‖ − ‖s‖)
(

cos2 ψ − sin2 ψ
)

+ 2 〈c, s〉 sin 2ψ

= (‖c‖ − ‖s‖) cos 2ψ + 2 〈c, s〉 sin 2ψ (11)

From (6), we can obtain an expression for the inner
product of c and s in terms of ψ and the norms of
c and s:

〈c, s〉 = (‖c‖ − ‖s‖)
1

2
tan 2ψ

= (‖c‖ − ‖s‖)
sin 2ψ

2 cos 2ψ

Substituting this result into (11) we find:

‖a‖ − ‖b‖ = (‖c‖ − ‖s‖)

(

cos 2ψ +
sin2 2ψ

cos 2ψ

)

= (‖c‖ − ‖s‖)

(

cos2 2ψ + sin2 2ψ

cos 2ψ

)

= (‖c‖ − ‖s‖) / cos 2ψ (12)

The sign of the right-hand side is determined by the
sign of ‖c‖−‖s‖, which is arbitrary3 depending on
the relative magnitudes of the two vectors c and s;
and on the sign of cos 2ψ, which is not arbitrary,
since it depends on the sign of ‖c‖ − ‖s‖ and the
sign of 〈c, s〉, which in turn depends on the angle
between c and s, but not the relative magnitudes
of the two vectors.

Thus we have to consider four cases, correspond-
ing to the quadrants in which 2ψ lies according to
(6). Table 1 shows the four possible cases for the
signs of the two quantities that determine 2ψ, and
the quadrants of the plane in which each case oc-
curs. Knowing the quadrant in which 2ψ lies gives
us the sign of cos 2ψ, as shown.

Notice that the sign of cos 2ψ is the same as the
sign of ‖c‖ − ‖s‖, and hence the sign of the right-
hand side in (12) is never negative. Therefore the
sign of ‖a‖ − ‖b‖ is never negative, and this shows
that a is never the minor axis of the ellipse, i.e. a

is always the major axis (except when ‖a‖ = ‖b‖
and there is no major axis).

2In vector form: ‖u‖ = ‖v‖+ ‖w‖ − 2 〈v,w〉, [8].
3Of course it depends on the directions of the vectors ni,

and the phases φi in (1), but what we mean here is that
either sign is possible, depending on these quantities.

Table 1: Determination of the sign of cos 2ψ.

‖c‖ − ‖s‖ 〈c, s〉 Quadrant cos 2ψ
+ + First +
− + Second −
− − Third −
+ − Fourth +

The result that a is never the minor axis of the
ellipse is somewhat surprising, since the parameters
of the sinusoids that are summed to produce the el-
lipse are arbitrary, yet the result always produces
a vector a which is the major axis of the ellipse
(except of course in the case when the ellipse de-
generates to a circle).

Note that computationally, the angle ψ should be
computed using an atan2 function, not by actually
dividing the inner product by the difference of the
norms as given in (6), in order to obtain a result
which takes account of the signs of both. Since the
atan2 function will return an angle in any of the
four quadrants, it follows from the factor of two in
(6) that the value of ψ is in the right half-plane, i.e.
−π/2 ≤ ψ ≤ π/2.

3 Fourier analysis of vector

signals

In this section we consider the implications of the
preceding material for the analysis of vector signals
into frequency components. This discussion is not
profound, as it is not the main concern of the pa-
per, but it points the way to further work that can
be done in the field of Fourier transforms of vec-
tor signals and images, particularly with regard to
the interpretation of the Fourier domain represen-
tation of a signal or image, and in the construction
of Fourier transforms for dimensions N > 2.

The mathematical analysis presented in § 2 shows
that the ellipse resulting from the summation of
an arbitrary number of sinusoids, each of arbitrary
amplitude and phase, and each oscillating along
an arbitrary direction in N -dimensional space, is
canonic, that is only one ellipse can result from a
summation of given sinusoids. However, for N > 2,
there is more than one way to define a Fourier trans-
form, and therefore the representation of the signal
in the Fourier domain is not unique, as it is in the
case N = 2 as represented, for example, by the
classical complex Fourier transform.

A Fourier transform does not result in a represen-
tation directly in terms of elliptical paths through
the space of the vector values however, even in the
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classical complex case. Instead, the Fourier domain
representation consists of values that modify a pair
of exponentials (with positive and negative frequen-
cies) that sum to produce the ellipse. To make this
clearer, let us consider the classical complex Fourier
transform in its discrete form (the principles that
concern us here work in the same way in the con-
tinuous case, but are not so easily described). A
discrete Fourier transform pair may be written as:

F [u] =
1√
M

M−1
∑

m=0

f [m] exp
(

−j2πmu
M

)

(13)

f [m] =
1√
M

M−1
∑

u=0

F [u] exp
(

j2π
mu

M

)

(14)

where j is the imaginary root of −1, f [m] is a real or
complex-valued discrete-time signal with M sam-
ples, F [u] is complex valued, also with M samples.

The complex exponential function has a complex
value that traces a unit circle in the complex plane,
as its argument varies from to 0 to 2π. In the dis-
crete Fourier transform, M of these exponentials
are summed, each representing one possible fre-
quency. Half of the exponentials represent negative
frequencies and half represent positive frequencies,
corresponding to the two possible senses of rotation.

Now consider how the coefficients F [u] repre-
sent the signal in the Fourier domain. Consider
the ‘inverse’ transform, (14) that reconstructs f [m]
from its frequency domain representation. The
frequency domain coefficients F [u] occur in pairs,
corresponding to positive and negative frequencies,
(with the exception of the zero frequency coefficient
F [0], and the Nyquist coefficient F [M/2] — which
is absent if M is odd). Each pair of coefficients
‘scales’ a pair of exponentials in both amplitude
and phase. The sum of the scaled and phase shifted
negative and positive frequency exponentials is an
ellipse of a given frequency as described in § 2. In
the case where f [m] is real, of course, the sum of
the negative and positive frequency exponentials is
a degenerate ellipse oscillating along the real axis
(put another way, the imaginary components of the
scaled and phase shifted exponentials cancel out
when summed). The nature of the ‘scaling’ in the
complex case is that the amplitude of the coeffi-
cient scales the amplitude of the exponential, and
the phase of the coefficient adds to the phase of the
exponential. (This is easily seen in polar form, of
course.)

To construct Fourier transforms for the cases
where N > 2, the nature of the ‘scaling’ has to
change, because, as we have seen in § 2, we have
to be able to construct an ellipse oriented in an
arbitrary plane. If we follow the example of the

complex transform discussed above, we need some
way to construct an exponential with vector values
in N dimensions, and we need to define multiplica-
tion to implement the ‘scaling’ operation such that
we can modify the amplitude, phase, and orienta-
tion of the circular path in N -dimensional space
represented by the exponential. Two known ways
to do this are:

• hypercomplex algebras (see, for example [9] for
a historical overview of this topic);

• matrix exponentials [10].

We will discuss each of these in turn.
Much work has been done on hypercomplex

Fourier transforms using an N -dimensional hyper-
complex algebra. In these algebras, which only ex-
ist in dimensions N which are powers of two, mul-
tiplication is usually non-commutative. In hyper-
complex Fourier transforms, elements of the alge-
bra represent signal values, and hypercomplex ex-
ponentials based on a square root of −1 in the al-
gebra generalise the concept of the complex expo-
nential discussed above, giving a circular path in
an arbitrary plane defined by the orientation of the
square root of −1. This relies on the generalisation
of Euler’s formula exp jθ = cos θ+ j sin θ, j2 = −1,
which applies for complex numbers, to a more gen-
eral case exp�θ = cos θ + � sin θ where �

2 = −1
and the exponential function is defined for an ar-
gument consisting of � multiplied by a real scalar
θ. In the case of hypercomplex algebras � is an
element of the algebra. For examples, see [11, 12].
The ‘scaling’ concept then includes (but often not
in an easily understood manner) a change of ori-
entation of the exponential as discussed above, in
order to construct an arbitrarily-oriented ellipse in
N dimensions by adding two (or more) exponen-
tials rotating in opposite senses. Non-commutative
multiplication means that variants of the classical
complex Fourier transform can be constructed with
the ordering of the exponential and the signal re-
versed, giving slightly different results. But more
significantly, it is possible to define transforms with
more than one hypercomplex exponential (for ex-
ample, one each side of the signal, or two different
exponentials on the same side, or multiple differ-
ent exponentials on each side). For a discussion
of many possibilities, see [13]. Interpretation of a
transform in which exponentials are arranged on
both sides of the signal function is not simple. Un-
like our previous analysis where we considered the
Fourier coefficients as scale factors for the exponen-
tial, it now makes more sense to consider the expo-
nentials as operators on the Fourier coefficients, an
approach which we will not develop further here.
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A second known way to construct a Fourier trans-
form for signals with N -dimensional vector values
is to use matrix exponentials [10]. In this approach,
the signal values may be represented by vectors in
the linear algebra sense (that is a degenerate matrix
with one row or column), and the exponential by a
matrix exponential with a matrix root of −1, that
is a matrix that squares to give a negated identity
matrix. The formulation is as given in (13) except
that j is replaced by a matrix. Unlike the case of
hypercomplex algebras, where the dimension N is
limited to powers of two, real matrix roots of −1 ex-
ist for other even values ofN (but not for odd values
of N [10, Theorem 2, p 651]). An intriguing aspect
of this approach is that the matrix roots of −1 may
be based on matrix representations of hypercom-
plex algebras, in which case the transform is nu-
merically equivalent to a hypercomplex transform;
or they may be arbitrary roots of −1 that do not
correspond to a hypercomplex algebra. An example
was given in [10, § 5] where the matrix exponential
represents an elliptical path in 2-dimensions, thus
making possible a Fourier transform based inher-
ently on ellipses rather than circles. Further study
of this topic is clearly merited, but it depends on
first researching the topic of matrix roots of −1 in
a more general way than has so far been done.
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