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ABSTRACT

We present a novel methodology for the fusion of multiple
(two or more) images using the multivariate extension of
empirical mode decomposition (MEMD). Empirical mode
decomposition (EMD) is a data-driven method which decom-
poses input data into its intrinsic oscillatory modes, known
as intrinsic mode functions (IMFs), without making a priori
assumptions regarding the data. We show that the multivari-
ate and multidimensional extensions of EMD are suitable
for image fusion purposes. We further demonstrate that
while multidimensional extensions, by design, may seem
more appropriate for tasks related to image processing, the
proposed multivariate extension outperforms these in image
fusion applications owing to its mode-alignment property
for IMFs. Case studies involving multi-focus image fusion
and pan-sharpening of multi-spectral images are presented to
demonstrate the effectiveness of the proposed method.

Index Terms— Empirical mode decomposition (EMD),
Multivariate EMD (MEMD), Bidimensional EMD, Multi-
focus image fusion, Pan-sharpening.

1. INTRODUCTION
Image fusion is the process of combining multiple images to
produce a single image which carries more information than
any of the images used for blending [1]. Fusion techniques
are useful for cases where the limitations of optical sensors
and imaging conditions make it difficult to view multiple ob-
jects clearly in a single image. In such cases, multiple images
are obtained with each containing partial information about
a scene. Multi-focus and Multi-exposure images are two ex-
ample classes in which the relevant objects may be obscured
as a result of either being out of focus or not being prop-
erly exposed to the light source. These sets of images can be
merged to present the complete information in a single image
via multi-focus or multi-exposure image fusion.

Similarly, in remote sensing applications, we often require
both high spatial and spectral information in a single image
which is not physically possible to obtain via available sen-
sors. In such cases, fusion of high spatial resolution panchro-
matic image (PAN) and low spatial resolution (but high spec-
tral resolution) multispectral (MS) images is performed to ob-

tain the desired high spatial and spectral resolution MS image.
This process is also called Pan-sharpening [2].

Image fusion methods may be characterized as pixel-level
fusion, multi-scale fusion and hybrid fusion techniques. The
key steps of pixel level fusion include: i) generation of a quan-
titative map of information content for each image; ii) com-
parison of information content at pixel level; iii) assigning
weights to individual pixels (or a set of pixels) based on in-
formation content; iv) and weighted recombination to obtain
fused image. The advantages of such class of methods in-
clude their low computational cost and simplicity, while the
main disadvantage is their susceptibility to noise. Multi-scale
techniques, on the other hand, operate by first decomposing
input images in terms of their frequency components which
are then combined to obtain a single fused image. Here, the
main steps include: i) converting input images into transform
domain coefficients; ii) assigning weights to the coefficients
based on information content; iii) selecting the relevant coeffi-
cients; and iv) taking the inverse transform. Typical examples
are the methods based on Gaussian pyramids, Fast Fourier
Transform (FFT), Discrete Cosine Transform (DCT) [3], and
Discrete Wavelet Transform (DWT) [4].

We propose a hybrid (multi-scale and pixel-level) and
data-driven scheme for image fusion based on multivariate
extensions of empirical mode decomposition (MEMD) al-
gorithm [6]. We also compare our results with the standard
bi-dimensional EMD (BDEMD) [7] based fusion approach.
The EMD based fusion methods are employed since they
are fully data adaptive, enable fusion of intrinsic scales at
local level, and allow fusion of matched spatial frequency
content between input images. Standard multiscale methods
(based on Fourier and wavelet transform) employ static filter
banks and predefined basis functions which hinder the fusion
of matched spatial frequency content between input images.
We demonstrate the potential of the proposed scheme in two
application scenarios: a) multi-focus image fusion; and b)
pan-sharpening of MS images. In both cases, the fusion re-
sults obtained from the proposed scheme outperforms the
results obtained by BDEMD both qualitatively and quantita-
tively.
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2. EMD AND ITS MULTIVARIATE AND
MULTIDIMENSIONAL EXTENSIONS

2.1. Standard EMD
Empirical mode decomposition (EMD) [5] is a data-driven
method which decomposes an arbitrary signal x(k) into a set
of multiple oscillatory components called the intrinsic mode
functions (IMFs) via an iterative process known as sifting al-
gorithm [6]. The IMFs represent the intrinsic temporal modes
(scales) that are present in the input data which when added
together reproduce the input x(k), as shown in eq. (1) below:

x(k) =

M∑
m=1

cm(k) + r(k) (1)

The residual r(k) does not contain any oscillations and repre-
sents a trend within the signal.

The recursive sifting algorithm operates by defining the
upper and lower envelopes of an input signal by interpolat-
ing its extrema. The local mean m(k) is then estimated by
averaging these envelopes, which is subsequently subtracted
from the input signal x(k) to obtain the fast oscillating sig-
nal d(k) = x(k) −m(k). Next, d(k) is checked for an IMF
condition; if it is not satisfied, the process is repeated until
the condition for IMF is satisfied and we obtain an IMF. The
sifting process stops when d(k) has inadequate extrema.

2.2. Bi-dimensional EMD (BDEMD)
Bi-dimensional EMD (BDEMD) [7] is a generic extension
of EMD for images. Various algorithms for computing
BDEMD decomposition exist which mainly differ in the way
the extrema are interpolated to obtain upper and lower en-
velopes. Radial basis functions (tensor product) or B-splines
are commonly used methods for interpolation [7], whereas
the method by Linderhed [8] uses thin-plate splines for the
interpolation of the extrema.

2.3. Multivariate EMD (MEMD)
Multivariate EMD (MEMD) algorithm extends the function-
ality of EMD to signals containing multiple channels [6]. The
rationale behind the MEMD is to separate inherent rotations
(rather than oscillations) within a signal. This is achieved by
estimating the local mean of a multivariate signal in multidi-
mensional spaces where the signal resides. For multivariate
signals, however, the concept of extrema cannot be defined
in clear terms and therefore envelopes cannot be obtained as
a trivial extension of univariate case. To address this issue,
MEMD operates by projecting an input multivariate signal in
V uniformly spaced directions on a unit p-sphere; the extrema
of the so projected signals are then interpolated to obtain mul-
tiple envelopes which are subsequently averaged to obtain the
local mean.

3. MEMD VS BDEMD: MODE ALIGNMENT

Fig. 1 shows correlations of normalized IMFs for two multi-
focus images (Fig. 3(a) and Fig. 3(c)), obtained using the
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Fig. 1: Cross-correlation of normalised IMFs for multi-focus
images (left) BDEMD (right) MEMD.
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Fig. 2: The proposed scheme illustrating the local fusion of
P arbitrary images to yield a single fused image Î using the
MEMD algorithm.

BDEMD (left) and MEMD (right). Note that the MEMD
produced diagonally dominant correlograms of IMFs as com-
pared to the BDEMD, proving that the same-indexed IMFs
generated from MEMD are highly correlated, a major require-
ment in most fusion applications. This mode alignment prop-
erty of MEMD is a result of direct processing of input images
within MEMD, whereas the lack of it in BDEMD is due to
the fact that it processes multiple input images separately.

4. MEMD- AND BDEMD-BASED IMAGE FUSION
The proposed algorithm based on MEMD operates by first
converting the P input images into a vector form by concate-
nating their rows/columns. The resulting vectors are then put
together to form a multivariate signal containing P number of
data channels. MEMD is next applied to the resulting signal
yielding M number of IMFs for each channel; let us denote
them−th IMF of the p−th channel (input image) by Ipm(a, b),
where m = 1 . . .M ; n = 1 . . . P ; and a and b represent
the spatial coordinates. To perform fusion at the pixel level,
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Fig. 3: Multi-focus image fusion results for data set 1.

sub-images Ipm(a, b) are divided into small windows of size
N ×N and their variances ξpm(a, b) are computed. Next, the
sub-images Ipm(a, b) are assigned local weights, WF p

m(a, b),
based on ξpm(a, b) by using the following relation:

WF p
m(a, b) =

ξpm(a, b)∑P
p=1 ξ

p
m(a, b)

(2)

This means that the IMFs exhibiting greater variance are as-
signed higher weightsWF p

m(a, b) than those exhibiting lower
variances, thereby maximising their contribution to the fused
image. To obtain the m−th IMF of the fused image, the
IMFs of all P input images {Ipm(a, b)}Pp=1 are multiplied by
their respective weight factors {WF p

m(a, b)}Pp=1 and added
together to obtain:

Îm(a, b) =

P∑
p=1

WF p
m(a, b)× Ipm(a, b) (3)

This procedure is repeated for all M IMFs to obtain a set of
fused IMFs {Îm(a, b)}Mm=1 which are added together to yield
the fused image Î .

Î(a, b) =

M∑
m=1

Îm(a, b) (4)

The block diagram of the proposed multivariate EMD based
fusion algorithm is shown in Fig. 2.

The BDEMD based fusion algorithm operates similarly to
the MEMD algorithm illustrated above. The only difference
is that instead of a single operation of MEMD on all input
images, BDEMD is applied separately on P input images to
obtain Mp IMFs, where p = 1 . . .M . Note that owing to
the empirical nature of the EMD algorithm, typically differ-
ent number of IMFs are obtained for multiple input images
resulting in mismatched IMFs, thus hindering the fusion pro-
cess.

5. CASE STUDY 1: MULTI-FOCUS IMAGE FUSION

As a case study, we first performed fusion of multi-focus im-
ages using MEMD and compared the results with those ob-
tained from BDEMD based fusion approach. For this pur-
pose, multiple images of 30 different scenes were used; seven
images were taken of each scene with different parts of the
scene out-of-focus in each image.

For quantitative evaluation of the fusion results, we
have employed Entropy (E) [11], objective image fusion
(QABF ) [10] and the spatial frequency (SF ) [9] perfor-
mance measures. Collectively, these measures served to
quantify the spatial distortion as well as the information
present in the fused image. The parameters used in MEMD
algorithm were: number of direction vectors V = 8 and the
square window length of N = 9. The standard BDEMD
algorithm given in [7] was implemented for fusion purposes.

Fig. 3 shows a subset of input multi-focus images and the

1 5 10 15 20 25 30
0

20

40

60

80
E

nt
ro

py
 s

co
re

100%

1 5 10 15 20 25 30
0

2

4

6

S
F

 s
c
o
re

100%

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Data set index

Q
A

B
F

 s
co

re

83%

17%

Fig. 4: Quantitative comparison of the proposed fusion
schemes on 30 input multi-focus images. (Left column)
Bar graphs of the values of quantitative measures, including
%Entropy, %SF, and QABF shown respectively from top to
bottom, obtained for the MEMD- (dark green), and BDEMD-
(yellow) based fusion methods. (Right column) Pie charts
of the quantitative measures highlighting the relative perfor-
mance of the MEMD (dark green), and BDEMD (yellow).

fused images obtained from the two methods; only three out
of seven input images are shown due to the space restrictions.
Note from Figs. 3(a-c) that each input image has some spe-
cific objects within focus: Image 1, for instance, focuses on
the nearest objects such as the coin, whereas the Image 2 and
Image 3 focus on the middle and the farthest objects respec-
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Fig. 5: Fusion results for Pleiades Tolouse Image.

tively. The proposed MEMD-based fusion algorithm resulted
in a single output image, shown in Fig. 3(d), which has all
objects within focus. Similarly, the BDEMD-based fused
image also yielded an improved image, though not as sharp
as the one obtained via MEMD: Please observe the improved
sharpness of the word ‘DUTCH’ written on the key chain in
the MEMD-fused image. Similar trend was observed in most
of the 30 input multi-focus data sets used in our experiments,
with MEMD outperforming BDEMD-based fusion. This is
evident from Fig. 4 (left) which shows the bar graphs of the
values of the quantitative performance measures (E, SF , and
QABF ) for all data sets. To complement that, Fig. 4 (right)
shows pie-charts highlighting the number of cases in terms
of percentage where each method performed best. It can be
observed that for E and SF measures, the MEMD yielded
superior results for approximately all input data sets, whereas
for QABF , the MEMD produced better results for 83% of
the input data sets.

6. CASE STUDY 2: PAN-SHARPENING
We next performed experiments for Pan-sharpening of mul-
tispectral (MS) images using the existing BDEMD-based
fusion and the proposed MEMD-based fusion algorithms.
Their performance was compared against a multiscale Pan-
sharpening algorithm called àtrous wavelet transform (AWT)
method [12]. The simulated Pleiades data set consisting of
1024× 1024 pixels of i) Strasbourg and ii) Tolouse was used
in our experiments. All the input MS images contained four
bands i.e. blue (B), green (G), red (R) and near-infrared
(NIR). The ground truth for both data sets was also available
(not shown in Fig. 5 due to space restrictions) and was used
for the quantitative analysis of the fusion results.

Pan-sharpening of MS images via MEMD and BDEMD
was performed as follows: the intensity plane I of the in-
put MS image was first obtained by averaging the bands of
the MS image. The so obtained intensity image I was then
fused with the high resolution panchromatic image to obtain
the ‘detailed’ intensity image Î . The details added by the fu-
sion process were extracted by subtracting the original inten-
sity plane I from Î , which were then separately added to the
B, G, R, and NIR components of the MS image to obtain the
Pan-sharpened MS image.

Figs. 5(a-b) show the source MS and PAN images of
Strasbourg city taken from the Pleiades sensor. The fused im-
ages obtained using AWT, BDEMD and MEMD algorithms
are shown in Figs. 5(c-e) respectively. It can be noticed that
the spectral performance of the images obtained from the pro-
posed MEMD-based method, shown in Fig. 5(c), matches the
result of the state-of-the-art AWT technique. The proposed
method, however, showed much improved spatial perfor-
mance as compared to both AWT and BDEMD based fusion
methods.

Table 1: Quantitative Results of Pan-sharpening

Pleiades Strasbourgh Pleiades Tolouse
AWT BD.. MEMD AWT BD.. MEMD

S 2.91 4.96 2.90 4.70 5.23 5.01
ER 4.247 6.52 2.981 5.74 5.72 3.52
Q4 89.31 54.36 93.89 94.2 59.22 94.98

The improved performance of MEMD can be further val-
idated by the quantitative results of pan-sharpening on both
data sets. We employed the following set of performance
metrics for this purpose: i) Relative dimensionless global er-
ror in synthesis (ER, ideally 0), ii) Spectral Angle Mapper
(S, ideally 0), and iii) Quaternion Index (Q4, ideally 100%)
[2]. The results of the quantitative analysis are presented in
Table I with the best value for each quality measure are la-
beled in bold. Please observe that in both data sets the pro-
posed scheme performed better than AWT and BDEMD fu-
sion methods for all performance metrics with an exception to
S value for the Tolouse image where AWT performed better.
Superiority of MEMD over BDEMD can be attributed to data
adaptive and local nature of its decomposition which mani-
fested in improved spatial performance in both case studies.

7. CONCLUSIONS
We have presented a method for the fusion of multiple images
using multivariate empirical mode decomposition (MEMD)
algorithm. The superiority of the method has been demon-
strated on a large data set for two applications: i) multi-focus
fusion, and ii) pan-sharpening of multi-spectral images. In
addition to the qualitative analysis, we have also employed a
wide range of quantitative performance measures to compare
the fusion results obtained from the two approaches.
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