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NEW TRAVELLING WAVE SOLUTIONS OF TWO NONLINEAR
PHYSICAL MODELS BY USING A MODIFIED TANH-COTH METHOD

Ömer Faruk Gözük¬z¬la;1 , Abdellah Salhib
aDepartment of Mathematics, Sakarya University, Sakarya, Turkey.

bDepartment of Mathematical Sciences, University of Essex, Colchester, UK.

Abstract

In this work, a modi�ed tanh� coth method is used to derive travelling wave solutions for (2 + 1)-
dimensional Zakharov-Kuznetsov (ZK) equation and (3 + 1)-dimensional Burgers equation. A new variable is
used to solve these equations and established new travelling wave solutions.

Keywords: tanh-coth method; travelling wave solution; (2 + 1)-dimensional Zakharov-Kuznetsov equation;
(3 + 1)-dimensional Burgers equation .

1. INTRODUCTION

The tanh� cothmethod is a powerful technique to solve nonlinear wave and evolution equations for travelling
solutions. Nonlinear wave phenomena appears in many areas of the natural sciences, such as �uid dynamics
[1], chemical kinetics involving reactions [2], population dynamics [3], solid state physics [4], etc... In the recent
years, such problems has increased interest. As a result of this, a whole range of solution methods was developed
[5-8] and the tanh� coth method is one of these solution methods. This technique was used by Huibin and
Kelin �rst [8] and then developed by Mal�iet and Hereman [9,12], Senthilvelan [13], Fan [14], Wazwaz [15] and
others [16-19].

Generally, in the tanh� coth method, tanh function is used as a new variable, since all derivatives of tanh
are represented by tanh itself. Also, Senthilvelan used tan and cot functions as a new variable [13]. As is well
known, these are particular solutions of the Riccati equations Y 0 = 1� Y 2 and Y 0 = 1 + Y 2 .

One could extend the tanh method to solve nonlinear wave equations depending on more than two variables.
When solving these equations, Mal�iet suggested the new coordinate � = kx+ ly +mz � V t in 3-dimensional
space, where k; l;m are nonzero real numbers and Y = tanh � [10]. Also this was modi�ed to � = x+y+ z�V t
and Y = tanh (��) by Wazwaz [15], where � is the wave number.

The Zakharov-Kuznetsov (ZK) equation is given by

ut + aux +
�
r2u

�
x
= 0 (1)

and it is a generalization of the KdV equation. The ZK equation governs the behavior of weakly nonlinear
ion-acoustic waves in a plasma comprising cold ions and hot isothermal electrons in the presence of a uniform
magnetic �eld [20,21]. Wazwaz employed the tanh� coth method to solve the Zakharov-Kuznetsov equation
in the (2+1) dimensions, two spatial and one time variables, and established solitary wave, travelling wave,
solitons and periodic solutions [22].

(3 + 1)-dimensional integrable Burgers equation is given by

ut = uxx + uyy + uzz + �uuy + �vux + wux

ux = vy (2)

uz = wy

where �,� and  are nonzero constants. This class of equations may describe the �ow of particles in a lattice
�uid past an impenetrable obstacle [23,24] and it has applications in gas dynamics and in plasma dynamics
[25]. For more details we refer the reader to [26-29] and references therein.

Wazwaz considered solutions in a moving coordinate frame, so that the PDEs considered become ODEs.
Independent variable

Y = tanh (��) ; � = x+ y + z � V t (3)

1Corresponding author: ogozuk@essex.ac.uk & farukg@sakarya.edu.tr
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leads to the change of derivatives

d

d�
= �

�
1� Y 2

� d

dY
(4)

d2

d�2
= �2

�
1� Y 2

��
�2Y d

dY
+
�
1� Y 2

� d2

dY 2

�
(5)

and so on other derivatives. The tanh� coth method admits the use of a �nite expansion of tanh function

U (��) = S(Y ) =
NX
k=0

akY
k +

NX
k=1

bkY
�k (6)

where M is a positive integer that will be determined by using the balancing procedure [15].

In this article, we used Y = ke2���1
ke2��+1

instead of Y = tanh (��) as a new variable to establish new travelling
wave solutions for nonlinear two physical models (2 + 1)-dimensional Zakharov-Kuznetsov (ZK) equation and
(3 +1)-dimensional Burgers equation using a modi�ed tanh� coth method. Mathematica and Maple facilitate
the tedious algebraic calculations.

2. OUTLINE OF THE METHOD

We want to investigate one or more dimensional nonlinear wave and evolution equations. This kind of
equations is commonly written as

ut = [u; ux; uxx; :::] or utt = [u; ux; uxx; :::] (7)

A pde like (7) can be converted to an ODE

�V dU
d�

=

�
U;
dU

d�
;
d2U

d�2
; :::

�
or V 2

dU

d�
=

�
U;
dU

d�
;
d2U

d�2
; :::

�
(8)

upon using a wave variable � = x + y + � � � � V t so that u(x; y; :::; t) = U (�). Here V represents the velocity
of the travelling wave. Eq. (8) is then integrated as long as all terms contain derivatives where integration
constants are considered zeros. Introducing a new independent variable

Y =
ke2�� � 1
ke2�� + 1

; � = x+ y + � � � � V t (9)

and the quantity u(x; y; :::; t) is replaced by U(�) leads to derivatives

dU

d�
=

4k�e2��

(ke2�� + 1)
2 = �

�
1� Y 2

� dU
dY

(10)

d2U

d�2
= �2

�
1� Y 2

��
�2Y dU

dY
+
�
1� Y 2

� d2U
dY 2

�
(11)

d3U

d�3
= 2�3

�
1� Y 2

� �
3Y 2 � 1

� dU
dY

� 6�3Y
�
1� Y 2

�2 d2U
dY 2

+ �3Y
�
1� Y 2

�3 d3U
dY 3

(12)

...

� represents the wave number and it is inversely proportional to the width of the wave. Depending on the
problem under study, V and � will be determined or will remain a free and arbitrary parameters. The derivatives
that obtained by us above by introducing a new independent variable in (9) are the same as those found by
Hereman [9], Mal�iet [12], Wazwaz [15] and others [13,14]. The tanh� coth method admits the use of the �nite
expansion

U (�) = S(Y ) =
NX
k=0

akY
k +

NX
k=1

bkY
�k (13)

where N is a positive integer and 0 � k � N: Substituting (13) into the ODE (8) results in an algebraic
equation in powers of Y . To determine N , we usually balance the linear terms of highest order in the resulting
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equation with the highest order nonlinear terms. We then collect all coe¢ cients of powers of Y in the resulting
equation where these coe¢ cients have to vanish. This will give a system of algebraic equations involving the
parameters ak and bk (0 � k � N), � and V . Having determined these parameters we obtain an analytic
solution u(x; y; :::; t) in a closed form.

In the following, we will apply the described method to two examples.

3. THE ZAKRAROV-KUZNETSOV EQUATION

The (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation is given by

ut + auux + b (uxx + uyy)x = 0; (14)

where a and b are constants. Using the wave variable � = x+ y � V t transforms the PDE (14) into the ODE

�V U 0 + a
2

�
U2
�0
+ 2bU 000 = 0 (15)

where by integrating (15) and neglecting the constant of integration we obtain

�V U + a
2
U2 + 2bU 00 = 0: (16)

Balancing U2 with U 00 in (16) gives N = 2. The tanh-coth method admits the use of the �nite expansion

U (�) = S (Y ) =
2X

k=0

akY
k +

2X
k=1

bkY
�k (17)

where Y = ke2���1
ke2��+1

. Substituting (17) into (16), collecting the coe¢ cients of Y and setting it equal to zero we
�nd system of equation

Y 8 : aa22 + 24ba2�
2 = 0;

Y 7 : 8ba1�
2 + 2aa1a2 = 0;

Y 6 : aa21 � 32ba2�2 � 2V a2 + 2aa0a2 = 0;
Y 5 : 2ab1a2 � 2V a1 � 8ba1�2 + 2aa0a1 = 0;
Y 4 : aa20 � 2V a0 + 8bb2�2 + 8ba2�2 + 2ab1a1 + 2ab2a2 = 0; (18)

Y 3 : 2ab1a0 � 2V b1 � 8bb1�2 + 2ab2a1 = 0;
Y 2 : ab21 � 32bb2�2 � 2V b2 + 2ab2a0 = 0;
Y 1 : 8bb1�

2 + 2ab1b2 = 0;

Y 0 : ab22 + 24bb2�
2 = 0:

Solving this system by using Maple or Mathematica we �nd the following sets of solutions

a0 = �16b�
2

a
; a1 = 0; a2 = �

24b�2

a
; b1 = 0; b2 = �

24b�2

a
; V = �32b�2; (19)

a0 =
48b�2

a
; a1 = 0; a2 = �

24b�2

a
; b1 = 0; b2 = �

24b�2

a
; V = 32b�2; (20)

a0 =
8b�2

a
; a1 = 0; a2 = 0; b1 = 0; b2 = �

24b�2

a
; V = �8b�2; (21)

a0 =
24b�2

a
; a1 = 0; a2 = 0; b1 = 0; b2 = �

24b�2

a
; V = 8b�2; (22)

a0 =
8b�2

a
; a1 = 0; a2 = �

24b�2

a
; b1 = 0; b2 = 0; V = �8b�2; (23)

a0 =
24b�2

a
; a1 = 0; a2 = �

24b�2

a
; b1 = 0; b2 = 0; V = 8b�

2; (24)
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where � is left as a free parameter. These sets give the solutions respectively

u1 = �16b�
2

a
� 24b�

2

a

 
ke2�(x+y+32b�

2t) � 1
ke2�(x+y+32b�2t) + 1

!2
� 24b�

2

a

 
ke2�(x+y+32b�

2t) + 1

ke2�(x+y+32b�2t) � 1

!2
; (25)

u2 =
48b�2

a
� 24b�

2

a

 
ke2�(x+y�32b�

2t) � 1
ke2�(x+y�32b�2t) + 1

!2
� 24b�

2

a

 
ke2�(x+y�32b�

2t) + 1

ke2�(x+y�32b�2t) � 1

!2
; (26)

u3 =
8b�2

a
� 24b�

2

a

 
ke2�(x+y+8b�

2t) + 1

ke2�(x+y+8b�2t) � 1

!2
; (27)

u4 =
24b�2

a
� 24b�

2

a

 
ke2�(x+y�8b�

2t) + 1

ke2�(x+y�8b�2t) � 1

!2
; (28)

u5 =
8b�2

a
� 24b�

2

a

 
ke2�(x+y+8b�

2t) � 1
ke2�(x+y+8b�2t) + 1

!2
; (29)

u6 =
24b�2

a
� 24b�

2

a

 
ke2�(x+y�8b�

2t) � 1
ke2�(x+y�8b�2t) + 1

!2
: (30)

The (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation was solved by Wazwaz [15] using the tanh-coth
method and he obtained solutions

u1 (x; y; t) =
3V

a
sech2

"
1

6

r
3V

b
(x+ y � V t)

#
;

V

b
> 0; (31)

u2 (x; y; t) = �V
a

(
1� 3 tanh2

"
1

6

r
�3V
b
(x+ y � V t)

#)
;

V

b
< 0; (32)

u3 (x; y; t) = �V
a

(
1� 3 coth2

"
1

6

r
3V

b
(x+ y � V t)

#)
;

V

b
> 0; (33)

u4 (x; y; t) =
3V

4a

(
2 + tanh2

"
1

12

r
�3V
b
(x+ y � V t)

#
+ coth2

"
1

12

r
�3V
b
(x+ y � V t)

#)
;

V

b
< 0;(34)

u5 (x; y; t) =
3V

4a

(
2� tanh2

"
1

12

r
3V

b
(x+ y � V t)

#
� coth2

"
1

12

r
3V

b
(x+ y � V t)

#)
;

V

b
> 0; (35)

u6 (x; y; t) =
3V

2a

(
1� 2 coth2

"
1

6

r
3V

b
(x+ y � V t)

#)
;

V

b
> 0: (36)

These results can be obtained by setting k = 1 in (25-30). So comparing our results with Wazwaz�s results, it
can be seen easily that our solutions are more general.

4. (3+1) DIMENSIONAL BURGERS EQUATION

Now we will apply the tanh� coth method to the (3+1)-dimensional Burgers equation:

ut = uxx + uyy + uzz + �uuy + �vux + wux

ux = vy (37)

uz = wy

where �; �; � are nonzero constants. Using the wave variable � = x + y + z � V t transforms the system (37)
into a system of ODEs given by

V U 0 + �UU 0 + �V U 0 + WU 0 + 3U 00 = 0

U 0 = V 0 (38)

U 0 = W 0:

4



Integrating (38) and neglecting the constant of integration we obtain

U = V =W: (39)

So the �rst equation in (38) can be written as

V U 0 +
�+ � + 

2

�
U2
�0
+ 3U 00 = 0: (40)

Integrating (40) and neglecting the constant of integration again we obtain

V U +
�+ � + 

2
U2 + 3U 0 = 0: (41)

Balancing U2 with U 0 in (41) gives N = 1. The tanh� coth method admits the use of the �nite expansion

U (�) = S (Y ) =
1X

k=0

akY
k +

1X
k=1

bkY
�k (42)

where Y = ke2���1
ke2��+1

. Substituting (42) into (41), we obtain

V

�
a0 + a1Y + b1

1

Y

�
+
�+ � + 

2

�
a0 + a1Y + b1

1

Y

�2
+ 3�

�
1� Y 2

� d

dY

�
a0 + a1Y + b1

1

Y

�
= 0: (43)

Collecting the coe¢ cients of Y and setting it equal to zero we �nd system of equation

Y 4 : a21�� 6a1�+ a21� + a21 = 0
Y 3 : 2V a1 + 2a0a1�+ 2a0a1� + 2a0a1 = 0

Y 2 : 6a1�+ 6b1�+ a
2
0�+ a

2
0� + a

2
0 + 2V a0 + 2a1b1�+ 2a1b1� + 2a1b1 = 0 (44)

Y 1 : 2V b1 + 2a0b1�+ 2a0b1� + 2a0b1 = 0

Y 0 : b21�� 6b1�+ b21� + b21 = 0

and solving this system we �nd the following sets of solutions

a0 =
12�

�+ � + 
; a1 = b1 =

6�

�+ � + 
; V = �12�; (45)

a0 =
�12�

�+ � + 
; a1 = b1 =

6�

�+ � + 
; V = 12�; (46)

a0 = a1 =
6�

�+ � + 
; b1 = 0; V = 6�, (47)

a0 = b1 =
6�

�+ � + 
; a1 = 0; V = �6� , (48)

a0 =
�6�

�+ � + 
; a1 = 0; b1 =

6�

�+ � + 
; V = 6�; (49)

a0 =
6�

�+ � + 
; a1 = 0; b1 =

6�

�+ � + 
; V = �6�; (50)

where � is left as a free parameter. These sets give the solutions respectively

u1 =
6�

�+ � + 

�
2 +

ke2�(x+y+z+12�t) � 1
ke2�(x+y+z+12�t) + 1

+
ke2�(x+y+z+12�t) + 1

ke2�(x+y+z+12�t) � 1

�
; (51)

u2 =
6�

�+ � + 

�
�2 + ke

2�(x+y+z�12�t) � 1
ke2�(x+y+z�12�t) + 1

+
ke2�(x+y+z�12�t) + 1

ke2�(x+y+z�12�t) � 1

�
; (52)

u3 =
6�

�+ � + 

�
1 +

ke2�(x+y+z�6�t) � 1
ke2�(x+y+z�6�t) + 1

�
; (53)

u4 =
6�

�+ � + 

�
1 +

ke2�(x+y+z+6�t) + 1

ke2�(x+y+z+6�t) � 1

�
; (54)

u5 =
6�

�+ � + 

�
�1 + ke

2�(x+y+z�6�t) + 1

ke2�(x+y+z�6�t) � 1

�
; (55)

u6 =
6�

�+ � + 

�
1 +

ke2�(x+y+z+6�t) + 1

ke2�(x+y+z+6�t) � 1

�
: (56)
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In [15], Wazwaz investigated the (3 + 1)-dimensional Burgers equation and obtained single kink solutions by
using the tanh� coth method as follows :

u1;2 = �� [1� tanh� (x+ y + z � � (�+ � + ) t)] (57)

u3;4 = �� [1� coth� (x+ y + z � � (�+ � + ) t)] (58)

u5;6 = �� [1� tanh� (x+ y + z � 2� (�+ � + ) t)]� � [1� coth� (x+ y + z � 2� (�+ � + ) t)] (59)

As can be seen easily, if one set k = 1 and � = 6�
�+�+ in (51-56) then the solutions in (57-59) are obtained.

For instance, if we consider �+ � +  = 6, � = 1 in (57) we �nd � = 1 and u1 = 1+ tanh (x+ y + z � 6t). For
the same values, in (53) we obtain u3 = 1 + ke2(x+y+z�6t)�1

ke2(x+y+z�6t)+1
. Using the fact that tanhx = e2x�1

e2x+1 , we can say
for k = 1 these are the same solutions. However, di¤erent solutions will be obtained for di¤erent k values.

5. CONCLUSION

The (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and the (3 + 1)-dimensional Burgers equation
have been investigated. Y = ke2���1

ke2��+1
was introduced as a new variable to obtain travelling wave solutions of

these equations. With the help of this ansatz can be obtained exact solutions of many other equations.
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