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Abstract

In a recent paper, Harvey et al. (2013) [HLT] propose a new unit root test that allows for the
possibility of multiple breaks in trend. Their proposed test is based on the infimum of the sequence
(across all candidate break points) of local GLS detrended augmented Dickey-Fuller-type statistics.
HLT show that the power of their unit root test is robust to the magnitude of any trend breaks. In
contrast, HLT show that the power of the only alternative available procedure of Carrion-i-Silvestre
et al. (2009), which employs a pre-test-based approach, can be very low indeed (even zero) for the
magnitudes of trend breaks typically observed in practice. Both HLT and Carrion-i-Silvestre et al.
(2009) base their approaches on the assumption of homoskedastic shocks. In this paper we analyse
the impact of non-stationary volatility (for example single and multiple abrupt variance breaks,
smooth transition variance breaks, and trending variances) on the tests proposed in HLT. We show
that the limiting null distribution of the HLT unit root test statistic is not pivotal under non-
stationary volatility. A solution to the problem, which does not require the practitioner to specify
a parametric model for volatility, is provided using the wild bootstrap and is shown to perform
well in practice. A number of different possible implementations of the bootstrap algorithm are

discussed.

Keywords: Infimum unit root test; multiple trend break; non-stationary volatility; wild bootstrap.
JEL Classification: C22.

*Financial support provided by the Economic and Social Research Council of the United Kingdom under research
grant RES-000-22-3882 is gratefully acknowledged by the authors. Correspondence to: Robert Taylor, Essex Business
School, University of Essex, Colchester, CO4 35Q, UK. E-mail: rtaylor@essex.ac.uk


https://core.ac.uk/display/74372333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Given the apparent prevalence of deterministic breaks in trend observed in macroeconomic time series
data, it is now common practice to allow for such structural change when conducting unit root tests.
Initial work by Perron (1989) assumed the location of a potential single trend break to be known,
but more recent approaches have focused on the case where the possible break occurs at an unknown
point in the sample; see, inter alia, Zivot and Andrews (1992) [ZA], Banerjee et al. (1992), Perron
(1997) and Perron and Rodriguez (2003) [PR]. An important issue surrounding such procedures is
that there is also an underlying problem of uncertainty as to whether trend breaks exist in the data or
not. To illustrate the point, when a single trend break is known to be present, the test based on PR’s
local GLS detrended ADF statistic which allows for a trend break is (near) asymptotically efficient.
This holds provided the break point is known, or can be dated endogenously with sufficient precision.
However, when a trend break does not occur the PR test is not asymptotically efficient, the redundant
trend break regressor compromising power. Moreover, the asymptotic critical values for the PR test
based on an estimated break point differ markedly according to whether a trend break occurs or not.

In response to this problem, Kim and Perron (2009), Carrion-i-Silvestre et al. (2009) [CKP] and
Harris et al. (2009) [HHLT] focused on developing testing procedures which utilize auxiliary statistics
to detect the presence of trend break(s) occurring at unknown point(s) in the sample, and then use
the outcome of the detection step to indicate whether or not the unit root test employed should
include trend break(s) in the deterministic specification. Assuming the trend break magnitudes to
be fixed (independent of sample size), CKP and HHLT show their methods achieve asymptotically
efficient unit root inference in both the no trend break and trend break environments. Crucially they
assume the trend break magnitude(s) to be fixed, which renders the trend break pre-tests used in
these procedures consistent against breaks of fixed magnitude and so the correct unit root test variant
(either allowing for trend breaks or not) is applied in large samples. However, in finite samples the
pre-tests will not provide perfect discrimination; i.e., some degree of uncertainty will necessarily exist
in finite samples as to whether breaks are present or not. As a result, the asymptotic properties of
these procedures contrast sharply with the finite sample simulations reported in CKP and HHLT which
show the presence of pronounced “valleys” in the finite sample power functions (mapped as functions
of the break magnitudes), such that power is initially high for very small breaks, then decreases as
the break magnitudes increase, before increasing again.

Harvey et al. (2012) show that treating the trend break magnitudes to be local-to-zero (in a
Pitman drift sense), rather than fixed, allows the (local) asymptotic distribution theory to very closely
approximate this finite sample power valley phenomenon. This is because the local-to-zero model for
the breaks reflects in the asymptotic theory the uncertainty that necessarily exists in finite samples
as to whether trend breaks are present in the data or not. Harvey et al. (2013) [HLT] show that
the valleys problem worsens as the number of trend breaks present increases, other things being
equal. HLT argue that the typical trend break magnitudes seen with real macroeconomic data lie well

within these valley regions, suggesting that the CKP and HHLT methods may then be very poor at



discriminating between the unit root null and stochastic stationary alternative in practice.

In response to these issues, HLT advocate an approach along the lines of that outlined by ZA and
PR for the case of a single putative trend break. ZA and PR propose using the infimum of ¢-ratio-type
OLS and local GLS detrended ADF statistics, respectively, taken across all candidate break points in
a trimmed range. HLT establish the result that, unlike the ZA test which can have an asymptotic size
which approaches one when a trend break occurs under the unit root null (see Vogelsang and Perron,
1998), the asymptotic size of the local GLS de-trended variant of PR, when run using asymptotic
critical values relevant to the no break case, does not exceed the nominal level where either a fixed or
a local-to-zero trend break occurs under the null. HLT generalise the contribution of PR by developing
a local GLS detrended infimum test which allows for multiple possible breaks in trend, again based
on asymptotic critical values which assume no breaks are present. They show that the local GLS
detrended infimum test eliminates the aforementioned power valleys. This necessarily comes at the
expense of some loss of power relative to the CKP test when no breaks are present. In a local-to-zero
trend break environment and where the putative break fractions are unknown it is not possible to
obtain unit root tests which are invariant (even asymptotically) to the break magnitudes, since the
unknown break fractions cannot be consistently estimated. HLT argue that the infimum tests they
propose come as close as one can come to achieving invariant inference under local trend breaks.

While the unit root test proposed in HLT allows for the possibility of breaks in the deterministic
trend function, importantly HLT make no allowance for time-varying behaviour in the unconditional
volatility of the driving shocks. In this paper we analyse the impact of non-stationary volatility in
the shocks on the infimum test of HLT, and demonstrate that the asymptotic distribution of the HLT
statistic is not pivotal and depends on the structure of the underlying volatility process. Simulation
results suggest that this can have a large impact on both the size (and power) properties of the infimum
test, most critically leading to severe over-size in certain cases. Since, for many macroeconomic
series, non-constancy in the unconditional volatility of the shocks appears to be a relatively common
phenomenon (see Cavaliere and Taylor, 2008, and the references therein), we consider approaches that
attempt to overcome this inference problem. Specifially, we propose an implementation of the HLT
test using the wild bootstrap principle, replicating in the re-sampled data the essential pattern of
heteroskedasticity present in the original shocks (which might include, for example, single or multiple
abrupt variance breaks, smooth transition variance breaks, or trending variances). The wild bootstrap
approach has proven to be effective in the case of standard unit root tests which allow for either a
constant or linear trend; see Cavaliere and Taylor (2008); moreover, Cavaliere et al. (2011) show that
it can also be successfully applied to the single putative trend break unit root test of HHLT, although
the power “valley” problem associated with HHLT still remains.

We consider a number of possible wild bootstrap-based procedures, none of which require the user
to specify any parametric model of volatility. The leading bootstrap test we consider is based on
re-sampling from the double differences of the original data. Double differencing is used since this
transforms any trend breaks present into outliers which have no impact in large samples. We demon-

strate that the resulting bootstrap infimum statistic shares the same limiting null distribution, when



evaluated under the case of no breaks in trend, as the original infimum statistic of HLT under the
class of non-stationary volatility considered. This ensures that in the no-break case, the bootstrap
procedure is asymptotically correctly sized and also incurs no loss of asymptotic local power relative
to the original HLT test. In the more general setting of non-zero local breaks in trend, we demonstrate
that, in contrast to the HLT test, asymptotic over-size is now almost entirely absent. Other bootstrap
algorithms discussed include those which explicitly model the trend break component (using an esti-
mate of the break dates and break magnitudes) and, optionally, re-build the resulting estimated trend
break component back into the bootstrap data. Re-building the estimated trend break component
into the bootstrap data implies that, where trend breaks occur and are consistently estimated (the
latter requires the break magnitudes to be fixed and non-zero), the bootstrap statistic will replicate
the true asymptotic null distribution of the infimum statistic, rather than the limiting distribution
of that statistic appropriate for the no break case. This might be expected to improve power in the
case where trend breaks are present in the data given the observation of HLT that their test based
on no-break critical values has a tendency to be under-sized where breaks occur. However, for zero
and local magnitude trend breaks such a bootstrap statistic will not replicate the correct limiting null
distribution and so will not be correctly sized. The finite sample size and power performance of these
various bootstrap procedures are compared using Monte Carlo methods.

The paper is organised as follows. Our reference heteroskedastic multiple trend break model is
outlined in section 2. Section 3 reviews the contribution of HLT. Section 4 details the large sample
behaviour of the HLT unit root test statistic when the errors display non-stationary volatility. In
section 5 we outline our leading wild bootstrap-based implementations of the HLT test and establish
its asymptotic properties; we also describe the alternative bootstrap algorithms that we consider.
Simulation evidence presented in Section 6 suggests that the proposed bootstrap tests perform well in
small samples. Section 7 concludes. Proofs are collected in an Appendix.

In what follows we use the following notation: |-| denotes the integer part; o denotes the Hadamard
product (i.e. element-wise multiplication); 2 denotes weak convergence, EN convergence in probability,
and ﬂp weak convergence in probability (see, for example, Giné and Zinn, 1990), in each case as the
sample size diverges; 1(.) denotes the indicator function, and I, := 1(z # 0) and I4 := 1(y > z); 2 ==y
(z =: ) indicates that z is defined by y (y is defined by x), and = denotes asymptotic equivalence;
finally, C := (0, 1] denotes the space of continuous processes on [0, 1], and D := DJ0, 1] the space of

right continuous with left limit (cadlag) processes on [0, 1].



2 The Heteroskedastic Multiple Trend Break Model

We consider the time series process {y;} generated according to the following model,

vy = p+PBt+~'DTe(ro) +uy, t=1,...,T, (2.1)
U = ppu—1+eg, t=2,..T, (2.2)
e = C(L)es = f;o I (2.3)
e = 01z ’ (2.4)

where DT (7¢) := [DT} (10,1) , ..., DT} (To,m)]’, the elements of which, for a generic fraction 7, are the
indicator variables, DT(7) := 1(¢t > [7T'])(t — [7T]). In this model 7o := [T01, ..., To,m)  is the vector
of (unknown) putative trend break fractions, with v := (v, ...,7,,)" the associated break magnitude
parameters; a trend break therefore occurs in {y;} at time | 79,7 | when v; # 0, ¢ = 1,...,m. The break
fractions are assumed to be such that 7o ; € A, for all ¢, where A := [7, 7¢y] with 0 < 7, < 7y < 1; the
fractions 77, and 7y representing trimming parameters. It is also assumed that |79; — 79| > 1 > 0,
for all 7, 7, i # j, such that the DGP admits (up to) m level breaks occurring at unknown points across
the interval A, with a sample fraction of at least [nT'| observations between breaks. Notice, therefore,
that m and n must satisfy the relation m < 1+ |(ry — 71)/n].!

In (2.2), {u;} is an unobserved mean zero stochastic process, initialised such that u; = 0,(T'/?).

The following set of assumptions will also be taken to hold on (2.1)-(2.4).

Assumption A: A;. The lag polynomial satisfies C (z) # 0 for all |2| < 1, and Y272, jlej| < 005 As.
2zt ~ IID(0,1) with E|z|" < K < oo for some r > 4; As. The volatility term o satisfies oy = w (t/T),

where w () € D is non-stochastic and strictly positive. For t <0, oy < & < 0.

Remark 1. Notice that {e;} in (2.3) is a linear process in {e;}, the latter formed as the product of
two components, {z;} and {o;}. Since, under Assumption Ay, {z} is IID, conditionally on oy, the

error term e; has mean zero and time-varying variance o?.

Remark 2. Before progressing it is worth commenting that, since the variance ¢? depends on T, a
time series generated according to (2.1)-(2.4) with o satisfying Assumption .43 formally constitutes a
triangular array of the type {yr; :=dps +urs: 1 <t <T,T > 2}, where dr; is purely deterministic
and ug is recursively defined as ur; := prurs—1 + C (L) o1t2t, o7, 57| = W (s). However, since the
triangular array notation is not essential, for simplicity the subscript T will be suppressed in what

follows.

Assumption A coincides with the set of conditions adopted in Cavaliere and Taylor (2008). As-
sumption A; is standard in the unit root literature. Assumption A, is somewhat stronger than is

often seen, since it rules out certain forms of conditional heteroskedasticity, such as that arising from

! One might also consider a second model which allows for simultaneous breaks in the level of the process. However, as
noted by PR, pp.2,4, a change in intercept is a special case of a slowly evolving deterministic component (see Condition

B of Elliott et al.,1996, p.816) and, consequently, does not alter any of the large sample results presented in this paper.



stationary GARCH models, in the errors. It is made to simplify exposition; the results stated in this
paper would continue to hold if this assumption was weakened along the lines detailed in Remark 1 of
Cavaliere and Taylor (2008,pp.46-47). The key assumption for the purposes of this paper is A3z, which
only requires of the innovation variance that it is non-stochastic, bounded and displays a countable
number of jumps. A detailed discussion of the class of variance processes allowed under Ajg is given in
Cavaliere and Taylor (2007); this includes variance processes displaying (possibly) multiple one-time
volatility shifts (which need not be located at the same point in the sample as the putative trend
breaks), polynomially (possibly piecewise) trending volatility and smooth transition variance breaks,
among other things. The conventional homoskedasticity assumption, as employed in HLT, that o, = o
for all ¢, also satisfies Assumption A3, since here w(s) = o for all s. Although Assumption A3 imposes
the volatility process to be non-stochastic, this may be weakened along the same lines as are detailed
in Remark 2 of Cavaliere and Taylor (2008,p.47).

A quantity which will play a key role in what follows is given by the following function in C, known

as the variance profile of the process:

0= ([ wirar)

Observe that the variance profile satisfies 1 (s) = s under homoskedasticity while it deviates from s

-1

/OS w(r)dr. (2.5)

in the presence of heteroskedasticity. Notice also that the quantity @? := fol w (T)2 dr which appears
in (2.5), by Assumption Ajs equals the limit of 71 Zthl 02, and may therefore be interpreted as the
(asymptotic) average innovation variance. We will also use the result
LrT)
T71/2 Z O¢2t = wW0n<7')
t=1
where the process W (r) := [;dW (5(s)) is known as a variance-transformed Brownian motion, i.c. a

Brownian motion under a modification of the time domain; see, for example, Davidson (1994).

3 HLT’s Infimum Test

Our interest centres on testing the unit root null hypothesis Hy : pr = 1, against the local alternative,
H.:pr=1—¢/T, ¢ > 0. Under the assumption of homoskedastic innovations, that is oy = o for all ¢,
HLT develop a test of Hy against H. which does not require the practitioner to assume knowledge of
whether trend breaks are present in the data or not. The test they propose is a multiple break version
of the minimum local GLS detrended Dickey-Fuller statistic proposed by PR (which is MDF; in the
notation below), following the approach taken by ZA in a single break OLS detrending environment.
Specifically, the test statistic proposed in HLT is

MDF,, := inf DFSES (1) (3.1)

Tl’“-vaeAv
[7i—7j1>m, Vizj



where DF S5 (1) denotes the standard t-ratio associated with 7 in the fitted OLS ADF-type regression

P
Niiy = iy + Y ;AT +é, t=p+2,..,T, (3.2)

j=1
where @y 1= y; — ji — Bt — 4'DTy(7), with [z, 3,7']’ obtained from a local GLS regression of Vp =
1,92 — PY1s Y7 — PYyT—1) on Zp . = (21,22 — pz1,...,27 — pzr—1]', 2 = [1,t,DTy(7)"]" with
p:=1—¢/T, for some ¢ > 0 which is user-supplied.> This infimum unit root test rejects for large
negative values of the statistic; HLT provide recommended values of ¢, as well as asymptotic critical
values relevant to the no break case, v = 0. As is standard, the lag truncation parameter, p, in (3.2)

is assumed to satisfy the following condition:

Assumption B. As T — oo, the lag truncation parameter p in (3.2) satisfies the condition that
1/p+p3/T —0.

In what follows, it is useful to note that when p = 0, DF EG LS (1) can be written in the simplified
form ) ) . )
DFSLS (1) = Uy — Uy — 3 4o (Alr)
C

2T ~2
2 O-eZt:QUtfl

(3.3)

where 62 = (T —2)~! Z,:TZQ é2.

In order to conduct an asymptotic analysis that appropriately mimics the relevant finite sample
power properties of unit root tests when uncertainty exists as to the presence of breaks, HLT conduct
their asymptotic analysis under a doubly-local setting; that is, in addition to allowing local-to-unity
behaviour in the autoregressive root, as above, they also model the trend break magnitudes as local-
to-zero. Accordingly, in this paper we set the break magnitudes in (2.1) to be v, 7 = ki C(1)0T 12,
i = 1,...,m, where the x; are finite constants, thereby adopting the appropriate Pitman drift for a

trend break in a local-to-unit root process.?

4 Asymptotic Behaviour of MDF',, under Non-Stationary Volatility

In this section we establish the large sample properties of the HLT unit root test outlined in the
previous section in the case where the volatility process o; is permitted to be generated by any

process satisfying Assumption Ag.

Theorem 1 Let y; be generated according to (2.1)-(2.4) under H.. Let Assumptions A and B hold,
and let yp = kC(1)@T /2. Then

MDF,, % inf  Deo(ro,T,K,1) = Di(10,K,7) (4.1)
Tl TmEN, '
[Ti—=731>m, Vizj

2We suppress the dependence of quantities such as 4; on 7 for notational economy.
3Scaling the trend break by C(1)@ is merely a convenience device allowing it to be factored out of the limit distribution

of the statistic.



where
LC75(1,T0,T,K‘,,77)2 -1

2\/f01 Loe(r, 7m0, T, K,n)%dr

DQE(TOv K, 77) =

with
LC,E(T7 T0, T, R, 77) = ch(r) =+ K//{(T - TO) % Iio}
! -1
T ag mE(T), baan + Ii/fc,é(To)
(r—7)ol} mg(7) Dg(1) beey(T) + Feo(To, T)K
where

e =14+E+ /3, beey:=(1+WIQ1) + E [ sW(s)ds,

I’7, denotes an m X 1 vector with ith element I}

To.i7 me(T), beey(T) and £.z(To) denote m x 1 vectors

with ith elements

me(ti) == ag—1i(1+ ¢+ /2 — 72/6),
been(Ti) = (1+ec—er)WI(1) — W(r;) + 52f71i(5 — 7)) W(s)ds,
fea(t0i) = (1 —70){az — 10,i(1+70,)/6}

respectively, Dz(7) and F.z(To,T) denote m x m matrices with i, jth elements

dé(Ti’ Tj) = (1 B Tmax) {aé + CTmax — E(Ti + Tj)
+62(Tmax + 7—1%nax)/3 - 62(7_i + Tj)(l + Tmax)/2 + EzTiTj}a
fee(togomi) = (1—r1o4){ac—eri — &1i(1 — 70;)/2 — 710, (1 + 70,;)/6}

~(1i = Tog){1 = (i — 70,)*/6}I7;

respectively, with Tmax = max(7;,7;), and where W (r) == [; e~ r=9)edW (n(s)), where W(s) is a

standard Brownian motion and n(-) is the variance profile of the volatility process defined in (2.5).

Remark 3. For the homoskedastic case, HLT propose running the test using asymptotic null critical
values obtained from the right member of (4.1) calculated for ¢ = 0 and K = 0. They show numerically
that the asymptotic size of the resulting test is conservative when k # 0 though only ever modestly

under-sized.

Remark 4. As can be seen from comparing the representations given in Theorem 1 with the corre-
sponding representations in Theorem 1 of HLT, the asymptotic null distribution of the MDF',,, statistic
is a function of the process W(/(r). This distribution reduces to the corresponding distribution given
in Theorem 1 of HLT only where the process is homoskedastic, such that w(-) is a constant function;
here W (r) reduces to the standard Brownian motion, Wy(r) = W (r). It is also clear from the rep-
resentations in Theorem 1 for ¢ > 0 that the asymptotic local power functions of the HLT test will
also be affected by non-stationary volatility (even if critical values from the correct heteroskedastic
null distributions were used) since, as with the null case, it is only where w(-) is constant that the

representation reduces to the corresponding representation in HLT.



Remark 5. Notice that the limiting representation in (4.1) depends on the search set, A, just as it
does in the homoskedastic case. The asymptotic critical values reported in HLT are appropriate only
for A = [0.15,0.85]. An advantage of using a bootstrap implementation of MDF,,, as we shall propose
in section 5, is that inference can be conducted for any choice of A without the need for further tables

of asymptotic critical values.

To conclude this section we now quantify the impact of a one-time change in volatility on the
asymptotic size of the one-break test, MDF. Table 1 reports the asymptotic size of nominal 0.05-
level MDF'; tests, with A = [0.15,0.85], for a single abrupt shift in volatility from og to o1 at time
|75T']; i.e. for the volatility function

w(s) =00+ (01 —00)1(s > 7,), s€0,1] (4.2)

with 7, € [0, 1]. Results are reported for o1/09 € {1/10,1/5,1/2.5,1,2.5,5,10} and 7, € {0.3,0.5,0.7},
allowing for positive and negative breaks in volatility at a range of timings (the setting o1 /09 = 1 giving
the constant volatility case). We consider at most a single break in trend at time 79 ; = {0.3,0.5,0.7}
(allowing for cases where shift in volatility and the break in trend coincide, and also where their tim-
ings differ), with local break magnitudes k1 = {0,3,6,9,12} (k1 = 0 representing the no-break case).
The sizes reported were computed using direct simulation of the limiting functionals in Theorem 1,
compared with the critical values reported in HLT. We used 50,000 Monte Carlo replications, approx-
imating the Brownian motion processes in the limiting functionals using NIID(0, 1) random variates,
with the integrals are approximated by normalized sums of 2,000 steps.

In the homoskedastic case (o1/0¢9 = 1), MDF has exact size when k1 = 0 since this is precisely the
case where the critical values are obtained. For other values of k1, it is slightly under-sized, as in HLT.
When o;1/0¢ # 1, however, the shift in volatility virtually always induces an increase in asymptotic
size relative to the corresponding homoskedastic case. The upward size distortions increase as o1/0¢
deviates further from the homoskedastic case of o1/0¢ = 1 (for both o1 > 0¢ and o1 < 0¢) for both
the no break and local break deterministic specifications. The size distortions are most severe when
the timings of the break in trend and the break in volatility are either both early (79 = 7, = 0.3)
or both late (19 = 7, = 0.7), with asymptotic size up to around 0.43 in the latter. The impact
of a volatility shift on test size is also seen to be strongly dependent on the direction of the shift:
when the volatility break occurs early, it is a downward shift that generates relatively greater size
distortions than when the shift is upward; conversely, when the volatility break occurs late, it is an
upward shift that generates the greater size distortions. It is clear from these results that the presence
of heteroskedasticity can have serious implications for the asymptotic size of the HLT unit root test, to

the extent that we cannot rely on HLT’s tabulated critical values to deliver a size-controlled procedure.

5 Bootstrap Infimum Tests

As demonstrated in the previous section, non-stationary volatility introduces a time deformation

aspect to the limiting distributions of the HLT unit root statistic, which alters its form wvis-a-vis the



homoskedastic case. In section 5.1 we propose a bootstrap analogue of the MDF,, unit root test
from section 3. Subsequently in section 5.2 we establish the large sample properties of our proposed
bootstrap test. We also discuss in section 5.3 a number of alternative algorithms that might also be

expected to display good finite sample properties.

5.1 The Bootstrap Algorithm

In this section we present our proposed bootstrap algorithm. Our approach adopts a ‘wild bootstrap’
scheme (see, inter alia, Liu, 1988, and Mammen, 1993) applied to the second differences of the raw
data. This approach, in contrast to standard residual re-sampling schemes used for other bootstrap
unit root tests proposed in the literature, replicates the nature of the heteroskedasticity present in the
underlying shocks.

The following steps constitute our proposed bootstrap algorithm:

Algorithm 1 (Wild Bootstrap MDF,, Test)

Step 1. Construct the second differences of the data; that is, A%y := Ay; — Ays_1, t =3,...,T

Step 2. Generate T bootstrap innovations €f, t = 1,...,T, as follows: €f := w; A%y, t = 3,...,T, and
et =¢e5 =0, where {w;}]_, denotes an independent N(0,1) sequence.

Step 3. Construct the bootstrap sample as the partial sum process defined by

t

yii=Y e, t=1,..,T. (5.1)

Step 4. Compute the bootstrap test statistic

. : GLS *
MDF;, := inf DFZ™ (1)
Tlr“mieAv
[7i—7j1>m, Vizj

with )
DFSLS (1) = ay? — Zt o (AG)?

IVEHD DY il

where uf = y; — " — Bt — Y'DTy(T), with [ji*, B, ¥ obtained from a local GLS regression of

Y5 =V, ¥5 — oyl Y1 — p?fzk“ ' on Zp ;= (21,22 — p2a, .. 27 — p2T-1]'s 20 = [1, 6, DTy (7)) with
pi=1—¢/T. Here 2 = (T —2)~ ' S°[_, &2 with & obtained from the fitted OLS regression
At =70+ e, t=2,..,T. (5.2)

Step 5. Bootstrap p-values are computed as: ph = G5 (MDF,y,), where G.(-) denotes the conditional
(on the original sample data) cumulative density function (cdf) of MDF},. Notice, therefore, that the
bootstrap test, run at the &, 0 < £ < 1, significance level, based on MDF,,, is then defined such that it
rejects the unit root null hypothesis, Ho : pp = 1 if pi, <&.

10



Remark 6. The second differencing involved in Step 1 of Algorithm 1 removes the effect of the
constant and linear trend and reduces each of the trend breaks present to a one-time outlier which
will then have no impact in the limit on the behaviour of the resulting bootstrap statistic based on
y;, regardless of whether the trend break magnitudes are local-to-zero or fixed. This follows since we

can write the scaled y; as

TV = T w A%y T2 w10 > |7o,T))
= T2 v+ 0)(1) (5.3)

regardless of whether the v; magnitudes are O(T~1/?) or fixed.

Remark 7. As shown in the proof of Theorem 2 below,
T2y 2 @5 e — cn)) B ()

so we observe that the asymptotic effect of the heteroskedasticity on the bootstrap sample y; is the
same as that on the original raw data y; up to a constant multiple, (23252 ci(c; — ciy1))'/2, which
is induced by the second differencing in Step 1; this constant is automatically scaled out of the limit

distribution of the bootstrap Dickey-Fuller statistics DFS™S (1)*.

Remark 8. As in Cavaliere and Taylor (2008), the unit root null is imposed on the re-sampling
scheme used in Step 3 of Algorithm 1. This has no impact on the power of the bootstrap tests
because, conditionally on the original data, the bootstrap innovations ¢; from Step 2 of Algorithm
1 are serially uncorrelated, allowing us to set the lag length to zero in (5.2). In practice one might
also consider adding a sieve-based component to Algorithm 1, of the form outlined in section 3.3 of
Cavaliere and Taylor (2009), and selecting the lag length, p* say, in (5.2) as discussed in Cavaliere and
Taylor (2009, p.403).

Remark 9. In practice the cdf G7, will be unknown but can be approximated in the usual way through

numerical simulation; see, inter alia, Hansen (1996) and Andrews and Buchinsky (2001). This is done

*
m,b?

by generating B (conditionally) independent bootstrap statistics, say MDF b=1,..., B, computed
as for MDF';, above but from y;;t obtained by substituting ¢! in (5.1) with a;’;,i = &;Wyy, again with
starting values set to zero, and with {{wp:};_,}2, a doubly independent N(0,1) sequence. The
simulated bootstrap p-value is then computed as py, := B! 21];3:1 1 (MDF:‘M) < MDFm), and is such
that p7 % Py as B — oo. An approximate standard error for p}. is given by (p(1 — ph)/ B)'/2; see

Hansen (1996, p.419).

5.2 Asymptotic Properties

In this section we derive the asymptotic properties of the wild bootstrap unit root test outlined in
Algorithm 1 both under the unit root null hypothesis and under near-integrated alternatives.
Our key result is now presented in Theorem 2. Here, for the case of zero or local-to-zero magnitude

trend breaks, we show that for any volatility process satisfying Assumption A3 the bootstrap statistics
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from section 5.1 allow us to retrieve asymptotically correct p-values appropriate for £ = 0 under the

unit root null.

Theorem 2 Let y; be generated according to (2.1)-(2.4) under H.. Let Assumption A hold, and let
Y = RC(l)(DTﬁl/Q. Then for the bootstrap statistic outlined in Algorithm 1,

MDFy, %, Dyt (70,0,n) (5.4)

where 'D[ifg(To,O,?]) is as defined in Theorem 1, with ¢ = 0 and & = 0. Moreover, if pp = 1,
pi 5 U[0,1] for k = 0.

Theorem 2 demonstrates the usefulness of the wild bootstrap test from Algorithm 1: as the
number of observations diverges, the bootstrapped statistic converges to the same null distribution as
obtains for the original HLT test statistic when & = 0. Notice that DB‘};(TO, 0,7) does not depend
on 79 when K = 0. Consequently, for & = 0, the bootstrap p-values are uniformly distributed under
the null hypothesis, leading to tests with asymptotically correct size. Table 2 reports, for the same
settings as those relevant for Table 1, asymptotic sizes of the bootstrap test MDF7 at the nominal

inf
¢,C

0.05-level; these results were obtained by simulation of DY (70, k,n) in (4.1) with ¢ = 0, compared

with critical values obtained from simulation of Dg};(To, 0,7). In line with Theorem 2, the asymptotic
sizes are exactly 0.05 when x; = 0, regardless of the nature of the volatility process. This stands
in marked contrast to the corresponding entries in Table 1, where the original MDF; was seen to
often exhibit severe upward size distortions in the presence of heteroskedasticity. When xq # 0, the
asymptotic size of MDF'] is no longer exactly 0.05; this occurs because the bootstrap recovers a critical
value for MDF'1 appropriate only for k1 = 0. Consequently, situations where MDF7 displays under-
(over-) size correspond to k1 # 0 cases where MDF; had size that was lower (higher) than for the
corresponding x; = 0 case. Notice, however, that whenever upward size distortions do occur, they are
only modest in nature, with asymptotic size never exceeding 0.065; similarly, much of the under-sizing
is also relatively modest.

An additional consequence of the result in Theorem 2 is that the bootstrap MDF7, test shares
the same asymptotic local power function as the standard HLT test, MDF,,, had the (k = 0) critical
values used for the latter been (infeasibly) adjusted to account for any heteroskedasticity present. In
the case where volatility is constant, it also then follows that there is no loss in asymptotic power,

relative to using the HLT test, from using the bootstrap MDF7, test from Algorithm 1.

5.3 Alternative Bootstrap Algorithms

The bootstrap algorithm for MDF?, given above replicates (asymptotically) the null distribution
D[ifg(To, 0,7) and, as shown in Table 2, this can lead to a degree of size distortion in the presence
of heteroskedasticity when k # 0. A potential way to alleviate this behaviour is to estimate 79 and
~ and incorporate these estimates into the bootstrap data - the intention being that such data will

thereby mimic any trend break structure present in the original data. Generalizing the HHLT break
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date estimator to the multiple trend break case, a first differences-based estimator of 7¢ is provided
by
T
T :=arg min 7! Z oy (1),
T1,...,TmEA, i—2

|7i—T51>m, Viz;

where 7, (7) are the residuals from the OLS regression
Ay, = B +5 ADTy(7) + @1 ()

with the corresponding estimator of « being given by 4 = 4(¥), that is, 4 evaluated at 7. The
drawback of this trend break estimation procedure is that under Hy and H., when Kk = 0, T is
unidentified and 7 is then randomly distributed over A. It can also be shown that 4 = O,(T~/?)
in this case. Therefore, ¥ and 4 will indicate spurious break timings with spurious local break
magnitudes of order 7-1/2. In fact, the same is also true for local trend breaks with & # 0 since 7 is
not a consistent estimator of 7¢. As a consequence, any bootstrap algorithm that incorporates 7 and
4 cannot exactly replicate the distribution D(i{‘é('ro, K,n) either for Kk = 0 or k # 0. However, since
7 and 4 are consistent estimators of 79 and « in the case when all elements of v are non-zero and
of fixed magnitude®, pragmatism suggests we might still consider employing them in an alternative
bootstrap algorithm to that for MDF7, , notwithstanding their theoretical shortcomings in the context
of the zero or local trend breaks model. Three such alternatives are now presented, which differ from

MDEF, only in how the bootstrap sample y; is constructed.
(i) MDF:*: g = A DTy(F) + Y0 ef, t=1,..,T.
(i) MDF! : yi =St _owy (F), t=2,..,T, yi=0.
(iii) MDF”,: y := ¥DTy(F) + X' _ywiy (F), t=2,...,T, yi=0.

Here MDEF'7Y is similar to MDF'},, but reinstates the broken trend effects in Step 3 of Algorithm 1
using estimates. MDF!] and MDF" utilise an alternative approach to removing the broken trend
effects in Step 1 of Algorithm 1, with MDF’, being an analog of MDF?, but employing the residuals
0y (7) directly instead of second differencing, while MDF! is the corresponding analog of MDF'%*.

6 Finite Sample Simulations

In this section we investigate the finite sample size and power properties of the original MDF,, test
and the bootstrap tests MDF*  MDF** MDF! and MDF! proposed above. For further comparison
we also report results for the CKP test, which we denote by CKP,,, where m corresponds to the
maximum number of breaks considered in the procedure. In line with our asymptotic results we
set A = [0.15,0.85] for the implementation of all tests, and also set the separation fraction between

consecutive breaks to be 7 = 0.15. We abstract from the effects of serial correlation, generating z; ~

4The proof of this follows straightforwardly from the consistency proof given for the single break case in Cavaliere et
al. (2011).
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NIID(0,1) and C(L) = 1, and setting p = 0 in the Dickey-Fuller regressions, and we also make the
corresponding setting when constructing the CKP,, statistics. In line with the local trend break
specification adopted in the large sample analysis, we set vp = kopT Y2 with wp = /T-! Zle o2,
All simulations were conducted at the nominal 0.05 level using 1,000 Monte Carlo replications and
B = 499 bootstrap replications. In sections 6.1 and 6.2 below, we present results for finite sample size

and power, respectively.

6.1 Size

Tables 3 and 4 presents size results for CKPy, MDF1 and its corresponding bootstrap variants for a
single break in trend and a single shift in volatility, with sample sizes T' = 150 and T' = 300 respectively.
We set = = 0 without loss of generality, and here consider ¢ = 0 (i.e. pp = 1) with u; = ;. We
focus on the cases of 791 = {0.5,0.7} and 7, = {0.5,0.7} with 01/0¢ € {1,2.5,5,10} (we let g =1
without loss of generality), again setting k1 = {0, 3,6,9,12}; these representative combinations are
chosen so as to capture the pertinent features observed in the asymptotic results in Tables 1 and 2.

The finite sample size behaviour of MDF'; is seen to closely mirror the patterns of asymptotic size
observed in Table 1, with the numerical values of the sizes when T" = 300 bearing a close resemblance
to the corresponding asymptotic sizes across all settings. In particular, the test is most over-sized
either when no trend break occurs and 7, = 0.7, or a trend break is present and 79 = 7, = 0.7, with
the distortions again at their most severe for the larger values of o1/0g. The sizes of CKP; follow the
same pattern as those of MDF'y, with severe upward size distortions of a similar magnitude observed
in the worst cases. In contrast, the bootstrap test MDF7] never displays any serious over-size across
the various deterministic and volatility settings considered, although it can be under-sized when both
a trend break and volatility change are present (in line with the limit results of Table 2). As regards
the alternative bootstrap approach MDF'7*, we see that much of the under-size associated with MDF7]
is ameliorated through the reinstatement of the estimated break in the bootstrap samples, unless x; is
small (since here the break date and magnitude cannot be reliably estimated). Moreover, despite not
exactly replicating the null distribution asymptotically in the no-break case, MDF* retains good size
control in this case also; indeed, it is typically slightly closer to nominal size than MDF7. Lastly, we
observe that MDF", and MDF" display much the same size patterns as MDF?} and MDF1*, respectively,
although they tend to have somewhat greater size than the corresponding second difference-based
bootstrap procedures.

We now consider size simulations for a DGP involving two breaks in trend and a single shift in
volatility. Tables 5 and 6 report results for CKPo, MDF9, MDF%, MDF%*, MDF', and MDF’ for T =
150 and T" = 300, respectively, with trend break timings 79,1 = 0.3,792 = 0.5 and 70,1 = 0.5, 792 = 0.7
with magnitudes k1 = —k, k2 = k where k = {0,6,12}, and volatility settings 7, = {0.5,0.7} with
o1/o0 € {1,5,10}. For MDF;,, we observe over-size in the presence of heteroskedasticity, this being
particularly acute either when no trend breaks occur, or when trend breaks occur with the later set of

break timings (791 = 0.5, 702 = 0.7). In line with the results above, the size distortions are greatest
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for later changes in volatility. CKPs9 also suffers from severe over-size in the case of no trend breaks
when o1 /0g > 1, although when the trend breaks are non-zero, it becomes quite under-sized in many
cases; this latter feature arises because the break detection methodology implicit in the CKP approach
is ineffective in the presence of opposite signed local breaks of moderate magnitude (see HLT for more
details). As in the single trend break case, MDF3 and MDF3* are not subject to serious over-size, and
while the former can again be under-sized in the presence of both trend breaks and volatility change,
this under-size is considerably reduced by MDF3*. As before, size results for MDFY, and MDF' bear
a broad resemblance to those for MDF'3 and MDF5*, respectively, but again the sizes can be a little

inflated.

6.2 Power

Tables 7 and 8 report finite sample powers for T' = 150 for the same settings as employed in Table 3, for
¢ = 20 and ¢ = 30, respectively. In addition to presenting raw powers for all tests (including those for
CKP; and MDF'; for completeness despite their lack of size control), we also report two critical value-
adjusted versions of MDF'; to aid comparison with the bootstrap procedures - a size-adjusted version
that uses the appropriate 0.05-level critical value for MDF; for each volatility process and local break
magnitude setting (denoted MDF Cfdj in the tables) and also a partially adjusted version that retains
use of k = 0 critical values but adjusts those critical values for the effects of any heteroskedasticity
present (denoted MDF imdj ). Given that MDF; was seen in Table 3 to always have finite sample size
in excess of nominal size (and sometimes dramatically so), the powers of both MDF‘fdj and MDF}fadj
are lower than their raw power counterparts throughout. We observe that the powers of MDF'] and
MDF;L“dj are generally quite similar, as we would expect in light of Theorem 2 and our associated
discussion. Also unsurprisingly, the powers of MDF7 are almost identical to those of MDFCfdj when
k1 = 0. In those k1 # 0 cases where MDF7 is under-sized, it is seen to lose power compared to
MDF‘fdj , and while the losses can be up to 0.25 (for ¢ = 30), they are typically rather more modest.
As we might expect, MDF7* makes up most of these relative power losses, having power close to that
of MDF tlldj in most cases, the exception being when k; is small (where MDF7* was seen to remain
under-sized). The powers of MDF} and MDF" are of course similar to (a little greater than) MDF7
and MDF7*, respectively, in line with the corresponding size behaviour of these procedures.

Finally, Table 9 presents powers for T = 150 in the case of two breaks in trend, for the same
settings as in Table 5, for ¢ = 30. Notice that CKP3 (and to a somewhat lesser extent CKP; in Tables
7 and 8) displays the well-documented phenomenon of extremely low power for intermediate local
break magnitudes, caused by low break detection rates in these circumstances; see, inter alia, HLT.
As in the single trend break case, the powers of MDF?3 are very close to those of MDF gadj . In addition,
the MDF3 powers are similar to those of MDngj when k = 0, but they typically fall below these
levels when s # 0. However, MDF3* is again seen to recover most of these losses relative to MDngj .

Once more, MDF!,, and MDF have similar levels of power to MDF% and MDF*%*, respectively.
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7 Conclusions

In this paper we have explored the impact that non-stationary volatility has on the infimum Dickey-
Fuller-type test proposed in Harvey et al. (2013) which allows for multiple possible breaks in trend.
Numerical evidence was presented which showed that non-stationary volatility can have potentially
serious implications for the reliability of this test with size often being very substantially above the
nominal level. This was shown to be a feature of the limiting distributions of the statistic. To help
rectify this problem, we have proposed wild bootstrap-based implementations of the Harvey et al.
(2013) test, this approach having proved to be highly successful in other unit root testing applications.
The proposed bootstrap tests have the considerable advantage that they are not tied to a given
parametric model of volatility within the class of non-stationary volatility processes considered. The
asymptotic effectiveness of our proposed bootstrap tests within the class of non-stationary volatility
considered was demonstrated. Monte Carlo simulation evidence for the case of a one-time change in
volatility for models with both a single break in trend and a double break in trend was also reported
which suggested that the proposed bootstrap unit root tests perform well in finite samples avoiding the
large over-size problems that can occur with the Harvey et al.’s (2013) test, yet emulating the finite
sample power properties of (infeasible) critical value-adjusted implementations of their test. In future
work, it would be interesting to explore the possibility of analagous procedures for GLS detrended
variants of Im et al. (2003)-type panel unit root tests where breaks in trend and non-stationary

volatility are potentially an issue for each series.

A Appendix

Proof of Theorem 1. For expositional brevity we demonstrate the result of Theorem 1 in the serially
uncorrelated case ¢, = e; (i.e. C(L) = 1), setting p = 0 in (3.2) accordingly. The result continues
to hold under the more general conditions for &; of Assumption 1, provided Assumption B holds. In
what follows, we also set y = 8 = 0 without loss of generality. We will make use of the following
weak convergence results, which follow from straightforward extensions of the results in Cavaliere and
Taylor (2007):

T2, 2 GWI(r) (A1)
T35 w1 S @[T (s)ds (A.2)
T2 oy A S G{WI (L) — e W (r) — [TW(s)ds} (A.3)
(A4)

T2 ) Be—1 = wfrlng(s)ds.

First, for any 741, ..., 7y, € A, consider the estimators i, B and 4. Following HLT we find

-1
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where

Moo= g+ (1 —p) X (u — pyi),
By =y + oy — pye—1){t — p(t — 1)}

and where the (m x 1) vector p has ith element

pi = STy (e — Py )t — i) — (e — 7] — 1)},
For the limits of 1Y, h} and the elements of p we obtain, using (A.1)-(A.4), and on defining DUy (7 ;) :=
ADTt(T(],i),
W =y + e yr — 1) + T2y g1 = w1 + 0p(1),

720y = er 3 tAu 4+ TV up + @72 tuy g + T2
+we Y w2 Y tDU(r0,) + WS w T HT — [70,4T))
+we? Y, "%’T_?’ Y i tDTy1(70,) + QEET T2, DTia(70,) + 0p(1)
& {wwi(l 7f0 Wl(s)ds} + wW](1) wfo sWl(s)ds + waolWﬁ(s)ds
+wey ity ’%( - TO,@')/Q + Wy ity ki(l—To,)
+0e” o i (1= 78,4) /3 = T04(1 = 75,)/2} + we 3oL k(1 — 70,0)? /2
= w{been + KL (T0)} (A.5)

T2, = TV 2yp — T_l/QULTZ.TJ + e —3/? Zth 7T +1 tAuy — er T2 ZthLnTJH Auy
+er? ZtT:mTJH w1 + T/ ZtT:mTJH tupy — Er T2 ZZ:L”TJ_H Up—1
+O YT k(1= 7o) —@ Ty k(T — To )T+ @Yy kT2 S 41 tDUi(70 5)
—we Yy m T T Y i DU (To ) + @E STy w5 T2 00 Ly DT (70,)
+we Yy Rk T Yy 1 1DTi 1 (o) — @8 Sy kT2 Sy sa DTioa(ro,) + 0p(1)
= wWl(1) — Wi (1) + we{W(1) — 7, W2(T;) f Wi(s)ds} — wer AW (1) — W/ (r;)}
+ew [ Wi(s)ds + @[, sW(s)ds — i@ [} W(s)ds
+w 37 k(1= 705) — W T k(T — T )T
+wedy mif(L—75,)/2 = (73 =75 I /2} —we YT k{1 — 7o, — (10 — 1017 .}
+wed ity w1 —er){(1—70,)%/2 = (1i — 70,4)°15; /23
+we YU kil(L =70, /3 =70 (1 = 70.,)/2 = {(r} = 75,,)/3 — To(7F — 75.;) /2317 ]
= W{beey(Ti) + 201 Kjfee(To4, i)} (A.6)
where (A.5) and (A.6) follow upon simplification after gathering terms.

We therefore have that
-1
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which gives the limit of 7~/ QQZLTT | as
T P40, = T7V2y,p =T 20— T7V2B 10T — T2 {(|rT] — |7T]) o 11}

= T Vupqy +@r'{(r — 7)o 17} — [

(r—7)ol’
S oWi(r) +wk'{(r— o) o I} }

r ], [ az mz(7)’ ]_1 [ W{be,en + K. c(T0)} ]
Yol mg(7) Dg(7) W{been(T) + Fee(To, T)K}

(r—r

= Whee(r,To,T,K).

Next,

Given p = 0, write DF S (7) in the form

- - T -
u% - u% - Zt:Q(Aut)z

~ T ~
2\/ Ug D=2 u?—l
(T~ 2ar)? =T 3, (Ady)?
= 5 T + Op(l)
2\/&6T_2 Zt:2 a%—l
L. (1 2 2
w, w C,C( 11 7-077-7’4:777) w = DC,E(TOaTaKly"?)-
2\/52.52 Jo Lee(r, 1o, T, k,m)2dr

DFE" (1)

The stated result for MDF,, then follows from this fixed 7 representation, using the relevant
arguments proved in Zivot and Andrews (1992) and an application of the continuous mapping theorem
[CMT].

Proof of Theorem 2. In what follows, we again set up = 8 = 0 with no loss of generality. Throughout
the proof of Theorem 2, we use ¢, to denote the k x 1 unit vector, and P* and E* to denote respectively
the probability and expectation conditional on the realization of original sample. Moreover, for a
given sequence X7 computed on the bootstrap data, the notation X7 = oy (1) is taken to mean that
P* (|X%| > €) — 0 in probability for any € > 0 as T' — oc.

According to Algorithm 1, we have that

[rT| [rT|
Tfl/Qy*[TTJ =T 1/2 Z ef = T-1/2 Z we A%y,
t=1 t=3
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Since wy is independent N (0,1), we have that, conditionally on the original sample,
T2yl ~ N (0, Ve (7))
with Vi (r) := T-2 200 (A2y,)%. As in Cavaliere and Taylor (2008), if
Vr (r) 2 /@2/ w(s)?ds (A.7)
0

pointwise for some positive constant x (independent of 7) then it holds that

T’1/2y*[.m =p @Wy () (A-8)
where w* := k( fol (s) ds)l/ 2 and Wy (r fo dB (n (s)) is a variance-transformed Brownian motion
with variance profile n (r ( fO ds) fo % ds. To show that (A.7) holds, first notice that
A%y, = 'yTAQDTt (T0) + A u¢, which implies that VT ( ) can be written as

rT] rT] [rT]
Vp(r)=T"1Y" (A u)? + 177! > (vpA’DTy (1)) > por! Z ) (v A2DTy (70))
t=3 t=3

where A’DT; (1¢) is a vector of m impulse dummies, i.e. its i-th element is given by I (t = |7, 7| + 1).
Hence, as vy = O (T_l/g) we have that

[T T

mp T IZ VP APDT, (r0))° < T Z VRAPDT; (10))° = T~ (Wyyr) = O (T72)
rel0,1 —

Similarly, we have that

LrT)

T
Sl[lp] 71! Z '7TA DT; (7’0)) < 7! Z |A2ut‘ "y’TAQDTt (To)’
rel0,1 t=3

T
< AT swful 3 [YrATDT (7o)
=1,... t=3

= 477! sup | (L'm]’yT\) =0, (T_l) )

EARAE)

Hence, for Vi (r) := T~ ! ZLTTJ (A? )2 we have that sup,.cp 1 |Vr (1) — Vi (r)| —p 0. Therefore, to
prove that (A.7) holds we need to show that Vi (1) converges to the right member of (A.7). Since
Aup = (—¢/T)ut—1 + £¢, we have that

A%y, = (—c/T)Aup—1 + Agy
= (=¢/T)uy_o+ (—¢/T)et—1 + 1 — €11

which implies, after some simple algebra, and using the facts that sup, |u;| = O, (T 1/ 2) and that &

has bounded second moments, that

[T |

sup VTr— IE et—atl = vr
rel0,1]
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where vt is of o, (1). Since &; — ;1 has the LP representation
o0 o0 o0 o0
€t —Et-1 = E Ci€i—i — E Ci—1€4—; = coet + E (ci —ci1) e E
i=0 i=1 i=1 i—0

with é& := ¢g and & = (¢; —¢i—1), @ = 1,2,..., we can proceed as in the proof of Theorem 2 in

Cavaliere and Taylor (2007) to show that

7! ZT; (et —ei1)* > ieg </Ow (u)2du> = 2 (2 ¢i(ci — CM)) </Ow (u)Qdu>

- a([uora)

with & == (2272, ¢ (ci —¢i+1))/2. This implies that Vi (r), and hence Vi (r), both converge in
probability to x? [ w 2 ds, as required. Hence (A.7) and therefore (A.8) hold.
By the bootstrap invariance principle (A.8) and the CMT we then find that

T2y ) Y1 " [ W (s)ds

T-3/2 Z?:LrTj tAy; 2, @ (W (1) — rWy(r f Wy (s)ds}

T-5/? ZfZLTTJ ty; E)p E*leng (s)ds.
analogously to (A.2)-(A.4) in the proof of Theorem 1. Further, paralleling the arguments in the proof
of Theorem 1, and using the fact that 771/ Qy*[TT | does not depend on c or k in the limit,

-1

i 10 o' 0
T1/2B* £>p 0 Qg mE(T)/ w*bo,g,n (Ag)
T1/2’y* 0 mg(m) Dgz(1) W*bo e (T)

giving the limit of 7/ QQTTT | as

T_1/2 TTTJ _ T_I/errTJ —T_I/Qﬂ* _T—I/QB*L TJ . 1/2 *,{(LTTJ LTTJ) oIr}

T1/2B
Tl/Z,Y*

r

(r—m7)oI}

/ —1
w r az mg(7)’ T*bo.cn
—p Wl (r) — '
o(r) [ (r—7)oIl ] [ ma(t) Da(T) ] [w*bo,c,n(ﬂ ]

= w*L075(T‘, T0, T, 0,7]) .

1/2 *

= Yirr) — + op(1)

We now consider the limit behaviour of §*? := (T — 2)~ Zt 5 €;% and show that for any € > 0

and conditionally on the original sample,

P (|62 -w? >¢) 0. (A.10)

e

1/25%

Using the weak convergence (in probability) result for T~ Uy and for the bootstrap estimators of

the deterministic components in (A.9), it is straightforward to see that, for any € > 0, we have that
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~ % _ T *
062 - (T - 2) ! thZ 6152

P*(

that

> 6) — 0 in probability. Hence, to prove (A.10) it suffices to show

> e> 2o, (A.11)

see also Cavaliere and Taylor (2008, proof of Theorem 2).
To prove (A.11) consider the equalities:

T T T

T
Y = 2 (A e = 13 (%) 5 Y () = Vi () +
t=2

t=2 t=2 t=2

with & = wt2—1 an independent sequence of centered x? (1) random variables, and f := 71 Zthz (Azyt)2 ;.
As shown above, see (A.7), we have that Vp (1) — &? [jw (s)*ds = @*2, in probability. Moreover,

conditionally on the sample,

E*(ff) = B (}g(ﬂyt)%ty:leégwyt)z(ﬂysf E(&€,) iﬂyt (&)
- (e - 5 (5 @) e

=l
B

N[ e

1

(7

since T—1 Zthl (er — st_1)4 is of Op (1) under Assumption A;. Hence, we finally have that, for any

(et — 5t—1)4> +o, (T71) =0, (T7)

€ > 0, a simple (conditional) version of Tchebychev’s inequality yields

E* (J7) »
€2

=0

P(|fr] > €) <

and hence that fr = oy (1). This proves (A.11).

Finally, we can write,

T-1/25%)2 — =151 (A j*)2
O Vit A DL LT
N
f*2L (1 0 2 _w*?
E)p w O,c( yTO, T, 777) w = DO’E(TO,Ta(]?n)‘

2\/5*2@*2 Jo Loa(r, 70, 7,0,n)%dr

As in the proof of Theorem 1, the stated result for MDF, then follows from this fixed T representation,
using the relevant arguments proved in Zivot and Andrews (1992) and an application of the CMT.
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