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Abstract

We study the semi-parametric estimation of the conditional mode of a random

vector that has a continuous conditional joint density with a well-defined global

mode. A novel full-system estimator is proposed and its asymptotic properties are

studied allowing for possibly dependent data. We specifically consider the estima-

tion of vector autoregressive conditional mode models and of structural systems of

linear simultaneous equations defined by mode restrictions. The proposed estimator

is easy to implement using standard software and the results of a small simulation

study suggest that it is well behaved in finite samples.
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1. INTRODUCTION

The mode is an interesting measure of location for multivariate distributions, not only

because of its intuitively appealing interpretation, but also because it is currently the

only practical multivariate measure of location that is robust in the sense that it is not

sensitive to perturbations of the tails of the distribution.1 Indeed, the multivariate mean

is well known not to be robust and other measures of location are not easy to generalize

to the multivariate case. For example, Koenker (2005, p. 272) states that the “search for

a satisfactory notion of multivariate quantiles has become something of a quest for the

statistical holy grail”. The interest of the multivariate mode is reflected by the continued

attention that it has received in the literature since the pioneering work by Konakov

(1973), Samanta (1973) and Sager (1978, 1979); see, e.g., the contributions by Abraham,

Biau, and Cadre (2003), Mokkadem and Pelletier (2003), Klemelä (2005), and Hsu and

Wu (2013).

The attractive properties of the multivariate mode extend naturally to the conditional

case, and the conditional mode of a multivariate distribution is likely to be of interest

in areas such as economics that have systems of equations at their core. For instance, in

a standard supply and demand system, the conditional multivariate mode will be infor-

mative about how the relevant covariates affect the modal realization of the equilibrium

price-quantity pair. When the variates have skewed distributions and are not conditionally

independent, the difference between the modal value of the pair and the pair of marginal

modal (or mean) values can be substantial. Likewise, the conditional multivariate mode

may also be of interest as a predictor.2 For example, the Bank of England’s quarterly

Inflation Report presents parametrically estimated mode-based forecasts for the inflation

1The importance of possible outliers in a multivariate context is highlighted, for example, in Tsay,

Peña, and Pankratz (2000) and Galeano, Peña, and Tsay (2006).
2For the univariate case, the use of the conditional mode as a predictor was emphasized by Collomb,

Härdle, and Hassani (1987) and more recently by Yao and Li (2014a), who noted that, for a given level

of confidence, prediction intervals constructed around the conditional mode are generally shorter than

those constructed around other predictors.
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and output, but it might be also interesting to consider a predictor based on the mode of

the joint distribution of the two variates.

In economics, systems of equations are often dynamic; that is the case, for example, of

the systems of simultaneous equations considered by Haavelmo (1943), and of the popular

vector autoregressive models (Sims, 1980). Therefore, it is of particular interest to study

the estimation of the multivariate conditional mode in a time series context, explicitly

allowing for dynamic specifications and dependent data. Estimation of the univariate

conditional mode allowing for dependent data was pioneered by Collomb, Härdle, and

Hassani (1987). However, because in general the mode of a multivariate distribution is

not the vector of the marginal modes, multivariate mode regression cannot be performed

using single-equation estimators developed for the univariate case.

In this paper we consider the semi-parametric estimation of the conditional multivariate

mode, or multivariate mode regression, for a random vector that has a continuous con-

ditional joint density with a well-defined global mode.3 We develop a novel full-system

conditional mode regression estimator which can be seen as a multivariate generalization

of the estimator introduced by Kemp and Santos Silva (2012) and that, as far as we are

aware, is the first conditional multivariate mode estimator.4 We derive the asymptotic

properties of the estimator allowing for possibly dependent data and therefore, as a by-

product, we generalize to the time series context both the results of Kemp and Santos

Silva (2012) and previous work on unconditional multivariate mode estimation.

We consider two particular cases where the methods we propose can be of interest.

We start by studying the estimation of vector autoregressive conditional mode models

and then consider the estimation of systems of linear simultaneous equations defined by

conditional mode restrictions. In the latter case we study the conditions under which it

is possible to identify the structural parameters of interest, both in the context of classic

systems of simultaneous equations and in structural vector autoregressive models.

3As in Lee (1989, 1993) and Kemp and Santos Silva (2012), the estimator is semi-parametric in the

sense that the conditional mode is specified as a parametric function but only mild assumptions are made

about the conditional distribution of interest.
4See also the related work by Yao and Li (2014a and 2014b).
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The remainder of the paper is organized as follows. The next section sets up the problem

and presents the main results on the estimation of multivariate dynamic conditional mode

models. Section 3 considers the estimation of systems of linear simultaneous equations

defined by conditional mode restrictions. Section 4 presents the results of an illustrative

simulation study, and Section 5 concludes. The proofs of all theorems and other technical

details are presented in an appendix.

2. MAIN RESULTS

2.1. Model and estimator

We consider systems of the form

Yt = A0Zt + Ut, (1)

where Yt and Ut are G×1 random vectors, Zt is a K×1 vector that can contain exogenous

variables and lagged values of Yt, and A0 is a G×K matrix of unknown parameters such

that A0 ∈ A, where A is the parameter space.

Systems of the form of (1) are often used in economics. Examples include the re-

duced form of systems of simultaneous equations (Haavelmo, 1943), systems of seemingly

unrelated equations (Zellner, 1962), and vector autoregressive models (Sims, 1980). How-

ever, all these systems are generally interpreted as representing conditional expectations,

whereas we will consider the case in which the system defines a conditional multivariate

mode.

Suppose that we have a sample {(Yt, Zt)}Tt=1 of size T from the strictly stationary ergodic

sequence of random vectors {(Yt, Zt)}∞t=−∞, and let Ft−1 denote the σ-algebra generated

by {(Yt−1−j, Zt−j)}∞j=0. Also, let P = (Ω,F , P ) denote the underlying probability space for

{(Yt, Zt)}∞t=−∞ where, as usual, Ω denotes the sample space, F is the σ-algebra of events,

and P is a probability measure. We are interested in the case where the conditional

mode of Ut given Ft−1, denoted Mode (Ut|Ft−1), is equal to zero. Then, because Zt

is measurable with respect to Ft−1 for each t, the conditional mode of Yt given Ft−1,
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denoted Mode (Yt|Ft−1), satisfies:

Mode (Yt|Ft−1) = Mode (A0Zt + Ut|Ft−1) = A0Zt.

As in the pioneering work of Lee (1989, 1993) and in Kemp and Santos Silva (2012),

we obtain our estimator for the (GK × 1) vector α0 ≡ vec (A0) as the minimizer of a

loss function, with the difference being that here the loss function is multivariate. In

particular, we consider a loss function of the form

Lt (Yt, Zt, αA) = 1− γK
(
Yt − AZt

δT

)
, (2)

where αA ≡ vec (A), K (·) denotes a multivariate smooth kernel function, γ = K (0)−1 is a

scaling constant, and δT is a non-stochastic strictly positive bandwidth that depends on

T .5 Notice that, as the bandwidth approaches 0, Lt (Yt, Zt, αA) approaches a multivariate

version of the 0-1 loss, whose expected value is minimized when the mode is used as

the predictor (see, e.g., Ferguson, 1967, or Hastie, Tibshirani, and Friedman, 2009).6

Therefore, as shown below, the minimizer of the expectation of Lt (Yt, Zt, αA) will approach

the conditional mode as δT → 0.

Minimizing the sample analog of the expectation of (2) is equivalent to maximizing

QT (αA) ≡ T−1

T∑
t=1

δ−GT K
(
Yt − AZt

δT

)
, (3)

which leads to the estimator of interest, a multivariate version of the mode regression

estimator of Kemp and Santos Silva (2012):

α̂T = arg max
A∈A

QT (αA) . (4)

5For simplicity, here we consider the same bandwidth for all equations. However, all our results hold

if the scale of the bandwidth is equation specific, as in the simulations presented in Section 4.
6The 0-1 loss function is often used in classification problems when the variate of interest is discrete.

For continuous variables, the centre of the modal interval is the optimal predictor when the objective

is to maximize the probability that the prediction is within a given tolerance of the actual realization

(Ferguson, 1967, Manski, 1991). This corresponds to the use of the step loss function, a practice with a

long tradition in the statistical analysis of quality control problems (e.g., Trietsch, 1999). As in our case,

the mode also emerges as the optimal predictor when the tolerance goes to zero and therefore the step

loss function approaches the 0-1 loss function.
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Although many multivariate smooth kernels are available (see, for example, Scott,

1992), here we focus on the multiplicative standard normal kernel; that is, K
(
Yt−AZt
δT

)
=

(2π)−G/2 exp
(
− (Yt−AZt)′(Yt−AZt)

2δ2T

)
.7 While this choice of kernel is not innocuous,8 the

multiplicative normal kernel has several important advantages and in particular, and in

parallel with what was found by Kemp and Santos Silva (2012), this choice is attrac-

tive because it generates a loss function which has both the multivariate mode and the

multivariate mean as minimizers in limiting cases.

Indeed, under the assumptions to be defined below, minimizing the expectation of (2)

when K (·) is the multiplicative normal kernel is equivalent to solving the following set of

moment conditions

E

[
exp

(
−(Yt − AZt)′ (Yt − AZt)

2δ2
T

)
(Zt ⊗ IG) (Yt − AZt)

]
= 0. (5)

It is clear that (5) defines a multivariate weighted least squares problem where the weights

are functions of the residuals of theG equations in the system, implying that the equations

cannot be estimated one-by-one. As noted earlier, this is because in general the mode of a

multivariate distribution is not the vector of the marginal modes and therefore estimation

of A0 has to be performed using a full-system estimator. However, the weights approach

a constant as δT passes to infinity and consequently, for large values of the bandwidth

parameter, minimizing E [Lt (Yt, Zt, αA)] is equivalent to estimating each equation by least

squares. To put it differently, when K (·) is the multiplicative standard normal kernel,

minimizing E [Lt (Yt, Zt, αA)] is equivalent to solving a set of moment conditions that

estimate Mode (Yt|Ft−1) when δT → 0, or E (Yt|Ft−1) when δT →∞.

These results show that, for our choice of kernel, minimization of (2) defines a continuum

of multivariate conditional measures of central tendency of which the two polar cases

have particularly interesting interpretations. For any other positive and finite choice of

δT , minimization of E [Lt (Yt, Zt, αA)] defines a measure of location which, in some sense,

7Notice, however, the our asymptotic results will be obtained under much more general conditions on

the chosen kernel.
8As in Eddy (1980) and Romano (1988), it may be possible to obtain estimators with somewhat

improved asymptotic properties by using different kernels. However, this would also require strengthening

some assumptions.
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is between the mean and the mode, and can be viewed as a multivariate generalization

of the measure of location implicitly defined by a particular member of the class of M-

estimators introduced by Huber (1973). That is, for 0 < δT < ∞ our estimator is a

multivariate version of a robust M -estimator. As in Kemp and Santos Silva (2012), this

has important implications for the choice of bandwidth because δT not only determines the

properties of the estimator but also, and more importantly, defines the conditional measure

of central tendency that is estimated. Hence, δT should be chosen by the researcher and

not determined by a data-driven method such as cross validation.

The moment conditions in (5) are also informative about the choice of algorithm to

maximize (2). Because QT (αA) is differentiable, it can be maximized using a Newton-type

algorithm of the kind typically available in standard econometrics software. Moreover,

(5) shows that an algorithm of this kind may be implemented as a multivariate version of

the iterative reweighted least squares algorithm often used in robust regression estimation

(e.g., Li, 1985, pp. 335-6). Finally, (5) also makes clear that, for large values of δT , (2)

will have a single maximum. However, that will not be the case for small values of δT and

therefore the researcher needs to ensure the estimates obtained correspond to the global

maximum of QT (αA).

2.2. Asymptotic results

We now consider the asymptotic properties of the estimator of α0 = vec (A0), which is

defined by (4); the proofs of all theorems are provided in Appendix A1.

The following assumptions will be used in obtaining our results; throughout we use

‖M‖ to denote the non-negative square-root of the sum of the squares of the elements

of any array M , i.e., ‖M‖ = [trace (M ′M)]1/2, and use the following convention for the

derivatives of a vector-valued function F (a) with respect to the vector a: F (1)(a) ≡

∂F (a)/∂a′, F (2)(a) ≡ ∂2F (a)/∂a∂a′, F (3)(a) ≡ ∂vec(F (2)(a))/∂a′.

1. (Stationarity and Ergodicity) {(Yt, Zt)}∞t=−∞ is a strictly stationary ergodic sequence

of random vectors.
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2. (Conditional Density I) For each −∞ < s < ∞, let Fs−1 denote the σ-algebra

generated by {(Ys−1−j, Zs−j)}∞j=0; then for each t there is a version of the con-

ditional density function of Ut given Ft−1, denoted by ft (·|Ft−1), such that: (i)

supt,u,ω ft (u|Ft−1) < ∞; (ii) ft (u|Ft−1) ≤ ft (0|Ft−1) with equality if and only if

u = 0; (iii) ft (u|Ft−1) continuous in u for all (t, ω) with ω ∈ Ω.

3. (Parameter Space) A is compact.

4. (Moments I) E (‖Zt‖) <∞.

5. (No Multicollinearity) Pr (AZt = 0) < 1 for any fixed A ∈ RG×K such that A 6= 0.

6. (Kernel Function I) K (·) : RG → R satisfies (i)
∫
RG K (u) du = 1 with∫

RG |K (u)| du <∞; (ii) supu∈RG |K (u)| <∞; (iii) supu∈RG
∥∥K(1) (u)

∥∥ <∞.
7. (Bandwidth I) {δT}∞T=1 is a sequence of finite strictly positive constants such that:

(i) δT = o (1); (ii) ln (T ) /
(
TδGT

)
= o (1).

8. (Conditional Density II) (i) ft (u|Ft−1) is three times differentiable with respect to

u for all Ft−1 such that supt,u,ω

∥∥∥f (j)
t (u|Ft−1)

∥∥∥ <∞, j = 1, 2, 3; (ii) f (2)
t (0|Ft−1) is

negative definite for all ω ∈ Ω.

9. (Interior Parameter Value) A has a non-empty interior, denoted int (A) and A0 ∈

int (A).

10. (Moments II) E
(
‖Zt‖G+4+ξ

)
<∞, for some ξ > 0.

11. (Kernel Function II) (i)
∫
RG uK (u) du = 0; (ii) K (·) is three times differentiable

such that supu
∥∥K(j) (u)

∥∥ <∞ for j = 2, 3; (iii)
∫
RG
∥∥K(j) (u)

∥∥2
du <∞ for j = 1, 2;

(iv) limM→∞ supu:‖u‖≥M |K (u)| = 0; (v) limM→∞ supu:‖u‖≥M
∥∥K(1) (u)

∥∥ = 0; (vi)∫
‖u‖2 |K (u)| du <∞.

12. (Bandwidth II) The sequence {δT}∞T=1 is such that: (i)
ln(T )

TδG+4T

= o(1); (ii) TδG+6
T =

o (1).

These assumptions are remarkably similar to those in Kemp and Santos Silva (2012).

Indeed, the major differences are obviously A1 and A2 and the fact that the other as-

sumptions are adapted to take into account the multivariate nature of the problem being

considered here. We note, however, that although A10 is analogous to Assumption B1 in

8



Kemp and Santos Silva (2012), it is potentially more restrictive in the context we are con-

sidering here. Indeed, if Zt includes lagged values of Yt, something that was not admitted

by Kemp and Santos Silva (2012), A10 also imposes the existence of finite moments of Yt,

which otherwise is not required.

The following theorem establishes the existence of α̂T , the estimator of interest.

Theorem 1 (Existence) Under Assumptions A1, A3, A6 and A7 there exists a random

variable α̂T such that:

Pr (α̂T ∈ vec (A)) = 1,

Pr (QT (αA) ≤ QT (α̂T ) , ∀A ∈ A) = 1,

where:

vec (A) = {α : α = vec (A) for someA ∈ A} .

The consistency of α̂T is established by the following theorem.

Theorem 2 (Consistency) Under Assumptions A1—A7, then α̂T = α0 + op (1).

We next establish the asymptotic normality of α̂T and its rate of convergence.

Theorem 3 (Asymptotic Normality I) Under Assumptions A1—A12, defining:

M ≡
∫
RG
K(1) (u)K(1) (u)′ du,

B0 ≡ E
[
ft (0|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
,

D0 ≡ E
[
(Zt ⊗ IG) f

(2)
t (0|Ft−1) (Zt ⊗ IG)′

]
,

then: √
TδG+2

T (α̂T − α0)
d−→ N

(
0, D−1

0 B0D
−1
0

)
.

Given the restrictions imposed on the bandwidth, this result implies that α̂T converges

at a rate that can be made arbitrarily close to T
2

6+G . Therefore, the estimator is affected

by a form of the “curse of dimensionality”in that its rate of convergence goes down when

G increases. This, of course, is a consequence of the fact that non-parametric density
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estimation is less “local”in high dimensions, i.e., larger bandwidths have to be used when

the dimension of the problem increases (see A12).9

Finally, the next theorem establishes the consistency of the usual “sandwich”covariance

matrix estimator.

Theorem 4 (Consistent Asymptotic Variance Matrix) Under Assumptions A1—A12,

defining:

B̂T (αA) ≡ (TδT )−1
T∑
t=1

(Zt ⊗ IG)K(1)

(
Yt − AZt

δT

)
K(1)

(
Yt − AZt

δT

)′
(Z ′t ⊗ IG) ,

D̂T (αA) ≡
(
TδG+2

T

)−1
T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − AZt

δT

)
(Zt ⊗ IG)′ ,

then:

D̂T (α̂T )−1 B̂T (α̂T ) D̂T (α̂T )−1 = D−1
0 B0D

−1
0 + op (1) .

3. SYSTEMS OF LINEAR SIMULTANEOUS EQUATIONS

In this section we discuss how our earlier results can be used in the context of systems

of linear simultaneous equations, which have been a centrepiece of econometrics since the

very early days. In particular, we consider standard simultaneous equation systems of the

form

Y ′t Γ0 + Z ′tΨ0 = V ′t , t = 1, . . . , T, (6)

where Γ0 and Ψ0 are, respectively, G × G and K × G matrices of unknown structural

parameters, Vt is a G × 1 random vector such that Mode (Vt|Ft−1) = 0, and Yt, Zt are

defined as before. Additionally, we assume that Γ0 is non-singular and note that (6)

can represent either a classic system of simultaneous equations (Haavelmo, 1943) or a

structural vector autoregressive model (Bernanke, 1986).

The method developed in the previous section cannot generally be used to directly

estimate (6) because of the evident simultaneity issue. However, it is possible to show

9As in Lee (1989, 1993), it is also possible to consider an estimator with a fixed bandwidth. Under

suitable regularity conditions, such estimator is
√
T -consistent.
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that our earlier results can be used to estimate the parameters of the reduced form of the

model, which is given by

Y ′t = Z ′tA
′
0 + U ′t , (7)

with A′0 = −Ψ0Γ−1
0 and U ′t = V ′t Γ

−1
0 . Indeed, it is possible to show that Mode (Vt|Ft−1) =

0 implies that Mode (ΥVt|Ft−1) = 0 for any non-stochastic non-singular matrix Υ, and in

turn this result implies that Mode (Ut|Ft−1) = 0.10 Hence, (7) is just the transpose of a

system of the form of (1), and can be estimated in a similar fashion. However, typically

economists are not interested in learning about A0 and therefore it is interesting to study

the conditions under which it is possible to identify Γ0 and Ψ0.

Identification of the structural parameters in Γ0 and Ψ0 requires the researcher to be

able to impose enough restrictions on (6); these can involve only the elements of Γ0 and

Ψ0, or also additional restrictions on the conditional distribution of Vt; we consider the

two cases separately.

Restrictions on the conditional distribution of Vt are not needed when restrictions on

Γ0 and Ψ0 are enough to ensure that the whole system is identified; Richmond (1974)

provides a necessary and suffi cient condition for system identification based on linear

restrictions on Γ0 and Ψ0.

Let β0 = (vec (Γ0)′ , vec (Ψ0)′)′ and notice that the equality A′0 = −Ψ0Γ−1
0 implies

A′0Γ0 + Ψ0 = 0, which can be vectorized as (IG ⊗ A′0, IGK)β0 = 0. Furthermore, assume

that Γ0 and Ψ0 satisfy the additional set of m linear restrictions

Φβ0 = ϕ,

where Φ is a m × G (G+K) matrix and ϕ is a m-dimensional vector. Richmond (1974,

Theorem 5) shows that the system is identified if and only if

rank((IG ⊗ A′0, IGK)′,Φ′) = G (G+K) . (8)

10Let St and Wt be two random vectors such that St = ΥWt, and let fSt(st|Ft−1) and

fWt(wt|Ft−1) denote the conditional density functions of St and Wt, respectively. Note that because

fSt(st|Ft−1) = fWt

(
Υ−1st|Ft−1

)/
|det (Υ)|, we have that if Mode (Wt|Ft−1) = 0, then fSt(st|Ft−1) =

fWt

(
Υ−1st|Ft−1

)/
|det (Υ)| ≤ fWt

(0|Ft−1)/ |det (Υ)| = fSt(0|Ft−1), and therefore Mode (St|Ft−1) = 0.

Uniqueness of the conditional mode of St follows from the fact that Υ is non-singular.
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Note that condition (8) implies that m ≥ ρ ≥ G2, where ρ ≡ rank(Φ), and the para-

metric restrictions Φβ0 = ϕ imply a partition of β0 into two subvectors β
r
0 and β̄

r
0 such

that β̄r0 = Φrβ
r
0 + ϕr, where Φr is a ρ × (G2 + GK − ρ) matrix and ϕr, β

r
0, and β̄

r
0 are

vectors of dimensions ρ, G (G+K) − ρ, and ρ, respectively. Furthermore, imposing the

restriction β̄r = Φrβ
r + ϕr on Ψ and Γ we obtain Ψr and Γr.

For identified models, we estimate βr0 and estimates of the remaining parameters of β0

are obtained via the equation β̄r0 = Φrβ
r
0 + ϕr. The estimator can be implemented using

the following two-stage procedure. First, obtain α̂T , B̂T (α̂T ), and D̂T (α̂T ) by estimating

the transpose of (7) using the multivariate conditional mode estimator defined by (4).

Second, estimate βr0 by solving the following minimum distance problem:

β̂
r

T = arg min
βr∈Br

[
α̂T + vec

((
ΨrΓ

−1
r

)′)]′ [
Âvar (α̂T )

]−1 [
α̂T + vec

((
ΨrΓ

−1
r

)′)]
, (9)

where Âvar (α̂T ) = D̂T (α̂T )−1 B̂T (α̂T ) D̂T (α̂T )−1 p→ D−1
0 B0D

−1
0 and Br denotes the pa-

rameter space of βr.11

The asymptotic properties of this two-stage estimator are closely related to those of

α̂T . To establish these properties we need the following additional assumptions where we

use the following definitions: C(βr) = ∂ vec (ΨrΓ
−1
r ) /∂βr′ and C0 = C(βr0).

13. (Identification) The matrices Γ0, A0, and Φ are such that: (i) rank (Γ0) = G; (ii)

rank((IG ⊗ A′0, IGK)′,Φ′) = G (G+K).

14. (Parameter Space - II) Br is compact.

15. (Rank Condition) rank(C0) = G (G+K)− ρ.

16. (Interior Parameter Value - II) Br has a non-empty interior, denoted int (Br), and

βr0 ∈ int (Br).

The following result establishes the consistency of the proposed procedure.

Theorem 5 (Consistency II) Under Assumptions A1—A7, A13 and A14: β̂
r

T

p→ βr0.

11Notice that when the system is exactly identified the minimum distance estimator is not needed and

estimates of the structural parameters can be obtained just by solving the system α̂T+vec
((

ΨrΓ
−1
r

)′)
= 0

for Γr and Ψr.
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Then, theorems 1—4 imply the following result.

Theorem 6 (Asymptotic Normality II) Under Assumptions A1—A16:√
TδG+2

T

(
β̂
r

T − βr0
)

d−→ N
(

0,
[
C ′0D

−1
0 B0D

−1
0 C0

]−1
)
.

There are models in which the available restrictions on Γ0 and Ψ0 are not enough to

ensure that Assumption A13 holds, but identification can be obtained by imposing restric-

tions on the conditional distribution of Vt. For example, assumptions on the conditional

distribution of Vt are heavily used in the identification of structural vector autoregressive

models because in this case restrictions on Ψ0 are generally diffi cult to justify. In this

context, it is often assumed that the conditional covariance matrix of Vt is diagonal (see,

e.g., Lütkepohl, 2005), reflecting the fact that the structural errors are “primitive”, in the

sense that they do not have common causes (Bernanke, 1986).

Naturally, restrictions on the conditional covariance of Vt do not help in the identifica-

tion of (6) because the model does not impose any structure on the conditional moments

of Vt. However, there are cases in which the stronger condition that the elements of Vt

are conditionally independent can be used to identify Γ0 and Ψ0. Strictly speaking the

assumption that the elements of Vt are conditionally independent is much stronger than

the assumption that they are conditionally uncorrelated. Nonetheless, conditional inde-

pendence is very much in line with the idea that the structural errors are “primitive”

and it is perhaps the most natural justification for the absence of conditional correlation.

Moreover, the absence of conditional correlation is often coupled with the assumption of

normally distributed errors (see, e.g., Lütkepohl, 2005), and together these assumptions

imply conditional independence.

Estimation under conditional independence of the elements of Vt is particularly attrac-

tive because in this case the multivariate mode is just the vector of the marginal modes,

and therefore it is possible to escape the “curse of dimensionality” by estimating each

equation separately.

Estimation equation-by-equation of (6) under conditional independence may be possible

by adapting Sargan’s (1958) approach to the estimation of models defined by conditional

mode restrictions, much in the same way Sakata (2007) adapted it to the estimation of

13



models defined by conditional median restrictions. The details of such method are, how-

ever, beyond the scope of the present paper and are left for future research. Nevertheless,

our earlier results can easily be used in the leading case where the elements of Vt are

assumed to be conditionally independent and Γ0 is restricted to be a triangular matrix

with ones on the main diagonal.

Without loss of generality, suppose that Γ is lower triangular so that (6) can be written

as

ytg =
G∑

j=g+1

−γjgytj +

K∑
k=1

ψkgztk + vtg, g = 1, . . . , G− 1, & t = 1, . . . , T,

ytG =

K∑
k=1

ψkGztk + vtG, t = 1, . . . , T,

where yti, zti, and vti denote the i-th element of the vectors Yt, Zt, and Vt, and γjg and

ψkg denote elements of the matrices Γ0 and Ψ0.

By assumption the mode of vtG conditional on Ft−1 is zero and hence

Mode (ytG|Ft−1) =
K∑
k=1

ψkGztk. (10)

In addition, by assumption, vtg is conditionally independent of (vtg+1, · · · , vtG) given Ft−1,

with a conditional mode of 0. Hence it follows that

Mode (ytg|Ft−1) =
G∑

j=g+1

−γjgytj +
K∑
k=1

ψkgztk, g = 1, . . . , G− 1. (11)

Equations (10) and (11) show that in this case it is possible to estimate each equation

separately by using the univariate estimator proposed in Kemp and Santos Silva (2012);

Section 2 provides the asymptotic results needed for valid inference in this context.

4. SIMULATION EVIDENCE

In this section we present the results of simulation experiments illustrating the finite

sample performance of the proposed estimator. In particular, in these experiments data

for t = −99, . . . , T are generated from the system

yg,t = ag0 + ag1y1,t−1 + ag2y2,t−1 + ug,t, g ∈ {1, 2} ,

14



with yg,−100 = 0 and

ug,t = εg,t
exp (h (yg,t−1 − 4))√

Var (εg,t)
.

That is, for h = 0 the errors are homoskedastic with variance one, and for h 6= 0 the

errors exhibit multiplicative heteroskedasticity.

We perform two sets of experiments. In the first one the errors ε1,t and ε2,t are generated

independently as the log of independent draws from gamma-distributed random variables

with mean θg/κg and variance θg/κ2
g, for θg, κg > 0. As in Kemp and Santos Silva (2012),

we set θg = κg to ensure that εg,t has zero mode, and set κ1 = 5 and κ2 = 0.05 to generate

distributions of the two errors with very different degrees of skewness. Because ε1,t and

ε2,t are independent, the system can be estimated either equation-by-equation or using the

full-information estimator described in Subsection 2.1. In these experiments we use both

estimators to gain some insight into the costs of the “curse of dimensionality” incurred

when using the system estimator.

In the second set of experiments ε1,t is obtained as the log of independent draws from

a gamma-distributed random variable with mean κ−1
1 (κ1 + 1) and variance κ−2

1 (κ1 + 1),

and ε2,t is obtained as the product of exp (ε1,t) by the log of independent draws from a

gamma-distributed random variable, independent of ε1,t, with mean 1 and variance κ−1
2 .

As shown in Appendix 2, the mode of the joint density f (ε1,t, ε2,t) is at ε1,t = ε2,t = 0, and

we performed simulations with κ1 = κ2 = 2. Because in this second set of experiments

ε1,t and ε2,t are not independent, the system-estimator has to be used.

Notice that, for both sets of experiments, in the homoskedastic case the conditional

expectations E (yg,t|y1,t−1, y2,t−1) are linear functions of the regressors with slopes ag1 and

ag2; that is, these parameters are identified by a standard vector autoregression when

h = 0. Therefore, for the experiments with h = 0, it is possible to compare the effi ciency

of the mean and mode estimators of the slope parameters. However, in the heteroskedastic

case the conditional expectations are non-linear in yg,t−1 and therefore the parameters of

interest cannot be consistently estimated using a standard linear vector autoregression.

In all experiments we set a10 = a12 = a20 = a21 = 0, and a11 = a22 = 0.5, and estimation

is performed for t = 1, . . . , T , with T ∈ {250, 1000, 4000, 16000}, and h ∈ {0.0, 0.2}.

In each run we estimate both a standard vector autoregression and the autoregressive
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conditional mode model. The mode estimator was implemented using the (multivariate)

iterative weighted least squares estimator described in Subsection 2.1, using equation

specific smoothing parameters. In particular, the smoothing parameter for equation g,

denoted δg,T , is defined as δg,T = 1.6madgT−d, where madg denotes the median of the

absolute deviation from the median least squares residual for equation g, and d = 0.143

for the univariate estimator used in the first set of experiments, and d = 0.126 for the

bivariate estimator.12

Table 1 contains the mean and standard errors of the estimates of each parameter

obtained in 10000 replicas of experiment 1. The results obtained when the (potentially

misspecified) system is estimated by least squares (labelled “Mean”) illustrate the well-

known properties of the estimator in this context: the estimator is biased but consistent

and its rate of convergence is
√
T . The results obtained both with the univariate and with

the bivariate autoregressive conditional mode estimators (respectively labelled “Univariate

mode”and “Bivariate mode”) are reminiscent of those reported by Kemp and Santos Silva

(2012) in that the slope parameters are generally estimated with little bias. As for the

estimates of the intercepts, the biases are more noticeable, especially for g = 2 and h = 0,

but naturally they decrease with the sample size. The results in Table 1 also show that,

at least with this design, there is little to choose between the univariate and bivariate

mode estimators. Indeed, the bivariate mode estimator, which uses a larger bandwidth,

typically leads to slightly larger biases but to smaller standard errors, suggesting that the

“curse of dimensionality”is not particularly severe in this context.

As noted above, the mean and both mode regression estimators identify the same slope

parameters when h = 0. Therefore, for these cases, it is meaningful to compare the results

obtained by mean and mode regression. As in Kemp and Santos Silva (2012), we find

that for the low skewness case (g = 1, κ1 = 5) the mean regression estimator has much

smaller standard errors than the mode estimators, but that for the high skewness case

12For G = 2, the exponent of T has to be strictly between −16 and −1
6+G , and the rate of convergence

improves as the exponent approaches its upper bound. The value of 1.6 as a scaling factor is inspired

by Silverman’s (1986, p. 48) rule-of-thumb and takes into account that for the normal distribution σ =

1.4826mad.

16



Table 1: Simulation results with independent errors and κ1 = 5 and κ2 = 0.05
g = 1 g = 2

h T Regression Const. y1,t−1 y2,t−1 Const. y1,t−1 y2,t−1

0.0 250 Mean −0.226 0.488 0.000 −0.893 0.000 0.488
(0.120) (0.055) (0.056) (0.119) (0.056) (0.055)

Univariate mode −0.053 0.488 0.003 −0.301 0.001 0.502
(0.250) (0.115) (0.119) (0.087) (0.041) (0.041)

Bivariate mode −0.059 0.488 0.003 −0.324 0.000 0.501
(0.227) (0.104) (0.108) (0.087) (0.040) (0.040)

1000 Mean −0.222 0.497 0.000 −0.878 0.000 0.497
(0.059) (0.027) (0.028) (0.059) (0.027) (0.028)

Univariate mode −0.032 0.498 0.002 −0.250 0.000 0.501
(0.153) (0.071) (0.073) (0.042) (0.020) (0.019)

Bivariate mode −0.040 0.497 0.001 −0.276 0.000 0.501
(0.133) (0.062) (0.063) (0.041) (0.019) (0.019)

4000 Mean −0.220 0.499 0.000 −0.875 0.000 0.499
(0.029) (0.014) (0.014) (0.030) (0.014) (0.014)

Univariate mode −0.023 0.498 0.001 −0.207 0.000 0.500
(0.096) (0.045) (0.045) (0.021) (0.010) (0.010)

Bivariate mode −0.029 0.498 0.001 −0.237 0.000 0.500
(0.080) (0.037) (0.038) (0.020) (0.009) (0.010)

16000 Mean −0.220 0.500 0.000 −0.873 0.000 0.500
(0.015) (0.007) (0.007) (0.015) (0.007) (0.007)

Univariate mode −0.017 0.499 0.000 −0.169 0.000 0.500
(0.062) (0.029) (0.029) (0.011) (0.005) (0.005)

Bivariate mode −0.022 0.500 0.000 −0.200 0.000 0.500
(0.050) (0.023) (0.023) (0.010) (0.005) (0.005)

0.2 250 Mean −0.102 0.469 0.000 −0.394 0.000 0.426
(0.054) (0.056) (0.064) (0.048) (0.051) (0.052)

Univariate mode −0.022 0.490 0.004 −0.122 0.000 0.496
(0.115) (0.113) (0.133) (0.034) (0.037) (0.037)

Bivariate mode −0.025 0.490 0.003 −0.132 0.000 0.494
(0.104) (0.103) (0.121) (0.034) (0.036) (0.036)

1000 Mean −0.100 0.478 0.000 −0.389 0.000 0.433
(0.027) (0.028) (0.032) (0.024) (0.025) (0.026)

Univariate mode −0.014 0.500 0.002 −0.100 0.000 0.498
(0.070) (0.069) (0.080) (0.016) (0.018) (0.017)

Bivariate mode −0.017 0.500 0.001 −0.111 0.000 0.497
(0.061) (0.060) (0.070) (0.016) (0.017) (0.017)

4000 Mean −0.099 0.480 0.000 −0.388 0.000 0.435
(0.013) (0.014) (0.016) (0.012) (0.013) (0.013)

Univariate mode −0.010 0.500 0.001 −0.082 0.000 0.499
(0.044) (0.043) (0.050) (0.008) (0.009) (0.009)

Bivariate mode −0.012 0.500 0.001 −0.094 0.000 0.498
(0.037) (0.036) (0.042) (0.008) (0.009) (0.009)

16000 Mean −0.099 0.481 0.000 −0.388 0.000 0.435
(0.007) (0.007) (0.008) (0.006) (0.006) (0.006)

Univariate mode −0.007 0.501 0.000 −0.066 0.000 0.500
(0.029) (0.028) (0.032) (0.004) (0.005) (0.004)

Bivariate mode −0.009 0.501 0.000 −0.079 0.000 0.499
(0.023) (0.023) (0.026) (0.004) (0.004) (0.004)
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Table 2: Simulation results with dependent errors and κ1 = κ2 = 2
g = 1 g = 2

h T Regression Const. y1,t−1 y2,t−1 Const. y1,t−1 y2,t−1

0.0 250 Mean 0.374 0.488 0.000 −0.295 0.000 0.489
(0.080) (0.056) (0.057) (0.082) (0.057) (0.055)

Bivariate mode 0.167 0.489 −0.003 −0.063 −0.002 0.498
(0.217) (0.147) (0.157) (0.117) (0.080) (0.082)

1000 Mean 0.367 0.497 0.000 −0.290 0.000 0.497
(0.040) (0.028) (0.028) (0.040) (0.028) (0.028)

Bivariate mode 0.132 0.495 −0.003 −0.046 −0.001 0.499
(0.140) (0.096) (0.098) (0.065) (0.046) (0.046)

4000 Mean 0.366 0.499 0.000 −0.288 0.000 0.499
(0.020) (0.014) (0.014) (0.020) (0.014) (0.014)

Bivariate mode 0.102 0.499 0.000 −0.035 0.000 0.500
(0.093) (0.064) (0.065) (0.039) (0.028) (0.028)

16000 Mean 0.366 0.500 0.000 −0.288 0.000 0.500
(0.010) (0.007) (0.007) (0.010) (0.007) (0.007)

Bivariate mode 0.078 0.500 0.000 −0.026 0.000 0.500
(0.064) (0.044) (0.045) (0.025) (0.017) (0.017)

0.2 250 Mean 0.168 0.523 −0.001 −0.132 −0.001 0.466
(0.036) (0.056) (0.071) (0.036) (0.049) (0.054)

Bivariate mode 0.068 0.513 −0.025 −0.027 −0.002 0.497
(0.094) (0.139) (0.190) (0.050) (0.069) (0.080)

1000 Mean 0.166 0.532 0.000 −0.130 −0.001 0.473
(0.018) (0.027) (0.035) (0.018) (0.024) (0.027)

Bivariate mode 0.052 0.514 −0.024 −0.019 −0.001 0.500
(0.059) (0.090) (0.120) (0.028) (0.039) (0.043)

4000 Mean 0.165 0.534 0.000 −0.129 −0.001 0.476
(0.009) (0.014) (0.017) (0.009) (0.012) (0.014)

Bivariate mode 0.040 0.514 −0.019 −0.015 0.000 0.501
(0.039) (0.059) (0.081) (0.017) (0.023) (0.025)

16000 Mean 0.165 0.535 0.000 −0.129 −0.001 0.476
(0.004) (0.007) (0.009) (0.004) (0.006) (0.007)

Bivariate mode 0.030 0.511 −0.017 −0.011 0.000 0.501
(0.027) (0.040) (0.056) (0.011) (0.015) (0.015)

(g = 2, κ2 = 0.05) the results of the mode estimators are slightly better than those

obtained with the standard vector autoregression estimator.

Table 2 summarizes a similar set of results for experiment 2; overall, these results are

in line with those obtained in experiment 1. In particular, the bivariate mode regression

generally leads to estimates of the slope parameters that have little bias. However, we

note that for h = 0.2 the estimates of a11 have a reasonably large bias that is slow to

go down when the sample becomes larger.13 Also, with this particular design the least
13To investigate this issue, we performed a set of simulations using δg,T = 0.8madgT−0.126 and in this

case this bias is very small even for T = 250; naturally the standard errors are larger.
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squares estimator always has much lower standard errors than the mode estimator. This

difference is especially noticeable for g = 1.

Overall, the results of the two sets of experiments are encouraging in that they sug-

gest that the proposed mode estimators are likely to have a reasonable performance in

moderately large samples.

5. CONCLUDING REMARKS

We introduce a full-system estimator of the conditional mode of a random vector, which

extends the results of Kemp and Santos Silva (2012) to the multivariate case. We do this

allowing for dynamic models and dependent data and, consequently, we also implicitly

generalize the results of Kemp and Santos Silva (2012) to the time series context. The

estimator we propose can be used in the estimation of dynamic vector mode autoregressive

models, as well as in the estimation of some structural systems of simultaneous equations

defined by conditional mode restrictions. The multivariate mode regression estimator is

easy to implement using standard software, and the results of a small simulation study

suggest that it is well behaved in finite samples.

Several avenues for future research are left open. For example, our results on the

estimation of systems of simultaneous equations identified by restrictions on the structural

parameters can be extended to cover the case where restrictions are non-linear. Also, as

mentioned before, using an approach similar to that adopted by Sakata (2007) it may be

possible to develop an estimator for general structural vector autoregressive models under

the assumption that the errors of the equations are conditionally independent.

Because the mode is a robust measure of location, the availability of the multivariate

mode regression estimator also offers a possible alternative to several multivariate robust

estimators; see, for example, the estimator for vector autoregressive models introduced

by Muler and Yohai (2013) and the estimators for simultaneous equations models devel-

oped by Krishnakumar and Ronchetti (1997) and Maronna and Yohai (1997). Naturally,

it would be interesting to explicitly compare the properties and performance of these

estimators.
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APPENDIX

A1. Proofs

In this appendix we provide the proofs of all the theorems presented in Sections 2 and 3.

In what follows CR, CS, H, J, M, and T denote the cr, Cauchy-Schwarz, Hölder, Jensen,

Markov, and triangle inequalities respectively, and MVT denotes the mean value theorem;

see Davidson (1994, pages 75, 132, 133, 138, 140, 340). For any arrayM we let ‖M‖ denote

the non-negative square-root of the sum of the squares of the elements of M . Thus,

for example, if M is a matrix then ‖M‖ = [trace (M ′M)]1/2. Furthermore, we use the

following convention for the derivatives of a vector-valued function F (a) with respect to

the vector a: F (1)(a) ≡ ∂F (a)/∂a′, F (2)(a) ≡ ∂2F (a)/∂a∂a′, F (3)(a) ≡ ∂vec(F (2)(a))/∂a′.

Also, the constants Lj for j = 0, 1, . . . , 11 are defined as follows:

L0 = sup
t,u,ω

f (u|Ft−1) <∞, L1 = sup
u∈RG

∥∥K(1) (u)
∥∥ <∞, L2 =

∫
RG
K (u)2 du <∞,

which exist by Assumptions A2, A6 and A7, and:

L3 = sup
u∈RG

∥∥∥f (1)
t (u|Ft−1)

∥∥∥ , L4 = sup
u∈RG

∥∥∥f (2)
t (u|Ft−1)

∥∥∥ , L5 = sup
u∈RG

∥∥∥f (3)
t (u|Ft−1)

∥∥∥ ,
L6 = sup

u∈RG

∥∥K(2) (u)
∥∥ , L7 = sup

u∈RG

∥∥K(3) (u)
∥∥ , L8 =

∫
RG
∥∥K(1) (u)

∥∥2
du,

L9 =

∫
RG
∥∥K(2) (u)

∥∥2
du, L10 =

∫
RG ‖u‖2 |K (u)| du, L11 = E

(
‖Zt‖4) ,

which exist and are finite by Assumptions A10, A8 and A11.

Proof of Theorem 1 Since K (·) is differentiable, by Assumption A6(iii), it follows

that K (·) is continuous. Furthermore, since δT is finite and strictly positive for all T , by

Assumption A7(i), it follows that QT (A) is continuous with respect to A, except possibly

on a subset of Ω with probability zero, and is a random variable with respect to P for

every A ∈ A, by Assumption A1. Since A is compact, by Assumption A3, then by Lemma

7.1 from Hayashi (2000) it follows that there exists a random variable α̂T with respect

to P such that Pr (α̂T ∈ vec (A)) = 1 and that QT (αA) ≤ QT (α̂T ) for all A ∈ A except

possibly on a subset of Ω with probability 0, as desired. �
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Proof of Theorem 2 Lemma 3 below establishes that there exists a continuous function

Q0 (·) : vec (A)→ R such that:

lim
T→∞

E [QT (αA)] = Q0 (αA) , ∀A ∈ A,

and such that Q0 (αA) achieves a unique strict global max on vec (A) at αA = α0 =

vec (A0). Lemma 4 below establishes that:

sup
A∈A
|QT (αA)−Q0 (αA)| = op (1) .

Since A is compact, by Assumption 3, and hence so too is vec (A), then by Theorem 2.1

from Newey and McFadden (1994) it follows that the maximization estimator α̂T from

Theorem 1 converges in probability to α0 as desired. �

Proof of Theorem 3 Since A0 belongs to the interior of A, by Assumption A9, it

follows that a0 belongs to the interior of vec (A). Then, since α̂T is a consistent estimator

of α0, by Theorem 2, it follows that:

lim
T→∞

Pr

([
∂QT (αA)

∂αA

∣∣∣∣
αA=α̂T

]
= 0

)
= 1,

and hence that:

−
(
TδG+1

T

)−1
T∑
t=1

(Zt ⊗ IG)K(1)

(
Yt − ÂTZt

δT

)
= op (1) ,

where vec
(
ÂT

)
= α̂T . Now by a Taylor expansion around α0 we have:

op (1) =
(
TδG+1

T

)−1
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)

−
(
TδG+2

T

)−1
T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − Â∗TZt

δT

)
(Zt ⊗ IG)′ (α̂T − α0) ,

for some Â∗T such that α̂
∗
T = vec

(
Â∗T

)
lies on the line segment joining α̂T and α0. Multi-

plying both sides by
√
TδG+2

T gives:

op (1) =
(
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)

−
[(
TδG+2

T

)−1
T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − Â∗TZt

δT

)
(Zt ⊗ IG)′

]√
TδG+2

T (α̂T − α0) .
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But: (
TδG+2

T

)−1
T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − Â∗TZt

δT

)
(Zt ⊗ IG)′ = D0 + op (1) ,

by Lemma 6, since α̂∗T = α0 + op (1) by Theorem 2. In addition:

(
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG) K(1)

(
Ut
δT

)
d−→ N (0, B0) ,

by Lemma 7. Since B0 and D0 are symmetric and non-singular, by Lemma 5, then the

desired result follows immediately. �

Proof of Theorem 4 First, observe that:

T−1δ
−(G+2)
T

T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − ÂTZt

δT

)
(Zt ⊗ IG)′ = D0 + op (1) ,

by Lemma 6 since α̂T = α0 + op (1) by Theorem 2. But D0 is invertible, by Lemma 5, so

D̂T (αA)−1 = D−1
0 + op (1).

Second, observe that:

(TδT )−1
T∑
t=1

(Zt ⊗ IG)K(1)

(
Yt − AZt

δT

)
K(1)

(
Yt − ÂTZt

δT

)′
(Z ′t ⊗ IG) = B0 + op (1)

by Lemma 8 since α̂T = α0 + op (1) by Theorem 2, and thus B̂T (αA) = B0 + op (1). The

desired result then follows immediately. �

Lemma 1 Let {Xt,Gt}∞t=0 be a martingale difference sequence with Pr (|Xt| ≤ c) = 1 for

some constant c <∞; then for any constants a, b > 0 and n ∈ N:

Pr

(∣∣∣∣∣
n∑
t=1

Xt

∣∣∣∣∣ ≥ a&
n∑
t=1

V ar (Xt|Gt−1) ≤ b

)
≤ 2 exp

(
− a2/2

ac+ b2

)
.

Proof. This follows immediately from Freedman’s inequality, see Freedman (1975,

Proposition 2.1), noting that {(−Xt) ,Gt} is also a martingale with V ar (−Xt|Gt−1) = Vt.

�

Lemma 2 For any collection of pairs of random variables {(Xi, Yi)}ni=1, where n is a

finite constant, and any constants a and b then:

Pr

(
sup

1≤i≤n
Xi ≥ a

)
≤

n∑
i=1

Pr (Xi ≥ a&Yi ≤ b) + Pr

(
sup

1≤i≤n
Yi > b

)
.
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Proof. Observe that:

Pr

(
sup

1≤i≤n
Xi ≥ a

)
≤ Pr

(
sup

1≤i≤n
Xi ≥ a& sup

1≤j≤n
Yj ≤ b

)
+ Pr

(
sup

1≤i≤n
Yi > b

)
.

But sup1≤i≤n Xi ≥ a implies that there exists at least one i ∈ {1, 2, . . . , n} such that

Xi ≥ a so it follows that:

Pr

(
sup

1≤i≤n
Xi ≥ a& sup

1≤j≤n
Yj ≤ b

)
≤

n∑
i=1

Pr

(
Xi ≥ a& sup

1≤j≤n
Yj ≤ b

)
,

while sup1≤j≤n Yj ≤ b means that Yj ≤ b for all j ∈ {1, 2, . . . , n} so it follows that:

Pr

(
Xi ≥ a& sup

1≤j≤n
Yj ≤ b

)
≤ Pr (Xi ≥ a&Yi ≤ b) ,

and hence:

Pr

(
sup

1≤i≤n
Xi ≥ a& sup

1≤j≤n
Yj ≤ b

)
≤

n∑
i=1

Pr (Xi ≥ a&Yi ≤ b) .

�

Lemma 3 Under Assumptions A1—A7, then there exists a function Q0 (·) : vec (A)→ R

such that: (i) Q0 (αA) = limT→∞ E [QT (αA)], for all A ∈ A; (ii) Q0 (·) is continuous on

vec (A); and (iii) Q0 (α) ≤ Q0 (α0) for all α ∈ A with equality if and only if α = α0.

Proof. First, for each t and each T = 1, 2, . . . , define:

qtT (αA) ≡
(
TδGT

)−1K
(
Yt − AZt

δT

)
,

qetT (αA) ≡ E [qtT (αA) |Ft−1] =

∫
RG

δ−GT K
(
u− (A− A0)Zt

δT

)
ft (u|Ft−1) du

= T−1

∫
RG
K (s) ft ((A− A0)Zt + δT s|Ft−1) ds,

by transformation of variables from u to s = δ−1
T [u− (A− A0)Zt]. In addition, define:

Qe
t0 (αA, δ) ≡

∫
RG
K (s) ft ((A− A0)Zt + δs|Ft−1) ds,

so qetT (αA) = T−1Qe
t0 (αA, δT ). Assumption A1 implies that:

E [QT (αA)] = E [TqtT (αA)] = E [TqetT (αA)] = E [Qe
t0 (αA, δT )]

=

∫
Ω

∫
RG
K (s) ft ((A− A0)Zt + δs|Ft−1) dsdP (ω) ,
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for all A ∈ A. But Qe
t0 (αA, δ) is continuous in (αA, δ) for all (t, ω) by dominated con-

vergence since |ft (u|Ft−1) ≤ L0| for all (u, t, ω), by Assumption A2, [(A− A0)Zt + δs]

is continuous in (αA, δ) for all ω, and
∫
RG |K (s)| ds < ∞, by Assumption A6. Hence

dominated convergence implies that:

lim
T→∞

E [QT (αA)] = lim
T→∞

E [Qe
t0 (αA, δT )]

=

∫
Ω

∫
RG
K (s) ft ((A− A0)Zt|Ft−1) dsdP (ω)

=

∫
Ω

ft ((A− A0)Zt|Ft−1) dP (ω) = Q0 (αA) ,

since
∫
RG K (s) ds = 1, by Assumption A6, and δT = o (1), by Assumption A7, and also

that Q0 (αA) is continuous in αA.

Second, by Assumption A2 then for any A:

ft ((A− A0)Zt|Ft−1) ≤ ft (0|Ft−1) , ∀ω ∈ Ω,

while by Assumption A5 it follows that for any A 6= A0 then exists a set S ∈ Ft−1 with

P (S) > 0 such that:

ft ((A− A0)Zt|Ft−1) < ft (0|Ft−1) , ∀ω ∈ S,

and hence it follows that for all αA 6= α0:

Q0 (αA) < Q0 (0) .

Thus Q0 (αA) achieves a unique strict global maximum over αA ∈ vec (A) at αA = α0, as

desired. �

Lemma 4 Under Assumptions A1—A7:

sup
A∈A
|QT (αA)−Q0 (αA)| ≤ op (1) ,

where Q0 (·) is characterized as in Lemma 3.

Proof. Since A is compact, by Assumption 3, then there exists a constant 0 < J1 <∞

such that for each T = 1, 2, . . . , then there exist A1T ⊂ A and a function Ā1T (·) :
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A → A1T such that the number of elements in A1T is less than or equal to J1T
(G+1)K

and supA∈A
∥∥A− Ā1T (A)

∥∥ ≤ T−(G+1)/G. In addition, define the function ᾱ1T (·) by

ᾱ1T (αA) ≡ vec
(
Ā1T (A)

)
for all A ∈ A.

Now for each A ∈ A define:

qetT (αA) ≡ E [qtT (αA) |Ft−1] , Qe
T (αA) ≡

T∑
t=1

qetT (αA) ,

q∗tT (αA) ≡ qtT (αA)− qetT (αA) , Q∗T (αA) ≡
T∑
t=1

q∗tT (αA) ,

so for any given A ∈ A:

QT (αA)−Q0 (αA) = B1T (αA) +B2T (ᾱ1T (αA)) +B3T (αA) +B4T (αA) ,

where:

B1T (αA) ≡ QT (αA)−QT (ᾱ1T (αA)) ,

B2T (αA) ≡ QT (αA)−Qe
T (αA) = Q∗T (αA) ,

B3T (αA) ≡ Qe
T (ᾱ1T (αA))−Qe

T (αA) ,

B4T (αA) ≡ Qe
T (αA)−Q0 (αA) ,

and hence:

sup
A∈A
|Qn (αA)−Q0 (αA)| ≤ sup

A∈A
|B1T (αA)|+ sup

A∈A1T
|B2T (αA)|

+ sup
A∈A
|B3T (αA)|+ sup

A∈A
|B4T (αA)| .

In order to establish the desired result, it suffi ces to establish that each of the terms on

the right-hand-side of the above equation is op (1).

First, observe that it follows from T that:

sup
A∈A
|B1T (αA)| ≤

T∑
t=1

sup
A∈A
|qtT (αA)− qtT (ᾱ1T (αA))| ,

Now for any A,A† ∈ A it follows from MVT that:

qtT (αA)− qtT (αA†) = −T−1δ
−(G+1)
T

[
K(1)

(
Yt − A∗Zt

δT

)]′
(Z ′t ⊗ IG) (αA − αA†) ,
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for some A∗ such that αA∗ = vec (A∗) lies on the line segment joining αA and αA† . Then

applying CS gives:

|qtT (αA)− qtT (αA†)| ≤ G1/2T−1δ
−(G+1)
T

∥∥∥∥K(1)

(
Yt − A∗1T (A)Zt

δT

)∥∥∥∥ ‖Zt‖ ‖αA − αA†‖
≤ G1/2L2T

−1δ
−(G+1)
T ‖Zt‖ ‖αA − αA†‖

since ‖Zt ⊗ IG‖ = G1/2 ‖Zt‖ and since
∥∥K(1) (u)

∥∥ ≤ L2 < ∞ for all u ∈ RG, by Assump-

tion A6. Hence it follows that:

sup
A∈A
|B1T (αA)| ≤ L2G

1/2T−(G+1)/Gδ
−(G+1)
T

(
T−1

T∑
t=1

‖Zt‖
)
.

But since {Zt}∞t=−∞ is strictly stationary and ergodic, by Assumption A1, and since

E (‖Zt‖) <∞, by Assumption A4, then T−1
∑T

t=1 ‖Zt‖ = Op (1) and hence:

sup
A∈A
|B1T (αA)| ≤ L2G

1/2
(
TδGT

)−(G+1)/G
Op (1) = op (1) ,

since
(
TδGT

)−1
= o (1), by Assumption A7.

In addition, it follow from T that:

sup
A∈A
|B3T (αA)| ≤

T∑
t=1

sup
A∈A
|qetT (ᾱ1T (αA))− qetT (αA)| .

But for any A,A† ∈ A then by J:

|qetT (αA)− qetT (αA†)| = |E [(qtT (αA)− qtT (αA†)) |Ft−1]|

≤ E [{|qtT (αA)− qtT (αA†)|} |Ft−1]

≤ G1/2L2T
−1δ

−(G+1)
T E {‖Zt‖} ‖αA − αA†‖ ,

and hence:

sup
A∈A
|B3T (αA)| ≤ L2G

1/2
(
TδGT

)−(G+1)/G

(
T−1

T∑
t=1

‖Zt‖
)

= op (1) ,

since
(
TδGT

)−1
= o (1), by Assumption A7.

Second, observe that for any A ∈ A and T = 1, 2, . . . , then by construction

{(q∗tT (αA) ,Ft)}∞t=−∞ is a martingale difference sequence since: (a) Ft−1 ⊆ Ft for all
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t; (b) q∗tT (αA) is measurable with respect to Ft for all t; (c) E [q∗tT (αA) |Ft−1] = 0 for all

t; and (d) E [q∗tT (αA)] = 0 for all t. Next, observe that since |qtT (αA)| ≤ L0T
−1δ−GT <∞

then |q∗tT (αA)| ≤ 2L0T
−1δ−GT <∞. Now define:

qvtT (αA) ≡ V ar [q∗tT (αA) |Ft−1] , Qv
T (αA) ≡

T∑
t=1

qvtT (αA) ,

so:

qvtT (αA) = V ar [qtT (αA) |Ft−1] ≤ E
[
(qtT (αA))2 |Ft−1

]
= T−2

∫
RG
δ−2G
T K

(
u− (A− A0)Zt

δT

)2

ft (u|Ft−1) du

= T−2

∫
RG
δ−GT K (s)2 ft ((A− A0)Zt + δT s|Ft−1) ds

≤ T−2L0δ
−G
T

∫
RG
K (s)2 ds = L0L2T

−2δ−GT ,

since ft (u|Ft−1) ≤ L0 <∞ for all t and u, by Assumption A2, which implies that:

Pr
(
Qv
T (αA) ≤ L0L2T

−1δ−GT
)

= 1.

Since B2T (αA) =
∑T

t=1 q
∗
tT (αA), it follows from Lemmas 1 and 2 that for any fixed ε > 0:

Pr

(∣∣∣∣ sup
A∈A1T

B2T (αA)

∣∣∣∣ ≥ ε

)
=

∑
A∈A1T

Pr
(
|Q∗T (αA)| ≥ Tε&Qv

T (αA) ≤ TL2L9δ
−G
T

)
≤ 2J1T

(G+1)K exp

(
− ε2/2

2L0T−1δ−GT ε+ L0L2T−1δ−GT

)
= 2J1T

(G+1)K exp

(
− ε2TδGT

4L0ε+ 2L0L2

)
= o (1) ,

since ln (T ) /
(
TδGT

)
= o (1) by Assumption A6. Since ε > 0 was arbitrary this implies

that:

sup
A∈A1T

|B2T (αA)| = op (1) .

Third, observe that for any A ∈ A:

B4T (αA) =

[
T∑
t=1

qetT (αA)

]
−Q0 (αA)

= T−1

T∑
t=1

{Qe
t0 (αA, δT )− E [Qe

t0 (αA, 0)]} ,
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where Qe
t0 (αA, δ) is defined as in the proof of Lemma 3. Now for any A ∈ A and δ ∈ R,

the sequence {Qe
t0 (A, δ)}∞t=−∞ is strictly stationary and ergodic, by Assumption A1. Also,

|Qe
t0 (A, δ)| ≤ L1L2 <∞, by Assumptions A2 and A6, so it follows from the uniform law

of large numbers for stationary ergodic processes that:

sup
A∈A
|B4T (αA)| = sup

A∈A

∣∣∣∣∣T−1

T∑
t=1

Qe
t0 (αA, δT )− E [Qe

t0 (αA, 0)]

∣∣∣∣∣ = op (1) ,

since δT = o (1), by Assumption A7, since Qe
t0 (αA, δ) is continuous in (αA, δ) for all (t, ω)

as established in the proof of Lemma 3, and since A is compact, by Assumption A3. �

Lemma 5 Under Assumptions A1—A12, B0 is symmetric positive definite and D0 is sym-

metric negative definite.

Proof. First, it is clear thatM exists, by Assumption A11, and thatM is symmetric,

by construction. Now, for any fixed (G× 1) vector c1 6= 0:

c′1Mc1 =

∫
RG

c′1K(1) (u)K(1) (u)′ c1 du

=

∫
RG

(
K(1) (u)′ c1

)2
du.

Clearly, c′1Mc1 ≥ 0 for all c1 with equality if and only if K(1) (u)′ c1 = 0 for almost all

u. Since K (·) is twice differentiable it follows that K(1) (u) is continuous; hence it follows

that K(1) (u)′ c1 = 0 for almost all u if and only if K(1) (u)′ c1 = 0 for all u. Now since

c1 6= 0 we can construct a non-singular (G×G) matrix C whose first column is given by

c1 and then define K̃C (·) : RG → R such that:

K̃C (s) = K (Cs) .

It then follows that:

∂K̃C (s)

∂s1

=
dK (Cs)

ds1

=
[
K(1) (Cs)

]′ ∂ (C ′S)

∂s1

=
[
K(1) (Cs)

]′
c1,

since Cs =
∑G

j=1 cjsj where cj is the j-th column of C, and hence c
′
1Mc1 = 0 if and only

if ∂K̃C(s)
∂s1

= 0 for all s. But since C is non-singular then it follows from Assumption A11

that:

lim
M→∞

sup
s:‖s‖≥M

∣∣∣K̃C (s)
∣∣∣ = 0.
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Consequently ∂K̃C(s)
∂s1

= 0 can only be true for all s if K̃C (s) = 0 for all s and hence

K (u) = 0 for all u which contradicts Assumption 11. Thus there is no c1 6= 0 such that

K(1) (u)′ c1 = 0 for almost all u and hence there is no c1 6= 0 such that c′1Mc1 = 0. It

follows that c′1Mc1 > 0 for all c1 6= 0 and henceM must be a symmetric positive definite

matrix.

Second, since M is symmetric, as shown above, then B0 is also symmetric. Now, fix

A 6= 0; then:

vec (A)′B0vec (A) = E
[
ft (0|Ft−1) vec (A)′ (Zt ⊗ IG)M (Z ′t ⊗ IG) vec (A)

]
= E

[
ft (0|Ft−1) vec (AZt)

′Mvec (AZt)
]
≥ 0,

since Pr (ft (0|Ft−1) > 0) = 1, by , Assumption A2, and since M is positive definite,

as established above. In addition, Assumption A5 implies that Pr (vec (AZt) = 0) < 1.

Together these imply that:

Pr
(
ft (0|Ft−1) vec (AZt)

′Mvec (AZt) = 0
)
< 1,

and hence that vec (A)′B0vec (A) > 0 for all A 6= 0 which in turns implies that B0 is

positive definite.

Third, since ft (u|Ft−1) is three times differentiable for all u ∈ RG, by Assumption

A8, then it follows that f (2)
t (0|Ft−1) is symmetric and hence that D0 is also symmetric.

Furthermore, f (2)
t (0|Ft−1) is negative definite, by Assumption A8. Next, fix A ∈ RG×RK

such that A 6= 0; then:

vec (A)′D0vec (A) = E
[
vec (A)′ (Zt ⊗ IG) f

(2)
t (0|Ft−1) (Z ′t ⊗ IG) vec (A)

]
= E

[
vec (AZt)

′ f
(2)
t (0|Ft−1) vec (AZt)

]
.

Then since Pr (vec (AZt) = 0) < 1, by Assumption A5, then:

Pr
(
vec (AZt)

′ f
(2)
t (0|Ft−1) vec (AZt) = 0

)
< 1,

and hence vec (A)′D0vec (A) < 0 for all A 6= 0 which in turn implies that D0 is negative

definite. �
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Lemma 6 Under Assumptions A1—A12, define:

D̂T (αA) ≡ T−1δ
−(G+2)
T

T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − AZt

δT

)
(Zt ⊗ IG)′ ,

D (αA) ≡ E
[
(Zt ⊗ IG) f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
,

for all A ∈ A, where αA = vec (A); then:

sup
A∈A

∥∥∥D̂T (αA)−D (αA)
∥∥∥ = op(1).

Proof. Since A is compact, by Assumption A3, then there is a constant J2 < ∞ such

that for each T = 1, 2..., we can find A2T ⊂ A and a function Ā2T (·) : A→ A2T such that

the number of elements of A2T is less than or equal to J2T
2GK and that

∥∥A− Ā2T (A)
∥∥ ≤

T−2 for all A ∈ A. We then define the function ᾱ2T (·) by ᾱ2T (αA) ≡ vec
(
Ā2T (A)

)
for

all A ∈ A.

From Lemma 3 it follows that there exists Q0 (·) : vec (A)→ R such that:

Q0 (αA) = lim
T→∞

E [QT (αA)] , ∀A ∈ A,

and from the proof of Lemma 3 it follows that:

Q0 (αA) = E [ft ((A− A0)Zt|Ft−1)] .

Clearly E
[
(Zt ⊗ IG) (Zt ⊗ IG)′

]
is finite for all G ≥ 1, by Assumption A10. In addition,

since f (j)
t (u|Ft−1) is continuous in u for all ω ∈ Ω and uniformly bounded from above for

j = 0, 1, 2, by Assumption A8 then we can interchange the order of derivatives. Therefore
∂2Q0(αA)
∂αA∂α

′
A
is well defined and is given by:

∂2Q0 (αA)

∂αA∂α′A
= E

[
(Zt ⊗ IG) f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
= D (αA) .

Next, observe that:

∂2QT (αA)

∂αA∂α′A
= T−1

T∑
t=1

∂qtT (αA)

∂αA∂α′A

= T−1δ
−(G+2)
T

T∑
t=1

(Zt ⊗ IG)K(2)

(
Yt − AZt

δT

)
(Zt ⊗ IG)′ = D̂T (αA) .
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Then fix any λ ∈ RGK such that λ 6= 0 and define:

H0 (α) ≡ λ′D (αA)λ,

htT (αA) ≡ T−1λ′
(
∂qtT (αA)

∂αA∂α′A

)
λ

= T−1δ
−(G+2)
T λ′ (Zt ⊗ IG)K(2)

(
Yt − AZt

δT

)
(Zt ⊗ IG)′ λ

HT (αA) ≡
T∑
t=1

htT (αA) = λ′D̂T (αA)λ,

hetT (αA) ≡ E [htT (αA) |Ft−1] ,

He
T (αA) ≡

T∑
t=1

hetT (αA) .

In addition, for any A ∈ A define:

C1T (αA) ≡ [HT (αA)−HT (ᾱ2T (αA))] ,

C2T (αA) ≡ [HT (αA)−He
T (αA)] ,

C3T (αA) ≡ [He
T (ᾱ2T (αA))−He

T (αA)] ,

C4T (αA) ≡ [He
T (αA)−H0 (αA)] ,

and observe that:

HT (αA)−H0 (αA) = C1T (αA) + C2T (ᾱ2T (αA)) + C3T (αA) + C4T (αA) ,

and hence:

sup
A∈A
|HT (αA)−H0 (αA)| ≤ sup

A∈A
|C1T (αA)|+ sup

A∈A2T
|C2T (αA)|

+ sup
A∈A2T

|C3T (αA)|+ sup
A∈A
|C4T (αA)|

In order to establish the desired result, it then suffi ces to establish that each of the terms

on the right-hand-side of the above equation is op (1).

First, for any A,A† ∈ A it follows by MVT that:

htT (αA)− htT (αA†) = T−1δ
−(G+2)
T vec

[
(Zt ⊗ IG)′ λλ (Z ′t ⊗ IG)

]′
×vec

[
K(2)

(
Yt − AZt

δT

)
−K(2)

(
Yt − A†Zt

δT

)]
= T−1δ

−(G+3)
T vec

[
(Zt ⊗ IG)′ λλ (Z ′t ⊗ IG)

]′
×

 ∂vec
[
K(3) (s)

]
∂s′

∣∣∣∣∣
s=δ−1T (Yt−A∗Zt)

 (Z ′t ⊗ IG)
(
αA − α†A

)
,
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for some A∗ such that αA∗ = vec (A∗) lies on the line segment joining αA and αA† , where

K(3)
i (u) ≡ ∂K(2) (u) /∂ui and where αA,i and αA†,i are the i-th elements of αA and αA†

respectively. Hence it follows by CS that:

|htT (αA)− htT (αA†)| ≤ G3/2T−1δ
−(G+3)
T ‖λ‖3 ‖Zt‖3

∥∥∥∥K(3)

(
Yt − A∗Zt

δT

)∥∥∥∥ ‖αA − αA†‖
≤ G3/2L7 ‖λ‖3 T−1δ

−(G+3)
T ‖Zt‖3 ‖αA − αA†‖ ,

since
∥∥K(3) (u)

∥∥ ≤ L7 <∞, by Assumption A11. But for any A ∈ A, it follows by T that:

|C1T (αA)| ≤
T∑
t=1

|htT (αA)− htT (ᾱ2T (αA))|

≤ G3/2L7 ‖λ‖3 T−1δ
−(G+3)
T ‖αA − ᾱ2T (αA)‖

(
T∑
t=1

‖Zt‖3

)
,

and thus:

sup
A∈A
|C1T (αA)| ≤ L7G

3/2 ‖λ‖3 T−1δ
−(G+3)
T

(
T∑
t=1

‖Zt‖3

)

= L7G
3/2 ‖λ‖3

[
δ

(G+5)/2
T

TδG+4
T

]2(
T−1

T∑
t=1

‖Zt‖3

)
,

since ‖αA − ᾱ2T (αA)‖ ≤ T−2. But, E
(
‖Zt‖3) < ∞, by Assumption A10, and since

{Zt}∞t=−∞ is strictly stationary and ergodic, by Assumption 1, then it follows that

T−1
∑T

t=1 ‖Zt‖
3 = Op(1) by the ergodic theorem and hence that:

sup
A∈A
|C1T (αA)| = op (1) .

since δT = o (1), by Assumption A6, and
(
TδG+4

T

)−1
= o (1), by Assumption A12.

In addition, for any A,A† ∈ A it follows by J that:

|hetT (αA)− hetT (αA†)| = |E [htT (αA)− htT (αA†) |Ft−1]|

≤ E [{|htT (αA)− htT (αA†)|} |Ft−1]

≤ G3/2L7 ‖λ‖3 T−1δ
−(G+3)
T ‖Zt‖3 ‖αA − αA†‖ .

But for any A ∈ A it follows from T that:

|C3T (αA)| = |He
T (αA)−He

T (ᾱ2T (αA))| ≤
T∑
t=1

|hetT (αA)− hetT (ᾱ2T (αA))|

≤ G3/2L7 ‖λ‖3 T−1δ
−(G+3)
T ‖αA − ᾱ2T (αA)‖

(
T∑
t=1

‖Zt‖3

)
,
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so:

sup
A∈A
|C3T (αA)| ≤ L7G

3/2 ‖λ‖3 T−1δ
−(G+3)
T

(
T∑
t=1

‖Zt‖3

)
,

and hence it follows that:

sup
A∈A
|C3T (αA)| = op (1) .

Second, define:

h∗tT (αA) ≡ htT (αA)− hetT (αA) ,

htT,1 (αA) ≡ χ
(
‖(Z ′t ⊗ IG)λ‖2 ≤ δ−2

T

)
htT (αA) ,

htT,2 (αA) ≡ χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
htT (αA) ,

hetT,j (αA) ≡ E [htT,j (αA) |Ft−1] , j = 1, 2

h∗tT,j (αA) ≡ htT,j (αA)− hetT,j (αA) , j = 1, 2,

H∗T,j (αA) ≡
T∑
t=1

h∗tT,j (αA) , j = 1, 2,

where χ (·) denotes the indicator function; this implies:

h∗tT (αA) = h∗tT,1 (αA) + h∗tT,2 (αA) ,

and that

C2T (αA) ≡ [HT (αA)−He
T (αA)] = H∗T,1 (αA) +H∗T,2 (αA) ,

so that:

sup
A∈A2T

|C2T (αA)| ≤ sup
A∈A2T

∣∣H∗T,1 (αA)
∣∣+ sup

A∈A2T

∣∣H∗T,2 (αA)
∣∣ .

Now for any A ∈ A and T = 1, 2, . . . , then by construction,
{(
h∗tT,1 (αA) ,Ft

)}∞
t=−∞ is

a martingale difference sequence. In addition:

|h1T,1 (αA)| ≤ L6T
−1δ

−(G+2)
T δ−2

T ,

since
∥∥K(2) (s)

∥∥ ≤ L6 for all u, by Assumption A11, and hence it follows from T and J

that
∣∣h∗tT,1 (αA)

∣∣ ≤ 2L6T
−1δ

−(G+4)
T <∞. Define:

hvtT,1 (αA) ≡ V ar
[
h∗tT,1 (αA) |Ft−1

]
, Hv

T,1 (αA) =

T∑
t=1

hvtT,1 (αA) ,
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and observe that since E
[
h∗tT,1|Ft−1

]
= E

[
h∗tT,2|Ft−1

]
= 0 and E

[
h∗tT,1h

∗
tT,2|Ft−1

]
= 0

then Cov
[
h∗tT,1, h

∗
tT,2|Ft−1

]
= 0 and hence:

hvtT,1 (αA) ≤ V ar [h∗tT (αA) |Ft−1] = V ar [htT (αA) |Ft−1] ≤ E
[
htT (αA)2 |Ft−1

]
≤ T−2δ

−(2G+4)
T ‖(Z ′t ⊗ IG)λ‖4

∫
RG

∥∥∥∥K(2)

(
u− (A− A0)Zt

δT

)∥∥∥∥2

ft (u|Ft−1) du

= T−2δ
−(2G+4)
T ‖(Z ′t ⊗ IG)λ‖4

∫
RG

∥∥K(2) (s)
∥∥2
ft ((A− A0)Zt + δT s|Ft−1) ds

≤ G2L0L9 ‖λ‖4 T−2δ
−(G+4)
T ‖Zt‖4 .

noting that ft (u|Ft−1) ≤ L0 for all (t, u, ω), by Assumption A2, and
∫
RG
∥∥K(2) (s)

∥∥2
ds =

L9, by Assumption A11. But then:

Hv
T,1 (αA) ≤ G2L0L9 ‖λ‖4 T−1δ

−(G+4)
T

(
T−1

T∑
t=1

‖Zt‖4

)
,

and since the right-hand-side of the above equation does not depend on αA then:

sup
A∈A2T

Hv
T,1 (αA) ≤ G2L0L9 ‖λ‖4 T−1δ

−(G+4)
T

(
T−1

T∑
t=1

‖Zt‖4

)
.

Now since the {Zt} are stationary and ergodic, by Assumption A1, and since E
(
‖Zt‖4) =

L11 <∞, by Assumption 10, then:

Pr

(
T−1

T∑
t=1

‖Zt‖4 > 2L11

)
= o (1) ,

by the ergodic theorem, and setting bT = 2G2L0L9L11 ‖λ‖4 T−1δ
−(G+4)
T then:

Pr

(
sup
A∈A2T

Hv
T,1 (αA) > bT

)
= o (1) ,

and hence for any fixed ε > 0 it follows by Lemma 2 that:

Pr

(
sup
A∈A2T

∣∣H∗T,1 (αA)
∣∣ ≥ ε

)
≤
∑
A∈A2T

Pr
(∣∣H∗T,1 (αA)

∣∣ ≥ ε&Hv
T,1 (αA) ≤ bT

)
+ o (1) ,

since A2T has a finite number of elements. Then form Lemma 1 it follows that:

Pr
(∣∣H∗T,1 (αA)

∣∣ ≥ ε&Hv
T,1 (αA) ≤ bT

)
≤ exp

(
− ε2/2

2L6T−1δ
−(G+4)
T ε+ 2G2L0L9L11 ‖λ‖4 T−1δ

−(G+4)
T

)

= exp

(
− Tδ

(G+4)
T ε2

4L6ε+ 4G2L0L9L11 ‖λ‖4

)
,
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and thus:

Pr

(
sup
A∈A2T

∣∣H∗T,1 (αA)
∣∣ ≥ ε

)
≤ 2J2T

2GK exp

(
− Tδ

(G+4)
T ε2

4L6ε+ 4G2L0L9L11 ‖λ‖4

)
+ o (1)

= o (1) ,

since ln (T ) /
(
TδG+4

T

)
= o (1) by Assumption A12. Since ε > 0 was arbitrary this implies

that:

sup
A∈A2T

∣∣H∗T,1 (αA)
∣∣ = 0.

In addition observe that since:

htT,2 (αA) = htT (αA)χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
,

then:

|htT,2 (αA)| ≤ L6T
−1δ

−(G+2)
T ‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
,

and hence by J and T:∣∣h∗tT,2 (αA)
∣∣ ≤ 2L6T

−1δ
−(G+2)
T ‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
.

In addition, since the right-hand-side of the above inequality does not depend on A then:

sup
A∈A2T

∣∣h∗tT,2 (αA)
∣∣ ≤ 2L6T

−1δ
−(G+2)
T ‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
,

and hence:

E

(
sup
A∈A2T

∣∣H∗T,2 (αA)
∣∣) ≤

T∑
t=1

E

{
sup
A∈A2T

∣∣h∗tT,2 (αA)
∣∣}

≤ 2L6δ
−(G+2)
T E

{
‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)}
.

Now for any random variable X, constant r > 1 such that E (|X|r) < ∞, and constant

c > 0 then it follows by H and M that:

E {|X|χ (|X| > c)} ≤ c−(r−1)E (|X|r) ,

so setting X = ‖(Z ′t ⊗ IG)λ‖2, r = (G+ 4 + ξ) /2, where ξ is given in Assumption A10,

and c = δ−2
T then:

E
{
‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)}
≤ δ

2(r−1)
T E

(
‖(Z ′t ⊗ IG)λ‖2r

)
,
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so:

E

(
sup
A∈A2T

∣∣H∗T,2 (αA)
∣∣) ≤ 2L6δ

−(G+2)
T δ

2(r−1)
T E

(
‖(Z ′t ⊗ IG)λ‖2r

)
= o (1) ,

since 2 (r − 1) − (G+ 2) = 2r − G − 4 = ξ > 0 and E
(
‖(Z ′t ⊗ IG)λ‖2r) < ∞,

by Assumption A10, and δT = o (1), by Assumption A7. It follows from M that

supA∈A2T
∣∣H∗T,2 (αA)

∣∣ = op (1), and since supA∈A2T
∣∣H∗T,1 (αA)

∣∣ = op (1), as shown above,

then:

sup
A∈A2T

|C2T (αA)| = op (1) ,

Third, we have that:

He
T (αA) = T−1δ

−(G+2)
T

T∑
t=1

λ′ (Zt ⊗ IG)E

[
K(2)

(
Yt − AZt

δT

)
|Ft−1

]
(Z ′t ⊗ IG)λ.

Now define:

K(1)
i (u) ≡ ∂K (u)

∂ui
, K(2)

ij (u) ≡ ∂2K (u)

∂ui∂uj
,

f
(1)
i,t (u|Ft−1) ≡ ∂ft (u|Ft−1)

∂ui
, f

(2)
ij,t (u|Ft−1) ≡ ∂2ft (u|Ft−1)

∂ui∂uj
.

and let u−i denote the vector consisting of the elements of u other than ui; then

E

[
K(2)
ij

(
Yt − AZt

δT

)
|Ft−1

]
=

∫
RG−1

∫
R
K(2)
ij

(
u− (A− A0)Zt

δT

)
ft (u|Ft−1) duidu−i.

Using repeated integration by parts we have that:∫
R
K(2)
ij

(
u− (A− A0)Zt

δT

)
ft (u|Ft−1) dui

=

[
δTK(1)

j

(
u− (A− A0)Zt

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

−
∫
R
δTK(1)

j

(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1) dui.

But: ∣∣∣∣K(1)
j

(
u− (A− A0)Zt

δT

)
ft (u|Ft−1)

∣∣∣∣ ≤ L0

∣∣∣∣K(1)
j

(
u− (A− A0)Zt

δT

)∣∣∣∣ ,
by Assumption A2, and for all fixed u−i:

lim
ui→±∞

∣∣∣∣K(1)
j

(
u− (A− A0)Zt

δT

)∣∣∣∣ = 0,
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by Assumption A11. Hence:[
δTK(1)

j

(
u− (A− A0)Zt

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

= 0,

so:

E

[
K(2)
ij

(
Yt − AZt

δT

)
|Ft−1

]
= −δT

∫
RG−1

∫
R
K(1)
j

(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1) duidu−i

= −δT
∫
RG−1

∫
R
K(1)
j

(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1) dujdu−j.

Using integration by parts again we have that:∫
R
K(1)
j

(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1) duj

=

[
δTK

(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1)

]uj=∞
uj=−∞

−
∫
R
δTK

(
u− (A− A0)Zt

δT

)
f

(2)
ij,t (u|Ft−1) duj.

But: ∣∣∣∣K(u− (A− A0)Zt
δT

)
f

(1)
i,t (u|Ft−1)

∣∣∣∣ ≤ L3

∣∣∣∣K(u− (A− A0)Zt
δT

)∣∣∣∣ ,
by Assumption A8, and for all fixed u−j:

lim
uj→±∞

∣∣∣∣K(u− (A− A0)Zt
δT

)∣∣∣∣ = 0,

by Assumption A11. Hence:[
K
(
u− (A− A0)Zt

δT

)
f

(1)
i,t (u|Ft−1)

]ui=∞
ui=−∞

= 0,

so:

E

[
K(2)
ij

(
Yt − AZt

δT

)
|Ft−1

]
= δ2

T

∫
RG−1

∫
R
K
(
u− (A− A0)Zt

δT

)
f

(2)
ij,t (u|Ft−1) dujdu−j

= δ2
T

∫
RG
K
(
u− (A− A0)Zt

δT

)
f

(2)
ij,t (u|Ft−1) du

= δG+2
T

∫
RG
K (s) f

(2)
ij,t ((A− A0)Zt + δT s|Ft−1) ds

and hence that:

E

[
K(2)

(
Yt − AZt

δT

)
|Ft−1

]
= δG+2

T

∫
RG
K (s) f

(2)
t ((A− A0)Zt + δT s|Ft−1) ds.
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If we now define:

He
t0 (αA, δ) ≡ λ′ (Zt ⊗ IG)

∫
RG
K (s) f

(2)
t ((A− A0)Zt + δT s|Ft−1) ds (Z ′t ⊗ IG)λ,

then:

hetT (αA) = He
t0 (αA, δT ) , H0 (αA) = E [He

t0 (αA, 0)] ,

while for any A ∈ A and δ ∈ R, the sequence {He
t0 (αA, δ)} is strictly stationary and

ergodic, by Assumption A1. Then by CS:

|He
t0 (αA, δ)| ≤ T−1L4G ‖λ‖2 ‖Zt‖2

(∫
RG
|K (s)| ds

)
= ζt,

since
∥∥∥f (2)

t (u|Ft−1)
∥∥∥ ≤ L4 for all (t, u, ω), by Assumption A8. In addition, for any

(t, ω) then He
t0 (αA, δ) is continuous with respect to (αA, δ) since f

(2)
t (u|Ft−1) is uniformly

bounded and continuous, by Assumption A8, and since
∫
RG |K (s)| ds < ∞, by Assump-

tion A11. But E
(
‖Zt‖2) < ∞, by Assumption A10, so E (ζt) < ∞ and hence it follows

by the uniform law of large numbers for strictly stationary ergodic process that:

sup
A∈A
|C4T (αA)| = sup

A∈A
|He

T (αA)−H0 (αA)|

= sup
A∈A

∣∣∣∣∣T−1

T∑
t=1

He
t0 (αA, δT )− E [He

t0 (αA, 0)]

∣∣∣∣∣ = op (1) ,

since δT = o (1) by Assumption A6 and A is compact by Assumption A3. �

Lemma 7 Under Assumptions A1—A12:

(
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)
d−→ N (0, B0) .

Proof. Define:

gtT ≡
(
TδGT

)−1/2
(Zt ⊗ IG)K(1)

(
Ut
δT

)
,

getT ≡ E [gtT |Ft−1] ,

g∗tT ≡ gtT − getT ,

so that: (
TδG+1

T

)−1 (
TδG+2

T

)1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)
=

T∑
t=1

getT +

T∑
t=1

g∗tT .
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Then to establish the desired result it is suffi cient to establish that
T∑
t=1

getT = op (1) and

that
T∑
t=1

g∗tT
d→ N (0, B0).

First, as in the proof of Lemma 6, define K(1)
i (u) ≡ ∂K (u) /∂ui for i = 1, ..., G, and

then define:

geitT ≡ E

[(
TδGT

)−1/2
ZtK(1)

i

(
Yt − A0Zt

δT

)
|Ft−1

]
=

(
TδGT

)−1/2
Zt

∫
RG−1

∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) duidu−i,

so that getT = (ge1tT , ...., g
e
GtT )′, where ui denotes the i-th element of u and u−i denotes the

vector consisting of the elements of u other than ui. Using integration by parts it follows

that: ∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) dui =

[
δTK

(
u

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

−δT
∫
R
K
(
u

δT

)
f

(1)
i,t (u|Ft−1) dui,

where f (1)
i,t (u|Ft−1) ≡ ∂ft (u|Ft−1) /∂ui, as in the proof of Lemma 6. But:∣∣∣∣δTK( u

δT

)
ft (u|Ft−1)

∣∣∣∣ ≤ L0δT

∣∣∣∣K( u

δT

)∣∣∣∣ ,
by Assumption A2(i), and for all fixed u−i:

lim
ui→±∞

∣∣∣∣Kj ( u

δT

)∣∣∣∣ = 0,

by Assumption A11. Hence:[
δTK

(
u

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

= 0,

and thus: ∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) dui = −δT

∫
R
K
(
u

δT

)
f

(1)
i,t (u|Ft−1) dui

so:

geitT = −
(
TδGT

)−1/2
ZtδT

∫
RG
K
(
u

δT

)
f

(1)
i,t (u|Ft−1) du

= −
(
TδGT

)−1/2
δG+1
T Zt

∫
RG
K (s) f

(1)
i,t (δT s|Ft−1) ds.
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Thus we have that:

T∑
t=1

geitT = T 1/2δ
(G/2)+1
T

(
T−1

T∑
t=1

Zt

)
ψitT ,

where:

ψitT ≡
∫
RG
K (s) f

(1)
i,t (δT s|Ft−1) ds.

Now a second order Taylor series expansion of f (1)
i,t (δs|Ft−1) around s = 0 gives:

f
(1)
i,t (δs|Ft−1) = f

(1)
i,t (0|Ft−1) + δ

G∑
j=1

sj f
(2)
ij,t (0|Ft−1)

+

(
1

2

)
δ2

G∑
j=1

G∑
k=1

sjsk f
(3)
ijk,t (λδT s|Ft−1) ,

for some 0 ≤ λ ≤ 1, where f (2)
ij,t (u|Ft−1) denotes the (i, j)-th element of f (2)

t (u|Ft−1) and

f
(3)
ijk,t (u|Ft−1) denotes the (i, j, k)-th element of f (2)

t (u|Ft−1). But f (1)
i,t (0|Ft−1) = 0, by

Assumption A2, and
∫
RG sK (s) ds = 0, by Assumption A6. Hence:

ψitT =

(
1

2

)
δ2
T

G∑
j=1

G∑
k=1

∫
RG

sjskK (s) f
(3)
ijk,t (λδT s|Ft−1) ds,

where λ may vary with s, and by CS it follows that:

|ψitT | ≤
(

1

2

)
δ2
T

G∑
j=1

G∑
k=1

∫
RG
|sjsk| |K (s)|

∣∣∣f (3)
ijk,t (λδT s|Ft−1)

∣∣∣ ds.
Since

∥∥∥f (3)
t (u|Ft−1)

∥∥∥ ≤ L5 for all (u, t, ω), by Assumption A8, and since
∫
RG ‖s‖

2 |K| ds ≤

L10 <∞, by Assumption A11, it follows that:

|ψitT | ≤
G2L3L10

2
δ2
T ,

and since T−1
∑T

t=1 Zt = Op (1), by the ergodic theorem, then:

T∑
t=1

geitT =
G2L3L10

2
T 1/2δ

(G/2)+1
T δ2

TOp (1) = Op

[(
TδG+6

T

)1/2
]

= op (1) ,

by Assumption A12. This then implies that
T∑
t=1

getT = op (1).
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Second, fix λ 6= 0 and define:

ztT ≡ λ′g∗tT , σ2
tT ≡ V ar (ztT ) , ΣT ≡

T∑
t=1

σ2
tT , ηtT ≡

ztT√
ΣT

.

By construction {(ztT ,Ft)}∞t=−∞ is a martingale difference array since ztT = (λ′gtT ) −

E (λ′gtT |Ft−1). Theorem 24.3 of Davidson (1994) implies that
∑T

t=1 ηtT converges in

distribution to a standard normal provided that (a)
∑T

t=1 V ar (ηtT ) = 1 for all T , (b)∑T
t=1 η

2
tT

p→ 1, and (c) max1≤t≤T |ηtT | = op (1). If there exists 0 < Σ0 < ∞ such that

ΣT → Σ0 as T →∞ then these conditions are satisfied provided that (b′)
∑T

t=1 z
2
tT

p→ Σ0

and (c′) max1≤t≤T |ztT | = op (1), in which case it follows that
∑T

t=1 ztT converges in

distribution to a N (0,Σ0). Now observe that:

σ2
tT = E

(
z2
tT

)
= E

[
(λ′gtT )

2 − 2 (λ′gtT ) (λ′getT ) + (λ′getT )
2
]

= E
[
(λ′gtT )

2
]
− E

[
(λ′getT )

2
]
,

so:

ΣT = E

[
T∑
t=1

(λ′gtT )
2

]
− E

[
T∑
t=1

(λ′getT )
2

]
.

Then:

E

[
T∑
t=1

(λ′gtT )
2

]
=

T∑
t=1

λ′E (gtTg
′
tT )λ,

so by the law of iterated expectations it follows that:

E (gtTg
′
tT ) = T−1E [(Zt ⊗ IG) ΓetT (Z ′t ⊗ IG)] ,

where:

ΓetT = δ−GT E

{[
K(1)

(
Ut
δT

)
K(1)

(
Ut
δT

)′]
|Ft−1

}
= δ−GT

∫
RG
K(1)

(
u

δT

)
K(1)

(
u

δT

)′
ft (u|Ft−1) du

=

∫
RG
K(1) (s)K(1) (s)′ ft (δT s|Ft−1) du.

Then by Assumption A1 we have that:

E

(
T∑
t=1

gtTg
′
tT

)
= E

{
(Zt ⊗ IG)

[∫
RG
K(1) (s)K(1) (s)′ ft (δT s|Ft−1) du

]
(Z ′t ⊗ IG)

}
−→ E

{
ft (0|Ft−1) (Zt ⊗ IG)

[∫
RG
K(1) (s)K(1) (s)′ du

]
(Z ′t ⊗ IG)

}
= B0,
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by dominated convergence, since E
(
‖Zt‖2) <∞, by Assumption A10, and since:

0 ≤
∫
RG
K(1) (s)K(1) (s)′ ft (δT s|Ft−1) du ≤ L0

∫
RG
K(1) (s)K(1) (s)′ du,

in the positive semi-definite sense, by Assumptions A2 and A11. Thus:

E

[
T∑
t=1

(λ′gtT )
2

]
= λ′B0λ+ o (1) .

In addition, from above we have that:

(λ′getT ) = −
(
TδGT

)−1/2
δG+1
T λ′ (Zt ⊗ IG)

∫
RG
K (s) f

(1)
t (δT s|Ft−1) ds,

and hence by CS it follows that:

(λ′getT )
2 ≤

(
TδGT

)−1
δ2G+2
T ‖λ′ (Zt ⊗ IG)‖2

∥∥∥∥∫
RG
K (s) f

(1)
t (δT s|Ft−1) ds

∥∥∥∥2

.

Now: ∥∥∥∥∫
RG
K (s) f

(1)
t (δT s|Ft−1) ds

∥∥∥∥2

=
G∑
i=i

(∫
RG
K (s) f

(1)
i,t (δT s|Ft−1) ds

)2

=
G∑
i=1

ψ2
itT ≤

G3L3L10

2
δ2
T ,

using the bounds on ψitT from above. In addition, ‖λ′ (Zt ⊗ IG)‖2 ≤ G ‖λ‖2 ‖Zt‖2, so we

have that:
T∑
t=1

(λ′getT )
2 ≤

(
TδGT

)−1
δ2G+2
T

(
T∑
t=1

‖λ′ (Zt ⊗ IG)‖2

)(
G∑
i=1

ψ2
itT

)

≤ T
(
TδGT

)−1
δ2G+2
T G

(
G3L3L10

2
δ2
T

)2

G ‖λ‖2

(
T−1

T∑
t=1

‖Zt‖2

)
,

and hence that:

E

[
T∑
t=1

(λ′getT )
2

]
≤ T

(
TδGT

)−1
δ2G+6
T

(
G8L2

3L10

4

)
‖λ‖2E

(
T−1

T∑
t=1

‖Zt‖2

)
= O

(
δG+6
T

)
= o (1)

since E
(
T−1

∑T
t=1 ‖Zt‖

2
)

= E
(
‖Zt‖2) <∞, by Assumptions 1 and 10, and since δG+6

T =

o (1), by assumption A12. Hence we have that:

ΣT = E

[
T∑
t=1

(λ′gtT )
2

]
− E

[
T∑
t=1

(λ′getT )
2

]
= λ′B0λ = o (1) ,
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and since B0 is non-singular, by Lemma 5 above, then ΣT is positive for all T suffi ciently

large and hence
∑T

t=1 V ar (ηtT ) = 1 for all T suffi ciently large.

Second, observe that: ∑T

t=1
z2
tT − λ′B0λ = W1,T +W2,T ,

where:

W1,T ≡
∑T

t=1
z2
tT −

∑T

t=1
E
(
z2
tT |Ft−1

)
,

W2,T ≡
∑T

t=1
E
(
z2
tT |Ft−1

)
− λ′B0λ.

Now define:

φtT ≡ (λ′g∗tT )
2 − E

[
(λ′g∗tT )

2 |Ft−1

]
= z2

tT − E
(
z2
tT |Ft−1

)
,

soW1,T =
∑T

t=1 φtT , and observe that {(φtT ,Ft)} is a martingale difference array. By the

von Bahr-Esseen inequality, see von Bahr and Esseen (1965), then for any 1 < p ≤ 2:

E

(∣∣∣∣∣
T∑
t=1

φtT

∣∣∣∣∣
p)
≤ 2

T∑
t=1

E (|φtT |
p) ,

and by CR, J and the law of iterated expectations:

E (|φtT |
p) = E

(∣∣∣(λ′g∗tT )
2 − E

[
(λ′g∗tT )

2 |Ft−1

]∣∣∣p)
≤ 2p−1

[
E
(
|λ′g∗tT |

2p
)

+ E
{∣∣∣E [(λ′g∗tT )

2 |Ft−1

]∣∣∣p}]
≤ 2p−1E

(
|λ′g∗tT |

2p
)

+ 2p−1E
{
E
[(
|λ′g∗tT |

2p
)
|Ft−1

]}
= 2pE

(
|λ′g∗tT |

2p
)
,

so:

E

∣∣∣∣∣
T∑
t=1

φtT

∣∣∣∣∣
2p
 ≤ 2p+1

T∑
t=1

E
(
|λ′g∗tT |

2p
)
.

But by the law of iterated expectations:

E
(
|λ′g∗tT |

2p
)

= E

(∣∣∣∣λ′T−1/2δ
−G/2
T (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)

=
(
TδGT

)−p
E

{
E

[(∣∣∣∣λ′ (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)
|Ft−1

]}
,
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while by CS and Assumption A2:

E

[(∣∣∣∣λ′ (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)
|Ft−1

]

≤ ‖λ′ (Zt ⊗ IG)‖2p
∫
RG

∥∥∥∥K(1)

(
u

δT

)∥∥∥∥2p

ft (u|Ft−1) du

≤ Gp ‖λ‖2p ‖Zt‖2p δGT

(∫
RG

∥∥K(1) (s)
∥∥2p

ft (δT s|Ft−1) ds

)
≤ GpL0 ‖λ‖2p ‖Zt‖2p δGT

(∫
RG

∥∥K(1) (s)
∥∥2p

ds

)
.

Thus:

E (|W1,T |p) ≤ 2p+1GpL0 ‖λ‖2p (TδGT )−p+1
(∫

RG

∥∥K(1) (s)
∥∥2p

ds

)
E

(
T−1

T∑
t=1

‖Zt‖2p

)
.

Now since
∥∥K(1) (s)

∥∥ is uniformly bounded, by Assumption A6, and∫RG ∥∥K(1) (s)
∥∥ ds <∞,

by Assumption A11, then
(∫

RG
∥∥K(1) (s)

∥∥2p
ds
)
< ∞. In addition, since 1 < p ≤ 2

then E
(
‖Zt‖2p) <∞, by Assumption A10, and hence E (T−1

∑T
t=1 ‖Zt‖

2p
)

= Op (1) by

Assumption A1 and the ergodic theorem. In addition, TδGT → ∞, by Assumption A12,

and hence
(
TδGT

)−p+1
= o (1). But then E (|W1,T |p) = o (1) so W1,T = op (1) since Lp

convergence implies convergence in probability.

Next, observe that:

E
(
z2
tT |Ft−1

)
= E

{
[λ′ (gtT − getT )]

2 |Ft−1

}
= E

[
(λ′gtT )

2 |Ft−1

]
− (λ′getT )

2
,

and hence:

W2,T =
T∑
t=1

E
[
(λ′gtT )

2 |Ft−1

]
−

T∑
t=1

(λ′getT )
2 − λ′B0λ.

Now, observe that:

E (gtTg
′
tT |Ft−1) = T−1 (Zt ⊗ IG)

[∫
RG
K(1) (s)K(1) (s)′ ft (δT s|Ft−1) du

]
(Z ′t ⊗ IG) ,

and define B̂T,0 ≡ B̂T (α0), where B̂T (·) is the same as in the statement of Theorem 4.

Then CS and T imply that:
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E
(∣∣∣λ′ [∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′B̂T,0λ

∣∣∣)
≤ G ‖λ‖2 T−1

T∑
t=1

E

(
‖Zt‖2

∫
RG

∥∥K(1) (s)
∥∥2 |ft (δT s|Ft−1)− ft (0|Ft−1)| ds

)
= G ‖λ‖2

∫
Ω

∫
RG
‖Zt‖2

∥∥K(1) (s)
∥∥2 |ft (δT s|Ft−1)− ft (0|Ft−1)| ds dP (ω)

= o (1) ,

by dominated convergence, since ft (u|Ft−1) is continuous in u and uniformly bounded for

all (t, ω), by Assumption A2, and since:∫
Ω

∫
RG
‖Zt‖2

∥∥K(1) (s)
∥∥2
ds dP (ω) ≤ L8E

(
‖Zt‖2) <∞,

by Assumptions A10 and A11. It follows by M that:

λ′
[∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′B̂T,0λ = op (1) ,

and since B̂T,0 converges in probability to B0, by Assumptions A1 and 10 and the ergodic

theorem, then:

W2T = λ′
[∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′B0λ = op (1) .

Since W1T = op (1) from earlier it follows that:∑T

t=1
z2
tT = λ′B0λ+ op (1) .

Last, note that for any p > 1 such that E
(
|ztT |2p

)
<∞ for all (t, T ) then by M:

Pr

{
max

1≤t≤T
|ztT | > ε

}
= Pr

{
max

1≤t≤T
|ztT |2p > ε2p

}
≤

T∑
t=1

Pr
{
|ztT |2p > ε2p

}
≤ ε−2p

T∑
t=1

E
(
|ztT |2p

)
.

Now by CR, J and the law of iterated expectations:

E
(
|ztT |2p

)
= E

(
|λ′ (gtT − getT )|2p

)
= E

(
|(λ′gtT )− (λ′getT )|2p

)
≤ 22p−1

[
E
(
|λ′gtT |2p

)
+ E

(
|E (λ′gtT |Ft−1)|2p

)]
= 22p−1

[
E
(
|λ′gtT |2p

)
+ E

{
E
(
|(λ′gtT )|2p

)
|Ft−1

}]
= 2pE

(
|λ′gtT |2p

)
.
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Now:

λ′gtT =
(
TδGT

)−1/2
λ′ (Zt ⊗ IG)K(1)

(
Ut
δT

)
,

so by CS and the law of iterated expectations:

E
(
|λ′gtT |2p

)
≤

(
TδGT

)−p
E

{
‖λ′ (Zt ⊗ IG)‖2p

∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p
}

=
(
TδGT

)−p
E

[
‖λ′ (Zt ⊗ IG)‖2p

E

{∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p

|Ft−1

}]
.

Now:

E

{∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p

|Ft−1

}
=

∫
RG

∥∥∥∥K(1)

(
u

δT

)∥∥∥∥2p

ft (u|Ft−1) du

=

∫
RG

δGT
∥∥K(1) (s)

∥∥2p
ft (δT s|Ft−1) ds

≤ L0L
2(p−1)
1 L8δ

G
T ,

since 0 ≤ ft (u|Ft−1) ≤ L0 for all u, by Assumption A2,
∥∥K(1) (s)

∥∥ ≤ L1 for all s, by

Assumption A6, and
∫
RG
∥∥K(1) (s)

∥∥2
ds = L8, by Assumption A11. Therefore we have

that:

Pr

{
max

1≤t≤T
|ztT | > ε

}
= ε−2p22pT

(
TδGT

)−p
E
(
‖λ′ (Zt ⊗ IG)‖2p

)
L0L

2(p−1)
1 L8δ

G
T

≤ O
[(
TδGT

)−(p−1)
]

= o (1) ,

since E
(
‖λ′ (Zt ⊗ IG)‖2p

)
< ∞ for all 1 < p ≤ 2, by Assumption A10, and TδGT → ∞,

by Assumption A12.

This then establishes that
∑T

t=1 ztT
d−→ N (0, λ′B0λ) for all fixed λ and hence we have

that:
T∑
t=1

gtT
d−→ N (0, B0) .

�

Lemma 8 Under Assumptions A1—A12, define:

B (αA) ≡ E
[
ft ((A− A0)Zt|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
,

then:

sup
A∈A

∥∥∥B̂T (αA)−B (αA)
∥∥∥ = op (1) .
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Proof. In the proof of this Lemma we use the same constant J2 <∞, sequence {A2T}

of subsets of A, and sequences
{
Ā2T (·)

}
and {ᾱ2T (·)} of functions as used in the proof

of Lemma 6.

Now, fix λ 6= 0 and for any A ∈ A define:

R (αA) ≡ λ′B (αA)λ,

rtT (αA) ≡
(
TδGT

)−1
[
λ′ (Zt ⊗ IG)K(1)

(
Yt − AZt

δT

)]2

,

RT (αA) ≡ λ′B̂T (αA)λ =
T∑
t=1

rtT (αA) ,

retT (αA) ≡ E [rtT (αA) |Ft−1] , Re
T (αA) ≡

T∑
t=1

retT (αA) .

In addition, for any A ∈ A define:

S1T (αA) ≡ RT (αA)−RT (ᾱ2T (αA)) ,

S2T (αA) ≡ RT (αA)−Re
T (αA) ,

S3T (αA) ≡ Re
T (ᾱ2T (αA))−Re

T (αA) ,

S4T (αA) ≡ Re
T (αA)−R (αA) ,

and observe that:

RT (αA)−R (αA) = S1T (αA) + S2T (ᾱ2T (αA)) + S3T (αA) + S4T (αA) ,

and hence:

sup
A∈A
|RT (αA)−R (αA)| = sup

A∈A
|S1T (αA)|+ sup

A∈A2T
|S2T (αA)|

+ sup
A∈A
|S3T (αA)|+ sup

A∈A
|S4T (αA)| .

In order to establish the desired result it suffi ces to establish that each of the terms on

the right-hand-side of the above equation is op (1).

First, observe that by T:

|S1T (αA)| ≤
T∑
t=1

|rtT (αA)− rtT (ᾱ2T (αA))| .
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Now for any A,A† ∈ A then it follows by MVT that:

rtT (αA)− rtT (αA†) = 2T−1δ−GT δ−1
T

[
λ′ (Zt ⊗ IG)K(1)

(
Yt − A∗Zt

δT

)]
×
[
λ′ (Zt ⊗ IG)K(2)

(
Yt − A∗Zt

δT

)
(Z ′t ⊗ IG) (αA − αA†)

]
,

and hence it follows by CS that:

|rtT (αA)− rtT (αA†)| ≤ 2G3/2L1L6T
−1δ

−(G+1)
T ‖λ‖2 ‖Zt‖3 ‖αA − αA†‖ ,

since
∥∥K(1) (u)

∥∥ ≤ L1 and
∥∥K(2) (u)

∥∥ ≤ L6 for all u. But then since ‖αA − ᾱ2T (αA)‖ ≤

T−2 for all A ∈ A it follows that:

|rtT (αA)− rtT (ᾱ2T (αA))| ≤ 2G3/2L1L6T
−3δ

−(G+1)
T ‖λ‖2 ‖Zt‖3 ,

and hence that:

sup
A∈A
|S1T (αA)| ≤ 2G3/2L1L6T

−2δ
−(G+1)
T ‖λ‖2

(
T−1

T∑
t=1

‖Zt‖3

)
.

Now T−1
∑T

t=1 ‖Zt‖
3 = Op (1), by Assumptions A1 and A10 and the ergodic theorem,

while T−2δ
−(G+1)
T =

(
Tδ

(G+1)/2
T

)−2

= o (1), by Assumption A12. Hence it follows that:

sup
A∈A
|S1T (αA)| = op (1) .

In addition, it follows from T that:

|S3T (αA)| ≤
T∑
t=1

|retT (αA)− retT (ᾱ2T (αA))| .

But for any A,A† ∈ A then by J:

|retT (αA)− retT (αA†)| = |E {[rtT (αA)− rtT (αA†)] |Ft−1}|

≤ E [{|rtT (αA)− rtT (αA†)|} |Ft−1]

≤ 2G3/2L1L6T
−3δ

−(G+1)
T ‖λ‖2 ‖Zt‖3 ,

and hence:

sup
A∈A
|S3T (αA)| ≤ 2G3/2L1L6T

−2δ
−(G+1)
T ‖λ‖2

(
T−1

T∑
t=1

‖Zt‖3

)
= op (1) .

48



Second, define:

r∗tT (αA) ≡ rtT (αA)− retT (αA) ,

rtT,1 (αA) ≡ χ
(
‖(Z ′t ⊗ IG)λ‖2 ≤ δ−2

T

)
rtT ,

rtT,2 (αA) ≡ χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
rtT ,

retT,j (αA) ≡ E [rtT,j (αA) |Ft−1] , j = 1, 2,

r∗tT,j (αA) ≡ rtT,j (αA)− retT,j (αA) , j = 1, 2,

R∗tT,j (α) ≡
T∑
t=1

r∗tT,j (αA) , j = 1, 2,

which implies that r∗tT (αA) = r∗tT,1 (αA) + r∗tT,2 (αA) so that:

S2T (αA) ≡ [RT (αA)−Re
T (αA)] = R∗T,1 (αA) +R∗T,2 (αA) ,

and hence that:

sup
A∈A2T

|S2T (αA)| ≤ sup
A∈A2T

∣∣R∗T,1 (αA)
∣∣+ sup

A∈A2T

∣∣R∗T,2 (αA)
∣∣ .

Now for any A ∈ A and T = 1, 2, . . . , then by construction
{(
r∗tT,1 (αA) ,Ft

)}∞
t=−∞ is a

martingale difference sequence. In addition:

|r1T,1 (αA)| ≤ L1T
−1δ−GT δ−2

T ,

since
∥∥K(1) (u)

∥∥ ≤ L1 for all u, by Assumption A6, so it follows from T and J that∣∣r∗tT,1 (αA)
∣∣ ≤ 2L1T

−1δ−GT δ−2
T . Now define:

rvtT,1 (αA) ≡ V ar
[
r∗tT,1 (αA) |Ft−1

]
, Rv

T,1 (αA) ≡
T∑
t=1

rvtT,1 (αA) ,

and observe that since:

E
[
r∗tT,1 (αA) |Ft−1

]
= E

[
r∗tT,2 (αA) |Ft−1

]
= 0,

and E
[
r∗tT,1 (αA) r∗tT,2 (αA) |Ft−1

]
= 0 then Cov

[
r∗tT,1 (αA) , r∗tT,2 (αA) |Ft−1

]
= 0 so by CS:

rvtT,1 (αA) ≤ V ar [r∗tT (αA) |Ft−1] ≤ E
[
r2
tT (αA) |Ft−1

]
≤ G2

(
TδGT

)−2 ‖λ‖4 ‖Zt‖4

∫
RG

∥∥∥∥K(1)

(
u− (A− A0)Zt

δT

)∥∥∥∥4

ft (u|Ft−1) du

= G2T−2δ−GT ‖λ‖
4 ‖Zt‖4

∫
RG

∥∥K(1) (s)
∥∥4
ft ((A− A0)Zt + δT s|Ft−1) du

≤ G2L0L
2
1L8T

−2δ−GT ‖λ‖
4 ‖Zt‖4 ,
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since ft (u|Ft−1) ≤ L0 for all (u, t, ω), by Assumption A2,
∥∥K(1) (u)

∥∥ ≤ L1 for all u, by

Assumption A6, and
∫
RG
∥∥K(1) (u)

∥∥2
du ≤ L8, by Assumption A11. Hence it follows that:

Rv
T,1 (αA) ≤ G2L0L

2
1L8T

−1δ−GT ‖λ‖
4

(
T−1

T∑
t=1

‖Zt‖4

)
,

and since the right-hand-side of the above equation does not depend on αA then:

sup
A∈A2T

Rv
T,1 (αA) ≤ G2L0L

2
1L8T

−1δ−GT ‖λ‖
4

(
T−1

T∑
t=1

‖Zt‖4

)
.

Now, since the {Zt} are strictly stationary and ergodic, by Assumption A1, and since

E
(
‖Zt‖4) = L11, by Assumption A10, then setting bT = 2G2L0L

2
1L9L11 ‖λ‖4 T−1δ−GT it

follows that:

Pr

(
sup
A∈A2T

Rv
T,1 (αA) > bT

)
= o (1) ,

and hence for any fixed ε > 0 it follows by Lemma 2 that:

Pr

(
sup
A∈A2T

∣∣R∗T,1 (αA)
∣∣ ≥ ε

)
≤
∑
A∈A2T

Pr
(∣∣R∗T,1 (αA)

∣∣ ≥ ε&Rv
T,1 (αA) ≤ bT

)
= o (1) .

Then from Lemma 1 it follows that:

Pr
(∣∣R∗T,1 (αA)

∣∣ ≥ ε&Rv
T,1 (αA) ≤ bT

)
≤ exp

(
− ε2/2

ε2L1T−1δ−GT δ−2
T + 2G2L0L2

1L8L11 ‖λ‖4 T−1δ−GT

)
= exp

(
− ε2TδG+2

T

4
(
L1ε+G2L0L2

1L8L11 ‖λ‖4 δ2
T

)) ,
and hence that:

Pr

(
sup
A∈A2T

∣∣R∗T,1 (αA)
∣∣ ≥ ε

)
≤ 2J2T

2GK exp

(
− ε2TδG+2

T

4
(
L1ε+G2L0L2

1L8L11 ‖λ‖4 δ2
T

))+ o (1)

= o (1) ,

since ln (T ) /
(
TδG+2

T

)
= δ2

T ln (T ) /
(
TδG+4

T

)
= o (1), by Assumptions A7 and A11. Since

ε > 0 was arbitrary it follows that:

sup
A∈A2T

∣∣R∗T,1 (αA)
∣∣ = op (1) .
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In addition, observe that since:

rtT,2 (αA) ≡ χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
rtT ,

then by CS:

|rtT,2 (αA)| ≤ L2
1

(
TδGT

)−1 ‖(Z ′t ⊗ IG)λ‖2
χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
,

and hence by J:∣∣r∗tT,2 (αA)
∣∣ ≤ 2L2

1

(
TδGT

)−1 ‖(Z ′t ⊗ IG)λ‖2
χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
.

In addition, since the right-hand-side of the above inequality does not depend on A then:

sup
A∈A2T

∣∣r∗tT,2 (αA)
∣∣ ≤ 2L2

1

(
TδGT

)−1 ‖(Z ′t ⊗ IG)λ‖2
χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)
,

and hence:

E

(
sup
A∈A2T

∣∣R∗T,2 (αA)
∣∣) ≤

T∑
t=1

E

{
sup
A∈A2T

∣∣r∗tT,2 (αA)
∣∣}

≤ 2L2
1δ
−G
T E

{
‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)}
.

Now, as shown in the proof of Lemma 6 above, if we set r = (G+ 4 + ξ) /2 then:

E
{
‖(Z ′t ⊗ IG)λ‖2

χ
(
‖(Z ′t ⊗ IG)λ‖2

> δ−2
T

)}
≤ δ

2(r−1)
T E

(
‖(Z ′t ⊗ IG)λ‖2r

)
,

which implies that:

E

(
sup
A∈A2T

∣∣R∗T,2 (αA)
∣∣) ≤ 2L2

1δ
−G
T δ

2(r−1)
T E

(
‖(Z ′t ⊗ IG)λ‖2r

)
= o (1) ,

since 2 (r − 1)−G = 2r−G−2 = 2+ξ > 0 and E
(
‖(Z ′t ⊗ IG)λ‖2r) <∞, by Assumption

A10, and δT = o (1), by Assumption A7. It follows from M that supA∈A2T
∣∣R∗T,2 (αA)

∣∣ =

op (1), and since supA∈A2T
∣∣R∗T,1 (αA)

∣∣ = op (1), as shown above, then:

sup
A∈A2T

|S2T (αA)| = op (1) .

Third, observe that Re
T (αA) =

∑T
t=1 r

e
tT (αA), where

retT (αA) = E

{
T−1δ−GT

[
λ′ (Zt ⊗ IG)K(1)

(
Yt − AZt

δT

)]2

|Ft−1

}

= T−1δ−GT

∫
RG

[
λ′ (Zt ⊗ IG)K(1)

(
Yt − AZt

δT

)]2

ft (u|Ft−1) du

= T−1

∫
RG

[
λ′ (Zt ⊗ IG)K(1) (s)

]2
ft ((A− A0)Zt + δT s|Ft−1) ds.
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If we now define:

Re
t0 (αA, δ) ≡

∫
RG

[
λ′ (Zt ⊗ IG)K(1) (s)

]2
ft ((A− A0)Zt + δs|Ft−1) ds.

then Re
T (αA) =

∑T
t=1R

e
t0 (αA, δ) and R0 (αA) = E [Re

t0 (αA)]. But for any A ∈ A and δ it

follows that {Re
t0 (αA, δ)}∞t=−∞ is strictly stationary and ergodic, by Assumption A1. In

addition, it follows by CS that:

|Re
t0 (αA, δ)| ≤ GL0L8 ‖λ‖2 ‖Zt‖2 ,

since ft (u|Ft−1) ≤ L0, by Assumption A2, and Re
t0 (αA, δ) is continuous in (αA, δ), since

ft (u|Ft−1) is continuous in u for all (t, u, ω), by Assumption A2, E
{
‖Zt‖2} <∞, by As-

sumption A10 and
∫
RG
∥∥K(1) (s)

∥∥ ds = L10, by Assumption A11. Furthermore, Re
t0 (αA, δ)

is continuous in (αA, δ). Hence, it follows by the uniform law of large numbers for strictly

stationary ergodic process that:

sup
A∈A
|S4T (αA)| = sup

A∈A

∣∣∣∣∣T−1

T∑
t=1

Re
t0 (αA, δT )− E [Re

t0 (αA, δ)]

∣∣∣∣∣ = op (1) ,

since δT = o (1), by Assumption A6, and A is compact, by Assumption A3. �

Proof of Theorem 5 Note that the function

Q0(βr) =
[
α0 + vec

((
ΨrΓ

−1
r

))]′ [
D−1

0 B0D
−1
0

]−1 [
α0 + vec

((
ΨrΓ

−1
r

))]
is continuous in βr. Since D−1

0 B0D
−1
0 is positive definite by Lemma 5, it follows

that Q0(βr) > 0 for any βr : α0 6= − vec ((ΨrΓ
−1
r )) and Q0(βr) = 0 if and only if

α0 = − vec ((ΨrΓ
−1
r )). Hence by Assumption A13 the minimum is unique. Note also that

QT (βr) = [α̂T + vec ((ΨrΓ
−1
r ))]

′ [
D̂T (α̂T )−1 B̂T (α̂T ) D̂T (α̂T )−1

]−1

[α̂T + vec ((ΨrΓ
−1
r ))]

converges uniformly toQ0(βr). Since Br is compact by Assumption 14, all the assumptions

of Theorem 2.1 of Newey and McFadden (1994) are satisfied and consequently β̂
r

T

p→ βr0.

�

Proof of Theorem 6 Since βr0 belongs to the interior of Br by Assumption 16, and

β̂
r

T

p→ βr0 by Theorem 5, it follows that the first order conditions of the minimization
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problem (9) are satisfied with probability approaching one, yielding

C
(
β̂
r

T

)′ [
Âvar (α̂T )

]−1 [
α̂T + vec

(
Ψ̂rΓ̂

−1
r

)]
= 0

where, as before, Âvar (α̂T ) = D̂T (α̂T )−1 B̂T (α̂T ) D̂T (α̂T )−1. Now by a Taylor expansion

we have

vec
(

Ψ̂rΓ̂
−1
r

)
= vec

(
Ψ0,rΓ

−1
0,r

)
+ C

(
β̃
r

T

)(
β̂
r

T − βr0
)
,

where β̃
r

T is on a line joining β̂
r

T and β
r
0 and Ψ0,r and Γ0,r correspond to the matrices Ψr

Γr evaluated at β
r = βr0. But vec

(
Ψ0,rΓ

−1
0,r

)
= −α0 and therefore we have

C
(
β̂
r

T

)′ [
Âvar (α̂T )

]−1

C
(
β̂
r

T

)√
TδG+2

T

(
β̂
r

T − βr0
)

= −C
(
β̂
r

T

)′ [
Âvar (α̂T )

]−1
√
TδG+2

T (α̂T−α0).

The result follows from Theorem 3, C
(
β̂
r

T

)
= C0 + op(1) and the fact that rank(C0) =

G (G+K)− ρ by Assumption 15. �

A2. Bivariate distribution with zero mode

In this appendix we provide details on the bivariate distribution used in the second set

of experiments presented in Section 4.

Let ξ1 and ξ2 be two independent gamma-distributed random variables with E
(
ξg
)

=

θg/κg and Var
(
ξg
)

= θg/κ
2
g, for g ∈ {1, 2}. Then, the joint density of f (ln ξ1, ln ξ2) is

f (ln ξ1, ln ξ2) =
κθ11 κ

θ2
2

Γ (θ1) Γ (θ2)
exp (θ1 ln ξ1 + θ2 ln ξ2 − κ1ξ1 − κ2ξ2) .

Next, consider the random variables ε1 and ε2 obtained as ε1 = ln ξ1 and ε2 = ξ1 ln ξ2.

The usual results on change of variables lead to

f (ε1, ε2) =
κθ11 κ

θ2
2

Γ (θ1) Γ (θ2)
exp

(
(θ1 − 1) ε1 + θ2

ε2

exp (ε1)
− κ1 exp (ε1)− κ2 exp

(
ε2

exp (ε1)

))
.

To find the values of the parameters for which f (ε1, ε2) has mode at ε1 = ε2 = 0, we

take the derivatives of f (ε1, ε2) with respect to ε1 and ε2 and evaluate them at ε1 = ε2

= 0:

∂f (ε1, ε2)

∂ε1

∣∣∣∣
ε1=ε2=0

=
−κθ11 κ

θ2
2 e
−κ1−κ2

Γ (θ1) Γ (θ2)
(κ1 − θ1 + 1) ,

∂f (ε1, ε2)

∂ε2

∣∣∣∣
ε1=ε2=0

=
−κθ11 κ

θ2
2 e
−κ1−κ2

Γ (θ1) Γ (θ2)
(κ2 − θ2) .
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These results show that f (ε1, ε2) will have mode at ε1 = ε2 = 0 when θ1 = κ1 + 1

and θ2 = κ2. Additionally, it is possible to show that E (ε1) = (ψ0 (θ1)− ln (κ1))

and Var (ε1) = ψ1 (θ1), and that E (ε2) = θ1 (ψ0 (θ2)− ln (κ2)) /κ1 and Var (ε2) =

θ1

(
ψ1 (θ2) (θ1 + 1) + (ψ0 (θ2)− ln (κ2))2) /κ2

1, where ψ0(·) and ψ1(·) denote, respectively,

the digamma and trigamma functions.
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