
Accepted Manuscript

Spurious Long Memory, Uncommon Breaks and the Implied-Realized Volatility Puzzle

Neil M. Kellard, Ying Jiang, Mark Wohar

PII: S0261-5606(15)00064-9

DOI: 10.1016/j.jimonfin.2015.04.003

Reference: JIMF 1552

To appear in: Journal of International Money and Finance

Please cite this article as: Kellard, N.M., Jiang, Y., Wohar, M., Spurious Long Memory, Uncommon
Breaks and the Implied-Realized Volatility Puzzle, Journal of International Money and Finance (2015),
doi: 10.1016/j.jimonfin.2015.04.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74372065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jimonfin.2015.04.003


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Spurious Long Memory, Uncommon Breaks and the 

Implied-Realized Volatility Puzzle  
 
 

Neil M. Kellard*† , Ying Jiang **  and Mark Wohar*** 

 
 
 

*Essex Business School and Essex Finance Centre, University of Essex 
** Nottingham University Business School, China  

*** Department of Economics, University of Nebraska at Omaha 
 
 

October 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                           
† Corresponding author: Essex Business School, Essex Finance Centre, University of Essex, Wivenhoe Park, 
Colchester, CO4 3SQ, United Kingdom. Tel: +44 1206 874153, Fax: +44 1206 873429. E-mail: 
nkellard@essex.ac.uk. We are grateful to Tim Bollerslev, Marcus Chambers, Jerry Coakley, David Harvey, David 
Hendry, John Nankervis and Rob Taylor for helpful comments and suggestions. Earlier versions of this paper were 
presented at the International Symposium on Forecasting in San Diego, 2010, and a seminar at the University of 
Oxford, 2013, and we thank participants for their comments. Any errors remain our own. 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 

  
 

 

Spurious Long Memory, Uncommon Breaks and the 

Implied-Realized Volatility Puzzle 

 

Abstract 

One of the puzzles in international finance is the frequent finding that implied 
volatility is a biased predictor of realized volatility. However, given asset price 
volatility is often characterized as possessing long memory, recent literature have 
shown that allowing for long-range dependence removes this bias. Of course, the 
appearance of long memory can be generated by the presence of structural breaks. 
This paper discusses the effect of structural breaks on the implied-realized volatility 
relation. Simulations show that if significant structural breaks are omitted, testing can 
spuriously show the typical patterns of fractional cointegration found in the literature. 
Next, empirical results show that foreign exchange implied and realized volatility 
contain structural breaks. The breaks in the implied series never closely anticipate or 
co-occur with those of the realized series, suggesting the market has no ability to 
forecast structural change. When breaks are accounted for in the bi-variate 
framework, the point estimate of the slope parameter falls and the null of 
unbiasedness can be rejected. Allowing for structural breaks, suggests the implied-
realized volatility puzzle might not be solved after all. 
 

JEL classification: C14, C22, F31, G14. 

Keywords: implied-realized relation, unbiasedness, uncommon structural change, 

foreign exchange, Monte Carlo simulation. 
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1. Introduction 

Optimal modelling and forecasting of volatility is essential for a variety of risk 

assessment and trading purposes. However, standard market efficiency tests in the 

extant literature (see, inter alia, Christensen and Prabhala, 1998, and Poteshman, 

2000) have routinely led to the conclusion that option implied volatility (IV) is a 

biased forecast of realized volatility (RV). Specifically, given the regression below 

ττ βσασ ++ ++= t
IV
t

R
t u  (1) 

where IV
tσ  is IV over a time period τ and R

t τσ +  represents RV over that same period, 

least squares estimation typically finds 1ˆ <β , violating the joint unbiasedness 

restrictions of 0=α , 1=β  and τ+tu  being serially uncorrelated. This bias occurs 

across a number of asset markets (see Neely, 2009) and has therefore inspired the 

search for an appropriate rationale. Common suggestions include that volatility risk is 

not priced (Chernov, 2007), computing RV with low-frequency data (Poteshman, 

2000) and that the standard estimation with overlapping observations produces 

inconsistent parameter estimates (Christensen, Hansen and Prabhala, 2001). However, 

Neely (2009), shows the conditional bias in IV is robust to these potential solutions. 

The optimality of the approach applied to the estimation of (1) relies crucially 

on the order of integration (d ) of the covariates. Given the extant literature suggests 

individual volatility series are appropriately represented as long memory, fractionally 

integrated processes with 10 << d  (Anderson et al., 2001a and 2001b), least squares 

estimates of (1) will be inconsistent when 5.0<d , and although consistent when 

15.0 >>d , converges slowly1 at the rate )( min1 dd
p TO −− .   

                                                
1 See Marinucci and Robinson (2001; p.231). 
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Employing either foreign exchange or stock market data, Kellard et al. (2010, 

hereafter KDS), Nielsen (2007), Bandi and Perron (2006), Christensen and Nielsen 

(2006) show that IV and RV are fractionally cointegrated series wherein equation (1), 

)(~ bdIut −+τ  and db ≤ . Moreover, this literature suggests that estimators, such as 

narrow band least squares2 (NBLS), account for the fractional character of volatility 

and find a unity slope parameter in equation (1) cannot be rejected. In other words, 

the traditional slope bias disappears. However, KDS also show that the frequency of 

data used for measuring RV within a fractionally cointegrating framework is 

important for the results of unbiasedness tests. Specifically, for some popular 

exchange rates, the use of less noisy intra-day rather than daily data reveals the 

possibility a different bias, as evidence of a latent fractionally integrated risk premium 

is detected.  

For the sake of clarity, consider augmenting regression (1) with a time-varying 

risk premium term trp  

ττ δβσασ ++ +++= tt
IV
t

RV
t urp . (2) 

A corollary of finding fractional cointegration between RV and IV is that any risk 

premium will be of a lower order of (fractional) integration than the original 

volatilities. In this context (see Bandi and Perron, 2006), spectral methods like NBLS 

will still estimate regression (1) consistently. Re-arranging (2) leads to 

ττ δβσασ ++ +=−− tt
IV
t

RV
t urp . (3)                      

If daily data is relatively noisy, KDS posit any long memory behaviour of the risk 

premium3 is swamped4 and therefore hidden by τ+tu  in finite samples. Contrastingly, 

                                                
2 See Robinson and Marinucci (2003). 
3 Evidence for a fractionally integrated risk premium in forward foreign exchange markets is provided 
by Kellard and Sarantis (2008). Further discussion of volatility risk premia in other markets can be 
found in Almeida and Vicente (2009) and Doran and Ronn (2008). 
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the use of a less noisy intra-day derived RV may lead to a smaller τ+tu  and therefore 

the detection of the time series properties of a time-varying risk premium. Following 

Bandi and Perron (2006), KDS purposely avoid modelling a specific functional form 

for a risk premium, arguing that long memory behaviour in the residual of (1) presents 

prima facie evidence for concealed risk premia. Indeed, fractionally integrated 

behaviour where db < , is found in the estimated residual of (1) when intra-day data 

is employed to construct RV.  

In any case, it is important to note that other recent work has proposed that 

long memory is an illusory feature of volatility series. In particular, Granger and 

Hyung (2004) and Mikosch and Starica (1999) demonstrate that ignoring significant 

structural change causes the appearance of persistence in individual time series. 

Additionally, Choi et al. (2010) show that allowing for structural breaks in daily 

realized volatility of three foreign exchange rates partially explains their persistence 

whereas Li and Perron (2013) suggests that the long memory property disappears 

altogether. Even more pertinently for our study, Christensen and de Magistris (2010), 

using S&P 500 futures from April 1988 to October 2007, show that a common level 

shift process appropriately fits RV and IV data. When the common shift process is 

removed from the data, a simple VAR model subsequently shows that IV has no 

explanatory power for future RV. Finally, Monte Carlo evidence shows that a latent 

common level shift process in the DGP of the volatilities can spuriously lead to the 

finding of fractional cointegration. On the other hand, it should be noted that Garvey 

and Gallagher (2012), employing a sample of 16 FTSE 100 stocks from October 1997 

to December 2003, suggest that the long memory property of volatility series are not 

due to breaks occurring over their chosen sample period.   

                                                                                                                                       
4 See Maynard and Phillips (2001), Kellard (2006) and Kellard and Sarantis (2008) for other 
discussions of swamping and its effect in finite time series. 
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In a similar vein, this paper examines the effect of structural change on the IV-

RV relation. Christensen and de Magistris (2010) argue that common breaks in series 

lead to long memory persistence in volatility and fractional cointegration in (1) with 

)0(~ Iut τ+  where db = . However, KDS find approximately )3.0(Iut ≈+τ ,  a result 

that as noted above, can be driven by the presence of a risk premium. Another 

possible explanation is the existence of uncommon structural breaks in RV and IV, 

which therefore create level breaks in the residual of (1) and spurious fractional 

cointegration. Christensen and de Magistris (2010) suggest that co- breaking is likely 

because of common responses to movements between booms and busts in financial 

markets. Of course, allowing peso-type problems to exist or some other time-varying 

risk premia it is quite possible that traders’ trade implied volatility at a different level 

to realized volatility. On the other hand, it is also possible that IV is a relatively poor 

forecast of RV. In either case, it is quite possible that market-specific breaks in RV 

are not contemporaneously mirrored in IV.   

This paper therefore extends the extant literature in five steps. Firstly, Monte 

Carlo experiments show that uncommon structural breaks can cause the finding of 

fractional cointegration with db < . Secondly, the Bai and Perron (1998, 2003a, 

2003b, 2004) method is employed to test for uncommon multiple breaks in the mean 

levels of foreign exchange volatility series. Thirdly, we explicitly examine the time 

series properties of break-free individual volatility series and fourthly, we examine a 

break-free version of regression (1).  

 Our fifth contribution to the literature is derived from noting that the testing 

procedure suggested above relies on two notions. Firstly, (i) that any structural breaks 

identified are the (at least) partial cause of spurious long memory and (ii) that 

uncertainty over the estimation of structural breaks is ignored in the construction of 
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confidence intervals of break-free version of regression (1). To address the former 

point we carry out the popular Ohanissian et al. (2008) test which uses the self-

similarity property of true long memory processes to assess whether any long memory 

in our individual series is true or due to breaks. Simulations are also undertaken to 

assess whether the Ohanissian et al. test can be usefully used when non-stationary 

long memory is suspected. To address point (ii) we note that uncertainty in any first-

stage break estimation comes from three sources: the number, date and the size of the 

breaks. It would appear difficult to deal with these 3 sources of uncertainty in a 

formal, rigorous way and previous literature has not considered the issue. To assess 

the extent of the issue, we provide Monte Carlo evidence on the effect of first-stage 

uncertainty on second-stage confidence interval coverage. This allows us to suggest a 

new sequential estimation procedure for the demeaned version of regression (1) which 

is more robust to break estimation uncertainty.       

The empirical results are interesting; using data on three currencies for the 

period 1991-2007, evidence is provided by both the Bai and Perron procedure and the 

Ohanissian et al. tests, that RV and IV contain breaks. The estimated breaks in the 

implied series never occur just before or contemporaneously with those of the realized 

series, suggesting the market has no ability to forecast or mirror structural change.  

Moreover, when breaks are accounted for, the magnitude of fractional integration 

parameter d drops towards zero for individual volatility series. However, moving to 

the bi-variate framework, the point estimate of the slope parameter falls away from 

unity and the null of unbiasedness can often be rejected. The rejection of unbiasedness 

is particularly acute when RV is constructed by intra-day rather than daily data. In 

summary, explicitly modelling structural breaks suggests the implied-realized 
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volatility puzzle is not resolved by using econometric techniques that allow for long 

memory. 

The paper is divided into six sections: Section 2 presents the empirical 

methodology; section 3 describes the data; section 4 provides the simulation results; 

section 5 analyses the empirical results and, finally, section 6 concludes. 

 

2. Empirical methodology 

(i) Testing for long memory and fractional cointegration 

To estimate the order of integration of RV and IV series and subsequently estimate 

(1), the recent literature has employed techniques that account for long memory. For 

example, there are several approaches to estimating d  the memory parameter for 

individual series. Perhaps the most commonly used, partly due to its semi-parametric 

nature, is the log periodogram estimator (see Geweke and Porter-Hudak, 1983; 

Robinson, 1995a; Velasco, 1999a) typically known as the GPH statistic. This involves 

the least squares regression  

mjudI jjj ,...,2,1,)}2/(sin4log{)(log 2
0 =+−= λβλ  (4)  

where )( jI λ  is the sample spectral density of ty  evaluated at the Tjj /2πλ =  

frequencies, T  is the number of observations and m  is small compared to T . 

However, a more contemporary alternative that has been used recently in the 

estimation of long memory in volatility series is the Gaussian semiparametric5 

estimate (GSP) of Robinson (1995b) shown below 

 )(minargˆ dRd
d θ∈

=  (5) 

                                                
5 Semiparametric estimation is typically preferred in the long memory estimation of volatility (see 
Bandi and Perron, 2006). For example, Christensen and Nielsen (2006) employ GSP estimation. Fully 
parametric estimation of the ARFIMA model is more efficient but inconsistent if the order of p and q 
are incorrectly selected. 
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where 

 ∑∑ ===
=

m

j
d

j

m

j
j I

m
dG

m
ddGdR

1

2

1

)(
1

)(ˆlog
1

2)(ˆlog)( λλλ  

Velasco (1999b) shows the GSP estimate is consistent over )1,2/1(−∈d and 

asymptotically distributed )4/3,2/1(−∈d . Furthermore, the GSP estimator is shown 

to be more efficient than the GPH regression estimator. Therefore, in the later results 

section, the GSP estimator will be employed to assess long memory in observed 

volatility time series. 

Following Christensen and Nielsen (2006), this paper adopts a multi-step 

methodology where the concluding step estimates the GSP statistic, δ , for the narrow 

band least squares (NBLS) residual of the equilibrium relationship. Here the β  slope 

coefficient in (1) is estimated by  

10),()(ˆ
0

1

0

−≤≤







= ∑∑

=

−

=

TzII j

z

j
j

z

j
z RVIVIV

λλβ σσσ  (6) 

where )( jIV
I λσ  is the sample spectral density of IV and )( jRVIV

I λσσ  is the cross-

spectrum between IV and RV6. Furthermore, band spectrum regression is NBLS 

given 

∞→→+ Tas
T

z

z
0

1
 (7) 

In the non-stationary case where 5.0>d , Velasco (2003) shows that when the 

cointegrating relationship has significantly less memory than the observed series, and 

is derived from consistent7 estimates of the parameters, the GSP estimate is 

asymptotically normal. Subsequently, Christensen and Nielsen (2006) examining the 

                                                
6Hence, 1

ˆ
−Tβ  is a special case, equal to the OLS estimate of β  in (1). 

7 Both OLS and NBLS estimates are consistent and converge at appropriate rates in the non-stationary 
region. 
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stationary case where 5.0<d , assume that δ  for the NBLS8 residual can be 

estimated as if the residuals are observed.  

 Finally, to construct 90% and 95% confidence intervals for the slope 

coefficient in (1), and following KDS and Gerolimetto (2006), a wild bootstrap 

procedure is employed. In the frequency domain, this involves resampling the NBLS 

residuals with replacement and subsequently constructing a bootstrapped dependent 

variable. The new dependent variable is then regressed on the original frequency 

domain regressors to obtain the bootstrapped coefficient vector. Repeating this 

procedure by using the bootstrap class in OX, 1000 bootstrapped slope coefficients 

were generated. 

 

(ii) Detecting spurious long memory and estimating multiple structural breaks 

As commented on earlier, fractional integration can be spuriously identified in the 

presence of latent structural breaks (see Granger and Hyung, 2004) or regime 

switches (Diebold and Inoue, 2001). To assess this issue, some techniques for 

distinguishing between true long memory and level shifts have been suggested in the 

recent literature. For example, Ohanissian et al. (2008)9 notes that if data are from a 

true long memory process, the fractional differencing parameter is the same across all 

temporal aggregation levels (see Chambers, 1998). From this observation, a test is 

proposed that does not require the estimation of the number of structural breaks and 

has the null hypothesis, ddddH
Mmmm ==== ...:

210 , where jm represents the level of 

temporal aggregation10 and Mmmm <<< ...21 . The test statistic can be written 

                                                
8 OLS parameter estimates for the cointegrating vector are inconsistent in the stationary region.  
9 Although the Ohanissian et al. (2008) is perhaps the most popular test for true long memory, other 
published alternatives include Qu (2011). These tests typically assume d < 0.5. 
10 Following Ohanissian et al. (2008) for daily frequency data (see their Table 6), we set 

.4;,...,2,1,2 1 === − MMjm j

j  Note that all d̂  are estimated using the GPH estimator. 
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)ˆ()'()'ˆ(ˆ 1 dZZZdZW −Λ= , (8) 

where d̂  is an M-dimensional vector of estimated memory parameters, 

)'ˆ...ˆˆˆ(
21 Mmmm dddd ==== , Λ  is the asymptotic covariance matrix of d̂  and 

Z represents an ),1( MM −  matrix allowing Λ  to be invertible11. Under the null, Ŵ  

has an asymptotic 2 1−Mχ  distribution.  

A frequently adopted approach (see Coakley et al., 2011, Choi et al., 2010, 

Kellard and Sarantis, 2008, and Choi and Zivot, 2007) to estimate multiple structural 

breaks is due to Bai and Perron (1998, 2003a, 2003b, 2004). To explain, consider the 

m -breaks in mean model below 

tjty εµ +=  (9) 

where 1,...,1 += mj  and jµ  is the mean level of ty  in the thj  regime. Moreover, let 

the m -partition )( ,....,1 mTT  be the breakpoints for the different regimes and 

conventionally, 00 =T  and TTm =+1 . To estimate the breakpoints, the objective 

function below is employed  

),...,(minarg)ˆ,...,ˆ( 1,...,1 1 mTTTm TTSTT
m

=  (10) 

where for each m -partition )( ....,1, mTT , the least squares estimates of jµ  are generated 

by minimising the sum of the squared residuals 

2

1

1

1
1 )(),...,(

1

jt

T

Tt

m

j
mT yTTS

j

j

µ−= ∑∑
+=

+

= −

 (11) 

That is, the breakpoint estimators correspond to the global minimum of the sum of the 

squares objective function. To solve the minimization problem in (10), Bai and Perron 

                                                
11 See Ohanissian et al. (2008, p. 166). Additionally, note we estimate Λ  using the approximated 
variance-covariance matrix from equation (3) in Ohanissian et al. The test is programmed using Ox 
version 7.00. 
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(2004) propose the use of a specific dynamic programming algorithm. Obviously, 

after estimating the breakpoints, it is straightforward to obtain the corresponding 

least-squares regression parameter estimates )ˆ,...,ˆ(ˆ 1 mj TTµ . 

A useful attribute of the Bai and Perron (1998, 2003a) method is that their test 

statistics12 can be generated under reasonably general specifications. Specifically, 

specifications can allow for (i) autocorrelation and heteroskedasticity in the regression 

model residuals and (ii) different moment matrices for the regressors in the different 

regimes. To incorporate all these features, we employ the most general Bai and Perron 

(1998, 2003a) specification13. Finally, given computed structural breaks in RV or IV, 

we estimate the following 'break-free' version of regression (1): 

 ττ βσασ ++ ++= t
IV
t

R
t u**   (12) 

where jtt µσσ ττ ˆ* −= ++ , and )1,...,1(ˆ += mjjµ  is the estimated mean level of 

volatility in the thj  regime. 

 

3. Data  

Monthly time series of foreign exchange RV and IV were constructed from daily data 

for the period January 1991 to December 200714. IV is measured by at-the-money, 

one-month forward, over-the-counter (OTC) market quoted volatilities15 for European 

options at close of business in London, obtained from brokers by Reuters. By contrast, 

                                                
12 Such as UDmax and WDmax that test the null hypothesis of no structural breaks versus the 
alternative of an unknown number of breaks and )1( bbSupFT +  to test the null hypothesis of b  breaks 

against the alternative of 1+b . 
13Specifically, using the notation of Bai and Perron (2004), we set cor_u = 1, het_u = 1 and 15.0=π . 
Following Choi and Zivot (2007), we set 5=M . Note that the Bai and Perron (1998, 2003a,b) 
statistics are computed using the GAUSS program available from Pierre Perron's home page at 
http://econ.bu.edu/perron/. 
14 Our paper uses the same data as Kellard et al. (2010) to maintain consistency with previous 
literature. 
15 Also see Dunis and Keller (1995), Dunis and Huang (2002) and Sarantis (2006). 
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many of the studies in the literature employ IV backed out from exchange-traded 

option prices. However, the OTC FX market is greatly more liquid than its exchange-

traded counterpart16.  

As Covrig and Low (2003) describe, although participants in exchange-traded 

markets quote prices in terms of the familiar option premium, OTC prices are given in 

terms of volatility. In other words, an option could be quoted at 12% p.a. and 

subsequently converted into the appropriate option premium by using the Garman–

Kohlhagen model. Therefore, given currency volatility has become a traded quantity 

in financial markets, it is therefore directly observable on the marketplace17 and the 

use of these volatilities avoids the potential biases (i.e., errors in the choice of option 

pricing model and the measurement of model inputs) associated with backing out data 

from an option pricing model. These ‘traded’ IVs measure18 the market's expectation 

about the future volatility of the spot exchange rate for three currencies: US dollar 

Sterling, Swiss Franc/US dollar and US dollar/Yen. 

To match with the IV data for each day, two versions of RV are calculated 

over the remaining one month of the option. Firstly, employing intra-day data19, the 

sum of the 5-minute squared logarithmic returns for each foreign exchange rate series 

is used to compute the daily variance )( th  and then the RV quantity  

it
i

RV
t h

h

+
=

+ ∑−
=

τ

τ τ
σ

11

252
.  (13) 

                                                
16 Consider that at the end of June 2012, the Bank of International Settlement (2012) reported the 
notional amount outstanding in the OTC currency option market stood at $11.1 trillion, compared with 
$111 billion for the exchange-traded market. Moreover, the US Dollar (i.e., $8.7 trillion outstanding) 
and the Euro (i.e., $4.1 trillion outstanding) are the two most heavily traded currencies within the 
option OTC market. 
17 This data was obtained from CIBEF at Liverpool John Moores University. Unfortunately, the 
databank is no longer updated. 
18Implied volatilities are also annualised rates so that a quoted volatility of 5 per cent typically 
translates to a monthly variance rate of )252/21)(05.0( 2 . The calculations assume that annualised rates 

refer to a 252 trading day year. 
19 From Olsen Associates. 
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Secondly, using daily returns data  

2

1

)(
1

252
tit

i

RV
t rr

d

−
−

= +
=

+ ∑
τ

τ τ
σ , (14) 

where τ  is the relevant number of trading days20, tS  is the closing (London time) 

average of bid and ask quotes for the spot exchange rates and )/ln( 1−= ttt SSr . The 

constructed daily dataset contains 4348 time series observations for each volatility 

series.  

As argued by Christensen and Prabhala (1998), the estimation of equation (1) 

will suffer from overlapping data problems if daily datasets are employed. To avoid 

this, a monthly dataset from the daily version by selecting an IV observation from the 

next trading day after the final day used in the calculation of the prior RV figure. 

Continuing in this manner, the data cycles through the calendar and the sampled 

dataset presents 198 non-overlapping observations for each volatility series. As an 

example, the logarithm of each monthly volatility series for US dollar Sterling are 

plotted in Figures 1 to 3.  

[Insert Figures 1 to 3] 

 

4. Simulations 

Before moving to the later empirical sections that apply the above structural break 

methodology to the RV-IV relation, we carry out the following simple simulations 

over t = 1,…,T, to gauge the effect of level structural breaks on any bivariate 

relationship.  

 

(i) Spurious fractional cointegration and common breaks 

                                                
20Assumed to be 21 days. 
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Initially, let tx  be generated by a short memory ~tz AR (1) process with two level 

breaks 

∑
=

−

+=

+=
2

1

11

)(

,

j
jjtjtt

ttt

TDUzx

zz

δ

ηερ
                   )1,0(~1 Ntε  (15) 

where )(1)( jjjt TtTDU >= , 1(.) denoting the indicator function, jT  the break dates 

and η  is a scaling parameter for calibration purposes. In our model 1, with common 

breaks in each series, the true regression model is therefore 

ttt xy 2κε+= , )1,0(~2 Ntε  (16) 

where κ  is a second scaling parameter. Based on an estimated AR(1) models21 for 

our actual monthly data, we set 6.0=ρ , 25.01 −==jδ , 25.02 −==jδ , 

15.0=η , 10.0=κ , 200=T , 501 ==jT  and 1502 ==jT . After running a 1000 

replications, we used NBLS to estimate  

ttzzt uxy ˆˆˆ ++= βα . (17) 

GSP statistics with bandwidths )7.0,6.0,5.0( == iTm i  are computed for the 

individual simulated series ty  and tx , and also for tû  and the mean of each of those 

statistics shown in rows 2 to 4 of Table 1. 

[Insert Table 1] 

The results above clearly confirm previous work that suggests that spurious fractional 

cointegration can be created in the presence of level structural breaks; specifically, the 

semi-parametric GSP statistic estimates orders of integration for the individual series 

of around 0.5, whereas the common break process allows the mean integration order 

of approximately zero for the residual series.  
                                                
21 Results are omitted to save space but available from the authors on request. Please note that as can be 
seen in our later data section, our primary dataset has a monthly frequency with approximately 200 
observations. This is why we set T = 200 in this simulation.  
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(ii) Uncommon breaks 

In the introduction, we suggested that uncommon, rather than common, breaks might 

provide an explanation for some of the results found in the prior literature. To 

simulate uncommon breaks for our model 2, tx  is defined as before in (15) but ty  can 

now be written    

 t
k

kktktt TDUzy 2

2

1

)( κεδ ++= ∑
=

  (18) 

However, in (18) only, we now allow 1001 ==kT  and 1502 ==kT . In other words, we 

allow tx  to present the first level shift 50 observations before ty . Again GSP statistics 

with bandwidths )7.0,6.0,5.0( == iTm i  are computed for the individual simulated 

series ty  and tx , and also for tû  and the mean of each of those statistics shown in 

rows 5 to 7 of Table 1. The mean order of integration for the residual series in (17) is 

now positive across all estimated bandwidths, a finding generated by the uncommon 

breaks in the individual series, resulting in a level break in the residual process of the 

bivariate relationship. This detection of spurious long memory in the residual series 

may be the rationale for the suggested risk premia in extant work like KDS. In any 

case, the Monte Carlos above indicate that, whether in the presence of common or 

uncommon structural breaks, such time series behaviour should be modelled 

explicitly to appropriately assess the bivariate volatility relation. This is how we will 

proceed in the later empirical section. 

 

(iii)  Power and size of the Ohanissian et al. (2008) test  

As noted earlier, a number of tests have been developed recently to try and distinguish 

between true long memory and structural breaks. However, tests like the popular 
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Ohanissian et al. (2008) test for spurious long memory formally require )2/1,0(∈d . 

However, in the extant literature, the estimated order of integration for foreign 

exchange volatility is typically close to the non-stationary boundary (i.e. 5.0ˆ ≈d ), 

with some estimates located in the non-stationary region (i.e. 5.0ˆ >d ). To assess the 

effect of non-stationarity on the Ŵ  test statistic in (8), we initially let tx  be generated 

by an ARFIMA ( 0,,0 d ) series 

tt
d xL 1)1( ε=− , (19) 

where the fractional difference operator is defined by the Maclaurin series 

1,
)1(

,
)1()(

)(
)1( 0

1

00

=
−−

==
+Γ−Γ

+−Γ=− −
∞

=

∞

=
∑∑ d

j

ddj
dLd

jd

Ljd
L j

j
j

j
j

j

j

d  (20) 

and (.)Γ  is the gamma function. To avoid the initial conditions effect, sample sizes 

wTt += ,...,1  are generated and the first 1000=w  observations removed. 

Additionally,  
0

j
jj Ld∑∞

=  is approximated by allowing 0=jd  when 1000>j . In the 

experiments of a 1000 replications, tests at the 5% and 10% level are calculated. 

Again we use bandwidths )7.0,6.0,5.0( == iTm i , although the Ohanissian et al. 

test uses the GPH statistic from (4) rather than the GSP alternative, and we set 

6,5,4=M in (8) 22. To begin with Table 2 shows the rejection frequency of the Ŵ  

tests when we allow23 6.0=d  and 4000=T .  

[Insert Table 2] 
 

                                                
22 Following Ohanissian et al. (2008) for daily data (see their Table 6), we initially set .4=M  
However, to assess the performance of higher levels of aggregation we also allow 5=M  and 6=M .  
23 Although most of the latter empirical analysis is carried out using a monthly dataset (see section 5), 
tests for spurious long memory typically need the greater degrees of freedom achieved at a higher 
frequency or daily dataset. This is because the levels of temporal aggregation required, combined with 
applying a typical bandwidth used in semi-parametric estimators of d, removes a large number of 
observations before estimating the test statistic. To mimic this requirement for a higher frequency 
dataset we set T = 4000. 
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The results above clearly show that the methodology considered typically produces a 

reasonably sized test statistic for the sample size and possible order of integration we 

will encounter in our later empirical exercise. Tests become marginally oversized 

when i, the bandwidth exponent, or M, the level of temporal aggregation are 

increased. To assess the power of the approach we simulate tx  as in (15) but now24 

with 4000=T , 10001 ==jT , 30002 ==jT  and 05.0=η . Table 3 shows the rejection 

frequency of the Ŵ  tests. 

[Insert Table 3] 
 
Importantly Table 3 shows a marked difference in the power of the Ohanissian et al. 

test conditional on the bandwidth exponent i. Only a higher exponent (i.e. 7.0=i ) 

produces reliable power scores and does so though producing a smaller standard 

deviation around the estimates of d, making it easier for the test procedure to 

distinguish between the different estimates of d associated with different levels of 

temporal aggregation. As such, in the later empirical analysis we shall place more 

weight on results employing this higher exponent25.   

 

(iv) Bootstrap coverage for the NBLS confidence interval 

As noted in the methodology section, if level breaks are detected by the Bai and 

Perron procedure, the volatility series are demeaned accordingly, before NBLS 

estimation of the bi-variate regression (12).  However, the NBLS confidence interval 

around the slope coefficient in (12), does not allow for the inherent uncertainty from 

the ‘first-stage’ structural break estimation procedure. This uncertainty derives from 

three sources: (i) uncertainty around the number of breaks (ii) uncertainty around the 

                                                
24 Based on an estimated AR(1) for our daily dataset.  
25 We also tried replacing the GPH statistic with the more efficient GSP alternative in the simulations. 
Although this produced a more powerful version of the  Ohanissian et al. (2008) test, it also produced a 
test that was greatly oversized. Results available from the authors on request.   
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dates of the breaks and (iii) uncertainty around the magnitude and sign of the breaks. 

Typically, the extant literature does not account for this uncertainty and it appears 

difficult to account for these three sources in the variance of the ‘second-stage’ slope 

coefficient or confidence interval in a rigorous manner.  

Of course, an alternative approach is to assess how robust the typical approach 

is to the uncertainties described.  As previously, (15) and (16) are used to simulate 

common break series, whilst (15) and (18) are used for uncommon break series. For 

each of the 1000 replications, we estimate bi-variate regression (17) and calculate a 

bootstrap confidence interval, which itself is generated from a 1000 bootstrapped 

slope coefficients. The bootstrap coverage measure represents the proportion that the 

95% confidence interval includes the unity coefficient.      

[Insert Tables 4a, b, and c] 

As can be seen from Table 4, when one break in each series exists, the coverage of the 

bootstrap confidence interval is often close to the nominal value specified in the 

second-stage. For example, Table 4(b), when 15.01 −===kjδ , 1001 ==jT  and 

1051 ==kT , then the coverage of the 95% bootstrap confidence interval is 0.934. In 

other words, the real coverage interval is reasonably close to the 95% nominal value; 

the uncertainty in the first-stage does not seriously affect the efficacy of the bootstrap 

confidence interval proposed. However, when the size and distance between the 

single breaks in the two series increases, (e.g., when 25.01 −===kjδ , 1001 ==jT  and 

1501 ==kT ) the bootstrap confidence interval falls to 0.835. It should be noted that this 

latter value is still much higher than the simulated coverage if we do not demean (i.e. 

0.531).  

As might be expected, the bootstrap confidence interval typically declines 

when we move from modelling one break to two breaks per series. However, as long 
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as breaks occur closely together and/or the break sizes are relatively modest, then the 

real confidence interval reasonably approximates the nominal value. On the other 

hand, one needs to be careful when interpreting results, when the distance between 

breaks and the break size are both relatively large. For example, in Table 4(c), when 

25.01 −===kjδ , 25.02 ===kjδ , 501 ==jT , 1001 ==kT , 1452 ==jT , and 1501 ==kT , then 

the coverage of the 95% bootstrap confidence interval declines to 0.740.  Again, it 

should be noted that this value is still much higher than the simulated coverage if we 

do not demean (i.e. 0.442).  

 Of course, in reality, even if breaks are present, we do not know the true 

number of them or their magnitude. Given the extant literature suggests that the Bai 

and Perron procedure may detect ‘spurious breaks’ in the presence of long memory, 

we suggest a robustness-check sequential procedure for estimating the breaks and the 

demeaned regressions. Specifically, we suggest a specific-to-general approach, 

estimating the demeaned regression allowing initially for only one break in each 

series. Subsequently, the number of breaks allowed is then increased by 1 and the 

demeaned regression re-estimated. This procedure continues until we reach the 

number of breaks indicated by the Bai and Perron technique. This approach also 

seems sensible given the simulations above show that negative effects of uncertainty 

from the structural break ‘first-stage’ estimation on the ‘second-stage’ bootstrap 

confidence intervals, increases as the number of breaks to be estimated rises. 

 

5. Empirical results 

(i) No-break analysis 
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Table 5 shows the GSP statistics for the logarithm26 of monthly27 volatility series 

estimated using Ox version 7.0 (see Doornik, 2001). Columns 3-5 give the results for 

the GSP statistic with 5.0Tm = , 6.0Tm =  and 7.0Tm =  respectively28. Although this 

type of semi-parametric approach is typical in the literature (see, inter alia, Nielsen, 

2007), a substitute procedure would be to estimate fully parametric ARFIMA 

),,( qdp  models. However, given the short-run dynamics are poorly specified29 the 

latter approach will be inconsistent. 

[Insert Table 5] 

Table 5 shows analogous results to those in the extant literature. Specifically, the GSP 

point estimates indicate that foreign exchange volatility is fractionally integrated with 

10 << d  and presents standard errors that cannot easily distinguish between either 

stationary (i.e., 5.00 << d ) or non-stationary (i.e., 15.0 <≤ d ) processes. Notably, 

RV and IV series show comparable orders of integration.  

To estimate regression (1), the possible long-run fractionally cointegrating 

relationship, and analogously to KDS we employ NBLS with bandwidth 75.0Tz =  and 

a wild bootstrap procedure to generate confidence intervals. These results are 

produced in Table 6. 

[Insert Table 6] 

The results are representative of those papers using estimators that allow for long 

memory behaviour in volatility, providing convincing evidence of a unity slope 

coefficient in the implied-realized volatility relation. Out of the 12 confidence 

                                                
26Christensen and Hansen (2002) show that taking natural logarithms of volatility series aids in 
minimising the possibility of non-normality.  
27As in Christensen and de Magistris (2010), the monthly dataset is used in the empirical work to 
circumvent overlapping data problems discussed by, inter alios, Christensen and Prabhala (1998). 
28 The use of diverse bandwidths is to assess the stability of the estimated parameter to different inputs 
as the optimal bandwidth is typically difficult to ascertain.  
29Recent work all employ semi-parametric estimation of the long memory parameter. 
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intervals presented in Table 6, only one does not include unity. Moreover, Table 7 

below displays the GSP statistics δ̂  for the NBLS residuals. 

[Insert Table 7] 

The results in Table 7 imply that RV and IV are fractionally cointegrated given that 

the point estimate of δ  is typically lower than d. As with KDS, δ̂  appears to be 

higher with RVh than with RVd and KDS posit this is prima facie evidence for a 

fractionally integrated risk premium. 

 

(ii) Structural break analysis 

As discussed earlier, uncommon structural breaks may be present in individual 

volatility series with time series behaviour implications for the resulting cointegrating 

residual. For a preliminary test, to examine whether the volatility data contains true 

long memory we use the test of Ohanissian et al. (2008) with our daily dataset; see 

Table 8.  

[Insert Table 8] 

Interestingly, Table 8 shows that the Ohanissian et al. test is far more likely to reject 

the null hypothesis of no spurious long memory when 7.0Tm = . Given our simulations 

in section 4(iii), where this higher exponent produces far more reliable power scores, 

it seems appropriate to place more weight on results employing 7.0Tm = . At this 

bandwidth, of our nine volatility series, only the US dollar/Yen IV series cannot reject 

true long memory and therefore it appears at least a reasonable possibility that 

structural breaks are present in the individual volatility series. To assess this, we next 

employ the Bai and Perron (1998, 2003a) estimation procedure and, switching back to 

our monthly dataset, Table 9 reports test statistics of structural change in the mean 

series of all volatility. 
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[Insert Table 9] 

The UDmax and WDmax statistics provide evidence that structural breaks are clearly 

an important component of both RV and IV. Specifically, the )1( bbSupFT + statistics 

suggest a range of 1 to 3 breaks for our volatility series. Of course, under the 

assumption of common breaks, the results in Table 9 should show that RV and IV 

within the same currency present the same number of breaks. However, in the Swiss 

Franc/US dollar case, RVd contains 1 break to the 2 given by RVh and IV. Moreover, 

the US dollar/Yen IV contains 3 breaks to the 2 presented by RVh and RVd. This 

provides the first evidence that level breaks are uncommon. To further investigate this 

point, the estimated coefficients and break points for each volatility series are reported 

in Table 10. 

[Insert Table 10] 

Table 10 reports the dates for the structural breaks in the mean level of monthly 

volatility series and their 90% and 95% confidence intervals for each of the break 

dates. The break dates correspond to the end of each regime. In addition, the average 

(mean) value of volatility is reported for each regime. These level breaks are also 

superimposed graphically on volatility figures 1 to 3. In cases where the IV and RV 

break relatively closely together, the point value of the breaks in the implied series 

never occur before or contemporaneously with those of the realized series, suggesting 

the market has no ability to forecast or mirror structural change. For example, the first 

break in US dollar/Yen RVh occurs at observation 72 whereas a corresponding break 

in IV can be found at observation 76 perhaps reflecting learning period by market 

participants. Likewise, the second break in US dollar/Yen RVh is at observation 109, 

and although closer, the break in IV is at observation 110. 
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 Of course, one might note that for the US dollar/Yen examples given above, 

the magnitude of the confidence intervals do not allow for a formal statistical 

rejection of common breaks. However, in the case where IV traders follow 

movements in RV closely and react with small delays, it is clearly going to be difficult 

to discern uncommon structural breaks in finite samples of single exchange rates. 

Here it is instructive to re-emphasise that across our 'panel of exchange rates', IV 

never closely anticipates or co-occurs with breaks in RV. However, occasionally IV 

appears to break well before RVh; for example, consider that the first break in US 

dollar/Sterling IV occurs at observation 35, whereas the initial break in RVh occurs at 

observation 94. Amongst other reasons, one might reasonably attribute this to (i) 

either traders follow daily rather than high frequency RV or (ii) traders perceive the 

risk of a possible jump in RVh at some point in the future and the current price of IV 

reflects a type of peso problem. In any case, the weight of evidence in Tables 5 and 6 

points towards uncommon breaks across RV and IV. 

 Now we assess whether allowing for the estimated level breaks reveals 

spurious long memory in our volatility series. Specifically, each series is demeaned 

employing the estimate jµ  from the OLS regression of (9) on the estimated break 

points )( ,....,1 mTT  according to the method followed in Coakley et al. (2011) amongst 

others. Table 11 reports the GSP estimates of the integration order for break-free 

volatility series, that is estimates of d for the series. jtt ασσ ττ ˆ* −= ++ . 

[Insert Table 11] 

Allowing for multiple structural mean-breaks clearly accounts for at least some, if not 

all, long memory behaviour in foreign exchange RV and IV. For example, in the case 

of US dollar/Sterling IV when 5.0Tm = ,  the GSP point estimate d̂  has fallen from 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

  23 
 

0.638 to 0.023 when the series are demeaned. Overall, in Table 11, the values of  d̂  

are lower than those presented in Table 5, and typically now found to be either zero or 

in the covariance stationary (i.e., 5.00 << d ) region, emphasising the importance of 

allowing for level breaks when assessing the time series properties of volatility.   

 For the next test, we examine the order of integration of the NBLS residual 

from demeaned regression (12) and present the results in Table 12.  

[Insert Table 12] 

We now find an order of integration close to or zero in many cases, greatly weakening 

the evidence for a fractionally integrated risk premium. For example, in Table 12, the 

GSP estimate for the demeaned, high frequency US dollar/Yen (bandwidth 7.0Tm = ) 

is 048.0− . Contrastingly, the non-demeaned equivalent in Table 7 is 0.216 and 

significantly different from zero. Clearly, empirically modelling uncommon structural 

breaks, as suggested in the simulations of section 4(ii), not only removes persistence 

from the individual volatility series but also from the bivariate volatility regression 

residual. Prior findings of fractional cointegration in the literature may well be 

predominantly spurious.  

 For the final analysis, Table 13 shows the estimated coefficients and 

bootstrapped confidence intervals obtained when applying NBLS to (12). 

[Insert Table 13] 

When breaks are accounted for in the bi-variate framework, the point estimate of the 

slope parameter always falls and the null of unbiasedness can now be rejected in 4 out 

of 6 cases. It would appear that by identifying and then modelling structural breaks, 

the implied-realized volatility puzzle re-emerges. 

 

(iii) Robustness-check sequential procedure 
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The simulations in section 4(iv) suggest the negative effect of uncertainty in the ‘first-

stage’ break estimation on the bootstrap confidence interval, increases as the number 

of breaks to be estimated and the magnitude of those breaks both rise. As such, we 

propose a specific-to-general approach, estimating demeaned regression (12) allowing 

initially for only one break in each series. Subsequently, the number of breaks 

allowed is then increased by one and the demeaned regression re-estimated. This 

procedure continues until we reach the number of breaks indicated by the Bai and 

Perron technique. 

  [Insert Table 14] 

Table 14 shows30 the one break analog of Table 13. Clearly, the results for the US 

dollar/Sterling series in Table 14 are the same as in Table 13; the individual series 

only presented one break each during our prior analysis. However, the parameter 

estimates shown for the other two exchange rates, now restricted to one break, are 

consequently different. However, a similar interpretation can be placed on these new 

results  - when a single break in each series is accounted for in the demeaned bi-

variate framework, the point estimate of the slope parameter is less than unity and the 

null of unbiasedness is rejected in the majority (i.e., 4 out of 6) cases. This finding 

provides more support to the prior reinstatement of the implied-realized volatility 

puzzle given the use of more reliable bootstrapped confidence intervals.  

  [Insert Table 15] 

For completeness, the two break maximum version of Table 13 is provided by Table 

15 – again, a similar story is told. It should also be noted that in every case where the 

realized volatility is measured by the more accurate high frequency data (as opposed 

                                                
30 The tables containing the estimated structural break, order of integration of the demeaned series and 
residual from (12) under the one-break constraint are omitted to save space. However, they are 
available from the authors on request. 
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to daily) the unbiasedness hypothesis is rejected, often severely, by the bootstrap 

confidence intervals. 

 

6. Conclusions  

Recent literature has suggested that employing methodologies that allow for 

fractionally integrated behaviour in individual series render implied volatility an 

unbiased forecast of realized volatility. This paper extends this branch of literature in 

a number of ways. First, we conduct Monte Carlo experiments which reveal that 

uncommon structural breaks can spuriously cause the finding of fractional 

cointegration often found in this literature. Second, we test for uncommon multiple 

breaks in the mean levels of foreign exchange volatility series. Third, we explicitly 

examine the time series properties of break-free individual volatility series. Fourthly, 

we show via simulation, that confidence intervals for the bivariate realized-implied 

volatility regression become less reliable as the number and magnitude of breaks to be 

estimated rises. Consequently, we suggest a specific-to-general approach to 

estimating the break-free regression.   

Using data on three currencies for the period 1991-2007, formal structural 

break procedures and spurious long memory tests both suggest that RV and IV 

contain structural breaks in mean. Interestingly, the breaks in the implied series never 

closely anticipate or co-break with those of the realized series, suggesting the market 

has no ability to forecast or mirror structural change. Moreover, occasionally implied 

volatility appears to break well before realized volatility. Amongst other reasons, one 

might reasonably attribute this is that traders perceive the risk of a possible jump in 

realized volatility at some point in the future and the current price of IV reflects a type 

of peso problem. It also suggests that implied volatility does not always adjust to 
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realized volatility and, in fact, may not adjust for many time periods. Such results 

could not be seen if we forced breaks to be common. 

When we allow for these structural breaks, this largely removes the 

persistence from both individual volatility series and the residuals, challenging the 

notion that realized volatility-implied volatility is a fractionally cointegrated relation, 

a result also suggested by our prior simulations. Furthermore, using the proposed 

specific-to-general approach within the bi-variate framework, the point estimate of the 

slope parameter falls away from unity and the null of unbiasedness is often rejected. 

In summary, allowing for uncommon structural breaks suggests the implied-realized 

volatility puzzle might not be solved after all and that implied volatility may not act 

like an efficient forecast.  
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Table 1: Monte Carlo Experiments  

 
 )( tGSP yd  )( tGSP xd   )ˆ( tGSP ud  

Common 
Breaks 

( 5.0Tm = ) 

0.548 0.568 -0.046 

Common 
Breaks 

( 6.0Tm = ) 

0.507 0.535 -0.030 

Common 
Breaks 

( 7.0Tm = ) 

0.500 0.547 -0.022 

Uncommon 
Breaks 

( 5.0Tm = ) 

0.583 0.568 0.631 

Uncommon 
Breaks 

( 6.0Tm = ) 

0.515 0.535 0.491 

Uncommon 
Breaks 

( 7.0Tm = ) 

0.482 0.547    0.381 

 
 

Table 2: Size of the Ŵ Tests 
 

i  0.5   0.6   0.7  

M 4 5 6 4 5 6 4 5 6 

5% 0.052 0.070 0.080 0.058 0.070 0.096 0.078 0.096 0.096 

10% 0.106 0.126 0.152 0.124 0.144 0.156 0.130 0.164 0.168 

 

 

Table 3: Power of the Ŵ Tests 
 

i  0.5   0.6   0.7  

M 4 5 6 4 5 6 4 5 6 

5% 0.077     0.057     0.046      0.512     0.461      0.411      0.803      0.788 0.777 

10% 0.154 0.122 0.093 0.662 0.600 0.556 0.892 0.889 0.882 
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Table 4: Bootstrap Coverage Measure 

(a) Common single break 

1==kjδ  -0.05 -0.15 -0.25 

1=jT  100 100 100 

De-mean 0.946   0.946 0.938 

Non de-mean 0.954 0.955 0.949 

 

(b) Uncommon single break 

1==kjδ  -0.05  -0.15  -0.25  

1=jT , 1=kT  100, 105 100, 150 100, 105 100, 150 100, 105 100, 150 

De-mean 0.946 0.939 0.934 0.876 0.906 0.835 

Non de-mean 0.958 0.949 0.947 0.827 0.924 0.531 

 

 (c) Uncommon double break 

1==kjδ , 2==kjδ  -0.05, 0.05 -0.15, 0.15 -0.25, 0.25 

1=jT , 1=kT , 

2=jT , 2=kT  

50, 55 

145, 150 

50, 100 

145, 150 

50, 55 

145, 150 

50, 100 

145, 150 

50, 55 

145, 150 

50, 100 

145, 150 

De-mean 0.927 0.906 0.856 0.823 0.818 0.740 

Non de-mean 0.959 0.937 0.927 0.763 0.878 0.442 
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Table 5: GSP Tests for the d of Individual Volatility Series 
 

 d̂  GSP 
5.0Tm =  

GSP 
6.0Tm =  

GSP 
7.0Tm =  

UK£/US$ RVd 0.467 
(0.134) 

0.424 
(0.104) 

0.542 
(0.079) 

 IV  0.638 
(0.134) 

0.583 
(0.104) 

0.625 
(0.079) 

 RVh 0.582 
(0.134) 

0.526 
(0.104) 

0.564 
(0.079) 

US$/Yen RVd 0.282 
(0.134) 

0.421 
(0.104) 

0.281 
(0.079) 

 IV 0.542 
(0.134) 

0.545 
(0.104) 

0.539 
(0.079) 

 RVh 0.501 
(0.134) 

0.493 
(0.104) 

0.496 
(0.079) 

SF/US$ RVd 0.418 
(0.134) 

0.334 
(0.104) 

0.483 
(0.079) 

 IV  0.543 
(0.134) 

0.522 
(0.104) 

0.566 
(0.079) 

 RVh 0.560 
(0.134) 

0.518 
(0.104) 

0.575 
(0.079) 

 
Note: numbers in parentheses beneath the estimates for d  are the standard errors dσ . 
RVh and RVd are the measures of realized volatility generated by high frequency or 
daily data respectively.   
 
 

Table 6: NBLS estimates of (1) 
 

  α̂  β̂  95% CI for β̂  90% CI for  β̂  

US$/UK£ RVd -0.013 1.048 [0.827 -1.277] [0.859 -1.247] 
 RVh -0.654 0.702 [0.389 -1.035] [0.434 -0.992] 
US$/Yen RVd -0.194 0.957 [0.792,  1.130] [0.817,  1.107] 
 RVh -0.079 0.932 [0.799,  1.069] [0.815,  1.051] 
SF/US$ RVd -0.106 0.987 [0.820,  1.151] [0.848,  1.124] 
 RVh -0.121 0.914 [0.684,  1.135] [0.710,  1.108] 
 
Note: The results in Table 3 above were originally shown in KDS and are reproduced 
for ease of comparison with later estimations in the current paper.  
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Table 7: GSP Tests for the Integration Order of the Residuals in (1) 
 
  

  GSP 
5.0Tm =  

GSP 
6.0Tm =  

GSP 
7.0Tm =  

US$/UK£ RVd 0.322 
(0.134) 

0.193 
(0.104) 

0.210 
(0.079) 

 RVh 0.667 
(0.134) 

0.594 
(0.104) 

0.453 
(0.079) 

US$/Yen RVd -0.026 
(0.134) 

0.107 
(0.104) 

-0.035 
(0.079) 

 RVh 0.270 
(0.134) 

0.282 
(0.104) 

0.216 
(0.079) 

SF/US$ RVd 0.128 
(0.134) 

0.057 
(0.104) 

0.126 
(0.079) 

 RVh 0.439 
(0.134) 

0.392 
(0.104) 

0.387 
(0.079) 

 
 

 
Table 8: Ohanissian et al. (2008) Test  

  Ŵ 5.0Tm =  Ŵ  6.0Tm =  Ŵ  7.0Tm =  
UK£/US$ RVd 0.578, 0.269, 0.300 0.038, 0.075, 0.078 0.000, 0.000, 0.000 

 IV 0.805, 0.058, 0.017 0.705, 0.837, 0.918 0.004, 0.011, 0.021 
 RVh 0.202, 0.159, 0.061 0.000, 0.000, 0.000 0.000, 0.000, 0.000 

US$/Yen RVd 0.200, 0.144, 0.183 0.113, 0.099, 0.150 0.000, 0.000, 0.000 
 IV 0.323, 0.383, 0.334 0.641, 0.700, 0.820 0.263, 0.408, 0.544 
 RVh 0.837, 0.910, 0.948 0.000, 0.002, 0.003 0.000, 0.000, 0.000 

SF/US$ RVd 0.907, 0.806, 0.895 0.063, 0.022, 0.036 0.000, 0.000, 0.000 
 IV 0.229, 0.310, 0.065 0.172, 0.113, 0.181 0.020, 0.018, 0.028 
 RVh 0.160, 0.262, 0.333 0.001, 0.002, 0.003 0.000, 0.000, 0.000 

 
Note: the numbers are p-values. Significance at the 10% level or less are highlighted. 
Each cell contains three p-values with 4=M , 5=M  and 6=M  from equation (8) 
respectively. 
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Table 9: Bai and Perron statistics for tests of multiple structural breaks in monthly  volatility series 
 

Series UDmax WDmax 
(5%) 

)01(F  )12(F  )23(F  )34(F  )45(F  

US$/UK£ 
IV  

104.18*** 104.18** 104.18*** 3.90 1.31 0.44 0.00 

US$/UK£ 
RVd 

52.16***  52.16**  52.16***  2.71 1.25 1.60 - 

US$/UK£ 
RVh 

34.18*** 45.63** 34.18*** 5.87 3.77 5.64 1.00 

US$/Yen 
IV 

15.95*** 22.28** 12.22**  10.48**  14.29**  1.84 0.00 

US$/Yen 
RVd 

19.70*** 23.42** 7.75* 16.30*** 1.35 0.22 0.00 

US$/Yen 
RVh 

25.23*** 29.98** 19.69*** 12.05** 5.13 5.13 0.00 

SF/US$ 
IV 

17.22*** 26.93** 17.22*** 15.73*** 2.11 3.10 3.10 

SF/US$ 
RVd 

20.37*** 24.21** 20.19***  5.98 1.48 1.50 1.50 

SF/US$ 
RVh 

27.87*** 33.12** 18.45*** 10.33** 3.85 1.29 0.22 

 
 

Note: ***, **, * indicate significance at the 1, 5 and 10 percent levels respectively. 
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Table 10: Bai and Perron Regime Means and End Dates 

 
 

Note: The first number in each cell is the estimated mean for the regime; standard 
errors are reported in parentheses. The end date for each regime, in terms of 
observation number, is shown below the estimated mean. 

 
 
 

 

Series Regime 1 Regime 2 Regime 3 Regime 4 
US$/UK£ IV -2.045 (0.036) -2.527 (0.031) - - 

     
End date (35)    
90% CI [(28), (36)]    
95% CI [(26), (37)]    

     
US$/UK£ RVd -2.134 (0.061) -2.656 (0.038) - - 

     
End date  (32)    
90% CI [ (23), (35)]    
95% CI [ (20), (37)]    

     
US$/UK£ RVh -2.201 (0.040) -2.519 (0.036) - - 

     
End date  (94)    
90% CI [ (82), (106)]    
95% CI [ (78), (111)]    

     
US$/Yen IV -2.273 (0.048) -1.946 (0.074) -2.332 (0.020) -2.493 (0.037) 

     
End date (76) 110 165  
90% CI [(61),(89)] [(108),(173)] [(149),(171)]  
95% CI [(55),(94)] [(108),(173)] [(143),(173)]  

     
US$/Yen RVd -2.391 (0.059) -2.062 (0.056) -2.471 (0.033)  

     
End date (72) 109   
90% CI [(64), (91)] [(103), (115)]   
95% CI [(60), (99)] [(101), (117)]   
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Table 10: Bai and Perron Regime Means and End Dates Continued 

 
Note: The first number in each cell is the estimated mean for the regime; standard 
errors are reported in parentheses. The end date for each regime, in terms of 
observation number, is shown below the estimated mean. 

 
 

Series Regime 1 Regime 2 Regime 3 Regime 4 
US$/Yen RVh -2.162 (0.047) -1.885 (0.064) -2.348 (0.027)  

     
End date (72) 109   
90% CI [(56), (89)] [(106), (115)]   
95% CI [(49), (96)] [(105), (118)]   

     
SF/US$ IV  -2.043 (0.047) -2.248 (0.021) - 2.518 (0.074) - 

     

End date  (56) 169   
90% CI [(47), (81)] [(149), (173)]   
95% CI [(43), (91)] [(142), (176)]   

     
SF/US$  RVd -2.107 (0.050) -2.384 (0.036) - - 

     
End date  (55)    
90% CI [(35), (69)]    
95% CI [(27), (75)]    

     
SF/US$ RVh -2.044 (0.026) -2.249 (0.0399) -2.482 (0.059) - 

     
End date (124) (165)   
90% CI [(111), (141)] [(146), (174)]   
95% CI [(106), (148)] [(139), (178)]   
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Table 11: GSP Tests of d for Break-Free Individual Volatility Series 
 

 d̂  GSP 
5.0Tm =  

GSP 
6.0Tm =  

GSP 
7.0Tm =  

UK£/US$ RVd 0.052 
(0.134) 

0.160 
(0.104) 

0.260 
(0.079) 

 IV  0.023 
(0.134) 

0.101 
(0.104) 

0.270 
(0.079) 

 RVh 0.299 
(0.134) 

0.311 
(0.104) 

0.393 
(0.079) 

US$/Yen RVd 0.036 
(0.134) 

0.213 
(0.104) 

0.130 
(0.079) 

 IV -0.138 
(0.134) 

0.103 
(0.104) 

0.155 
(0.079) 

 RVh -0.037 
(0.134) 

0.105 
(0.104) 

0.188 
(0.079) 

SF/US$ RVd 0.289 
(0.134) 

0.172 
(0.104) 

0.268 
(0.079) 

 IV  -0.095 
(0.134) 

-0.064 
(0.104) 

0.072 
(0.079) 

 RVh 0.036 
(0.134) 

0.195 
(0.104) 

0.164 
(0.079) 

 
 

 
 

Table 12: GSP Tests for the Integration Order of the Residuals in Demeaned (12) 
 
  

  GSP 
5.0Tm =  

GSP 
6.0Tm =  

GSP 
7.0Tm =  

US$/UK£ RVd 0.123 
(0.134) 

0.063 
(0.104) 

-0.035 
(0.079) 

 RVh 0.254 
(0.134) 

0.408 
(0.104) 

0.169 
(0.079) 

US$/Yen RVd 0.150 
(0.134) 

-0.011 
(0.104) 

-0.023 
(0.079) 

 RVh 0.032 
(0.134) 

-0.116 
(0.104) 

-0.048 
(0.079) 

SF/US$ RVd 0.358 
(0.134) 

0.181 
(0.104) 

0.128 
(0.079) 

 RVh 0.138 
(0.134) 

0.170 
(0.104) 

0.108 
(0.079) 
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Table 13: NBLS Estimates of Demeaned (12) – Unrestricted Breaks 
  

  α̂  β̂  95% CI for β̂  90% CI for  β̂  

US$/UK£ RVd -0.002 0.884 [0.661, 1.102] [0.691, 1.070] 
 RVh 0.008 0.633 [0.497, 0.768] [0.524, 0.746] 
US$/Yen RVd 0.001 0.711 [0.466, 0.963] [0.498, 0.922] 
 RVh -0.0002 0.609 [0.428,  0.789] [0.450, 0.756] 
SF/US$ RVd 0.008 0.834 [0.625,  1.041] [0.652, 1.007] 
 RVh -0.017 0.293 [0.008,  0.583] [0.043, 0.540] 

 
 

Table 14: NBLS Estimates of Demeaned (12) - One Break Maximum 
  

  α̂  β̂  95% CI for β̂  90% CI for  β̂  

US$/UK£ RVd -0.002 0.884 [0.661, 1.102] [0.691, 1.070] 
 RVh 0.008 0.633 [0.497, 0.768] [0.524, 0.746] 
US$/Yen RVd -0.002 0.834 [0.592, 1.052] [0.631, 1.025] 
 RVh -0.003 0.646 [0.450,  0.866] [0.472, 0.842] 
SF/US$ RVd -0.007 0.412 [0.054,  0.773] [0.102, 0.733] 
 RVh -0.007 0.401 [0.237,  0.572] [0.263, 0.546] 

 
 

Table 15: NBLS Estimates of Demeaned (12) – Two Breaks Maximum 
  

  α̂  β̂  95% CI for β̂  90% CI for  β̂  

US$/UK£ RVd -0.002 0.884 [0.661, 1.102] [0.691, 1.070] 
 RVh 0.008 0.633 [0.497, 0.768] [0.524, 0.746] 
US$/Yen RVd -0.012 0.442 [0.170, 0.719] [0.213, 0.682] 
 RVh -0.013 0.336 [0.127,  0.558] [0.163, 0.525] 
SF/US$ RVd 0.008 0.834 [0.625,  1.041] [0.652, 1.007] 
 RVh -0.017 0.293 [0.008,  0.583] [0.043, 0.540] 
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Figure 1: UK£/US$ Implied Volatility 
 

 
 
 

Figure 2: UK£/US$ Realized Volatility - Daily Data 
 

 
 
 

Figure 3: UK£/US$ Realized Volatility – High Frequency Data 
 

 
 
 
 
 

 




