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Spurious Long Memory, Uncommon Breaks and the

Implied-Realized Volatility Puzzle

Abstract

One of the puzzles in international finance is theguent finding that implied
volatility is a biased predictor of realized vol#gi However, given asset price
volatility is often characterized as possessingylomemory, recent literature have
shown that allowing for long-range dependence resaais bias. Of course, the
appearance of long memory can be generated byr#semce of structural breaks.
This paper discusses the effect of structural lreakthe implied-realized volatility
relation. Simulations show that if significant sttural breaks are omitted, testing can
spuriously show the typical patterns of fractiooaintegration found in the literature.
Next, empirical results show that foreign exchamgelied and realized volatility
contain structural breaks. The breaks in the indpseries never closely anticipate or
co-occur with those of the realized series, sugggdhe market has no ability to
forecast structural change. When breaks are acedufir in the bi-variate
framework, the point estimate of the slope paramdétls and the null of
unbiasedness can be rejected. Allowing for strattbreaks, suggests the implied-
realized volatility puzzle might not be solved afd.

JEL classification: C14, C22, F31, G14.
Keywords: implied-realized relation, unbiasedness, uncomrstmctural change,

foreign exchange, Monte Carlo simulation.



1. Introduction

Optimal modelling and forecasting of volatility sssential for a variety of risk
assessment and trading purposes. However, stanaaniket efficiency tests in the
extant literature (seeanter alia, Christensen and Prabhala, 1998, and Poteshman,
2000) have routinely led to the conclusion thati@ptmplied volatility (IV) is a

biased forecast of realized volatility (RV). Spexafly, given the regression below

ot =a+ pol +u,, (1)

t+r

whereg,” is IV over a time period and o}, represents RV over that same period,

least squares estimation typically finqé<1, violating the joint unbiasedness

restrictions ofa =0, f=1 and u,,, being serially uncorrelated. Thisas occurs

e
across a number of asset markets (see Neely, 20@Phas therefore inspired the
search for an appropriate rationale. Common suggesinclude that volatility risk is
not priced (Chernov, 2007), computing RV with lomedguency data (Poteshman,
2000) and that the standard estimation with overitap observations produces
inconsistent parameter estimates (Christensen,dicansd Prabhala, 2001). However,
Neely (2009), shows the conditional bias in IVabust to these potential solutions.
The optimality of the approach applied to the eation of (1) relies crucially
on the order of integrationd() of the covariates. Given the extant literaturggasts
individual volatility series are appropriately repented as long memory, fractionally
integrated processes with< d <1 (Andersonet al., 2001a and 2001b), least squares

estimates of (1) will be inconsistent wheh<  ,0&8nd although consistent when

d > 05>1, converges slowlyat the rateD, (T ™).

! See Marinucci and Robinson (2001; p.231).



Employing either foreign exchange or stock marlatadKellardet al. (2010,
hereafter KDS), Nielsen (2007), Bandi and Perrd®0@), Christensen and Nielsen
(2006) show that IV and RV are fractionally cointegd series wherein equation (1),

u,, ~ 1 (d-b) andb<d. Moreover, this literature suggests that estingteuch as

narrow band least squafg®BLS), account for the fractional character ofaility
and find a unity slope parameter in equation (I)nca be rejected. In other words,
the traditional slope bias disappears. However, KIB® show that the frequency of
data used for measuring RV within a fractionallyintegrating framework is
important for the results of unbiasedness testeciBpally, for some popular
exchange rates, the use of less noisy intra-déyerahan daily data reveals the
possibility a different bias, as evidence of adafeactionally integrated risk premium
is detected.

For the sake of clarity, consider augmenting regjoes(1) with a time-varying

risk premium ternrp,

Oiy =a+ o) +ap +u,,. )
A corollary of finding fractional cointegration eten RV and IV is that any risk
premium will be of a lower order of (fractional) tégration than the original

volatilities. In this context (see Bandi and Perrd@06), spectral methods like NBLS

will still estimate regression (1) consistently.-&eanging (2) leads to

oR -

t+r a _ﬂa-tlv = d.pt + ut+z" (3)
If daily data is relatively noisy, KDS posit anynp memory behaviour of the risk

premiunt is swampetiand therefore hidden by,,, in finite samples. Contrastingly,

% See Robinson and Marinucci (2003).

% Evidence for a fractionally integrated risk premiin forward foreign exchange markets is provided
by Kellard and Sarantis (2008). Further discussibwolatility risk premia in other markets can be
found in Almeida and Vicente (2009) and Doran adiR(2008).



the use of a less noisy intra-day derived RV mayl o a smalleu,,, and therefore

t+r
the detection of the time series properties ofreetvarying risk premium. Following
Bandi and Perron (2006), KDS purposely avoid maaigla specific functional form
for a risk premium, arguing that long memory bebaviin the residual of (1) presents
prima facie evidence for concealed risk premia. Indeed, fometily integrated
behaviour whereb < d, is found in the estimated residual of (1) whetnairday data
is employed to construct RV.

In any case, it is important to note that otheere@ovork has proposed that
long memory is an illusory feature of volatility ress. In particular, Granger and
Hyung (2004) and Mikosch and Starica (1999) dematesthat ignoring significant
structural change causes the appearance of perssia individual time series.
Additionally, Choi et al. (2010) show that allowing for structural breaksdaily
realized volatility of three foreign exchange rapestially explains their persistence
whereas Li and Perron (2013) suggests that the foemory property disappears
altogether. Even more pertinently for our studyri€tensen and de Magistris (2010),
using S&P 500 futures from April 1988 to Octobef2pshow that a common level
shift process appropriately fits RV and IV data. &iithe common shift process is
removed from the data, a simple VAR model subsetpemows that IV has no
explanatory power for future RV. Finally, Monte @aevidence shows that a latent
common level shift process in the DGP of the vbtets can spuriously lead to the
finding of fractional cointegration. On the othearid, it should be noted that Garvey
and Gallagher (2012), employing a sample of 16 FISEstocks from October 1997
to December 2003, suggest that the long memoryeptppf volatility series are not

due to breaks occurring over their chosen samplege

* See Maynard and Phillips (2001), Kellard (2006) atellard and Sarantis (2008) for other
discussions of swamping and its effect in finitadiseries.



In a similar vein, this paper examines the effédtnictural change on the IV-
RV relation. Christensen and de Magistris (201@uarthat common breaks in series
lead to long memory persistence in volatility angctional cointegration in (1) with

u,, ~1 () whereb=d. However, KDS find approximately,,, =1 (0.3)a result

that as noted above, can be driven by the presefhee risk premium. Another
possible explanation is the existenceun€ommon structural breaks in RV and 1V,
which therefore create level breaks in the residwfa(l) and spurious fractional
cointegration. Christensen and de Magistris (2GL@jgest that co- breaking is likely
because of common responses to movements betweamsbend busts in financial
markets. Of course, allowing peso-type problemexist or some other time-varying
risk premia it is quite possible that traders’ gradhplied volatility at a different level
to realized volatility. On the other hand, it is@lpossible that IV is a relatively poor
forecast of RV. In either case, it is quite possitilat market-specific breaks in RV
are not contemporaneously mirrored in IV.

This paper therefore extends the extant literaituritve steps. Firstly, Monte
Carlo experiments show that uncommon structurahkwecan cause the finding of
fractional cointegration withb<d. Secondly, the Bai and Perron (1998, 2003a,
2003b, 2004) method is employed to test for uncommaltiple breaks in the mean
levels of foreign exchange volatility series. Thyrdwe explicitly examine the time
series properties of break-free individual volatikeries and fourthly, we examine a
break-free version of regression (1).

Our fifth contribution to the literature is dertvdrom noting that the testing
procedure suggested above relies on two notionstl\gi(i) that any structural breaks
identified are the (at least) partial cause of mmus long memory and (ii) that

uncertainty over the estimation of structural beeakignored in the construction of



confidence intervals of break-free version of regien (1). To address the former
point we carry out the popular Ohanissienal. (2008) test which uses the self-
similarity property of true long memory processesassess whether any long memory
in our individual series is true or due to brea&snulations are also undertaken to
assess whether the Ohanisseéiral. test can be usefully used when non-stationary
long memory is suspected. To address point (ilnete that uncertainty in any first-
stage break estimation comes from three sourcesitmber, date and the size of the
breaks. It would appear difficult to deal with tke8 sources of uncertainty in a
formal, rigorous way and previous literature has cunsidered the issue. To assess
the extent of the issue, we provide Monte Carlaence on the effect of first-stage
uncertainty on second-stage confidence interva¢i@ge. This allows us to suggest a
new sequential estimation procedure for the denteaersion of regression (1) which
IS more robust to break estimation uncertainty.

The empirical results are interesting; using datattwee currencies for the
period 1991-2007, evidence is provided by bothBaeand Perron procedure and the
Ohanissiaret al. tests, that RV and IV contain breaks. The esthdireaks in the
implied series never occjust before or contemporaneously with those of theizedl
series, suggesting the market has no ability tedast or mirror structural change.
Moreover, when breaks are accounted for, the magmiof fractional integration
parameted drops towards zero for individual volatility sesieHowever, moving to
the bi-variate framework, the point estimate of shepe parameter falls away from
unity and the null of unbiasedness can often lextegl. The rejection of unbiasedness
is particularly acute when RV is constructed byarday rather than daily data. In

summary, explicity modelling structural breaks gests the implied-realized



volatility puzzle is not resolved by using econortetechniques that allow for long
memory.

The paper is divided into six sections: Section r2spnts the empirical
methodology; section 3 describes the data; sedtiprovides the simulation results;

section 5 analyses the empirical results and,lfinséction 6 concludes.

2. Empirical methodology

(i) Testing for long memory and fractional cointegration

To estimate the order of integration of RV and Bfigs and subsequently estimate
(1), the recent literature has employed technidgbasaccount for long memory. For
example, there are several approaches to estimatirtpe memory parameter for
individual series. Perhaps the most commonly upadl|y due to its semi-parametric
nature, is the log periodogram estimator (see Gewahkd Porter-Hudak, 1983;
Robinson, 1995a; Velasco, 1999a) typically knowthasGPH statistic. This involves

the least squares regression
logl(4;) =4, -d Iog{4sin2(/]j [2)}+u;, j=12,..m 4)
where I1(4;) is the sample spectral density ¢f evaluated at thel; =277/T

frequencies, T is the number of observations amd is small compared tdr .
However, a more contemporary alternative that haenbused recently in the
estimation of long memory in volatility series ibet Gaussian semiparametric

estimate (GSP) of Robinson (1995b) shown below

d = argmin R(d) 5)
doe

® Semiparametric estimation is typically preferredtiie long memory estimation of volatility (see
Bandi and Perron, 2006). For example, ChristenselnNielsen (2006) employ GSP estimation. Fully
parametric estimation of the ARFIMA model is mofécgent but inconsistent if the order pfandqg
are incorrectly selected.



where
_ - _ 138 2 — 18 2d
R(d) =logG(d) =2d=>'logA,  G(d) ==> A21(A))
mi= m*<

Velasco (1999b) shows the GSP estimate is consistear d[J(-1/2,1) and
asymptotically distributedi [0 (- 1/2, 3/4). Furthermore, the GSP estimator is shown
to be more efficient than the GPH regression estim@herefore, in the later results
section, the GSP estimator will be employed to sssdeng memory in observed
volatility time series.

Following Christensen and Nielsen (2006), this papeéopts a multi-step
methodology where the concluding step estimate&tB statistico , for the narrow
band least squares (NBLS) residual of the equilibrrelationship. Here th@ slope

coefficient in (1) is estimated by
z -1 .

,éz :|:Z|a.v(/]j):| Zla.vaw(/]j), 0<z<T-1 (6)
=0 =0

where I, (4;) is the sample spectral density of IV amg , (4;) is the cross-

spectrum between IV and RVFurthermore, band spectrum regression is NBLS
given

E+E_,OasT_>oo (7)
z T

In the non-stationary case wherke> 05, Velasco (2003) shows that when the
cointegrating relationship has significantly lessmory than the observed series, and
is derived from consistehtestimates of the parameters, the GSP estimate is

asymptotically normal. Subsequently, Christensesh [dielsen (2006) examining the

6Hence,,@T_1 is a special case, equal to the OLS estimatg af (1).

" Both OLS and NBLS estimates are consistent anderge at appropriate rates in the non-stationary
region.



stationary case wherel <05, assume thatd for the NBLS residual can be
estimated as if the residuals are observed.

Finally, to construct 90% and 95% confidence waér for the slope
coefficient in (1), and following KDS and Gerolinet(2006), a wild bootstrap
procedure is employed. In the frequency domairs, itiwvolves resampling the NBLS
residuals with replacement and subsequently cartsigia bootstrapped dependent
variable. The new dependent variable is then regeen the original frequency
domain regressors to obtain the bootstrapped comiti vector. Repeating this
procedure by using the bootstrap class in OX, lI@@6tstrapped slope coefficients

were generated.

(i) Detecting spurious long memory and estimating multiple structural breaks

As commented on earlier, fractional integration ¢@nspuriously identified in the
presence of latent structural breaks (see Grangdr Hyung, 2004) or regime
switches (Diebold and Inoue, 2001). To assess igsge, some techniques for
distinguishing between true long memory and lewts have been suggested in the
recent literature. For example, Ohanissiaal. (2008 notes that if data are from a
true long memory process, the fractional differaggbarameter is the same across all
temporal aggregation levels (see Chambers, 1998)n Ehis observation, a test is

proposed that does not require the estimation @ftimber of structural breaks and

has the null hypothesisl,, : d,, =d,, =...=d, =d, wherem;represents the level of

temporal aggregatidhand m <m, <...<m, . The test statistic can be written

8 OLS parameter estimates for the cointegratingorearie inconsistent in the stationary region.

® Although the Ohanissiaet al. (2008) is perhaps the most popular test for lomg memory, other
published alternatives include Qu (2011). Thesks tgpically assume < 0.5.

9 Following Ohanissianet al. (2008) for daily frequency data (see their Talfle we set

m, =2, j=12..,M; M = 4. Note that alld are estimated using the GPH estimator.



W = (zd)'(zZAZ")(zd) (8)

>

where d is an M-dimensional vector of estimated memory apweters,

A

(d :aml :amz :...:amw ), A\ is the asymptotic covariance matrix a and
Zrepresents affM —1,M) matrix allowing A to be invertibl&". Under the null\W
has an asymptotig?; , distribution.

A frequently adopted approach (see Coaldewl., 2011, Choiet al., 2010,
Kellard and Sarantis, 2008, and Choi and Zivot,73a0 estimate multiple structural
breaks is due to Bai and Perron (1998, 2003a, 2(3). To explain, consider the
m -breaks in mean model below
Yo SH; HE (9)

where j =1.....m+1 and 4, is the mean level of, in the i™ regime. Moreover, let

conventionally, T,= Oand T, =T. To estimate the breakpoints, the objective

function below is employed
(T,....T,) =argmin, . S/ (T,,...T,) (10)

where for eachm -partition (T, T ), the least squares estimates/gf are generated

by minimising the sum of the squared residuals

ST = Y (i)’ (1)

That is, the breakpoint estimators correspondéagtbbal minimum of the sum of the

squares objective function. To solve the minim@aatproblem in (10), Bai and Perron

1 See Ohanissiagt al. (2008, p. 166). Additionally, note we estimate using the approximated

variance-covariance matrix from equation (3) in @hksianet al. The test is programmed using Ox
version 7.00.



(2004) propose the use of a specific dynamic pragrang algorithm. Obviously,

after estimating the breakpoints, it is straightfard to obtain the corresponding
least-squares regression parameter estim@tﬁi,...fm . )

A useful attribute of the Bai and Perron (1998, 28)0method is that their test
statistics? can be generated under reasonably general speicifis. Specifically,
specifications can allow for (i) autocorrelatiordareteroskedasticity in the regression
model residuals and (ii) different moment matrié@sthe regressors in the different
regimes. To incorporate all these features, we eynihle most general Bai and Perron
(1998, 2003a) specificatiﬂ)?l Finally, given computed structural breaks in RM\4,

we estimate the following 'break-free’ versionegnession (1):

on =

L =a+po” +u (12)

t+r

where o, =0,

t+r t+r

-4, and f;(j=1..,m+ 1) is the estimated mean level of

volatility in the j™ regime.

3. Data

Monthly time series of foreign exchange RV and I¥ra/constructed from daily data
for the period January 1991 to December 200 is measured by at-the-money,
one-month forward, over-the-counter (OTC) markedtgd volatilitied® for European

options at close of business in London, obtainedhfbrokers by Reuters. By contrast,

2 Such asUDmax andWDmax that test the null hypothesis of no structiyedaks versus the
alternative of an unknown number of breaks &ugF, (b +:Ijb) to test the null hypothesis &f breaks

against the alternative df+1.

Bgpecifically, using the notation of Bai and Per(@004), we set cor_u = 1, het_u = 1 and 015.
Following Choi and Zivot (2007), we seé¥l =5. Note that the Bai and Perron (1998, 2003a,b)
statistics are computed using the GAUSS prograniladl@ from Pierre Perron's home page at
http://econ.bu.edu/perron/.

1 Our paper uses the same data as Kelirdl. (2010) to maintain consistency with previous
literature.

15 Also see Dunis and Keller (1995), Dunis and Hug@§2) and Sarantis (2006).
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many of the studies in the literature employ IV ket out from exchange-traded
option prices. However, the OTC FX market is gieatbre liquid than its exchange-
traded counterpaft

As Covrig and Low (2003) describe, although paptcits in exchange-traded
markets quote prices in terms of the familiar apfowemium, OTC prices are given in
terms of volatility. In other words, an option cdube quoted at 12% p.a. and
subsequently converted into the appropriate oppiamium by using the Garman—
Kohlhagen model. Therefore, given currency volgtitias become a traded quantity
in financial markets, it is therefore directly obsgble on the marketplateand the
use of these volatilities avoids the potential &&f.e., errors in the choice of option
pricing model and the measurement of model inmgspciated with backing out data
from an option pricing model. These ‘traded’ IVsanaré® the market's expectation
about the future volatility of the spot exchangeertor three currencies: US dollar
Sterling, Swiss Franc/US dollar and US dollar/Yen.

To match with the IV data for each day, two versiai RV are calculated
over the remaining one month of the option. Firséignploying intra-day dald the
sum of the 5-minute squared logarithmic returnsefach foreign exchange rate series

is used to compute the daily variange) and then the RV quantity

o =223, (13)
r-143

6 Consider that at the end of June 2012, the Banktefnational Settlement (2012) reported the
notional amount outstanding in the OTC currencyaopinarket stood at $11.1 trillion, compared with
$111 billion for the exchange-traded market. Moegpthe US Dollar (i.e., $8.7 trillion outstanding)

and the Euro (i.e., $4.1 trillion outstanding) #&he two most heavily traded currencies within the
option OTC market.

" This data was obtained from CIBEF at Liverpool fidfloores University. Unfortunately, the

databank is no longer updated.

Implied volatilities are also annualised rates bkatta quoted volatility of 5 per cent typically

translates to a monthly variance rate (0005°)(21/ 252 . The calculations assume that annualised rates

refer to a 252 trading day year.
9 From Olsen Associates.
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Secondly, using daily returns data

T

¢ 252 _
0-5\; = \/ Z (rt+i - )2 ) (14)
i=1

r-14
where 7 is the relevant number of trading d%&/sa is the closing (London time)
average of bid and ask quotes for the spot excheatgs andr, =In(S/S_)). The

constructed daily dataset contains 4348 time saieservations for each volatility
series.

As argued by Christensen and Prabhala (1998),dtimagion of equation (1)
will suffer from overlapping data problems if daifjatasets are employed. To avoid
this, a monthly dataset from the daily version blesting an IV observation from the
next trading day after the final day used in thiwdation of the prior RV figure.
Continuing in this manner, the data cycles throtigh calendar and the sampled
dataset presents 198 non-overlapping observationgdch volatility series. As an
example, the logarithm of each monthly volatilitgries for US dollar Sterling are
plotted in Figures 1 to 3.

[Insert Figures 1 to 3]

4. Simulations

Before moving to the later empirical sections thpply the above structural break
methodology to the RV-IV relation, we carry out tfidlowing simple simulations
overt = 1,...T, to gauge the effect of level structural breaks amy bivariate

relationship.

(i) Spurious fractional cointegration and common breaks

2Assumed to be 21 days.

12



Initially, let x, be generated by a short mematy AR (1) process with two level
breaks

2 = Pl TEy,

2 £, ~ N (0L 15
j=1

where DU (T;) =1(t >T;), 1(.) denoting the indicator functiof, the break dates

and 77 is a scaling parameter for calibration purposesodr model 1, with common
breaks in each series, the true regression motletisfore

Y, =X tKE,, &, ~ N (1) (16)
where « is a second scaling parameter. Based on an estinfe®(1) modefs for

our actual monthly data, we seto= 06 Jj:l =-025, 5j:2 =-025,
n=015,x=010, T=200, T,, =50 and T,_, =150. After running a 1000

replications, we used NBLS to estimate

~

Yo =d,+Bx +0,. (17)
GSP statistics with bandwidthsn=T' (i=  05,06,0.7are computed for the
individual simulated seriey, and x,, and also forj, and the mean of each of those

statistics shown in rows 2 to 4 of Table 1.

[Insert Table 1]
The results above clearly confirm previous work thaggests that spurious fractional
cointegration can be created in the presence ef Ewctural breaks; specifically, the
semi-parametric GSP statistic estimates orderatefyration for the individual series
of around 0.5, whereas the common break proceswshe mean integration order

of approximately zero for the residual series.

%1 Results are omitted to save space but availabte the authors on request. Please note that dsecan
seen in our later data section, our primary dathasta monthly frequency with approximately 200
observations. This is why we skt 200 in this simulation.

13



(if) Uncommon breaks
In the introduction, we suggested that uncommatmerathan common, breaks might
provide an explanation for some of the results tun the prior literature. To

simulate uncommon breaks for our modek2js defined as before in (15) byt can

now be written

2
Y, =2+ 0,DU (T,) + k&, (18)

k=1

However, in (18) only, we now allow,_, =100 and T,_, =150. In other words, we
allow x to present the first level shift 50 observatioa$obe y, . Again GSP statistics

with bandwidthsm=T' (i = 05,06,0.7) are computed for the individual simulated
seriesy, and x, and also ford, and the mean of each of those statistics shown in

rows 5 to 7 of Table 1. The mean order of integrafor the residual series in (17) is
now positive across all estimated bandwidths, diffig generated by the uncommon
breaks in the individual series, resulting in aeldwreak in the residual process of the
bivariate relationship. This detection of spuridoisg memory in the residual series
may be the rationale for the suggested risk pramiextant work like KDS. In any
case, the Monte Carlos above indicate that, whethéne presence of common or
uncommon structural breaks, such time series bebtimvshould be modelled
explicitly to appropriately assess the bivariatéatitity relation. This is how we will

proceed in the later empirical section.

(iii) Power and size of the Ohanissian et al. (2008) test
As noted earlier, a number of tests have been dpedlrecently to try and distinguish

between true long memory and structural breaks. dé¥ew tests like the popular

14



Ohanissiaret al. (2008) test for spurious long memory formallyuiq d O (0,1/2).
However, in the extant literature, the estimatedeorof integration for foreign
exchange volatility is typically close to the ndai®nary boundary (i.él: 05),
with some estimates located in the non-stationagyon (i.e.a > 05). To assess the
effect of non-stationarity on thé&/ test statistic in (8), we initially lex, be generated
by an ARFIMA (0,d,0) series

A-L)'x =&, (19)

where the fractional difference operator is defibgdhe Maclaurin series

hd — hd r(—d+j)Lj _ kel j _(J _1_d)dj—1
e N TR b A T

d, =1 (20)
and I' (.) is the gamma function. To avoid the initial coratis effect, sample sizes
t=1...T+w are generated and the firsiv=  1000bservations removed.
Additionally, ZTzodij is approximated by allowingl; =0 when j >1000. In the
experiments of a 1000 replications, tests at the &% 10% level are calculated.
Again we use bandwidthen=T' (i = 05,06, 0.7), although the Ohanissian at
test uses the GPH statistic from (4) rather tha @BP alternative, and we set

M = 4,56in (8) %% To begin with Table 2 shows the rejection frequeaf the W

tests when we allof® d = 0.6 and T = 4000.

[Insert Table 2]

22 Following Ohanissiaret al. (2008) for daily data (see their Table 6), wetiatly set M = 4.
However, to assess the performance of higher l@ofedggregation we also alloM =5 and M =6.

23 Although most of the latter empirical analysisisried out using a monthly dataset (see sectipn 5)
tests for spurious long memory typically need theater degrees of freedom achieved at a higher
frequency or daily dataset. This is because theldesf temporal aggregation required, combined with
applying a typical bandwidth used in semi-paramegstimators ofd, removes a large number of
observations before estimating the test statidt@.mimic this requirement for a higher frequency
dataset we sét = 4000.
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The results above clearly show that the methodotmmsidered typically produces a
reasonably sized test statistic for the sample amkpossible order of integration we
will encounter in our later empirical exercise. {eebecome marginally oversized
when i, the bandwidth exponent, dvl, the level of temporal aggregation are

increased. To assess the power of the approachnueage x, as in (15) but nof

with T =4000, T =1000, T =3000 and 7 = 005. Table 3 shows the rejection

frequency of thaV tests.
[Insert Table 3]

Importantly Table 3 shows a marked difference m plower of the Ohanissiaa al.
test conditional on the bandwidth exponenOnly a higher exponent (iie= 0.7)
produces reliable power scores and does so thougduging a smaller standard
deviation around the estimates df making it easier for the test procedure to
distinguish between the different estimatesdodssociated with different levels of
temporal aggregation. As such, in the later emgliranalysis we shall place more

weight on results employing this higher expofent

(iv) Bootstrap coverage for the NBLS confidence interval

As noted in the methodology section, if level breake detected by the Bai and
Perron procedure, the volatility series are demeamecordingly, before NBLS

estimation of the bi-variate regression (12). Hesrethe NBLS confidence interval
around the slope coefficient in (12), does notvalfor the inherent uncertainty from
the ‘first-stage’ structural break estimation priaee. This uncertainty derives from

three sources: (i) uncertainty around the numbdireéks (ii) uncertainty around the

%4 Based on an estimated AR(1) for our daily dataset.

5 We also tried replacing the GPH statistic with tihere efficient GSP alternative in the simulations.
Although this produced a more powerful versionha tOhanissiagt al. (2008) test, it also produced a
test that was greatly oversized. Results availabla the authors on request.
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dates of the breaks and (iii) uncertainty arouredrtfagnitude and sign of the breaks.
Typically, the extant literature does not accoumt this uncertainty and it appears
difficult to account for these three sources invhgance of the ‘second-stage’ slope
coefficient or confidence interval in a rigorousmmar.

Of course, an alternative approach is to assesydloust the typical approach
is to the uncertainties described. As previougly) and (16) are used to simulate
common break series, whilst (15) and (18) are disedncommon break series. For
each of the 1000 replications, we estimate bi-tarragression (17) and calculate a
bootstrap confidence interval, which itself is gexted from a 1000 bootstrapped
slope coefficients. The bootstrap coverage measymesents the proportion that the
95% confidence interval includes the unity coeéfdi

[Insert Tables 4a, b, and c]
As can be seen from Table 4, when one break in s&wbs exists, the coverage of the

bootstrap confidence interval is often close to ttweninal value specified in the

second-stage. For example, Table 4(b), whép,, =-015, T, =100 and

T, =105, then the coverage of the 95% bootstrap confideémiegval is 0.934. In

other words, the real coverage interval is reasgnabse to the 95% nominal value;
the uncertainty in the first-stage does not sehoatect the efficacy of the bootstrap
confidence interval proposed. However, when the s€ind distance between the

single breaks in the two series increases, (elgenwd,_, =-025, T,, =100 and

T, =150) the bootstrap confidence interval falls to 0.885hould be noted that this

latter value is still much higher than the simutbt®verage if we do not demean (i.e.
0.531).
As might be expected, the bootstrap confidenceniatetypically declines

when we move from modelling one break to two brgasseries. However, as long
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as breaks occur closely together and/or the brizak sire relatively modest, then the
real confidence interval reasonably approximates rtbminal value. On the other
hand, one needs to be careful when interpretingltsgsvhen the distance between
breaks and the break size are both relatively lgfge example, in Table 4(c), when

3, =-025,J__, =025, T,, =50, T,, =100, T_, =145, andT,_, = 15Q then

the coverage of the 95% bootstrap confidence iatedeclines to 0.740. Again, it
should be noted that this value is still much higtan the simulated coverage if we
do not demean (i.e. 0.442).

Of course, in reality, even if breaks are presem,do not know the true
number of them or their magnitude. Given the extéertature suggests that the Bai
and Perron procedure may detect ‘spurious break#ie@ presence of long memory,
we suggest a robustness-check sequential procémtuestimating the breaks and the
demeaned regressions. Specifically, we suggest exif@pto-general approach,
estimating the demeaned regression allowing ihitiBdr only one break in each
series. Subsequently, the number of breaks allawdben increased by 1 and the
demeaned regression re-estimated. This proceduménages until we reach the
number of breaks indicated by the Bai and Perrahrtiggue. This approach also
seems sensible given the simulations above shown#gative effects of uncertainty
from the structural break ‘first-stage’ estimatiom the ‘second-stage’ bootstrap

confidence intervals, increases as the numbereadsrto be estimated rises.

5. Empirical results

(i) No-break analysis
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Table 5 shows the GSP statistics for the logarithaf monthly?’ volatility series
estimated using Ox version 7.0 (see Doornik, 20@bJumns 3-5 give the results for
the GSP statistic witm=T%, m=T% and m=T% respectivel§f. Although this
type of semi-parametric approach is typical in literature (seeinter alia, Nielsen,
2007), a substitute procedure would be to estinfatly parametric ARFIMA
(p,d,q) models. However, given the short-run dynamicsparerly specified® the

latter approach will be inconsistent.

[Insert Table 5]
Table 5 shows analogous results to those in trenekterature. Specifically, the GSP
point estimates indicate that foreign exchangetilitjais fractionally integrated with
0<d <1 and presents standard errors that cannot easitingliish between either
stationary (i.e.,0<d < 05) or non-stationary (i.e.05<d <1) processes. Notably,
RV and IV series show comparable orders of intégnat

To estimate regression (1), the possible long-mactionally cointegrating

relationship, and analogously to KDS we employ NBiish bandwidthz =T % and
a wild bootstrap procedure to generate confidemdenials. These results are
produced in Table 6.

[Insert Table 6]
The results are representative of those paperg wstimators that allow for long
memory behaviour in volatility, providing convingnevidence of a unity slope

coefficient in the implied-realized volatility re¢lan. Out of the 12 confidence

*Christensen and Hansen (2002) show that takingralatagarithms of volatility series aids in
minimising the possibility of non-normality.

?’As in Christensen and de Magistris (2010), the mmigndataset is used in the empirical work to
circumvent overlapping data problems discussednbgr alios, Christensen and Prabhala (1998).

8 The use of diverse bandwidths is to assess théditstalf the estimated parameter to different irgut
as the optimal bandwidth is typically difficult &scertain.

*Recent work all employ semi-parametric estimatibthe long memory parameter.
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intervals presented in Table 6, only one does nclude unity. Moreover, Table 7

below displays the GSP statistiésfor the NBLS residuals.
[Insert Table 7]

The results in Table 7 imply that RV and IV arecfranally cointegrated given that

the point estimate oP is typically lower thand. As with KDS, ) appears to be
higher with RV than with RV and KDS posit this igrima facie evidence for a

fractionally integrated risk premium.

(ii) Sructural break analysis
As discussed earlier, uncommon structural breaky b present in individual
volatility series with time series behaviour implions for the resulting cointegrating
residual. For a preliminary test, to examimkether the volatility dataontains true
long memorywe usethe test of Ohanissiagt al. (2008) with our daily dataset; see
Table 8.

[Insert Table 8]
Interestingly, Table 8hows that the Ohanissiahal. test is far more likely to reject
the null hypothesis of no spurious long memory whent*. Given our simulations
in section 4(iii), where this higher exponent proelsi far more reliable power scores,
it seems appropriate to place more weight on resehploying m=T%. At this
bandwidth, of our nine volatility series, only tb& dollar/Yen IV series cannot reject
true long memory and therefore it appears at leaseasonable possibility that
structural breaks are present in the individuahtitily series. To assess this, we next
employ the Bai and Perron (1998, 2003a) estimgironedure and, switching back to
our monthly dataset, Table 9 reports test stasistfcstructural change in the mean

series of all volatility.
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[Insert Table 9]

The UDmax andWDmax statistics provide evidence that structurabkseare clearly
an important component of both RV and IV. Speclficahe SupF; (b+]jb) statistics

suggest a range of 1 to 3 breaks for our volatifigries. Of course, under the
assumption of common breaks, the results in Tabdéhduld show that RV and IV
within the same currency present the same numbbreaiks. However, in the Swiss
Franc/US dollar case, R\tontains 1 break to the 2 given by 'Ryhd IV, Moreover,
the US dollar/Yen IV contains 3 breaks to the 2spréed by RVand RV. This
provides the first evidence that level breaks am®wmmon. To further investigate this
point, the estimated coefficients and break pdmtgach volatility series are reported
in Table 10.

[Insert Table 10]
Table 10 reports the dates for the structural tweakthe mean level of monthly
volatility series and their 90% and 95% confidemutervals for each of the break
dates. The break dates correspond to the end bfregame. In addition, the average
(mean) value of volatility is reported for eachimg. These level breaks are also
superimposed graphically on volatility figures 13oln cases where the IV and RV
break relatively closely together, the point vabfethe breaks in the implied series
never occur before or contemporaneously with tlidgbe realized series, suggesting
the market has no ability to forecast or mirroustural change. For example, the first
break in US dollar/Yen RVoccurs at observation 72 whereas a correspondiakb
in IV can be found at observation 76 perhaps réfigclearning period by market
participants. Likewise, the second break in USaiftien RV is at observation 109,

and although closer, the break in 1V is at obs@érnmat10.
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Of course, one might note that for the US dollan¥xamples given above,
the magnitude of the confidence intervals do ndovalfor a formal statistical
rejection of common breaks. However, in the caseerehlV traders follow
movements in RV closely and react with small del#yis clearly going to be difficult
to discern uncommon structural breaks in finite gl@® of single exchange rates.
Here it is instructive to re-emphasise that acrmss '‘panel of exchange rates', IV
never closely anticipates or co-occurs with breakRV. However, occasionally IV
appears to break well before R\Vfor example, consider that the first break in US
dollar/Sterling IV occurs at observation 35, wheréze initial break in RVoccurs at
observation 94. Amongst other reasons, one mighasomably attribute this to (i)
either traders follow daily rather than high freqog RV or (ii) traders perceive the
risk of a possible jump in RVat some point in the future and the current poit&/
reflects a type of peso problem. In any case, thight of evidence in Tables 5 and 6
points towards uncommon breaks across RV and IV.

Now we assess whether allowing for the estimatekll breaks reveals
spurious long memory in our volatility series. Sfieally, each series is demeaned

employing the estimatg:, from the OLS regression of (9) on the estimategakr

......

others. Table 11 reports the GSP estimates of ritegriation order for break-free

A~

volatility series, that is estimatesafor the seriesz;,, =g,,, -d

ter i
[Insert Table 11]
Allowing for multiple structural mean-breaks clgagccounts for at least some, if not

all, long memory behaviour in foreign exchange RM &/. For example, in the case

of US dollar/Sterling IV wherm=T?%, the GSP point estimat@ has fallen from
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0.638 to 0.023 when the series are demeaned. Querdlable 11, the values ofi
are lower than those presented in Table 5, anddifpinow found to be either zero or
in the covariance stationary (i.d< d < 05) region, emphasising the importance of
allowing for level breaks when assessing the tiarees properties of volatility.

For the next test, we examine the order of intégnaof the NBLS residual
from demeaned regression (12) and present thegesulable 12.

[Insert Table 12]

We now find an order of integration close to orzier many cases, greatly weakening

the evidence for a fractionally integrated riskmpnem. For example, in Table 12, the

GSP estimate for the demeaned, high frequency W&rten (bandwidtrm=T°%")
is —0.048. Contrastingly, the non-demeaned equivalent inléfabis 0.216 and
significantly different from zero. Clearly, empiaily modelling uncommon structural
breaks, as suggested in the simulations of sedijioy not only removes persistence
from the individual volatility series but also frothe bivariate volatility regression
residual. Prior findings of fractional cointegration the literature may well be
predominantly spurious.

For the final analysis, Table 13 shows the estihatoefficients and
bootstrapped confidence intervals obtained whetyagpNBLS to (12).

[Insert Table 13]

When breaks are accounted for in the bi-variatséwaork, the point estimate of the
slope parameter always falls and the null of urddasss can now be rejected in 4 out
of 6 cases. It would appear that by identifying @éimeih modelling structural breaks,

the implied-realized volatility puzzle re-emerges.

(iii) Robustness-check sequential procedure
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The simulations in section 4(iv) suggest the negatiffect of uncertainty in the ‘first-
stage’ break estimation on the bootstrap confideniegval, increases as the number
of breaks to be estimated and the magnitude ofethwosaks both rise. As such, we
propose a specific-to-general approach, estimakamyeaned regression (12) allowing
initially for only one break in each series. Suhsagly, the number of breaks
allowed is then increased by one and the demeaggmssion re-estimated. This
procedure continues until we reach the number efiks indicated by the Bai and
Perron technique.

[Insert Table 14]
Table 14 show¥ the one break analog of Table 13. Clearly, theltedor the US
dollar/Sterling series in Table 14 are the saménaBable 13; the individual series
only presented one break each during our prioryaisal However, the parameter
estimates shown for the other two exchange rats, nestricted to one break, are
consequently different. However, a similar intetpt®n can be placed on these new
results - when a single break in each series ¢owated for in the demeaned bi-
variate framework, the point estimate of the slppeameter is less than unity and the
null of unbiasedness is rejected in the majoritg.(i4 out of 6) cases. This finding
provides more support to the prior reinstatementhef implied-realized volatility
puzzle given the use of more reliable bootstrapmmedidence intervals.

[Insert Table 15]
For completeness, the two break maximum versiohatie 13 is provided by Table
15 — again, a similar story is told. It should atonoted that in every case where the

realized volatility is measured by the more acautagh frequency data (as opposed

% The tables containing the estimated structuralrerder of integration of the demeaned series and
residual from (12) under the one-break constraimet @mitted to save space. However, they are
available from the authors on request.
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to daily) the unbiasedness hypothesis is rejeadéién severely, by the bootstrap

confidence intervals.

6. Conclusions

Recent literature has suggested that employing adetbgies that allow for
fractionally integrated behaviour in individual s render implied volatility an
unbiased forecast of realized volatility. This paprtends this branch of literature in
a number of ways. First, we conduct Monte Carloegxpents which reveal that
uncommon structural breaks can spuriously cause fthding of fractional
cointegration often found in this literature. Sedpwe test for uncommon multiple
breaks in the mean levels of foreign exchange Nityaseries. Third, we explicitly
examine the time series properties of break-freévidual volatility series. Fourthly,
we show via simulation, that confidence intervails the bivariate realized-implied
volatility regression become less reliable as tinmlmer and magnitude of breaks to be
estimated rises. Consequently, we suggest a gSpéwifieneral approach to
estimating the break-free regression.

Using data on three currencies for the period 12®17, formal structural
break procedures and spurious long memory tests boggest that RV and IV
contain structural breaks in mean. Interestindig, breaks in the implied series never
closely anticipate or co-break with those of thalimed series, suggesting the market
has no ability to forecast or mirror structural mpa. Moreover, occasionally implied
volatility appears to break well before realizediatitity. Amongst other reasons, one
might reasonably attribute this is that traderceie the risk of a possible jump in
realized volatility at some point in the future ahé current price of 1V reflects a type

of peso problem. It also suggests that implied tidla does not always adjusb

25



realized volatility and, in fact, may not adjust fmany time periods. Such results
could not be seen if we forced breaks to be common.

When we allow for these structural breaks, thisgedr removes the
persistence from both individual volatility seriaad the residuals, challenging the
notion that realized volatility-implied volatilitis a fractionally cointegrated relation,
a result also suggested by our prior simulationgthermore, using the proposed
specific-to-general approach within the bi-varifiganework, the point estimate of the
slope parameter falls away from unity and the ofilinbiasedness is often rejected.
In summary, allowing for uncommon structural breakggests the implied-realized
volatility puzzle might not be solved after all atigat implied volatility may not act

like an efficient forecast.
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Table 1: Monte Carlo Experiments

dos (V)

Ao (%)

Ao (G,)

Common
Breaks

(m=T0.5)

0.548

0.56¢

-0.046

Common
Breaks

(m:TO.G)

0.507

0.535

-0.030

Common
Breaks

(m:TO.7)

0.500

0.547

-0.022

Uncommon
Breaks

(m=T0.5)

0.583

0.568

0.631

Uncommon
Breaks

(szO.G)

0.515

0.535

0.491

Uncommol
Breaks

(m:TO.7)

0.482

0.547

0.381

Table 2: Size of theW Tests

i 0.5 0.6 0.7

M 4 5 6 4 5 6 4 5 6
5% | 0.052| 0.070| 0.080| 0.058| 0.070| 0.096| 0.078| 0.096| 0.096
10%/| 0.106| 0.126] 0.152| 0.124| 0.144| 0.156| 0.130( 0.164| 0.168

Table 3: Power of theW Tests

i 0.5 0.6 0.7

M 4 5 6 4 5 6 4 5 6
5% | 0.077| 0.057| 0.046| 0.512| 0.461| 0.411| 0.803| 0.788| 0.777
10%| 0.154| 0.122| 0.093| 0.662| 0.600| 0.556| 0.892| 0.889| 0.882
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Table 4: Bootstrap Coverage Measure

(a) Common single break

5,-:k:1 -0.05 -0.15 -0.25
T 100 100 100
De-mean 0.946 0.946 0.938
Non de-mean 0.954 0.955 0.949

(b) Uncommon single break

R -0.05 -0.15 -0.25
T T.. | 100,105 100,150 100,106 100,150 100, 1p5 180, 1
De-mean 0.946 | 0.939] 0934 0876 0.906 0.83%

Nonde-mean| 0.958|  0.949]  0.947 0.82f 0.924 0.531

(c) Uncommon double break

011 ez -0.05, 0.05 -0.15, 0.15 -0.25, 0.25
Tias T 50, 55 50, 100 50, 55 50, 100 50, 55 50, 100
T T 145, 150 145, 150 145, 150 145, 150 145, 150 145, 150
j=21 k=2
De-mean 0.927 0.906 0.856 0.823 0.818 0.740
Non de-mean 0.959 0.937 0.927 0.763 0.878 0.44p
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Table 5: GSP Tests for thed of Individual Volatility Series

d GSP GSP GSP

m:TO.S m:TO.G m:TOJ

UKE/US$ | RV 0.467 0.424 0.542
(0.134) | (0.104) | (0.079)

IV 0.638 0.5€3 0.62¢

(0.134) | (0.104) | (0.079)

RV 0.582 0.526 0.564

(0.134) | (0.104) | (0.079)

US$/Yen | RV 0.282 0.421 0.281
(0.134) | (0.104) | (0.079)

IV 0.542 0.545 0.539

(0.134) | (0.104) | (0.079)

RV" 0.501 0.493 0.496

(0.134) | (0.104) | (0.079)

SFIUS$ | RVA 0.418 0.334 0.48:
(0.134) | (0.104) | (0.079)

W 0.543 0.522 0.56¢

(0.134) | (0.104) | (0.079)

RV 0.560 0.518 0.575

(0.134) | (0.104) | (0.079)

Note: numbers in parentheses beneath the estimates éwe the standard errotg; .

RV" and RV are the measures of realized volatility generatetigh frequency or
daily data respectively.

Table 6: NBLS estimates of (1)

~

a Vi 95% ClI for 3 90% Cl for 3
US$/UKE RV® | -0.013 | 1.048 [0.827 -1.277] [0.859 -1.247
RV" | -0.654 | 0.702 [0.389 -1.035] [0.434 -0.992

USS$/Yen RV | -0.19¢ | 0.957 | [0.792, 1.13C [0.817, 1.107
RV" | -0.079 | 0.932] [0.799, 1.069] [0.815, 1.051]
SF/US$ RV | -0.106 | 0.987| [0.820, 1.151] [0.848, 1.124]
RV" | -0.121 | 0.914| [0.684, 1.135] [0.710, 1.10§]

Note: The results in Table 3 above were originally shamvKDS and are reproduced

for ease of comparison with later estimations e¢hrrent paper.
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Table 7: GSP Tests for the Integration Order of theResiduals in (1)

00

00

GSP GSP GSP
m=T% m=T°% m=T%
US$/UKE RV 0.322 0.193 0.210
(0.134) | (0.104) | (0.079)
RV" 0.6€7 0.59¢ 0.45:
(0.134) | (0.104) | (0.079)
US$/Yer RV* -0.026 0.107 -0.035
(0.134) | (0.104) | (0.079)
RV" 0.270 0.282 0.216
(0.134) | (0.104) | (0.079)
SF/US$ RV 0.128 0.057 0.126
(0.134) | (0.104) | (0.079)
RV" 0.439 0.392 0.387
(0.134) | (0.104) | (0.079)
Table 8: Ohanissianet al. (2008) Test
W m=T® W m=T% W m=T¥
UKE/US$ | RV | 0.578, 0.269, 0.300 0.038, 0.075, 0.078 0.000, 0.000, 0.0
[\ 0.805,0.058, 0.01 | 0.705, 0.837, 0.918 0.004, 0.011, 0.02]
RV" | 0.202, 0.1590.06 | 0.000, 0.000, 0.000 0.000, 0.000, 0.4
US$/Yer | RV® | 0.200, 0.144, 0.1¢ | 0.11% 0.09¢, 0.15( | 0.000, 0.000, 0.00()
[\ 0.323, 0.383, 0.334 0.641, 0.700, 0.820 0.26308, 0.544
RV" | 0.837, 0.910, 0.948 0.000, 0.002, 0.003 0.00(, 0.00(, 0.00(
SF/US$ | RV® | 0.907, 0.806, 0.8¢ | 0.063, 0.022, 0.036 0.00(, 0.00(, 0.00(
Y 0.229, 0.3100.06¢ | 0.172, 0.113, 0.181 0.020, 0.018, 0.028
RV" | 0.160, 0.262, 0.333 0.001, 0.002, 0.003 0.00(, 0.00(, 0.00(

Note: the numbers are p-values. Significance afl@% level or less are highlighted.
Each cell contains three p-values with=4, M =5 and M =6 from equation (8)

respectively.
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Table 9: Bai and Perron statistics for tests of mdiple structural breaks in monthly volatility series

Series UDmax V\/(gg/lg)ax F (10) F (21) F32) F@?3) F (54)
US$/UKE 104.18*** 104.18** 104.18*** 3.90 1.31 0.44 0.00
USéZ//L(JiKE 52.16+* 52.16* 52.16** 2.71 1.2¢ 1.6C -
US§</LrJ]K£ 34.18*** 45.63** 34.18*** 5.87 3.71 5.6 1.0C
US$/Yen 15.95%** 2228** 12.22+* 10.4&~* 1420~ 1.84 0.0C
USFL$\\;/\gen 19.70%** 23.42** 7.75* 16.30*** 1.35 0.22 0.00
USR$\//\£en 25.23*** 29.98** 19.69*** 12.05** 5.13 5.13 0.00
SF/US$ 17.22%** 26.93** 17.22%** 15.73*** 2.11 3.10 3.10
SI;I/\\(/JdSSB 20.37%** 24.21* 20.10* 5.9¢ 1.4¢ 1.5C 1.5C
SI;/\l;hS$ 27.87** 33.12** 18.45*** 10.33** 3.8t 1.2¢ 0.2z

Note: *** ** * indicate significance at the 1, 5 andIpercent levels respectively.




Table 10: Bai and Perron Regime Means and End Dates

Series Regime 1 Regime 2 Regime 3 Regime |4
US$/UKE IV | -2.045 (0.036)| -2.527 (0.031) - -
End dat: (35)
90% ClI [(28), (36)]
95% CI [(26), (37)]
US$/UKERV® | -2.134 (0.061)| -2.656 (0.03d) - -
End date (32)
90% C [ (23), (35).
95% CI [ (20), (37)]
US$/UKERV" | -2.201 (0.04) | -2.519 (0.03) - -
End date (94)
90% CI [ (82), (106)]
95% C [ (78), (111)
US$/Yen IV | -2.273(0.048)| -1.946 (0.074) -2.332(0.020) -2.48837)
End dat (76) 11C 16t
90% CI [(61),(89)] [(108),(173)] [(149),(171)]
95% CI [(55),(94)] [(108),(173)] [(143),(173)]
US$/Yer RVY | -2.391 (0.059)| -2.062 (0.056 -2.471 (0.038)
End date (72) 109
90% C [(64), (91) [(103), (115)
95% CI [(60), (99)] [(101), (117)]

Note: The first number in each cell is the estimated mfea the regime; standard
errors are reported in parentheses. The end datedoh regime, in terms of
observation number, is shown below the estimateahme
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Table 10: Bai and Perron Regime Means and End Datd&3ontinued
Serie: Regime . Regime ' Regime . Regime .
US$/YenRV" | -2.162 (0.047) -1.885 (0.064) -2.348 (0.037)
End dat (72) 10¢
90% C [(56), (89) [(106), (115)
95% CI [(49), (96)] [(105), (118)]
SF/USS IV -2.04%(0.047 -2.24£(0.021 | - 2.51¢(0.074 -
End date (56) 169
90% C [(47), (81) [(149), (173)
95% C [(43), (91) [(142), (176)
SF/USY RV? | -2.107 (0.050)| -2.384 (0.036) . -
End date (55)
90% CI [(35), (69)]
95% ClI [(27), (75)]
SF/USSRV" | -2.044 (0.026)] -2.249 (0.0399 -2.482 (0.059) -
End dat (124, (165
90% CI [(111), (141)] [(146), (174)]
95% CI [(106), (148)] [(139), (178)]

Note: The first number in each cell is the estimated mfea the regime; standard
errors are reported in parentheses. The end dateedoh regime, in terms of
observation number, is shown below the estimateahme
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Table 11: GSP Tests ofl for Break-Free Individual Volatility Series

3 GSP GSP | GSP
m=T% m=To% m=T%
UKE/US$ | RV | 0.052 | 0.160 | 0.260
(0.134) | (0.104) | (0.079)
Y] 0.023 | 0.101 | 0.27C
(0.134) | (0.104) | (0.079)
RV" | 0.299 | 0.311 | 0.393
(0.134) | (0.104) | (0.079)
US$/Yen | RV | 0.036 | 0.213 | 0.130
(0.134) | (0.104) | (0.079)
IV | -0.138 | 0.103 | 0.155
(0.134) | (0.104) | (0.079)
RV™ | -0.037 | 0.105 | 0.188
(0.134) | (0.104) | (0.079)
SFIUS$ | RV® | 0.28¢ | 0.17: | 0.268
(0.134) | (0.104) | (0.079)
Y] -0.09¢ | -0.06¢ | 0.072
(0.134) | (0.104) | (0.079)
RV" | 0.036 | 0.195 | 0.164
(0.134) | (0.104) | (0.079)

Table 12: GSP Tests for the Integration Order of tle Residuals in Demeaned (12)

GSP GSP GSP
m:TO.S m:TO.G m:TOJ
USS$/UKE RV 0.123 0.063 -0.035
(0.134) | (0.104) | (0.079)
RV" 0.254 0.408 0.169
(0.134) | (0.104) | (0.079)
US$/Yer RV 0.150 -0.011 | -0.023
(0.134) | (0.104) | (0.079)

RV" 0.032 | -0.116 | -0.048

(0.134) | (0.104) | (0.079)

SF/US$ RV 0.358 | 0.181 | 0.128
(0.134) | (0.104) | (0.079)

RV" 0.138 | 0.170 | 0.108

(0.134) | (0.104) | (0.079)
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Table 13: NBLS Estimates of Demeaned (12) — Unregtted Breaks

a Vi 95% ClI for 3 90% Cl for 3
US$/UKE RVY | -0.002 | 0.884 [0.661, 1.102] [0.691, 1.070)
RV 0.008 | 0.633 [0.497, 0.768]| [0.524,0.746]
US$/Yen RVC 0.001 | 0.711 | [0.466, 0.96% [0.49¢, 0.927]
RV" | -0.0002] 0.609| [0.428).789] [0.450, 0.756]
SF/US$ RV* 0.008 | 0.834| [0.6251.041] [0.652, 1.007]
RV" -0.017 | 0.29¢ | [0.008, 0.587 [0.047, 0.540

Table 14: NBLS Estimates of Demeaned (12) - One Bile Maximum

~

a Vi 95% ClI for 3 90% Cl for 3
US$/UKE RV¢ -0.002 0.884 [0.661, 1.102] [0.691, 1.070
RV 0.008 | 0.633 [0.497,0.768]| [0.524,0.746]
US$/Yen RV® | -0.00: | 0.83¢ [0.592, 1.05] [0.631,1.02]
RV" | -0.003| 0.646| [0.4500.866] [0.472, 0.842]
SF/US$ RV¢ -0.007 0.412 [0.0540.773] [0.102, 0.733]
RV" | -0.007 | 0.401| [0.237, 0.572] [0.263, 0.546]
Table 15: NBLS Estimates of Demeaned (12) — Two Baks Maximum
a B 95% ClI for 3 90% Cl for 3
US$/UKE RV¢ -0.002 0.884 [0.661, 1.102] [0.691, 1.070
RV" 0.008 | 0.633 [0.497, 0.768]| [0.524,0.746]
US$/Yen RVY | -0.c12 | 0.44: [0.170, 0.71] [0.213,0.68]
RV" | -0.013| 0.336| [0.1270.558] [0.163, 0.525]
SF/US$ RV? 0.008 | 0.834| [0.6251.041] [0.652, 1.007]
RV" -0.013 0.29: [0.008, 0.58: [0.04%, 0.540
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Figure 1: UKE/US$ Implied Volatility
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Figure 2: UKE/US$ Realized Volatility - Daily Data

Figure 3: UKE/US$ Realized Volatility — High Frequeacy Data
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