brought to you by CORE

Algebra and Discrete Mathematics Volume **19** (2015). Number 2, pp. 162–171 © Journal "Algebra and Discrete Mathematics" RESEARCH ARTICLE

On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations

Paula Catarino^{*}, Peter M. Higgins, Inessa Levi

Communicated by V. Mazorchuk

ABSTRACT. It is well-known [16] that the semigroup \mathcal{T}_n of all total transformations of a given *n*-element set X_n is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain X_n is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of X_n is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain X_n are covered by their inverse subsemigroups precisely when $n \leq 3$.

1. Introduction

In a regular semigroup S every element α has an inverse β in S meaning that $\alpha = \alpha \beta \alpha$ and $\beta = \beta \alpha \beta$. In an inverse semigroup S every element of S has a unique inverse in S. An inverse β of an element α in a

^{*}The first author is a Member of the Research Center of Mathematics, CM-UTAD, Portugal.

²⁰¹⁰ MSC: 20M20, 05C25.

Key words and phrases: semigroup, semilattice, inverse subsemigroup, strong inverse, transformation, order-preserving transformation, orientation-preserving transformation, orientation-reversing transformation.

semigroup S is said to be a *strong inverse* of α if the subsemigroup $\langle \alpha, \beta \rangle$ of S generated by α and β is an inverse subsemigroup of S. A semigroup S is covered by its inverse subsemigroups precisely when every element in S has a strong inverse in S.

This note addresses the following question: what regular semigroups are covered by their inverse subsemigroups?

For example, the semigroup \mathcal{T}_n of all total transformations of a given *n*-element set X_n and the semigroup \mathcal{PT}_n of all total and partial transformations of X_n are both regular but not inverse. B. M. Schein [16] noted that the above question was formulated in 1964 during the VI Vsesouznyi Algebra Colloquium in Minsk, USSR, in terms of the semigroups \mathcal{T}_n and \mathcal{PT}_n . In his 1971 paper [16], B. M. Schein showed, generalizing the results by L. M. Gluskin [9], that \mathcal{T}_n and \mathcal{PT}_n are covered by their inverse subsemigroups. A detailed proof of this result may be found in P. M. Higgins' book [11]. Note that this result does not hold for the semigroup of all total transformations of an infinite set, see, for example, [11, Exercise 6.2.8].

Let $X_n = \{1, 2, \dots, n\}$ be a chain with respect to the standard order, and let \mathcal{O}_n be the semigroup of all order-preserving transformations α on X_n , that is transformations satisfying the condition $x\alpha \leq y\alpha$ whenever x < y, for all $x, y \in X_n$. Let $\{i_n\}$ denote the identity permutation of X_n . The semigroup \mathcal{O}_n was introduced by A. Ya. Aizenstat [1], where she gave a presentation for $\mathcal{O}_n \setminus \{i_n\}$ in terms of 2n - 2 idempotent generators. She described in [2] the congruences on \mathcal{O}_n . There is a large body of literature on properties of the semigroup \mathcal{O}_n . For example, it is shown in [10] that the minimal number of generators of $\mathcal{O}_n \setminus \{i_n\}$ is n; combinatorial properties of \mathcal{O}_n were studied in [13], [12] and [14]. It is well known that \mathcal{O}_n is a regular semigroup.

It was shown recently by A. Vernitski [18] that all the inverse subsemigroups of \mathcal{O}_n are semilattices. Indeed he proved that a finite inverse semigroup can be represented by order-preserving mappings if and only if it is a semilattice of idempotents. Vernitski's paper is concerned with the study of the pseudovariety of all finite semigroups whose inverse subsemigroups consist of a single element, and the quasivariety of all finite semigroups whose inverse subsemigroups are semilattices. The proof uses the Krohn-Rhodes Theorem on wreath products of monoids. In the present paper we provide a simple self-contained proof of the result based on digraphs associated with transformations (Theorem 2.7).

A transformation $\alpha \in \mathcal{T}_n$ is said to be *orientation-preserving* (*orientation-reversing*) if the sequence $(1\alpha, 2\alpha, \ldots, n\alpha)$ is a cyclic permutation of a non-decreasing (non-increasing) sequence. The semigroup \mathcal{OP}_n of all orientation-preserving transformations and the semigroup \mathcal{P}_n of all orientation-preserving or orientation-reversing transformations were introduced independently by D. B. McAlister [15] and P. M. Catarino and P. M. Higgins [5]. Clearly, \mathcal{O}_n is a subsemigroup of \mathcal{OP}_n , which in turn is a subsemigroup of \mathcal{P}_n .

For a transformation $\alpha \in \mathcal{T}_n$ the rank of α , denoted by rank (α) , is the number of elements in the image set $X_n \alpha$ of α . It was shown in [4] and [15] that \mathcal{OP}_n is generated by an idempotent in \mathcal{O}_n of rank n-1and the cyclic group generated by the *n*-cycle $(1, 2, 3, \ldots, n)$. It was also shown [15] that \mathcal{P}_n is generated by an idempotent in \mathcal{O}_n of rank n-1and the dihedral group D_n . It follows that minimal generating sets of \mathcal{OP}_n and \mathcal{P}_n have sizes 2 and 3 respectively. The semigroups \mathcal{OP}_n and \mathcal{P}_n are regular [5].

The introduction of the semigroups \mathcal{OP}_n and \mathcal{P}_n generated a large body of fruitful research by a number of authors. For example, P. M. Catarino [4] exhibited a presentation of \mathcal{OP}_n in terms of 2n - 1 generators, by extending A. Ja. Aizenstat's [1] presentation for \mathcal{O}_n by a single generator and 2n relations. R. E. Arthur and N. Ruškuc [3] gave a presentation for \mathcal{OP}_n in terms of the minimal number of generators (two) and n+2 relations. In the same article they also gave a presentation of \mathcal{P}_n on three generators and n+6 relations. The congruences of \mathcal{OP}_n and \mathcal{P}_n were described by V. H. Fernandes, G. M. S. Gomes and M. M. Jesus [8]. The pseudovariety generated by all semigroups of orientation-preserving transformations on a finite cycle was introduced and studied by P. M. Catarino and P. M. Higgins in [6]. More recently, combinatorial properties of semigroups of total and partial orientation-preserving transformations were studied by A. Umar [17], and all maximal subsemigroups of \mathcal{OP}_n and \mathcal{P}_n were described by I. Dimitrova, V. H. Fernandez and J. Koppitz [7].

In the present paper we use the result that every inverse subsemigroup of \mathcal{O}_n is a semilattice of idempotents (Theorem 2.7 below) to show that \mathcal{OP}_n and \mathcal{P}_n are covered by their respective inverse subsemigroups if and only if $n \leq 3$.

2. Results

Every transformation α of X_n may be viewed as a digraph on n vertices, in which for $x, y \in X_n$ we have that xy is an arc of the digraph of α precisely when $x\alpha = y$. A comprehensive discussion on digraphs associated with transformations may be found in [11, Section 1.6]; we summarize here the results used in the proofs below.

The orbits of a mapping α in \mathcal{T}_n are the classes of the equivalence relation \sim on X_n defined by $x \sim y$ if and only if there exist non-negative integers k, m such that $x\alpha^k = y\alpha^m$. The sets of vertices of connected components of a digraph of α correspond to orbits of α . Each component of a digraph of a transformation is *functional*, that is, it consists of a unique cycle together with a number of trees rooted around this cycle. A cycle on m distinct vertices of X_n is to be referred to as an m-cycle. If the cycle of a component consists of a single vertex x, then x is a fixed point of α , that is $x\alpha = x$.

Lemma 2.1. Let α be a transformation in \mathcal{T}_n and suppose that all the cycles in the digraph of α are 1-cycles. Then for any positive integer k, the orbits and fixed points of α and α^k are identical.

Proof. Assume that x and y are in the same orbit with respect to some power α^k of α , that is $x \sim y$ with respect to α^k . Then there exist positive integers s and t such that $x (\alpha^k)^s = y (\alpha^k)^t$, whence $x \alpha^{ks} = y \alpha^{kt}$ and so $x \sim y$ with respect to α . Conversely, assume that $x \sim y$ with respect to α . By our assumption, the component C of the digraph of α containing vertices x and y has a unique 1-cycle, say, with a vertex z. Therefore z is a fixed point of α , and so $x \alpha^t = y \alpha^t = z$ for any positive integer $t \ge l$, where l is the length of the longest directed path in C. Hence $x \alpha^{kl} = y \alpha^{kl} = z$ or $x (\alpha^k)^l = y (\alpha^k)^l$. Thus $x \sim y$ with respect to α^k also. We conclude that the vertex set of C is a common orbit for all positive powers of α . Moreover z is a fixed point of α if and only if the same is true of all such powers.

The following result follows directly from Lemma 2.1.

Corollary 2.2. Let α be a transformation in \mathcal{T}_n and suppose that all the cycles in the digraph of α are 1-cycles. Let ε be an idempotent in \mathcal{T}_n such that $\varepsilon = \alpha^r$, for some positive integer r. Then the orbits and fixed points of α and ε are identical.

Lemma 2.3. Let α be a transformation in \mathcal{T}_n and suppose that all the cycles in the digraph of α are 1-cycles. If $\beta \in \mathcal{T}_n$ is any strong inverse of α then the orbits and fixed points of α and β are identical.

Proof. Observe that since β is a strong inverse of α , the subsemigroup $S = \langle \alpha, \beta \rangle$ of \mathcal{T}_n generated by α and β is an inverse semigroup. Therefore for any positive integer t we have that β^t is the unique inverse of α^t in S. Taking t = r so that $\varepsilon = \alpha^r$ is an idempotent as in Corollary 2.2 we have

that β^r is the unique inverse of $\alpha^r = \varepsilon$. Since an idempotent is its own unique inverse in S, we have that $\beta^r = \varepsilon$ also, and so $\alpha^r = \beta^r$. It follows immediately from Lemma 2.1 that the orbits and fixed points of α , β and ε are identical.

It follows from the definition of an order-preserving transformation on a finite chain that the iterative sequence of images $x, x \alpha, \ldots, x \alpha^k, \ldots$ of a point $x \in X_n$ under a transformation $\alpha \in \mathcal{O}_n$ must terminate in a fixed point, whence it follows that the cycles of the components of the digraph of α are merely fixed points. This observation leads to Proposition 2.4 below, see a proof in [12, Proposition 1.5]. From this we also note that the semigroup \mathcal{O}_n is *aperiodic*, meaning that all of its subgroups are trivial as it follows from the previous observation that the cyclic subgroup of the monogenic subsemigroup $\langle \alpha \rangle$ of \mathcal{O}_n has only one member.

Proposition 2.4 ([12, Proposition 1.5]). The cycle of each component of $\alpha \in \mathcal{O}_n$ consists of a unique fixed point.

Therefore, as it was noted in [12], the digraph of a mapping in \mathcal{O}_n consists of components, each of which is a directed tree with all arcs directed towards the root, which represents a fixed point of the mapping. The next result follows from Proposition 2.4 and Lemma 2.3.

Corollary 2.5. Let α , β be transformations in \mathcal{O}_n . If β is a strong inverse of α then α and β have the same orbits and their components have the same roots.

Recall that any order-preserving transformation has a strong inverse in \mathcal{T}_n . However, as the next result shows, an order-preserving transformation does not have an order-preserving strong inverse unless the transformation is an idempotent.

Theorem 2.6. Let $\alpha \in \mathcal{O}_n$. Then

- 1) α has a strong inverse in \mathcal{O}_n if and only if α is an idempotent.
- 2) If α is a non-idempotent with at least two fixed points, then α has no strong inverse in \mathcal{OP}_n .

Proof. Since the first statement of the theorem is clearly true in the forward direction, we assume that there exists a non-idempotent $\alpha \in \mathcal{O}_n$ that has a strong inverse β in \mathcal{OP}_n . Moreover, since an idempotent transformation may be characterized as a transformation that fixes each

element of its image, for a non-idempotent α there exist distinct $u, v \in X_n$ such that $u\alpha = v, v\alpha \neq v$. Let C be the component of the digraph of α containing vertices u, v. Since C is a directed tree with all arcs directed towards the root, say, $z \in X_n$, there exists a unique directed path in Cfrom u through v to z. Therefore there exist distinct vertices x, y distinct from z in this path such that $x\alpha = y, y\alpha = z$, and $z\alpha = z$. We may assume without loss of generality that x < y. Then since α is order-preserving we have that $y = x\alpha \leq y\alpha = z$, so that x < y < z since $y \neq z$.

Since β is an inverse of α , $\beta \alpha$ is an idempotent transformation with image $X_n\beta\alpha = X_n\alpha$, so $y \in X_n\beta\alpha$ and $y\beta\alpha = y$. Let w denote $y\beta$. If $y \leq w$, then since α is order-preserving we have that $z = y\alpha \leq w\alpha = y\beta\alpha = y$, a contradiction to our earlier observation that y < z. Therefore we have $y\beta = w < y$.

Assume first that β is order-preserving, so an application of β to both sides of the inequality $y\beta < y$ yields $y\beta^2 \leq y\beta < y$, so $y\beta^2 < y < z$. By using a similar argument we obtain that $y\beta^3 < y < z$, and indeed

$$y\beta^m < y < z$$
 for any integer $m \ge 2$. (1)

Let $k \ge 2$ be chosen such that α^k is an idempotent, say ε . Put m = k in Equation (1) above. On one hand by Corollary 2.2 we have that $y\alpha^k$ is the root of the common component of y under α and under ε , so that $y\alpha^k = z$. On the other hand we now obtain by Lemma 2.3 and Equation (1) that $y\alpha^k = y\beta^k < y < z$, a contradiction. It follows that if $\beta \in \mathcal{O}_n$ then α is an idempotent, and so the first statement is proved.

Finally assume that α has at least two fixed points and $\beta \in \mathcal{OP}_n$. Consider the (common) components C(1) and C(n) associated with digraphs of α and β containing 1 and n respectively. Since the components of α are intervals of the standard chain X_n (see Lemma 2.8 of [5]), it follows that if C(1) = C(n) then α would have just one component and so just one fixed point, contrary to hypothesis. Hence $C(1) = \{1, 2, \ldots, i\}$ and $C(n) = \{j, j + 1, \ldots, n\}$, for some i < j. But since these are also components of β , and β maps each of its components into itself, it follows that 1β lies in C(1) and $n\beta$ lies in C(n); in particular $1\beta < n\beta$, whence it follows from Proposition 2.3 of [5] that β lies in \mathcal{O}_n . But that contradicts the first part of our theorem. Therefore α does not have a strong inverse in \mathcal{OP}_n .

An immediate consequence of the above is the result of A. Vernitski [18, Corollary 4].

Theorem 2.7. Any inverse subsemigroup of \mathcal{O}_n is a semilattice. The union of all inverse subsemigroups of \mathcal{O}_n is just the set of idempotents of \mathcal{O}_n , or equivalently, the set of group elements of \mathcal{O}_n .

Next we apply the above results to the semigroups \mathcal{OP}_n of all orientation-preserving transformations of X_n and \mathcal{P}_n of all orientationpreserving or orientation-reversing transformations of X_n . Let \mathcal{OR}_n denote the set of all orientation-reversing transformations in \mathcal{T}_n . It was shown in [5] that $\mathcal{P}_n = \mathcal{OP}_n \cup \mathcal{OR}_n$,

$$\mathcal{OP}_n \cap \mathcal{OR}_n = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq 2 \},\$$

 $\mathcal{OP}_n \cdot \mathcal{OR}_n = \mathcal{OR}_n = \mathcal{OR}_n \cdot \mathcal{OP}_n \text{ and } (\mathcal{OR}_n)^2 = \mathcal{OP}_n = (\mathcal{OP}_n)^2.$ (2)

Note that for $n \leq 2$ we have $\mathcal{OP}_n = \mathcal{T}_n$ and so every element of \mathcal{OP}_n has a strong inverse in \mathcal{OP}_n . Now $|\mathcal{OP}_3| = 24$ (see [5], Corollary 2.7), and $\mathcal{T}_3 \setminus \mathcal{OP}_3$ consists of the three transpositions, which reverse orientation. It is easily seen that each member of \mathcal{OP}_3 has a strong inverse: indeed, $\mathcal{P}_3 = \mathcal{T}_3$ (see [5]), and so \mathcal{P}_3 is covered by its inverse subsemigroups. Since the elements of \mathcal{P}_3 and \mathcal{OP}_3 of rank at most two coincide, and the ranks of a transformation and its inverse are the same, we only need to observe that the three permutations in \mathcal{OP}_3 each have strong inverses in \mathcal{OP}_3 as together they form a (cyclic) group.

Let θ denote the *n*-cycle (1, 2, 3, ..., n) in \mathcal{OP}_n . As a consequence of Theorem 2.7 we can prove the following result:

Lemma 2.8. A non-idempotent transformation in \mathcal{OP}_n with at least two fixed points does not have a strong inverse in \mathcal{OP}_n .

Proof. Observe that if $n \leq 3$ then any transformation in \mathcal{OP}_n with at least two fixed points is an idempotent. Hence assume that $n \geq 4$. By Theorem 4.9 in [5], the digraph of any member of \mathcal{OP}_n cannot have two cycles of different length. It follows that all the cycles of α are fixed points. By Corollary 4.12 in [5], the mapping α can be written as $\theta^{-m}\delta\theta^m$ for some $\delta \in \mathcal{O}_n$ and a non-negative integer m.

Now assume by way of contradiction that $\beta \in \mathcal{OP}_n$ is a strong inverse of α . Take the mapping

$$\varphi: \mathcal{OP}_n \to \mathcal{OP}_n$$
 defined by $\kappa \varphi = \theta^m \kappa \theta^{-m}$

for $\kappa \in \mathcal{OP}_n$. Since θ is a permutation in \mathcal{OP}_n , the mapping φ is an automorphism of \mathcal{OP}_n . Moreover, $\alpha \varphi = \delta$ and $\beta \varphi = \theta^m \beta \theta^{-m}$, so φ maps

 $\langle \alpha, \beta \rangle$ isomorphically onto $\langle \delta, \theta^m \beta \theta^{-m} \rangle$. Since, by our assumption, β is a strong inverse of α , we have that $\langle \alpha, \beta \rangle$ and $\langle \delta, \theta^m \beta \theta^{-m} \rangle$ are isomorphic inverse subsemigroups of \mathcal{OP}_n and $\theta^m \beta \theta^{-m}$ is a strong inverse of δ .

We now note that α and its conjugate δ have the same number of fixed points. Indeed for any $x \in X_n$ we have that $x \alpha = x$ if and only if $x \theta^{-m} \delta \theta^m = x$, that is $(x \theta^{-m}) \delta = x \theta^{-m}$. Thus $\delta \in \mathcal{O}_n$ has at least two fixed points, and by Theorem 2.6(2), δ does not have a strong inverse in \mathcal{OP}_n , a contradiction.

Putting together the observations above that \mathcal{OP}_n is covered by its inverse subsemigroups when $n \leq 3$, and that if $n \geq 4$ then \mathcal{OP}_n contains non-idempotent transformations with at least two fixed points, an application of the above lemma yields the following result.

Theorem 2.9. The semigroup \mathcal{OP}_n is covered by its inverse subsemigroups if and only if $n \leq 3$.

Example. In \mathcal{OP}_3 we have the pair of strong inverses $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \end{pmatrix}$

and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 3 \end{pmatrix}$. We note that neither α nor β are idempotents, and α is a member of \mathcal{O}_3 , while β is a member of \mathcal{OP}_3 . The semigroup $\langle \alpha, \beta \rangle$ is the five-element combinatorial Brandt (inverse) semigroup, yet neither of α nor β is a group element. Hence, although \mathcal{OP}_n is not covered by its inverse subsemigroups, its set of strong inverses encompasses more than its group elements (so that Theorem 2.7 is not true if \mathcal{O}_n is replaced by \mathcal{OP}_n). We note that α is a member of \mathcal{O}_3 and β is a member of the semigroup of order-preserving mappings on the chain 3 < 1 < 2. This however does not contradict Lemma 2.8 as both α and β have just one fixed point.

If $n \leq 3$, it is observed in [5] that $\mathcal{P}_n = \mathcal{T}_n$, and so \mathcal{P}_n is covered by its inverse semigroups. The result below demonstrates that these are the only instances when this is true.

Theorem 2.10. The semigroup \mathcal{P}_n of all orientation-preserving or orientation reversing mappings is covered by its inverse subsemigroups if and only if $n \leq 3$.

Proof. Assume $n \ge 4$ and choose, using Theorem 2.6, a transformation $\alpha \in \mathcal{OP}_n$ of rank at least 3 that has no strong inverse in \mathcal{OP}_n . Assume $\beta \in \mathcal{P}_n$ is a strong inverse of α in \mathcal{P}_n . Now any inverse of α has the same

rank as α , so $\beta \in \mathcal{OR}_n$ with rank at least 3. But then by [5, Corollary 5.2] $\alpha = \alpha \beta \alpha \in \mathcal{OP}_n \cdot \mathcal{OR}_n \cdot \mathcal{OP}_n = \mathcal{OR}_n$. Since the rank of α is at least 3, and, in accordance with [5, Lemma 5.4], $\mathcal{OR}_n \cap \mathcal{OP}_n$ consists of transformations of rank at most 2, $\alpha \in \mathcal{OR}_n \setminus \mathcal{OP}_n$, a contradiction to the assumption that $\alpha \in \mathcal{OP}_n$. This completes the proof. \Box

Acknowledgement

The first author acknowledges support by the Portuguese Government through the Portuguese Foundation FCT under the project PEst-OE/MAT/UI4080/2014.

References

- A. Ja. Aizenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, *Sibirsk. Mat. Ž.* 3 (1962), 161-169 (Russian).
- [2] A. Ja. Aizenštat, On homomorphisms of semigroups of endomorphisms of ordered sets, *Leningrad. Gos. Pedagog. Inst. Učen. Zap.* 238 (1962), 38-48 (Russian).
- [3] R. E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, *Southeast Asian Bull. Math* 24 (2000), 1-7.
- [4] P. M. Catarino, Monoids of orientation-preserving mappings of a finite chain and their presentation, *Semigroups and Applications, St. Andrews* (1997), 39–46, World Sci. Publ., River Edge, NJ, 1998.
- [5] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, *Semigroup Forum*, 58, (1999), 190-206.
- [6] P. M. Catarino and P. M. Higgins, The pseudovariety generated by all semigroups of orientation preserving transformations on a finite cycle, *Int. J. Algebra Comput.*, 12(3), (2002), 387-405.
- [7] I. Dimitrova, V. H. Fernandes and J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, *Publ. Math. Debrecen*, 81, 1-2, (2012), 11-29.
- [8] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, J. Algebra, 321(2009), no. 3, 743-757.
- [9] L. M. Gluskin, Elementary Generalized Groups, Mat. Sb. N. S., 41(83) (1957), 23-36.
- [10] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of orderpreserving transformations, *Semigroup Forum* 45 (1992), no. 3, 272-282.
- [11] P. M. Higgins, *Techniques of semigroup theory*, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.
- [12] P. M. Higgins, Combinatorial results for semigroups of order-preserving transformations. Math. Proc. Camb. Phil. Soc., (1993), 113, pp 281-296.

- [13] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc., (1971), 17, pp 223-236.
- [14] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, *Semigroup Forum* 72 (2006), 51-62.
- [15] D. B. McAlister, Semigroups generated by a group and an idempotent. Comm. Algebra, 26(2), (1998), 515-547.
- [16] B. M. Schein, A symmetric semigroup of transformations is covered by its inverse subsemigroups, Acta Mat. Acad. Sci. Hung., 22, (1971) 163-171.
- [17] A. Umar, Combinatorial results for semigroups of orientation-preserving partial transformations, J. Integer Seq. 14 (2011), Article 11.7.5.
- [18] A. Vernitski, Inverse subsemigroups and classes of finite aperiodic semigroups, Semigroup Forum, 78, (2009), 486-497.

CONTACT INFORMATION

Paula Catarino	Departamento de Matemática Universidade de Trás-os-Montes e Alto Douro 5001-801 Vila Real, Portugal E-Mail(s): pcatarin@utad.pt
Peter M. Higgins	Department of Mathematical Sciences University of Essex Colchester CO4 3SQ U.K. <i>E-Mail(s)</i> : peteh@essex.ac.uk
Inessa Levi	Department of Mathematics Columbus State University Columbus, GA 31907, USA <i>E-Mail(s)</i> : levi_inessa@columbusstate.edu

Received by the editors: 04.06.2014 and in final form 04.08.2014.