On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations

Paula Catarino*, Peter M. Higgins, Inessa Levi

Communicated by V. Mazorchuk

Abstract

It is well-known [16] that the semigroup \mathcal{T}_{n} of all total transformations of a given n-element set X_{n} is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain X_{n} is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of X_{n} is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain X_{n} are covered by their inverse subsemigroups precisely when $n \leqslant 3$.

1. Introduction

In a regular semigroup S every element α has an inverse β in S meaning that $\alpha=\alpha \beta \alpha$ and $\beta=\beta \alpha \beta$. In an inverse semigroup S every element of S has a unique inverse in S. An inverse β of an element α in a

[^0]semigroup S is said to be a strong inverse of α if the subsemigroup $\langle\alpha, \beta\rangle$ of S generated by α and β is an inverse subsemigroup of S. A semigroup S is covered by its inverse subsemigroups precisely when every element in S has a strong inverse in S.

This note addresses the following question: what regular semigroups are covered by their inverse subsemigroups?

For example, the semigroup \mathcal{T}_{n} of all total transformations of a given n-element set X_{n} and the semigroup $\mathcal{P} \mathcal{T}_{n}$ of all total and partial transformations of X_{n} are both regular but not inverse. B. M. Schein [16] noted that the above question was formulated in 1964 during the VI Vsesouznyi Algebra Colloquium in Minsk, USSR, in terms of the semigroups \mathcal{T}_{n} and $\mathcal{P} \mathcal{T}_{n}$. In his 1971 paper [16], B. M. Schein showed, generalizing the results by L. M. Gluskin [9], that \mathcal{T}_{n} and $\mathcal{P} \mathcal{T}_{n}$ are covered by their inverse subsemigroups. A detailed proof of this result may be found in P. M. Higgins' book [11]. Note that this result does not hold for the semigroup of all total transformations of an infinite set, see, for example, [11, Exercise 6.2.8].

Let $X_{n}=\{1,2, \cdots, n\}$ be a chain with respect to the standard order, and let \mathcal{O}_{n} be the semigroup of all order-preserving transformations α on X_{n}, that is transformations satisfying the condition $x \alpha \leqslant y \alpha$ whenever $x<y$, for all $x, y \in X_{n}$. Let $\left\{i_{n}\right\}$ denote the identity permutation of X_{n}. The semigroup \mathcal{O}_{n} was introduced by A. Ya. Aizenstat [1], where she gave a presentation for $\mathcal{O}_{n} \backslash\left\{i_{n}\right\}$ in terms of $2 n-2$ idempotent generators. She described in [2] the congruences on \mathcal{O}_{n}. There is a large body of literature on properties of the semigroup \mathcal{O}_{n}. For example, it is shown in [10] that the minimal number of generators of $\mathcal{O}_{n} \backslash\left\{i_{n}\right\}$ is n; combinatorial properties of \mathcal{O}_{n} were studied in [13], [12] and [14]. It is well known that \mathcal{O}_{n} is a regular semigroup.

It was shown recently by A. Vernitski [18] that all the inverse subsemigroups of \mathcal{O}_{n} are semilattices. Indeed he proved that a finite inverse semigroup can be represented by order-preserving mappings if and only if it is a semilattice of idempotents. Vernitski's paper is concerned with the study of the pseudovariety of all finite semigroups whose inverse subsemigroups consist of a single element, and the quasivariety of all finite semigroups whose inverse subsemigroups are semilattices. The proof uses the Krohn-Rhodes Theorem on wreath products of monoids. In the present paper we provide a simple self-contained proof of the result based on digraphs associated with transformations (Theorem 2.7).

A transformation $\alpha \in \mathcal{T}_{n}$ is said to be orientation-preserving (orientation-reversing) if the sequence $(1 \alpha, 2 \alpha, \ldots, n \alpha)$ is a cyclic permutation of a non-decreasing (non-increasing) sequence. The semigroup
$\mathcal{O} \mathcal{P}_{n}$ of all orientation-preserving transformations and the semigroup \mathcal{P}_{n} of all orientation-preserving or orientation-reversing transformations were introduced independently by D. B. McAlister [15] and P. M. Catarino and P. M. Higgins [5]. Clearly, \mathcal{O}_{n} is a subsemigroup of $\mathcal{O} \mathcal{P}_{n}$, which in turn is a subsemigroup of \mathcal{P}_{n}.

For a transformation $\alpha \in \mathcal{T}_{n}$ the rank of α, denoted by $\operatorname{rank}(\alpha)$, is the number of elements in the image set $X_{n} \alpha$ of α. It was shown in [4] and [15] that $\mathcal{O} \mathcal{P}_{n}$ is generated by an idempotent in \mathcal{O}_{n} of rank $n-1$ and the cyclic group generated by the n-cycle $(1,2,3, \ldots, n)$. It was also shown [15] that \mathcal{P}_{n} is generated by an idempotent in \mathcal{O}_{n} of rank $n-1$ and the dihedral group D_{n}. It follows that minimal generating sets of $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} have sizes 2 and 3 respectively. The semigroups $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} are regular [5].

The introduction of the semigroups $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} generated a large body of fruitful research by a number of authors. For example, P. M. Catarino [4] exhibited a presentation of $\mathcal{O} \mathcal{P}_{n}$ in terms of $2 n-1$ generators, by extending A. Ja. Aizenstat's [1] presentation for \mathcal{O}_{n} by a single generator and $2 n$ relations. R. E. Arthur and N. Ruškuc [3] gave a presentation for $\mathcal{O} \mathcal{P}_{n}$ in terms of the minimal number of generators (two) and $n+2$ relations. In the same article they also gave a presentation of \mathcal{P}_{n} on three generators and $n+6$ relations. The congruences of $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} were described by V. H. Fernandes, G. M. S. Gomes and M. M. Jesus [8]. The pseudovariety generated by all semigroups of orientation-preserving transformations on a finite cycle was introduced and studied by P. M. Catarino and P. M. Higgins in [6]. More recently, combinatorial properties of semigroups of total and partial orientation-preserving transformations were studied by A. Umar [17], and all maximal subsemigroups of $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} were described by I. Dimitrova, V. H. Fernandez and J. Koppitz [7].

In the present paper we use the result that every inverse subsemigroup of \mathcal{O}_{n} is a semilattice of idempotents (Theorem 2.7 below) to show that $\mathcal{O} \mathcal{P}_{n}$ and \mathcal{P}_{n} are covered by their respective inverse subsemigroups if and only if $n \leqslant 3$.

2. Results

Every transformation α of X_{n} may be viewed as a digraph on n vertices, in which for $x, y \in X_{n}$ we have that $x y$ is an arc of the digraph of α precisely when $x \alpha=y$. A comprehensive discussion on digraphs associated with transformations may be found in [11, Section 1.6]; we summarize here the results used in the proofs below.

The orbits of a mapping α in \mathcal{T}_{n} are the classes of the equivalence relation \sim on X_{n} defined by $x \sim y$ if and only if there exist non-negative integers k, m such that $x \alpha^{k}=y \alpha^{m}$. The sets of vertices of connected components of a digraph of α correspond to orbits of α. Each component of a digraph of a transformation is functional, that is, it consists of a unique cycle together with a number of trees rooted around this cycle. A cycle on m distinct vertices of X_{n} is to be referred to as an m-cycle. If the cycle of a component consists of a single vertex x, then x is a fixed point of α, that is $x \alpha=x$.

Lemma 2.1. Let α be a transformation in \mathcal{T}_{n} and suppose that all the cycles in the digraph of α are 1-cycles. Then for any positive integer k, the orbits and fixed points of α and α^{k} are identical.

Proof. Assume that x and y are in the same orbit with respect to some power α^{k} of α, that is $x \sim y$ with respect to α^{k}. Then there exist positive integers s and t such that $x\left(\alpha^{k}\right)^{s}=y\left(\alpha^{k}\right)^{t}$, whence $x \alpha^{k s}=y \alpha^{k t}$ and so $x \sim y$ with respect to α. Conversely, assume that $x \sim y$ with respect to α. By our assumption, the component C of the digraph of α containing vertices x and y has a unique 1-cycle, say, with a vertex z. Therefore z is a fixed point of α, and so $x \alpha^{t}=y \alpha^{t}=z$ for any positive integer $t \geqslant l$, where l is the length of the longest directed path in C. Hence $x \alpha^{k l}=y \alpha^{k l}=z$ or $x\left(\alpha^{k}\right)^{l}=y\left(\alpha^{k}\right)^{l}$. Thus $x \sim y$ with respect to α^{k} also. We conclude that the vertex set of C is a common orbit for all positive powers of α. Moreover z is a fixed point of α if and only if the same is true of all such powers.

The following result follows directly from Lemma 2.1.
Corollary 2.2. Let α be a transformation in \mathcal{T}_{n} and suppose that all the cycles in the digraph of α are 1 -cycles. Let ε be an idempotent in \mathcal{T}_{n} such that $\varepsilon=\alpha^{r}$, for some positive integer r. Then the orbits and fixed points of α and ε are identical.

Lemma 2.3. Let α be a transformation in \mathcal{T}_{n} and suppose that all the cycles in the digraph of α are 1-cycles. If $\beta \in \mathcal{T}_{n}$ is any strong inverse of α then the orbits and fixed points of α and β are identical.

Proof. Observe that since β is a strong inverse of α, the subsemigroup $S=\langle\alpha, \beta\rangle$ of \mathcal{T}_{n} generated by α and β is an inverse semigroup. Therefore for any positive integer t we have that β^{t} is the unique inverse of α^{t} in S. Taking $t=r$ so that $\varepsilon=\alpha^{r}$ is an idempotent as in Corollary 2.2 we have
that β^{r} is the unique inverse of $\alpha^{r}=\varepsilon$. Since an idempotent is its own unique inverse in S, we have that $\beta^{r}=\varepsilon$ also, and so $\alpha^{r}=\beta^{r}$. It follows immediately from Lemma 2.1 that the orbits and fixed points of α, β and ε are identical.

It follows from the definition of an order-preserving transformation on a finite chain that the iterative sequence of images $x, x \alpha, \ldots, x \alpha^{k}, \ldots$ of a point $x \in X_{n}$ under a transformation $\alpha \in \mathcal{O}_{n}$ must terminate in a fixed point, whence it follows that the cycles of the components of the digraph of α are merely fixed points. This observation leads to Proposition 2.4 below, see a proof in [12, Proposition 1.5]. From this we also note that the semigroup \mathcal{O}_{n} is aperiodic, meaning that all of its subgroups are trivial as it follows from the previous observation that the cyclic subgroup of the monogenic subsemigroup $\langle\alpha\rangle$ of \mathcal{O}_{n} has only one member.

Proposition 2.4 ([12, Proposition 1.5]). The cycle of each component of $\alpha \in \mathcal{O}_{n}$ consists of a unique fixed point.

Therefore, as it was noted in [12], the digraph of a mapping in \mathcal{O}_{n} consists of components, each of which is a directed tree with all arcs directed towards the root, which represents a fixed point of the mapping. The next result follows from Proposition 2.4 and Lemma 2.3.

Corollary 2.5. Let α, β be transformations in \mathcal{O}_{n}. If β is a strong inverse of α then α and β have the same orbits and their components have the same roots.

Recall that any order-preserving transformation has a strong inverse in \mathcal{T}_{n}. However, as the next result shows, an order-preserving transformation does not have an order-preserving strong inverse unless the transformation is an idempotent.

Theorem 2.6. Let $\alpha \in \mathcal{O}_{n}$. Then

1) α has a strong inverse in \mathcal{O}_{n} if and only if α is an idempotent.
2) If α is a non-idempotent with at least two fixed points, then α has no strong inverse in $\mathcal{O} \mathcal{P}_{n}$.

Proof. Since the first statement of the theorem is clearly true in the forward direction, we assume that there exists a non-idempotent $\alpha \in \mathcal{O}_{n}$ that has a strong inverse β in $\mathcal{O} \mathcal{P}_{n}$. Moreover, since an idempotent transformation may be characterized as a transformation that fixes each
element of its image, for a non-idempotent α there exist distinct $u, v \in X_{n}$ such that $u \alpha=v, v \alpha \neq v$. Let C be the component of the digraph of α containing vertices u, v. Since C is a directed tree with all arcs directed towards the root, say, $z \in X_{n}$, there exists a unique directed path in C from u through v to z. Therefore there exist distinct vertices x, y distinct from z in this path such that $x \alpha=y, y \alpha=z$, and $z \alpha=z$. We may assume without loss of generality that $x<y$. Then since α is order-preserving we have that $y=x \alpha \leqslant y \alpha=z$, so that $x<y<z$ since $y \neq z$.

Since β is an inverse of $\alpha, \beta \alpha$ is an idempotent transformation with image $X_{n} \beta \alpha=X_{n} \alpha$, so $y \in X_{n} \beta \alpha$ and $y \beta \alpha=y$. Let w denote $y \beta$. If $y \leqslant w$, then since α is order-preserving we have that $z=y \alpha \leqslant w \alpha=$ $y \beta \alpha=y$, a contradiction to our earlier observation that $y<z$. Therefore we have $y \beta=w<y$.

Assume first that β is order-preserving, so an application of β to both sides of the inequality $y \beta<y$ yields $y \beta^{2} \leqslant y \beta<y$, so $y \beta^{2}<y<z$. By using a similar argument we obtain that $y \beta^{3}<y<z$, and indeed

$$
\begin{equation*}
y \beta^{m}<y<z \text { for any integer } m \geqslant 2 \tag{1}
\end{equation*}
$$

Let $k \geqslant 2$ be chosen such that α^{k} is an idempotent, say ε. Put $m=k$ in Equation (1) above. On one hand by Corollary 2.2 we have that $y \alpha^{k}$ is the root of the common component of y under α and under ε, so that $y \alpha^{k}=z$. On the other hand we now obtain by Lemma 2.3 and Equation (1) that $y \alpha^{k}=y \beta^{k}<y<z$, a contradiction. It follows that if $\beta \in \mathcal{O}_{n}$ then α is an idempotent, and so the first statement is proved.

Finally assume that α has at least two fixed points and $\beta \in \mathcal{O} \mathcal{P}_{n}$. Consider the (common) components $C(1)$ and $C(n)$ associated with digraphs of α and β containing 1 and n respectively. Since the components of α are intervals of the standard chain X_{n} (see Lemma 2.8 of [5]), it follows that if $C(1)=C(n)$ then α would have just one component and so just one fixed point, contrary to hypothesis. Hence $C(1)=\{1,2, \ldots, i\}$ and $C(n)=\{j, j+1, \ldots, n\}$, for some $i<j$. But since these are also components of β, and β maps each of its components into itself, it follows that 1β lies in $C(1)$ and $n \beta$ lies in $C(n)$; in particular $1 \beta<n \beta$, whence it follows from Proposition 2.3 of [5] that β lies in \mathcal{O}_{n}. But that contradicts the first part of our theorem. Therefore α does not have a strong inverse in $\mathcal{O} \mathcal{P}_{n}$.

An immediate consequence of the above is the result of A. Vernitski [18, Corollary 4].

Theorem 2.7. Any inverse subsemigroup of \mathcal{O}_{n} is a semilattice. The union of all inverse subsemigroups of \mathcal{O}_{n} is just the set of idempotents of \mathcal{O}_{n}, or equivalently, the set of group elements of \mathcal{O}_{n}.

Next we apply the above results to the semigroups $\mathcal{O} \mathcal{P}_{n}$ of all orientation-preserving transformations of X_{n} and \mathcal{P}_{n} of all orientationpreserving or orientation-reversing transformations of X_{n}. Let $\mathcal{O} \mathcal{R}_{n}$ denote the set of all orientation-reversing transformations in \mathcal{T}_{n}. It was shown in [5] that $\mathcal{P}_{n}=\mathcal{O} \mathcal{P}_{n} \cup \mathcal{O} \mathcal{R}_{n}$,

$$
\begin{gather*}
\mathcal{O} \mathcal{P}_{n} \cap \mathcal{O} \mathcal{R}_{n}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leqslant 2\right\} \\
\mathcal{O} \mathcal{P}_{n} \cdot \mathcal{O} \mathcal{R}_{n}=\mathcal{O} \mathcal{R}_{n}=\mathcal{O} \mathcal{R}_{n} \cdot \mathcal{O} \mathcal{P}_{n} \text { and }\left(\mathcal{O} \mathcal{R}_{n}\right)^{2}=\mathcal{O} \mathcal{P}_{n}=\left(\mathcal{O} \mathcal{P}_{n}\right)^{2} \tag{2}
\end{gather*}
$$

Note that for $n \leqslant 2$ we have $\mathcal{O} \mathcal{P}_{n}=\mathcal{T}_{n}$ and so every element of $\mathcal{O} \mathcal{P}_{n}$ has a strong inverse in $\mathcal{O} \mathcal{P}_{n}$. Now $\left|\mathcal{O} \mathcal{P}_{3}\right|=24$ (see [5], Corollary 2.7), and $\mathcal{T}_{3} \backslash \mathcal{O} \mathcal{P}_{3}$ consists of the three transpositions, which reverse orientation. It is easily seen that each member of $\mathcal{O} \mathcal{P}_{3}$ has a strong inverse: indeed, $\mathcal{P}_{3}=\mathcal{T}_{3}$ (see [5]), and so \mathcal{P}_{3} is covered by its inverse subsemigroups. Since the elements of \mathcal{P}_{3} and $\mathcal{O} \mathcal{P}_{3}$ of rank at most two coincide, and the ranks of a transformation and its inverse are the same, we only need to observe that the three permutations in $\mathcal{O} \mathcal{P}_{3}$ each have strong inverses in $\mathcal{O P}_{3}$ as together they form a (cyclic) group.

Let θ denote the n-cycle $(1,2,3, \ldots, n)$ in $\mathcal{O} \mathcal{P}_{n}$. As a consequence of Theorem 2.7 we can prove the following result:

Lemma 2.8. A non-idempotent transformation in $\mathcal{O} \mathcal{P}_{n}$ with at least two fixed points does not have a strong inverse in $\mathcal{O} \mathcal{P}_{n}$.

Proof. Observe that if $n \leqslant 3$ then any transformation in $\mathcal{O} \mathcal{P}_{n}$ with at least two fixed points is an idempotent. Hence assume that $n \geqslant 4$. By Theorem 4.9 in [5], the digraph of any member of $\mathcal{O} \mathcal{P}_{n}$ cannot have two cycles of different length. It follows that all the cycles of α are fixed points. By Corollary 4.12 in [5], the mapping α can be written as $\theta^{-m} \delta \theta^{m}$ for some $\delta \in \mathcal{O}_{n}$ and a non-negative integer m.

Now assume by way of contradiction that $\beta \in \mathcal{O} \mathcal{P}_{n}$ is a strong inverse of α. Take the mapping

$$
\varphi: \mathcal{O} \mathcal{P}_{n} \rightarrow \mathcal{O} \mathcal{P}_{n} \text { defined by } \kappa \varphi=\theta^{m} \kappa \theta^{-m}
$$

for $\kappa \in \mathcal{O} \mathcal{P}_{n}$. Since θ is a permutation in $\mathcal{O} \mathcal{P}_{n}$, the mapping φ is an automorphism of $\mathcal{O} \mathcal{P}_{n}$. Moreover, $\alpha \varphi=\delta$ and $\beta \varphi=\theta^{m} \beta \theta^{-m}$, so φ maps
$\langle\alpha, \beta\rangle$ isomorphically onto $\left\langle\delta, \theta^{m} \beta \theta^{-m}\right\rangle$. Since, by our assumption, β is a strong inverse of α, we have that $\langle\alpha, \beta\rangle$ and $\left\langle\delta, \theta^{m} \beta \theta^{-m}\right\rangle$ are isomorphic inverse subsemigroups of $\mathcal{O} \mathcal{P}_{n}$ and $\theta^{m} \beta \theta^{-m}$ is a strong inverse of δ.

We now note that α and its conjugate δ have the same number of fixed points. Indeed for any $x \in X_{n}$ we have that $x \alpha=x$ if and only if $x \theta^{-m} \delta \theta^{m}=x$, that is $\left(x \theta^{-m}\right) \delta=x \theta^{-m}$. Thus $\delta \in \mathcal{O}_{n}$ has at least two fixed points, and by Theorem $2.6(2), \delta$ does not have a strong inverse in $\mathcal{O} \mathcal{P}_{n}$, a contradiction.

Putting together the observations above that $\mathcal{O} \mathcal{P}_{n}$ is covered by its inverse subsemigroups when $n \leqslant 3$, and that if $n \geqslant 4$ then $\mathcal{O} \mathcal{P}_{n}$ contains non-idempotent transformations with at least two fixed points, an application of the above lemma yields the following result.

Theorem 2.9. The semigroup $\mathcal{O} \mathcal{P}_{n}$ is covered by its inverse subsemigroups if and only if $n \leqslant 3$.

Example. In $\mathcal{O} \mathcal{P}_{3}$ we have the pair of strong inverses $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right)$ and $\beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 3\end{array}\right)$. We note that neither α nor β are idempotents, and α is a member of \mathcal{O}_{3}, while β is a member of $\mathcal{O} \mathcal{P}_{3}$. The semigroup $\langle\alpha, \beta\rangle$ is the five-element combinatorial Brandt (inverse) semigroup, yet neither of α nor β is a group element. Hence, although $\mathcal{O} \mathcal{P}_{n}$ is not covered by its inverse subsemigroups, its set of strong inverses encompasses more than its group elements (so that Theorem 2.7 is not true if \mathcal{O}_{n} is replaced by $\mathcal{O} \mathcal{P}_{n}$). We note that α is a member of \mathcal{O}_{3} and β is a member of the semigroup of order-preserving mappings on the chain $3<1<2$. This however does not contradict Lemma 2.8 as both α and β have just one fixed point.

If $n \leqslant 3$, it is observed in [5] that $\mathcal{P}_{n}=\mathcal{T}_{n}$, and so \mathcal{P}_{n} is covered by its inverse semigroups. The result below demonstrates that these are the only instances when this is true.

Theorem 2.10. The semigroup \mathcal{P}_{n} of all orientation-preserving or orientation reversing mappings is covered by its inverse subsemigroups if and only if $n \leqslant 3$.

Proof. Assume $n \geqslant 4$ and choose, using Theorem 2.6, a transformation $\alpha \in \mathcal{O} \mathcal{P}_{n}$ of rank at least 3 that has no strong inverse in $\mathcal{O} \mathcal{P}_{n}$. Assume $\beta \in \mathcal{P}_{n}$ is a strong inverse of α in \mathcal{P}_{n}. Now any inverse of α has the same
rank as α, so $\beta \in \mathcal{O} \mathcal{R}_{n}$ with rank at least 3 . But then by [5, Corollary 5.2] $\alpha=\alpha \beta \alpha \in \mathcal{O} \mathcal{P}_{n} \cdot \mathcal{O} \mathcal{R}_{n} \cdot \mathcal{O} \mathcal{P}_{n}=\mathcal{O} \mathcal{R}_{n}$. Since the rank of α is at least 3 , and, in accordance with [5, Lemma 5.4], $\mathcal{O} \mathcal{R}_{n} \cap \mathcal{O} \mathcal{P}_{n}$ consists of transformations of rank at most $2, \alpha \in \mathcal{O} \mathcal{R}_{n} \backslash \mathcal{O} \mathcal{P}_{n}$, a contradiction to the assumption that $\alpha \in \mathcal{O} \mathcal{P}_{n}$. This completes the proof.

Acknowledgement

The first author acknowledges support by the Portuguese Government through the Portuguese Foundation FCT under the project PEstOE/MAT/UI4080/2014.

References

[1] A. Ja. Aizenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. Z̆. 3 (1962), 161-169 (Russian).
[2] A. Ja. Aizenštat, On homomorphisms of semigroups of endomorphisms of ordered sets, Leningrad. Gos. Pedagog. Inst. Učen. Zap. 238 (1962), 38-48 (Russian).
[3] R. E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math 24 (2000), 1-7.
[4] P. M. Catarino, Monoids of orientation-preserving mappings of a finite chain and their presentation, Semigroups and Applications, St. Andrews(1997), 39-46, World Sci. Publ., River Edge, NJ, 1998.
[5] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58, (1999), 190-206.
[6] P. M. Catarino and P. M. Higgins, The pseudovariety generated by all semigroups of orientation preserving transformations on a finite cycle, Int. J. Algebra Comput., $12(3),(2002), 387-405$.
[7] I. Dimitrova, V. H. Fernandes and J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publ. Math. Debrecen, 81, 1-2, (2012), 11-29.
[8] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, J. Algebra, 321(2009), no. 3, 743-757.
[9] L. M. Gluskin, Elementary Generalized Groups, Mat. Sb. N. S., 41(83) (1957), 23-36.
[10] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of orderpreserving transformations, Semigroup Forum 45 (1992), no. 3, 272-282.
[11] P. M. Higgins, Techniques of semigroup theory, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.
[12] P. M. Higgins, Combinatorial results for semigroups of order-preserving transformations. Math. Proc. Camb. Phil. Soc., (1993), 113, pp 281-296.
[13] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc., (1971), 17, pp 223-236.
[14] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
[15] D. B. McAlister, Semigroups generated by a group and an idempotent. Comm. Algebra, 26(2), (1998), 515-547.
[16] B. M. Schein, A symmetric semigroup of transformations is covered by its inverse subsemigroups, Acta Mat. Acad. Sci. Hung., 22, (1971) 163-171.
[17] A. Umar, Combinatorial results for semigroups of orientation-preserving partial transformations, J. Integer Seq. 14 (2011), Article 11.7.5.
[18] A. Vernitski, Inverse subsemigroups and classes of finite aperiodic semigroups, Semigroup Forum, 78, (2009), 486-497.

Contact information

Paula Catarino

Peter M. Higgins Department of Mathematical Sciences
Departamento de Matemática
Universidade de Trás-os-Montes e Alto Douro
5001-801 Vila Real, Portugal
E-Mail(s): pcatarin@utad.pt

University of Essex
Colchester CO4 3SQ U.K.
E-Mail(s): peteh@essex.ac.uk
$\begin{array}{ll}\text { Inessa Levi } & \text { Department of Mathematics } \\ \text { Columbus State University } \\ & \text { Columbus, GA 31907, USA } \\ & E-M a i l(s): \text { levi_inessa@columbusstate.edu }\end{array}$

Received by the editors: 04.06.2014
and in final form 04.08.2014.

[^0]: *The first author is a Member of the Research Center of Mathematics, CM-UTAD, Portugal.

 2010 MSC: 20M20, 05C25.
 Key words and phrases: semigroup, semilattice, inverse subsemigroup, strong inverse, transformation, order-preserving transformation, orientation-preserving transformation, orientation-reversing transformation.

