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1. Summary
We conducted a computer-based experiment with over 450 human
participants and used a Bayesian model selection approach to
explore dynamic exit route choice mechanisms of individuals
in simulated crowd evacuations. In contrast to previous work,
we explicitly explore the use of time-dependent and time-
independent information in decision-making. Our findings
suggest that participants tended to base their exit choices on
time-dependent information, such as differences in queue lengths
and queue speeds at exits rather than on time-independent
information, such as differences in exit widths or exit route length.
We found weak support for similar decision-making mechanisms
under a stress-inducing experimental treatment. However, under
this treatment participants were less able or willing to adjust
their original exit choice in the course of the evacuation. Our
experiment is not a direct test of behaviour in real evacuations, but
it does highlight the role different types of information and stress
play in real human decision-making in a virtual environment. Our
findings may be useful in identifying topics for future study on
real human crowd movements or for developing more realistic
agent-based simulations.

2. Introduction
When moving within a pedestrian crowd, individuals have to
continuously make movement decisions at different temporal
and spatial scales. At a microscopic level, individuals have to
respond to their immediate environment, to avoid collisions with
other pedestrians or obstacles, for example. This has been termed
‘operational level’ of pedestrian behaviour [1]. Empirical and
theoretical research suggests that at this level, individuals seek
to optimize their travel time or the directness of their route
towards a target, while avoiding collisions [2,3]. Operational-level
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behaviour alone can explain many phenomena of human crowd dynamics, such as the spontaneous
formation of lanes in bidirectional pedestrian flows or pedestrian jams at bottlenecks [4]. However,
individuals typically also have to make higher level movement decisions, such as choosing between
different routes to exit a building. Understanding this ‘tactical level’ of pedestrian behaviour [1] is
important, as it determines the distribution of pedestrian crowds at larger spatial scales. For example,
the weather protection offered by routes or the length of routes have been suggested to determine
pedestrians’ route usage in built environments, such as railway stations or city centres [5].

The research presented here is motivated by the tactical-level route choices individuals may have
to make in crowd evacuations. Evacuations of human crowds from confined spaces, such as buildings
or vehicles, are a paradigmatic example for why understanding tactical-level pedestrian behaviour
is important: individual decisions on when to evacuate and which emergency exit route to use
determine the distribution of pedestrians across evacuation routes and operational-level behaviour can
subsequently lead to potentially dangerous crowd dynamics [4,6]. To give a simple example, the majority
of evacuees could choose the shortest exit route from a building, leading to a high pedestrian density
along this route (tactical level). High pedestrian densities could subsequently lead to a build-up of
pressure at bottlenecks in the evacuation route or density waves increasing the risk for pedestrians to
fall (operational level).

It is generally accepted that the length of routes and the degree to which they are congested by other
pedestrians are likely to be important aspects in route choice [7–9]. There also seems to be consensus that
pedestrians tend to choose the quickest route [7–9]. However, it is not clear how pedestrians determine
the quickest route from their own individual perspective and how this process should be represented
mechanistically in models for human behaviour [7–9]. One of the key questions in this regard is to
what extent individuals rely on static information from the environment, such as exit widths or route
length, or on dynamic information, such as the level of congestion along different routes [9,10]. Previous
work has established that the likelihood of pedestrians to choose particular routes is influenced by static
information, such as the length of the route and the presence of stairs or escalators [5,11]. There is
also limited empirical evidence suggesting that pedestrians take the movement of others into account
when choosing routes [12,13]. However, to date there is no detailed understanding of the dynamic, time-
dependent route choice mechanisms in humans. There is therefore a need to investigate what information
individuals rely on to make tactical-level route decisions: static aspects of the environment or dynamic
aspects of the environment or both.

In this study, we use an established methodology to conduct experiments on human route choices in
virtual environments [14,15]. Such computer-based experiments are an important and well-established
tool in research and are used to study diverse topics in behavioural ecology [16], human visual perception
[17], as well as in human decision-making, in general [18,19], and in evacuations in particular [13,20,21].
However, we stress that it is important not to over-interpret findings from this type of research. To date,
it has not yet been established to what extent human decision-making in virtual environments (including
the experiment presented here) extends to the real world. Our experiment is not designed to be a direct
test of real pedestrian dynamics in a real environment. Instead, we suggest our work contributes in three
ways to our understanding of human decision-making and crowd behaviour. Firstly, in our computer-
based experiment we are able to fully and securely control the environment participants perceive in a
way that is not possible in experiments with real crowds. This allows us to investigate particular aspects
of human route choice in isolation and our findings thus present novel insights into real human decision-
making, albeit limited to this specific context. Secondly, experiments with large real crowds are typically
expensive and time consuming and obtaining detailed data presents logistical and technical difficulties
[4,6]. There are many different scenarios in crowd evacuations that merit our attention. Our approach
arguably offers a fast and cost-effective way to develop an intuition for what aspects of behaviour could
have important effects on evacuation dynamics. Therefore, our findings could aid in the selection of
topics that should be studied in more realistic experiments in real environments. In addition, our findings
could also potentially be used to inform the formulation of theoretical crowd movement models [4,6].
Thirdly, the data analysis methods we present here can be applied to data obtained from experiments
with real crowds or even real emergencies, and this part of our work is therefore generally applicable.

In our experiment, individual participants had a top-down view of a virtual environment that
consisted of a central room and two corridors of unequal length that led to an exit point (figure 1a).
Participants steered one pedestrian inside this environment with mouse clicks. After familiarizing
themselves with the steering of this pedestrian, participants took part in a simulated crowd evacuation
and had to choose which of the two possible exit routes to take. Both exit routes were used by computer-
simulated pedestrians. In the control condition, participants could not perceive any difference between
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Figure 1. Layout of virtual environment and experimental treatments. (a) shortest path treatment, S. The virtual environment comprises
a central room (labelled ‘CR’) and two corridors (‘C1’ and ‘C2’) leading to an exit from the virtual environment (‘T2’). Corridor C1 is longer
than C2. The experiment consisted of two consecutive tasks. In the first task, participants started at a position to the right of the ‘CR’
label and followed arrows to the first target (‘T1’) to familiarize themselves with the controls in the virtual environment. The second task
simulated a crowd evacuation and participants started at ‘T1’, subsequently exited ‘CR’ into either corridor ‘C1’ or ‘C2’ and moved to the
final target ‘T2’. Simulated pedestrians are represented by white filled circles with a line indicating their movement direction and the
pedestrian steered by participants is represented by a black filled circle, located at ‘T1’. (b) control treatment. Compared to (a), the global
layout of the environment is not visible. (c) Motivation treatment, M (message translates to: ‘Attention, there has been an accident. Leave
the building! Try to be the fastest. Currently, the fastest time is: 4138’). (d) Exit width treatment, W. The top exit, leading into the longer
corridor, C1, is 1.5 times as wide as the lower exit, as highlighted by the transparent bar between the two exits. The simulated crowd
splits approximately evenly between the two exits in all treatments. All experimental procedures are described in detail in the electronic
supplementary material, text.

the two exit routes, even though one route was shorter than the other. Our experimental treatments
introduced differences between the two exit routes by either providing participants with information
about which route was shorter (‘shortest path’ or S treatment; figure 1a) or by increasing the width of
the exit leading to the longer route (‘door width’ or W treatment; figure 1d). Initially, similar numbers of
simulated pedestrians used the two exits, but the latter treatment, W, had the effect that the queue in front
of the wider exit disappeared faster. We recorded data on the movement and mouse clicks of participants
during the evacuation. All participants in our experiments provided informed consent before starting
the experiment.

Emergency evacuations are often highly stressful for evacuees. Previous research suggests that stress
affects human decision-making more generally [22,23] and could be important in route decisions during
evacuations in particular [14]. Studying the effect of stress experimentally in close proxies for emergency
evacuations, such as evacuation drills with volunteers, could potentially be dangerous and result in
injuries for participants. This raises ethical questions about such experiments. By contrast, the use of a
virtual environment allowed us to safely put participants under additional pressure during experiments
(‘motivation’ or M treatment; figure 1c). While our approach does not establish exactly how humans
behave under stress in real evacuations, it nevertheless allows us to develop an intuition for how time
pressure affects real human decision-making.

In summary, we conducted experiments on tactical-level human route choice in crowd evacuations
using an interactive virtual environment. In contrast to previous work, we explicitly investigated
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time-dependent route choice mechanisms in humans and tested whether individuals rely on time-
dependent or time-independent information. In addition, we investigated whether additional pressure
on participants affected route choice mechanisms.

3. Changes in environment affect route choices
We first tested the effect of our primary experimental treatments (motivation, M; exit width, W; shortest
path, S) on the proportion of participants who chose the shortest route in the simulated evacuations,
P(shortest route), and the proportion of participants who changed their mind on which exit to use
during the evacuation, P(change). We recorded a change of mind for participants if they walked for
at least one-fifth of the height of the central room towards one exit before changing direction and exiting
through the opposite exit. We assessed the significance of the effect of each treatment on P(shortest
route) and P(change) by conducting single-parameter tests on generalized linear model fits to the data
(see the electronic supplementary material, text). For our experiment, we recruited 464 volunteers,
who were split up evenly across the control condition (figure 1b), the primary experimental treatments
(figure 1a,c,d), pairwise combinations of treatments and a combination of all treatments (eight different
experimental conditions in total; see the electronic supplementary material, figure S1). Combining
treatments allowed us to test how people trade off different types of information. For example, combining
treatments S and W leads to a trade-off between using the shorter route and the wider exit. We were
particularly interested in combining treatment M with the other treatments, as it provides insights
into the effect of additional pressure on participants’ responsiveness to features of the environment
(e.g. difference in door widths) and to possible changes in crowd movement dynamics (e.g. differences
in queue lengths).

In the absence of treatments (control treatment), participants could not see the shortest route and,
as expected, we found that in this situation participants selected the shorter route no more frequently
than expected by chance: 29 out of 58 participants experiencing the control treatment chose the
shorter route (binomial test, p = 1; electronic supplementary material, figure S1). When the shorter
route was visible (treatment S), we expected that participants would be more likely to choose this
route. However, treatment S did not have a significant effect on P(shortest route) (p = 0.83; table 1
and electronic supplementary material, table S2). Under treatment W, the exit opposite to the shorter
route was wider than the other exit. We found that treatment W significantly reduced P(shortest route)
(p = 0.0003; table 1 and electronic supplementary material, table S2). Therefore, participants showed a
strong preference for a wider exit, but not for a shorter exit route in our experiment. It is possible that
the implementation of treatment S meant that participants did not grasp which exit route was shorter
and we will further discuss such aspects of our experiment below. In our experiment, treatment M
and gender had no statistically significant effect on P(shortest route) (p = 0.12 and p = 0.86, respectively;
table 1 and electronic supplementary material, table S2). Interestingly, our model fit showed that age had
a significant positive effect on P(shortest route), suggesting that older participants were more likely to
use the shorter route (p = 0.04; table 1 and electronic supplementary material, table S2). However, this
does not necessarily imply that age affected the way participants reacted to our treatments. To further
investigate this issue, we extended our statistical model by including interaction terms of age with one
treatment, separately for each primary treatment. We found that none of the interactions had a significant
effect on P(shortest route) (likelihood ratio tests; interaction terms of age with: M—χ2

(1) = 0.07, p = 0.79;

with S—χ2
(1) = 0.00003, p = 0.99; with W—χ2

(1) = 0.21, p = 0.65). We suggest that the distribution of ages
(strongly centred on the median of 23 years with only about 5% of participants older than 35) does not
allow us to establish subtle age-related effects conclusively.

Previous work suggests that only few participants change their mind on which exit to use during
the evacuation (i.e. P(change) � 0.5 [14,15]) and indeed we found that across all eight experimental
conditions, only 47 out of 464 participants changed their mind. We also expected that treatment M would
reduce P(change) [14] and found that this was the case (p = 0.048, table 1 and electronic supplementary
material, table S3). Treatments S and W introduced an asymmetry into the virtual environment that made
one exit route favourable or led to a trade-off between a shorter route and a wider exit. Participants may
not observe this asymmetry immediately or only notice a difference between exits as a result of simulated
pedestrians’ movement. Therefore, we expected that treatments S and W would increase P(change).
We found that this was the case for both treatments, but that neither of the effects was statistically
significant (electronic supplementary material, table S3). This corroborates our observation from above
that treatment S had a weak effect on participants’ decisions. We found that age and gender did not have
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Table 1. The effect of the primary treatments, participant age and gender on the proportion of participants choosing the shortest
route, P(shortest route), and on the proportion of participants who changed their mind on which exit to use during the evacuation,
P(change). We indicate the effect explanatory variables had on the summary statistics and show the p-values of single-parameter tests
on binomial generalized linear model fits to the data. Full details can be found in the text and in the electronic supplementary material,
tables S2 and S3. Significant values are shown in bold.

symbol short description effect on P(shortest route) effect on P(change)

S shortest route is visible decrease, p= 0.83 increase, p= 0.69
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W one exit is wider than the other decrease, p= 0.0003 increase, p= 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M motivation message displayed increase, p= 0.12 decrease, p= 0.048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gender gender of participants decrease, p= 0.86 increase, p= 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

age age of participants increase, p= 0.04 decrease, p= 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a significant effect on P(change) in our data (p = 0.31 and p = 0.21, respectively; table 1 and electronic
supplementary material, table S3). Table 1 and electronic supplementary material, figure S1, show a
summary of our findings.

This analysis confirmed that experimental treatments could affect participants’ route choices and
therefore provided some insights into individuals’ decision-making process: participants tended to
prefer wider exits, their decisions were somewhat affected by treatment M, but not by seeing a shorter
exit route. Overall, participants were likely to stick with their first choice of exit, and this tendency was
stronger under treatment M. However, this preliminary analysis does not allow us to distinguish whether
participants react to a difference in door widths or a difference in queue lengths or queue speeds under
treatment W. The model selection approach presented in the next section addresses this point.

4. Individuals use dynamic instead of static information
We propose novel explanatory models for human route choice to develop a more detailed understanding
of the information that participants used in their decisions. By employing state of the art Bayesian model
selection, we compared the extent to which the different models were supported by our data [24]. The key
difference in the models’ structure compared to the statistical models in our preliminary analysis was that
instead of predicting the final outcome of individuals’ exit choices, the models predicted the probability
for individuals to choose either exit over time, explicitly taking into account changes in the environment,
such as the movement of simulated pedestrians. The movement and mouse clicks of participants in
the virtual environment clearly indicate a decision to move towards one exit. As a starting point, we
only considered the situation when participants had already indicated an initial decision for one exit and
assumed that participants always displayed a preference for one of the two exits and were therefore never
undecided. Our model selection did not take differences in response time into account. For this analysis,
we used data from the virtual environment for each participant sampled at fixed intervals resulting in
20.45 data points per participant, on average (for details see the electronic supplementary material, text).

Our analysis was focused on investigating which out of two time-independent and two time-
dependent features of the virtual environment best explained participants’ exit choices. The two
time-independent features were the difference in door widths and the difference in exit route length
(when visible, under treatment S) between the two exit routes. The two time-dependent features related
to the simulated pedestrian queues in front of the exits and captured the difference in their length (Q)
and the difference in the rate of change in their length (‘flow’, F). In other words, the former assumed
individuals looked at the length of queues and the latter assumed individuals looked at how fast queues
were moving. It is evident that the difference in door widths, W, caused differences in the two time-
dependent features Q and F, but it is not clear what information participants were likely to use when
making decisions. To test this, we constructed one model for each possible combination of the four factors
(W, S, Q, F) and compared the support of the data for these different models, as described below. This led
to 16 separate models: one model including all factors, four models including three factors, six models
including two factors, four models including only one factor and one model without any of the factors
included as a baseline for comparison (see the electronic supplementary material, text and table S1 for
implementation details).
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We also included three additional factors that could influence participants’ exit choices in all models.

First, we included a constant, to test for a consistent bias in participants’ decisions. Second, for all time
points, we considered the effect of how close participants were to one exit compared to the other exit, to
test whether participants were less likely to change their decision the closer they were to an exit. Third,
we explored whether being ‘jammed’ in a queue affected participants decisions. We might expect that
participants were unlikely to change their decision when their path to the opposite exit was blocked by
simulated pedestrians. While we were interested in the effect of these additional factors on route choices,
we did not make them subject of our model selection and therefore included them in all models.

To determine which models were best supported by our data, D, we computed, for each model, X,
the marginal likelihood of the data, P(D|X), conditioned on the model for exit route choice (following,
e.g. [24]). Given a prior parameter space, the marginal likelihood indicates how likely a model X is and
it penalizes models with more parameters, as less probability can be assigned to any parameter value
a priori in the integration over the prior parameter space (for a more detailed discussion see electronic
supplementary material, text; [24] and references therein). Each model represents a hypothesis for the
decision-making process of participants and we can compare different models Xi and Xj by comparing
their marginal likelihood using the Bayes factor, BF = P(D|Xi)/P(D|Xj) [25]. Values of BF > 1 imply that
model Xi is more strongly supported by the data than model Xj. We used a commonly adopted scale of
interpretation for BF values: 2log(BF) = 0–6, weak to positive evidence; 2log(BF) = 6–10, strong evidence;
2log(BF) > 10, decisive evidence in support of model Xi [25]. We first considered data in the absence of
treatment M and focused our analysis on the effect of two time-independent and two time-dependent
aspects of the virtual environment on participants’ exit choices.

Figure 2a and electronic supplementary material, table S4, show the results of our model fitting. From
figure 2a, we can see that two models had a much lower marginal likelihood than all other models
(the next closest model had much stronger support, 2log(BF) = 31.6). Both of these models assume that
individuals do not take differences in exit width (W), queue length (Q) or queue speed (F) into account
when choosing an exit. The weak support of these models when compared with other models was
expected from our preliminary analysis above: we found a strong effect of treatment W and therefore
we would expect that at least one of the model components relating to W, Q or F needed to be included
in models. Figure 2a also shows that our analysis did not simply support the most complex model
(i.e. the model with the most parameters). For example, the model with all four components W, S, Q
and F included had a lower marginal likelihood than the model that included S, Q and F, but not W
(figure 2a; electronic supplementary material, table S4).

Our approach allowed us to establish which out of the three model components (and associated
hypotheses for human behaviour) W, Q and F is most supported by our data. From left to right in
figure 2a, we first include both Q and F components, second we remove F but keep Q, third we remove
Q but keep F and fourth we remove the model components relating to both Q and F. We find a global
trend of a decrease in marginal likelihood following this procedure. If we compare the model with the
highest marginal likelihood in one ‘block of models’ (within ‘blocks’ we additionally include or exclude
components W and S; model blocks are indicated with grey/white stripes in figure 2) to the model with
the lowest marginal likelihood in the block immediately to the left, we find strong evidence in support
of model blocks to the left (all 2log(BF) > 7; e.g. compare model ‘Q, F, W, noS’ (first block) to model ‘Q,
noF, W, S’ (second block): 2log(BF) = 7.2, from electronic supplementary material, table S4). Therefore,
regardless of whether components W and S are included in our models, we find that there is strong
support for including both Q and F in our models. In other words, our analysis suggests that participants
were more likely to have based their exit choices on differences in queue lengths and queue speeds at the
two exits than on differences in exit widths. As expected from our preliminary analysis in the previous
section, including the model component S to take differences in path length (if visible) into account did
not have a pronounced effect on the marginal likelihood of models.

By looking at values of the most likely parameters for our models, we can understand how the
different model components affected participants’ exit choices. We found that the parameter which
indicates the strength of the effect of the model component S (shorter route) was typically positive
(parameter p2, electronic supplementary material, table S4). This suggests that when the shorter route
was visible, participants were more likely to choose this route (compare to implementation of models
in the electronic supplementary material, table S1 and equation S1, text). Likewise, we found parameter
values suggesting that participants were more likely to choose the wider exit, the exit with the shorter
queue and the exit with the faster moving queue (parameters p3, p4 and p6, respectively). Only in models
that included both Q and F did we find parameter values suggesting that participants chose narrower
exits. However, this last, somewhat unexpected parameter value has to be viewed in the context that
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Figure 2. Model selection results. We show themarginal likelihood for eachmodel averaged over five numerical model fitting replicates
for the data in the absence (a) and presence (b) of the M treatment. Error bars show 1 s.d. and are often smaller than the symbol
size. Grey bars serve to separate ‘blocks’ of models (see main text). We construct models by accounting for different aspects of the
virtual environment that are captured by two time-independent model components (W, exit width; S, exit route length) and two time-
dependent model components (Q, queue length; F, queue speed). For example, the first model on the left-hand side in (a) (Q, F, W, S),
includes all four model components, and the model to its right (Q, F, noW, S) includes all model components, apart fromW.

components Q and F capture participants’ decisions better in these models. The value of the constant
effect indicates whether there was a bias for participants to choose one of the exits. In a perfectly
symmetric environment, we would expect that participants do not show a preference for either exit,
suggesting values of the parameter for the constant effect close to zero. In practice, we find relatively low
values and deviations from zero have to be viewed in the context of the model structure and the values
of other parameters (parameter p1, electronic supplementary material, table S4).

Throughout, parameter values showed that the closer participants got to one exit, the more likely
they were to stick with their decision for this exit (parameter p8 in the electronic supplementary material,
table S4). It is possible that participants only display this behaviour once they have made an initial
investment of a certain size by walking towards one exit. However, we found no relevant threshold for
differences in distances to the exits on average (parameter p9 in the electronic supplementary material,
table S4). Across all data used in this analysis, approximately 15% of data points captured a situation
when participants were blocked inside a queue in front of one exit. We found that at most four simulated
pedestrians at a time blocked the path of a participant. Our most likely parameter estimates show that
being blocked in a queue essentially determined participants’ decision to stay within the queue (high
absolute values of p10 in the electronic supplementary material, table S4).

5. Movement decisions are less flexible under pressure
We fit our models separately to data obtained in the presence of treatment M to develop an
understanding of this treatment’s effect on participants’ route choices. Figure 2b and the electronic
supplementary material, table S5, show the results of our model fitting for this data. As in figure 2a,
we found a global trend of decreasing marginal likelihood from left to right in figure 2b. We also found
that the same two models as in figure 2a had a significantly lower marginal likelihood than the other
models (the next closest model had much stronger support, 2log(BF) = 10.6). This shows that as before,
under treatment M, participants also used information contained in at least one of the model components
W, Q and F to choose an exit.

However, in figure 2b, it is more difficult to decide reliably which out of these three model components
best explained decisions of participants, as the differences in marginal likelihood between models were
generally much smaller than in figure 2a. Starting from the left-hand side and comparing ‘blocks’ of
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models as in the previous section shows that there is an overlap between the first and second model
blocks and that for the other two model block comparisons, we only find weak positive evidence in
support of model blocks to the left (both 2log(BF) < 1; e.g. compare model ‘Q, noF, noW, S’ (second block)
to model ‘noQ, F, noW, noS’ (third block): 2log(BF) = 0.6, from the electronic supplementary material,
table S5). It is not the case that a difference in the amount of data used for figure 2a,b could explain
the discrepancy in differences between marginal likelihoods: we used 4746 and 4743 data points for our
analysis in the absence and the presence of treatment M, respectively. One possible explanation for the
difficulty to distinguish between models could be that under treatment M, participants were less likely
to change their mind on which exit to use during the evacuation. Model components Q and F capture
changes in the virtual environment over time that appear to inform participants’ decision (figure 2a). But
Q and F also approximate the static difference between exits that is captured in component W. Therefore,
if participants respond less to changes in the environment, as suggested by the decrease in P(change)
under treatment M, it could be more difficult to distinguish between components Q, F and W. Despite
this, the global trend in marginal likelihoods in figure 2b provides weak positive evidence in support of
models that include both components Q and F.

The values of the most likely parameters for our models were similar to the most likely parameter
values for the data collected in the absence of treatment M (electronic supplementary material, table S4).
Only for the constant component there was a notable difference between the two datasets (parameter p1).
For all models, p1 took negative values suggesting a slight bias of participants to choose the top exit under
treatment M in our experiment (electronic supplementary material, table S5).

6. Discussion
We have conducted experiments with over 450 human participants and used a Bayesian model selection
approach to explore dynamic route choice mechanisms in interactive simulated crowd evacuations.
Our findings suggest that participants tended to base their exit choices on time-dependent information
(i.e. differences in queue lengths and queue speeds at exits) rather than on time-independent information
(i.e. differences in exit widths or exit route length). When we put participants under additional pressure
(treatment M), we still found weak support for similar exit choice mechanisms. But overall participants
were less able or willing to adjust their original exit choice in the course of the evacuation under this
treatment, confirming earlier findings [14].

Computer-based experiments are no replacement for evacuation drills or observational data from real
emergencies. We make no claims that our findings on human route choice in virtual environments also
extend to human route choice in real environments. Therefore, our experiment should not be interpreted
as a direct test of pedestrian evacuation dynamics in real environments. Instead, our work contributes
novel insights into human decision-making via an abstracted route choice task in a virtual environment.
Below, we explain in more detail the relevance and limitations of this type of experimental approach,
and how the results of such studies are best interpreted.

When considering the information individuals base their route decisions on, it is important to discuss
the fact that the top-down view participants had in our virtual environment is likely to differ from
how pedestrians visually perceive their environment. The technology for conducting experiments such
as ours in more immersive virtual environments already exists (e.g. three-dimensional environment,
first person viewpoint [12,21]). However, we argue that the tactical-level decisions we investigate are
based on information that humans could detect even if they do not have a top-down view of their
environment [14,15]. For example, pedestrians could estimate differences in queue speeds based on
heuristics, such as the speed at which a selected person in a queue moves, as suggested previously
[9]. In addition, the top-down view and simple controls for interacting with the virtual environment
in our experiments served to mitigate differences in computer literacy between participants that can
strongly affect results in more immersive virtual environments with more complex controls [21]. In
general, virtual environments such as ours facilitate high-throughput behavioural analysis that could
be enhanced further by conducting experiments online or on mobile devices [26]. As mentioned in the
Introduction, we suggest that considering the expense and potential ethical issues of real evacuation
drills with volunteers, experiments such as ours could aid the selection of topics for further study in
more life-like experiments from a large set of initial hypotheses.

As indicated earlier, it is possible that the implementation of our experiment could explain the fact
that participants did not tend to choose the shorter path when it was made visible (treatment S). It is
conceivable that the difference in length between routes was insufficient to produce a clear response in
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participants or that participants did not realize at the outset of the experiment that the final target of their
evacuation was at location T2 (figure 1a) and could therefore not determine the shortest exit route. The
values of the most likely parameters in our model selection analysis suggest that participants only had a
weak propensity to choose the shorter path when it was visible. It is entirely plausible and important in
the context of crowd evacuations to hypothesize that the absolute value of this parameter and therefore
its influence on individuals’ route decisions is likely to depend on the extent to which individuals are
familiar with their environment and the shortest exit routes. For example, a more obvious highlighting
of the final exit (e.g. using a sign), or even of the shorter route in the virtual environment could lead to a
stronger response of participants to this experimental treatment. A detailed investigation of the extent to
which this suggestion holds is an important topic for future research.

Introducing an asymmetry into the virtual environment by making one of the exits wider
(treatment W) strongly affected participants’ exit choices. Our high-level analysis suggested that
participants were significantly more likely to choose the wider exit, but it was only through model
selection that we could establish that participants followed the dynamic information provided by
differences in queue lengths or queue speeds at the exits rather than the static information provided
by differences in exit widths or route length.

Putting additional pressure on participants (treatment M) affected individuals’ decision-making in
line with previous findings [14]. These results therefore provide considerable evidence to suggest that
under conditions similar to treatment M, individuals’ decision-making becomes less dynamic and
individuals are highly likely to stick with their original decision. This is especially significant in the light
of the comparatively small emotional effect treatment M (a motivational message, no reward) is likely to
have on individuals. In real emergencies, individuals experience considerably higher levels of stress and
anxiety [4,6] and we suggest that it is therefore highly important to continue research into the effect of
stress on tactical-level decision-making in real crowd evacuations.

One fundamental difference between our experiments and real crowd evacuations lies in the
movement dynamics at the start of the evacuation. Our simulated pedestrians react instantaneously at
the start of the evacuation and quickly establish queues at both exits, leaving participants to choose
between two exits with queues already in place. This could be compared to the situation when a
pedestrian enters a room and is faced with a decision between two already used exits. In real crowd
evacuations from a single room, the initial dynamics of queue formation are likely to be important. For
example, people may join the queue that is growing faster (following others). Our experiment does not
allow us to study this phenomenon here, but there is a considerable body of work on decision-making
in animal groups that could provide a useful starting point [27–29]. For example, following others [27]
and isolation-aversity [28] could be important factors in determining individuals’ route choices. In this
context, it is also interesting to compare our findings on the relative influence of the length and the
movement of queues at exits on individuals’ decisions to a recent model selection study which suggests
individuals are more likely to respond to recent movements of others rather than responding to the
size of aggregations [29]. The model selection we use here could also be used to study queue formation
events and more generally it could be applied to different types of data, such as individual decisions
during evacuation trials or even in real emergencies. This would also help to address the question of the
extent to which our findings can be extrapolated to real crowd evacuations.

While we cannot guarantee that our findings accurately reflect the route choices of pedestrians in real
environments, they provide an empirically founded starting point for algorithms modelling dynamic
route choice in humans that is different from ad-hoc implementations of individual-level decisions
(e.g. [9]). Such algorithms are important for designing simulation models for crowd movement in egress
that are already routinely used in building and event planning [6]. However, it is important to note
that any simulation model used in this way requires validation against empirical data on real crowd
movement [4,6].

One connection that we have not made explicitly here, but that could be of interest for future work, is
to express dynamic route choice of pedestrians in the framework of mathematical queuing theory [30,31].
In this framework, bottlenecks, such as exits, would represent servers with queues forming in front of
them. The key differences to classical mathematical queueing theory in this scenario would be that the
waiting times in queues depend on the level of demand (flow at bottlenecks depends on pedestrian
density [32]) and that the arrival time for queues could also depend on the queue at the server relative to
the queues at other available servers (e.g. as indicated by our work).

In conclusion, we provide evidence that participants in our computer-based evacuations used
dynamic information to make exit route choices. This suggests that in principle participants are likely
to react to changing circumstances, rather than only following static information provided by features
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of the built environment. We also show that this dynamic flexibility in decision-making is reduced
when participants are put under additional pressure, providing a potent reminder for the importance
of considering how the motivational and emotional state of individuals may affect the dynamics of
crowd evacuations.
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