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Emotion recognition through computational modeling and analysis of physiological signals has been widely
investigated in the last decade. Most of the proposed emotion recognition systems require relatively
long-time series of multivariate records and do not provide accurate real-time characterizations using
short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework
able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively.
The study includes thirty subjects presented with a set of standardized images gathered from the
international affective picture system, alternating levels of arousal and valence. Due to the intrinsic
nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for
instantaneous identification considering autoregressive nonlinearities up to the third-order according to
the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the
instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and
considered as input features to a support vector machine for classification. Results, estimating emotions
each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex
model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.

T
he detection and recognition of emotional information is an important topic in the field of affective
computing, i.e. the study of human affects by technological systems and devices1. Changes in emotional
states often reflect facial, vocal, and gestural modifications in order to communicate, sometimes sub-

unconsciously, personal feelings to other people. Such changes can be generalized across cultures, e.g. nonverbal
emotional, or can be culture-specific2. Since mood alteration strongly affects the normal emotional process,
emotion recognition is also an ambitious objective in the field of mood disorder psychopathology. In the last
decade, several efforts have tried to obtain a reliable methodology to automatically identify the emotional/mood
state of a subject, starting from the analysis of facial expressions, behavioral correlates, and physiological signals.
Despite such efforts, current practices still use simple mood questionnaires or interviews for emotional assess-
ment. In mental care, for instance, the diagnosis of pathological emotional fluctuations is mainly made through
the physician’s experience. Several epidemiological studies report that more than two million Americans have
been diagnosed with bipolar disorder3, and about 82.7 million of the adult European population from 18 to 65
years of age, have been affected by at least one mental disorder4. Several computational methods for emotion
recognition based on variables associated with the Central Nervous System (CNS), for example the
Electroencephalogram (EEG), have been recently proposed5–12. These methods are justified by the fact that
human emotions originate in the cerebral cortex involving several areas for their regulation and feeling. The
prefrontal cortex and amygdala, in fact, represent the essence of two specific pathways: affective elicitations longer
than 6 seconds allow the prefrontal cortex to encode the stimulus information and transmit it to other areas of the
Central Autonomic Network (CAN) to the brainstem, thus producing a context appropriate response13; briefly
presented stimuli access the fast route of emotion recognition via the amygdala. Of note, it has been found that the
visual cortex is involved in emotional reactions to different classes of stimuli14. Dysfunctions on these CNS
recruitment circuits lead to pathological effects15 such as anhedonia, i.e. the loss of pleasure or interest in
previously rewarding stimuli, which is a core feature of major depression and other serious mood disorders.
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Given the CAN involvement in emotional responses, an important
direction for affective computing studies is related to changes of the
Autonomic Nervous System (ANS) activity as elicited by specific
emotional states. Monitoring physiological variables linked to ANS
activity, in fact, can be easily performed through wearable systems,
e.g. sensorized t-shirts16,17 or gloves18,46. Its dynamics is thought to
be less sensitive to artifacting events than in the EEG case.
Moreover, the human vagus nerve is anatomically linked to the
cranial nerves that regulate social engagement via facial expression
and vocalization. Engineering approaches to assess ANS patterns
related to emotions constitute a relevant part of the state-of-the-art
methods used in affective computing. For example, a recent review
written by Calvo et al.19 reports on emotion theories as well as on
affect detection systems using physiological and speech signals
(also reviewed in20), face expression and movement analysis. Long
multivariate recordings are currently needed to accurately character-
ize the emotional state of a subject. Such a constraint surely reduces
the potential wide spectrum of real applications due to computa-
tional cost and number of sensors. More recently, ECG morpho-
logical analysis by Hilbert-Huang transform21, mutual information
analysis of respiratory signals22, and a multiparametric approach
related to ANS activity23 have been proposed to assess human affect-
ive states.

Experimental evidence over the past two decades shows that Heart
Rate Variability (HRV) analysis, in both time and frequency domain,
can provide a unique, noninvasive assessment of autonomic func-
tion24,25,88. Nevertheless, HRV analysis by means of standard proce-
dures presents several limitations when high time and frequency
resolutions are needed, due mainly to associated inherent assump-
tions of stationarity required to define most of the relevant HRV time
and frequency domain indices24,25. More importantly, standard
methods are generally not suitable to provide accurate nonlinear
measures in the absence of information regarding phase space fitting.
It has been well-accepted by the scientific community that physio-
logical models should be nonlinear in order to thoroughly describe
the characteristics of such complex systems. Within the cardiovascu-
lar system, the complex and nonstationary dynamics of heartbeat
variations have been associated to nonlinear neural interactions
and integrations occurring at the neuron and receptor levels, so that
the sinoatrial node responds in a nonlinear way to the changing levels
of efferent autonomic inputs27. In fact, HRV nonlinear measures

have been demonstrated to be of prognostic value in aging and dis-
eases24–26,28–36,41. In several previous works37–43, we have demonstrated
how it is possible to estimate heartbeat dynamics in cardiovascular
recordings under nonstationary conditions by means of the analysis
of the probabilistic generative mechanism of the heartbeat.
Concerning emotion recognition, we recently demonstrated the
important role of nonlinear dynamics for a correct arousal and val-
ence recognition from ANS signals44–46,71 including a preliminary
feasibility study on the dataset considered here47.

In the light of all these issues, we here propose a new methodology
in the field of affective computing, able to recognize emotional
swings (positive or negative), as well as two levels of arousal and
valence (low-medium and medium-high), using only one biosignal,
the ECG, and able to instantaneously assess the subject’s state even in
short-time events (,10 seconds). Emotions associated with a short-
time stimulus are identified through a self-reported label as well as
four specific regions in the arousal-valence orthogonal dimension
(see Fig. 1). The proposed methodology is fully based on a persona-
lized probabilistic point process nonlinear model. In general, we
model the probability function of the next heartbeat given the past
Revents. The probability function is fully parametrized, considering
up to cubic autoregressive Wiener-Volterra relationship to model its
first order moment. All the considered features are estimated by the
linear, quadratic, and cubic coefficients of the linear and nonlinear
terms of such a relationship. As a consequence, our model provides
the unique opportunity to take into account all the possible linear
and nonlinear features, which can be estimated from the model
parameters. Importantly as the probability function is defined at each
moment in time, the parameter estimation is performed instanta-
neously, a feature not reliably accomplishable by using other more
standard linear and nonlinear indices such as pNN50%, triangular
index, RMSSD, Recurrence Quantification Analysis, etc.24,25,88. In
particular, the linear terms allow for the instantaneous spectral
estimation, the quadratic terms allow for the instantaneous bispectral
estimation, whereas the dominant Lyapunov exponent can be
defined by considering the cubic terms. Of note, the use of higher
order statistics (HOS) to estimate our features is encouraged by the
fact that quantification of HRV nonlinear dynamics play a crucial
role in emotion recognition systems44,48,71 extending the information
given by spectral analysis, and providing useful information on the
nonlinear frequency interactions.

Figure 1 | A graphical representation of the circumplex model of affect with the horizontal axis representing the valence or pleasant dimension and the
vertical axis representing the arousal or activation dimension49.
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Results
Experimental protocol. The recording paradigm related to this work
has been previously described in44,48. We adopted a common
dimensional model which uses multiple dimensions to categorize
emotions, the Circumplex Model of Affects (CMA)49. The CMA
used in our experiment takes into account two main dimensions
conceptualized by the terms of valence and arousal (see Fig. 1).
Valence represents how much an emotion is perceived as positive
or negative, whereas arousal indicates how strongly the emotion is
felt. Accordingly, we employed visual stimuli belonging to an
international standardized database having a specific emotional
rating expressed in terms of valence and arousal. Specifically, we
chose the International Affective Picture System (IAPS)50, which is
one of the most frequently cited tools in the area of affective
stimulation. The IAPS is a set of 944 images with emotional
ratings based on several studies previously conducted where
subjects were requested to rank these images using the self
assessment manikin (both valence and arousal scales range from 0
to 10). A general overview of the experimental protocol and analysis
is shown in Fig. 2. The passive affective elicitation performed through
the IAPS images stimulates several cortical areas also allowing the
prefrontal cortex modulation generating cognitive perceptions13. An
homogeneous population of 30 healthy subjects (aged from 21 to 24),
not suffering from both cardiovascular and evident mental
pathologies, was recruited to participate in the experiment. The
experimental protocol for this study was approved by the ethical
committee of the University of Pisa and an informed consent was
obtained from all participants involved in the experiment. All
participants were screened by Patient Health QuestionnaireTM

(PHQ) and only participants with a score lower than 5 were
included in the study51.

The affective elicitation was performed by projecting the IAPS
images to a PC monitor. The slideshow was comprised of 9 image
sessions, alternating neutral sessions and arousal sessions (see Fig. 3).
The neutral sessions consist of 6 images having valence range (min 5

5.52, max 5 7.08), and arousal range (min 5 2.42, max 5 3.22). The
arousal sessions are divided into Low-Medium (L-M) and Medium-
High (M-H) classes, according to the arousal score associated. Such
sessions include 20 images eliciting an increasing level of valence
(from unpleasant to pleasant). The L-M arousal sessions had a val-
ence range (min 5 1.95, max 5 8.03), and an arousal range (min 5

3.08, max 5 4.99). The M-H arousal sessions had a valence range
(min 5 1.49, max 5 7.77), and an arousal range (min 5 5.01, max 5

6.99). The overall protocol utilized 110 images. Each image was pre-
sented for 10 seconds for a total duration of the experiment of 18
minutes and 20 seconds.

During the visual elicitation, the electrocardiogram (ECG) was
acquired by using the ECG100C Electrocardiogram Amplifier from
BIOPAC inc., with a sampling rate of 250 Hz. A block diagram of the
proposed recognition system is illustrated in Fig. 4. In line with the
CMA model, the combination of two levels of arousal and valence
brings to the definition of four different emotional states. The stim-
uli, with high and low arousal and high and low valence, produce
changes in the ANS dynamics through both sympathetic and para-
sympathetic pathways that can be tracked by a multidimensional
representation estimated in continuous time by the proposed
point-process model. The obtained features are then processed for
classification by adopting a leave-one-out procedure.

Algorithms. The ECG signal was analyzed off-line to extract the RR
intervals24, then further processed to correct for erroneous and
ectopic beats by a previously developed algorithm52. The presence
of nonlinear behaviors in such heartbeat series was tested by using a
well-established time-domain test based on high-order statistics53.
The null hypothesis assumes that the time series are generated by a
linear system. We set the number of laps to M 5 8, and a total of 500

bootstrap replications for every test. Experimental results are shown
in Table 1. The nonlinearity test gave significant results (p , 0.05) on
27 out of 30 subjects. In light of this result, we based our methodology
on Nonlinear Autoregressive Integrative (NARI) models. Nonlinea-
rities are intended as quadratic and cubic functions of the past RR
intervals according to the Wiener-Volterra representation54,55. Major
improvements of our approach rely on the possibility of performing a
regression on the derivative RR series based on an Inverse Gaussian
(IG) probability structure37–39. The quadratic nonlinearities contri-
bute to the complete emotional assessment through features coming
from the instantaneous spectrum and bispectrum56,57. It is worth-
while noticing that our feature estimation is derived from an
equivalent nth-order inputoutput Wiener-Volterra model54,55, thus
allowing for the potential estimation of the nth-order polyspectra of
the physiological signal60 (see Materials and Methods section for
details). Moreover, by representing the RR series with cubic autore-
gressive functions, it is possible to perform a further instantaneous
nonlinear assessment of the complex cardiovascular dynamics and
estimate the dominant Lyapunov exponent at each moment in
time61. Indices from a representative subject are shown in Fig. 5.
Importantly, the NARI model as applied to the considered data
provides excellent results in terms of goodness-of-fit, and indepen-
dence test, with KS distances never above 0.056. A comparison
analysis was performed between the simple linear and NARI
models considering the Sum of the Squared Distances (SSD) of the
points outside the confidence interval of the autocorrelation plot (see
Table 1). We report that nonlinear point-process models resulted in
lower SSD on all the considered subjects. Further results reporting
the number of points outside the confidence interval of the
autocorrelation plot are shown in the Supporting Information.

To summarize, the necessary algorithmic steps for the assessment
of instantaneous ANS responses to short-time emotional stimuli are
as follows: a) extract an artifact-free RR interval series from the ECG;
b) use the autoregressive coefficients of the quadratic NARI expan-
sion to extract the input-output kernels; c) estimate the instant-
aneous spectral and bispectral features; d) use the autoregressive
coefficients of the cubic NARI expansion and fast orthogonal search
algorithm to estimate the instantaneous dominant Lyapunov expo-
nent. All the extracted instantaneous features (see Materials and
Methods) are used as input of the classification procedure described
below. Of note, since no other comparable statistical models have
been advocated for a similar application, goodness-of-fit and clas-
sification performance of the proposed nonlinear approach are com-
pared with its linear counterpart: the basic linear point-process
model described in37, is also used here for the first time for the
proposed classification analysis. Clearly, in order to perform a fair
comparison, the order of such a simple linear IG-based point-process
model was chosen considering an equal number of parameters that
need to be estimated for the nonlinear models.

Moreover, here we report on the usability of other simple point-
process models having the Poisson distribution as inter-beat pro-
bability. Such a model gave poor performances in terms of both
goodness-of-fit and resulting in sufficient reliability to solve the pro-
posed classification problems. All of the algorithms were implemen-
ted by using MatlabE R2013b endowed with self-made code and
three additional toolboxes for pattern recognition and signal proces-
sing, i.e. LIBSVM62, PRTool63 and time series analysis toolbox64.

Classification. To perform pattern recognition of the elicited
emotional states, a two-class problem was considered for the
arousal, valence and self-reported emotion: Low-Medium (L-M)
and Medium-High (M-H). The arousal classification was linked to
the capability of our methodology in distinguishing the L-M arousal
stimuli from the M-H ones, with the neutral sessions associated to
the L-M arousal class. The overall protocol utilized 110 images.
According to the scores associated to each image, for each subject,

www.nature.com/scientificreports
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the dataset was comprised of 64 examples for the L-M arousal class
and 40 examples for the M-H arousal class. Regarding valence, we
distinguished the L-M from the M-H valence regardless of the images
belonging to the neutral classes. This choice is justified by the fact
that the neutral images can be equally associated to the L-M or M-H
valence classes. According to the experimental protocol timeline, for

each subject, the dataset was comprised of 40 examples for the L-M
valence class and 40 examples for the M-H valence class. For the self-
reported emotions, we used labels given by the self-assessment
manikin (SAM) report. After the visual elicitation, in fact, each
subject was asked to fill out a SAM test associating either a positive
or a negative emotion to each of the seen images. During this phase,

Figure 2 | An overview of the experimental set-up and block scheme of the overall signal processing and classification chain. The central nervous system

is emotionally stimulated through images gathered from the International Affective Picture System. Such a standardized dataset associates multiple scores

to each picture quantifying the supposed elicited pleasantness (valence) and activation (arousal). Accordingly, the pictures are grouped into arousal and

valence classes, including the neutral ones. During the slideshow each image stands for 10 seconds, activating the prefrontal cortex and other cortical areas,

consequently producing the proper autonomic nervous system changes through both parasympathetic and sympathetic pathways. Starting from the ECG

recordings, the RR interval series are extracted by using automatic R-peak detection algorithms applied on artifact-free ECG. The absence of both

algorithmic errors (e.g., mis-detected peaks) or ectopic beats in such a signal is ensured by the application of effective artifact removal methods as well as

visual inspection. The proposed point-process model is fitted on the RR interval series, and several features are estimated in an instantaneous fashion.

Then, for each subject, a feature set is chosen and then split into training and test set for support vector machine-based classification. This image was

drawn by G. Valenza, who holds both copyright and responsibility.

www.nature.com/scientificreports
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the images were presented in a different randomized order with
respect to the previous sequence.

As a further challenge, a more difficult four-class problem was
solved by defining the recognition of four different emotional states
associated with specific regions of the arousal-valence plane.
Specifically, given a selective combination of the L-M and M-H levels
of the arousal and valence CMA dimensions, the following four
emotional states were distinguished: ‘‘sadness’’, as a simultaneous
effect of L-M valence and L-M arousal; ‘‘anger’’, as a simultaneous
effect of L-M valence and M-H arousal; ‘‘happiness’’, as a simultan-
eous effect of M-H valence and M-H arousal; ‘‘relaxation’’, as a
simultaneous effect of M-H valence and L-M arousal (see Fig. 1).

For each of the mentioned classification problems, a leave-one-out
procedure91 was performed on the N available features using a well-
known Support Vector Machine (SVM)66 as pattern recognition

algorithm. Specifically, we used a nu-SVM (nu 5 0.5) having a radial

basis kernel function K xi,xj

� �
~exp {c xi{xj

�� ��2
� �

with c 5 N21,

x[<N as the training vectors. Results gathered from SVM classifiers
are summarized in Tables 1 and 2 and reported as recognition accu-
racy, i.e. the percentage of correct classification among all classes for
each subject and for each of the emotion classification cases.

All the estimated HRV indices coming from the NARI models
were processed in order to define the whole feature set FNARI. Such
a whole feature set is comprised of five linear-derived and eleven
nonlinear-derived features. In this case, linear-derived means that
such features, namely the mean and standard deviation of the IG
distribution (corresponding to the instantaneous point process defi-
nitions of mean and standard deviation of the RR intervals37), the
power in the low frequency (LF) band, the power in the high fre-
quency (HF) band, and the LF/HF ratio, are estimated having only
knowledge of the linear coefficients of the models. Likewise, the non-
linear-derived features are estimated from the quadratic and cubic
terms of the NARI model. In particular, features coming from the
instantaneous bispectral analysis, namely the mean and the standard
deviation of the bispectral invariants, mean magnitude, phase
entropy, normalized bispectral entropy, normalized bispectral
squared entropy, sum of logarithmic bispectral amplitudes, and non-
linear sympatho-vagal interactions, are derived from the quadratic
formulation (see Supporting Information), whereas the dominant
Lyapunov exponents analysis was performed engaging cubic nonli-
nearities (see Materials and Methods).

In order to enhance the personalization of the system as well as
improve the recognition accuracy, given the complete set FNARI, we
further derived five subsets obtained by applying feature selection.
Specifically, we defined the subset F1,NARI having the linear-derived
features only, the subset F2,NARI having the linear-derived along with
the nonlinear-derived bispectral features, the subset F3,NARI having
the linear-derived features alongside the dominant Lyapunov expo-
nent, and the subset F4,NARI having the five most informative features
as quantified through the Fisher score68. Of note, the sets verify the
following relationships: F1,NARI , F2,NARI , FNARI; F1,NARI , F3,NARI

, FNARI; F4,NARI , FNARI; firstly, we illustrate in Table 1 the clas-
sification results by comparing the performances of the reference

Figure 3 | Sequence scheme over time of image presentation in terms of
arousal and valence levels. The y axis relates to the official IAPS score,

whereas the x axis relates to the time. The neutral sessions, which are

marked with blue lines, alternate with the arousal ones, which are marked

with red staircases. Along the time, the red line follows the four arousal

sessions having increasing intensity of activation. The dotted green line

indicates the valence levels distinguishing the low-medium (L-M) and the

medium-high (M-H) level within an arousing session. The neutral sessions

are characterized by lowest arousal (,3) and medium valence scores

(about 6).

Figure 4 | Logical scheme of the overall short-time emotion recognition concept. The autonomic nervous system acts on the cardiovascular system

modulating its electrical activity. This activity affects the heartbeat dynamics, which can be non-invasively revealed by the analysis and modeling of the RR

interval series. To perform this task, we propose to consider a point-process probability density function in order to characterize cardiovascular dynamics

at each moment in time. In particular, we use Wiener-Volterra nonlinear autoregressive integrative functions to estimate quantitative tools such as

spectrum and bispectrum from the linear and nonlinear terms, respectively. Given the instantaneous spectra and high-order spectra, several features are

combined to define the feature set, which is the input of the personalized pattern recognition procedure. Support vector machines are engaged to perform

this task by adopting a leave-one-out procedure.
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linear point-process model with the NARI model with feature set
giving the best recognition accuracy for each subject. The recognition
accuracy of the short-term positive-negative self-reported emotions
improves with the use of the nonlinear measures in 25 cases, with
.60% of successfully recognized samples for all of the subjects and a
maximum of 89.23% for subject 23. In 19 out of the 30 subjects the
accuracies are .70% with a total average accuracy of 71.43%
Concerning the L-M and M-H arousal classification, the recognition
accuracy of the short-term emotional data improves in 24 cases, with
.69.51% of successfully recognized samples for all of the subjects
and a maximum of 95.12% for subject 22. In 29 out of the 30 subjects
the accuracies are .70%, 23 of which are above 80%. The total
average accuracy is 83.55%. Concerning the L-M and M-H valence
classification, the recognition accuracy of the short-term emotional
data is improved in 23 cases, with .65.38% of successfully recog-
nized samples for all of the subjects and a maximum of 93.83% for
subject 23. In 27 out of the 30 subjects the accuracy is .70%, 13 of
which are above 80%. The total average accuracy is 79.15%.

Moreover, we show in Table 2 all the results obtained using the
complete feature set FNARI. Although such a set might be not opti-
mized, this choice allows for practical affective computing applica-
tions, possibly in real-time, retaining all of the information from both
linear and nonlinear characteristics of the heartbeat complex
dynamics. Alongside the separate arousal, valence, and self-reported
emotions, we also show the accuracy in recognizing the four emo-
tional states defined in the arousal-valence plane. In this case, the
recognition accuracy is .67.24% of successfully recognized samples
for all subjects, with best performance for subject 23 (94.83%). In 27

out of the 30 subjects the accuracy is .70%, 14 of which are above
80%. The total average accuracy is 79.29%.

As a graphical representation of the results, Fig. 6 shows the com-
plementary specificity-sensitivity plots for the three emotion clas-
sification cases. The complementary specificity is defined as
(1-specificity), corresponding to the false positive rate. The area of
the maximum rectangle that can be drawn within the lower-right
unit plane not including any of the points (each representing the
result from one subject) can be defined as the ‘‘maximum area under
the points’’ (MAUP): the higher the MAUP, the greater the perform-
ance. The comparative evaluation of the maximum area under the
points reveals that the point-process nonlinear (NARI) features give
the best results on all the three emotion classification cases.

Other classification algorithms. The performances given by the
proposed point process NARI model were also tested using the
following six classification algorithms67: Linear Discriminant
Classifier (LDC), Quadratic Discriminant Classifier (QDC), K-
Nearest Neighborhood (KNN), MultiLayer Perceptron (MLP),
Probabilistic Neural Network (PNN), Vector Distance Classifier
(VDC). LDC and QDC are simple discriminant classifiers, i.e.,
there is no linear or nonlinear mapping of the feature set.
Specifically, LDC finds the linear function that better discerns the
feature space, whereas QDC finds the quadratic, thus nonlinear, one.
MLP and PNN are common neural network-based algorithms
performing a nonlinear mapping of the feature space and are able
to find nonlinear functions discriminating the classes. KNN is a
clustering algorithm through which the test set is associated to the

Table 1 | Experimental results on the short-time emotional response using point-process models. Columns refer to: subject identifier, non-
linearity test, Sum of the Squared Distances (SSD) of the points outside the confidence interval of the autocorrelation plot, and accuracy (in
percentage) of SVM classification considering the arousal, valence, and self-reported emotion classification cases. For each classification,
linear stands for accuracies given by the simple linear point-process model, whereas nonlinear stands for accuracies given by nonlinear
models. The ticks indicate improvements given by the use of point-process nonlinear models versus their linear counterparts

Autocorrelation (SSD) Arousal Valence Emotion

Subjects p-value* Linear R Nonlinear Linear R Nonlinear Linear R Nonlinear Linear R Nonlinear

1 ,1026 0.3103 R 0.0718! 81.48 R 84.15! 70.00 R 76.54! 68.12 R 70.00!
2 ,1026 0.2166 R 0.0722! 72.29 R 80.76! 70.73 R 83.33! 66.29 R 75.29!
3 ,1026 0.2576 R 0.0001! 79.27 R 89.02! 65.43 R 82.72! 67.47 R 72.29!
4 ,0.01 0.1842 R 0.0656! 71.95 R 85.36! 69.14 R 77.78! 56.82 R 70.45!
5 ,0.05 0.1327 R 0.0437! 85.36 R 84.15 61.73 R 69.13! 78.57 R 62.86
6 ,0.005 0.1031 R 0.0124! 75.61 R 86.42! 92.59 R 85.00 70.73 R 66.67
7 ,0.05 0.0925 R 0.0229! 90.12 R 94.44! 80.00 R 84.42! 56.25 R 72.22!
8 ,0.002 0.2511 R 0.0280! 85.18 R 87.65! 76.25 R 76.25 66.10 R 69.49!
9 ,0.05 0.1661 R 0.0701! 62.20 R 70.37! 58.02 R 73.75! 58.33 R 60.00!
10 ,1026 0.1220 R 0.0338! 79.27 R 85.00! 60.49 R 65.38! 55.56 R 65.38!
11 ,0.03 0.1028 R 0.0457! 76.82 R 76.54 72.84 R 75.00! 73.24 R 75.71!
12 ,0.02 0.2058 R 0.0143! 84.15 R 86.42! 79.01 R 80.00! 77.38 R 74.70
13 ,0.004 0.1205 R 0.0501! 81.70 R 78.05 59.26 R 75.31! 62.03 R 73.42!
14 ,0.002 0.2529 R 0.0160! 90.24 R 82.93 79.01 R 86.42! 74.67 R 84.00!
15 ,0.004 0.1242 R 0.0219! 86.58 R 87.80! 79.01 R 75.31 68.12 R 72.46!
16 ,0.008 0.1998 R 0.0660! 69.51 R 69.51 77.77 R 75.31 67.61 R 63.38
17 .0.05 0.2597 R 0.0001! 86.58 R 92.21! 82.72 R 88.31! 82.14 R 82.27!
18 ,0.03 0.2492 R 0.0549! 82.93 R 86.59! 86.42 R 87.65! 77.91 R 79.07!
19 ,1026 0.1188 R 0.0243! 75.60 R 74.39 80.24 R 79.01 64.47 R 65.79!
20 ,0.002 0.1529 R 0.0436! 71.95 R 82.93! 64.20 R 77.78! 60.23 R 70.45!
21 ,0.01 0.1513 R 0.0501! 71.95 R 86.59! 69.14 R 81.48! 70.83 R 68.06
22 .0.05 0.2095 R 0.0126! 93.90 R 95.12! 79.01 R 76.54 62.16 R 70.27!
23 ,0.05 0.3251 R 0.0718! 85.37 R 87.80! 90.12 R 93.83! 86.15 R 89.23!
24 ,0.01 0.0904 R 0.0165! 69.51 R 84.15! 74.07 R 80.25! 69.32 R 75.00!
25 ,0.05 0.0933 R 0.0509! 75.31 R 80.25! 66.25 R 82.5! 60.00 R 62.67!
26 ,1026 0.1068 R 0.0185! 64.55 R 78.48! 62.82 R 69.23! 56.00 R 62.67!
27 .0.05 0.0675 R 0.0408! 79.27 R 85.37! 77.78 R 77.78 72.41 R 74.71!
28 ,1026 0.0903 R 0.0470! 81.70 R 82.71! 69.14 R 80.00! 62.86 R 72.46!
29 ,1026 0.2272 R 0.0172! 80.25 R 85.19! 75.00 R 78.75! 62.50 R 68.75!
30 ,1026 0.1779 R 0.0136! 72.75 R 76.25! 62.5 R 79.75! 61.63 R 73.26!
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most frequent class of the K nearest training examples. VDC is a
KNN with K 5 1.

Results showed that on the arousal classification, considering fea-
tures coming from the point process NARI model the recognition
accuracy of the short-term emotional data is improved as follows: 21
cases using LDC, 17 cases using QDC, 23 cases using KNN, MLP,
PNN, and VDC, among the total 30 cases. On the valence classifica-
tion, considering features coming from the point process NARI
model the recognition accuracy of the short-term emotional data is
improved as follows: 24 cases using LDC, 18 cases using QDC and
KNN, 27 cases using MLP, 22 cases using PNN, and 23 cases using
VDC, among the total 30 cases. On the self-reported emotion clas-
sification, considering features coming from the point process NARI
model the recognition accuracy of the short-term emotional data is
improved as follows: 21 cases using LDC, 18 cases using QDC and
PNN, 22 cases using KNN, 24 cases using MLP, and 19 cases using
VDC, among the total 30 cases.

We also report that SVM algorithms always have the best recog-
nition accuracy.

Discussion
We have presented a novel methodology able to assess in an instant-
aneous, personalized, and automatic fashion whether the subject is
experiencing a positive or a negative emotion. Assessments are per-
formed considering only the cardiovascular dynamics through the
RR interval series on short-time emotional stimuli (,10 seconds). To

achieve such results, we defined an ad-hoc mathematical framework
based on point-process theory. The point-process framework is able
to parametrize heartbeat dynamics continuously without using any
interpolation methods. Therefore, instantaneous measures of HR
and HRV37,38 for robust short-time emotion recognition are made
possible by the definition of a physiologically-plausible probabilistic
model. An innovative aspect of the methodological approach is
also the use of the derivative RR series69,70 to fit the model. This choice
allowed us to remarkably improve the tracking of the affec-
tive-related, non-stationary heartbeat dynamics. The novel fully-
autoregressive structure of our model accounts for the pioneering
short-time affective characterization having knowledge related to
both linear and nonlinear heartbeat dynamics. In fact, the quadratic
and cubic autoregressive nonlinearities instantaneously associated to
estimate the most likely heartbeat accounts for the estimation of high
order statistics, such as the instantaneous bispectrum and trispec-
tum, as well as significant complexity measures such as the instant-
aneous Lyapunov exponents. These novel instantaneous features,
together with an effective protocol for emotion elicitation and the
support of machine learning algorithms, allowed to successfully solve
a comprehensive four-class problem recognizing affective states such
as sadness, anger, happiness, and relaxation.

Unlike other paradigms developed in the literature for estimating
human emotional states19, our approach is purely parametric and the
analytically-derived indices can be evaluated in a dynamic and
instantaneous fashion. The proposed parametric model requires a

Figure 5 | Instantaneous tracking of the HRV indices computed from a representative subject using the proposed NARI model during the passive
emotional elicitation (two neutral sessions alternated to a L-M and a M-H arousal session). In the first panel, the estimated mRR(t, Ht , j(t)) is

superimposed on the recorded R-R series. Below, the instantaneous heartbeat power spectra evaluated in Low frequency (LF) and in High frequency (HF),

the sympatho-vagal balance (LF/HF), several bispectral statistics such as the nonlinear sympathovagal interactions LL, LH, and HH, and the

instantaneous dominant Lyapunov exponent (IDLE) are reported. In the three bottom panels, the tracking of emotion classification is shown in terms of

arousal (A), valence (V), and their combination according to the circumplex model of affect (see Fig. 1). In such panels, the correct image classification is

marked in red, whereas the misclassification is marked in blue. The neutral sessions are associated to the L-M arousal class exclusively without related

valence class. This choice is justified as neutral stimuli could be arbitrarily associated to the L-M or M-H valence.
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preliminary calibration phase before it can be effectively used on a
new subject. As the methodology is personalized, in fact, the model
and classifier parameters have to be estimated using HRV data gath-
ered during standardized affective elicitations whose arousal and

valence scores lie on the whole CMA space. Moreover, a fine tuning
of some of the model variables, e.g. the sliding time window W and
the model linear and nonlinear orders, could be necessary to max-
imize the performance. Of note, considering short-time RR interval

Table 2 | Experimental results on the short-time emotional response using NARI point-process models implementing quadratic and cubic
autoregressive functions. For each subject, the accuracy of SVM classification is expressed in percentage considering the arousal, valence,
and self-reported emotion classification cases. The accuracy on the 4-class emotion classification case is shown as ‘‘Emotion on Arousal-
Valence Plane’’

Subjects Emotion on Arousal-Valence Plane Arousal Valence Emotion Self-Report

1 75.86 84.15 75.31 70.00
2 78.19 80.77 83.33 68.24
3 77.57 87.80 70.37 63.86
4 79.31 85.37 77.78 67.05
5 67.24 84.15 66.67 61.43
6 89.47 86.42 83.75 66.67
7 81.48 91.67 76.62 72.23
8 73.68 87.65 76.25 64.41
9 84.21 69.14 73.75 55.00
10 67.86 82.50 58.97 60.26
11 75.44 74.07 75.00 70.00
12 87.72 83.95 80.00 71.08
13 67.24 76.83 75.31 70.89
14 82.76 82.93 81.48 82.67
15 81.03 81.71 72.84 69.57
16 75.86 69.51 75.31 63.38
17 85.19 90.91 81.82 82.28
18 84.48 76.83 87.65 73.26
19 77.59 74.39 79.01 63.16
20 82.76 82.93 76.54 67.05
21 75.86 85.37 81.48 68.06
22 77.59 89.02 74.07 70.27
23 94.83 80.49 90.12 86.15
24 87.93 84.15 80.25 75.00
25 84.21 75.31 68.75 53.33
26 76.36 75.95 67.94 54.67
27 70.69 80.49 77.78 60.92
28 71.93 77.78 76.25 71.01
29 84.21 83.95 78.75 66.25
30 80.36 68.75 79.75 65.12

Figure 6 | Complementary Specificity-Sensitivity Plots (CSSPs) for the three emotion classification cases. In all panels, each blue circle represents a

subject of the studied population, the x-axis represents the quantity 1-specificity (i.e. false positive rate), and the y-axis represents the sensitivity (i.e. true

positive rate). The gray rectangles define the maximum area under the points. Numbers inside the rectangles indicate the maximum area under the points

expressed as percentage of the unit panel area. On top, from left to right, the three panels represent the CSSPs obtained using features from the point

process NARI model and considering the arousal, valence, and self-reported emotion classification cases. Likewise, on the bottom, the three panels

represent the CSSPs obtained using features from a point process linear model.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4998 | DOI: 10.1038/srep04998 8



series gathered from 10 seconds of acquisition, currently used stand-
ard signal processing methods would be unable to give reliable and
effective results because of resolution or estimation problems. In
particular, parametric spectral estimation such as traditional auto-
regressive models would require interpolation techniques and would
not give a goodness-of-fit measure, thus making the parameter
estimation simply unreliable. In addition, non-parametric methods
such as periodogram or Welch spectral estimation require stationar-
ity and, considering the 10 second time window of interest, would
give a frequency resolution of only 1021 Hz which is not sufficient to
reliably assess spectral powers up to the low frequency spectral com-
ponents (0.04–0.15 Hz). Fast emotional responses, such as the ones
considered in several recent studies13,14,97,98, call for estimation algo-
rithms that can perform a reliable emotional assessment at time
resolution as low as 2 seconds. In such cases, our methodology would
be able to accurately characterize the emotional response by provid-
ing critical high resolution renditions. Accordingly, the methodology
proposed here represents a pioneering approach in the current lit-
erature and can open new avenues in the field of affective computing,
clinical psychology, and neuro-economics.

Taking advantage of the standard subdivision in LF and HF fre-
quency ranges in the bispectral domain (see Fig. 1 in the supporting
information), our method introduces novel nonlinear indices of
heartbeat dynamics directly related to higher order interactions
between faster (vagal) and slower (sympatho-vagal) heartbeat varia-
tions, thus offering a new perspective into more complex autonomic
dynamics. It has been demonstrated, in fact, that the cardiac and
respiratory system exhibit complex dynamics that are further influ-
enced by intrinsic feedback mechanisms controlling their inter-
action71. Cardio-respiratory phase synchronization represents an
important phenomenon that responds to changes in physiological
states and conditions, e.g. arousal visual elicitation48, indicating that
it is strongly influenced by the sympatho-vagal balance72. We pointed
out that lower performance was reported in seven subjects when
using nonlinear models. This outcome is neither correlated with
goodness-of-fit measures nor with the nonlinearity test results on
the RR interval series. Possible explanations may span from con-
founding factors due to the fast protocol pace, to intrinsic individual
characteristics of the emotional reaction to stimuli, or simple non-
reported distraction from the task by the subject. Further investi-
gations on these factors will be the subject of future studies. Since the
proposed point-process framework allows the inclusion of physio-
logical covariates such as respiration or blood pressure measures,
future work will focus on further multivariate estimates of instant-
aneous indices such as features from the dynamic cross-spectrum,
cross-bispectrum73, respiratory sinus arrhythmia39, and baroreflex
sensitivity73 in order to better characterize and understand the
human emotional states in short-time events. We will also direct
our efforts in applying the algorithms to a wide range of experimental
protocols in order to validate our tools for underlying patho-physi-
ology evaluation, as well as explore new applications on emotion
recognition that consider a wider spectrum of emotional states.

The primary impacts are in the affective computing field and in all
the applications using emotion recognition systems. Our methodo-
logy, in fact, is able to assess the personal cognitive association related
to a positive and a negative emotion with very satisfactory results.
The emotional model used in this work, i.e., the CMA, accounts for
the emotional representation by means of the selective estimation of
arousal and valence. Although the recognition accuracy proposed in
this work relates to only two levels of arousal, valence and self-
reported emotion, oversimplifying the complete characterization of
the affective state of a subject, the emotional assessment in short-time
events using cardiovascular information only is a very challenging
task never solved before. Using only heartbeat dynamics, we effec-
tively distinguished between the two basic levels of both arousal and
valence, thus allowing for the assessment of four basic emotions. An

important advantage is that the proposed framework is fully perso-
nalized, i.e. it does not require data from a representative population
of subjects. These achievements could have highly relevant impacts
also in mood disorder psychopathology diagnosis and treatment,
since the mood disorder produces an altered emotional response.
Hence, monitoring fast emotional response in terms of stimulation
time could make a continuous evaluation of disorder progression
possible. Presently, emotional state is determined in a clinical setting
using questionnaires with limited accuracy and quantitative power. It
would be desirable to develop an automated system to determine and
to quantify the emotional state. Doing this using a noninvasive
physiological and easy-to-monitor signal such as the electrocardio-
gram, it would represent an important scientific advancement. From
a physiological perspective, the inherent nonlinearties of the cardio-
vascular systems (e.g. the nonlinear neural signaling on the sinoatrial
node27) have been also confirmed by our experimental results.
According to the nonlinearity tests53, in fact, 27 out of the 30 RR
series resulted to be the outputs of a nonlinear system. Of note, the
results from goodness-of-fit tests were all positive, demonstrating
that the proposed NARI model always performs a good prediction
of the nonlinear heartbeat dynamics. We recently demonstrated the
crucial role played by nonlinear dynamics in arousal and valence
recognition starting from ANS signals44. In agreement with these
previous results, here we have introduced instantaneous nonlinear
features and improved the accuracy in the majority of the population
(23 subjects) over the (also novel) results from the respective linear
estimation. This finding is consistent with all the tested classification
algorithms. A speculative explanation on the better performances
obtained through ANS linear dynamics (observed in 7 subjects)
can be related to the functional characteristics of the dynamical non-
linear vago-sympathetic interaction, i.e., the so-called bidirectional
augmentation27. It is well-known, in fact, that the ANS control on the
cardiovascular dynamics is based on the simultaneous activity and
interaction of the sympathetic and vagal nerves. Sunagawa et al.27

showed that a perfect balance of these two neural activities leads to
a linear control of the mean heart rate with a high potential dynam-
ical gain (variance). On the other hand, when the sympathetic activ-
ity prevails on the parasympathetic one and vice versa, the
cardiovascular control becomes nonlinear with a reduced dynamical
gain. Changes on these time-varying nonlinear vago-sympathetic
interactions follows a sigmoidal relationship between autonomic
nerve activity and heart rate. Accordingly, it could be possible to
hypothesize that the vago-sympathetic interactions of those 7 sub-
jects showing a more linear ANS dynamics, when elicited with emo-
tional images, are somehow more balanced than in the other subjects.

We also remark on the great improvement, over the random guess
of 25%, performed by our methodology in recognizing four different
emotional states during short-time stimuli. Such an achievement
surely increases the impact in applicative fields such as affective
computing, clinical psycology and neuro-economics. Moreover,
our experimental results support previous studies where instant-
aneous HRV indices extracted by means of a point process model
provided a set of dynamic signatures able to characterize the dynamic
range of cardiovascular responses under different physiological con-
ditions37. Therefore, the novel instantaneous nonlinear features
could provide better assessment and improved reliability during such
physiological responses.

Methods
The experimental protocol for this study was approved by the ethical committee of
the University of Pisa and an informed consent was obtained from all participants
involved in the experiment.

Nonlinear system identification and nonlinear autoregressive models. A
Nonlinear Autoregressive Model (NAR) Model can be expressed, in a general form, as
follows:
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y kð Þ~F y k{1ð Þ,y k{2ð Þ, . . . ,y k{Mð Þð ÞzE kð Þ: ð1Þ

Considering E kð Þ as independent, identically distributed Gaussian random variables,
such a model can be can be written as a Taylor expansion:

y kð Þ~c0z
XM

i~1

c1 ið Þy k{ið Þ

z
X?
n~2

XM

i1~1
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in~1

cn i1, . . . ,inð Þ P
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j~1
y k{ij
� �

zE kð Þ:
ð2Þ

The autoregressive structure of (2) allows for system identification with only exact
knowledge on output data and with only a few assumptions on input data. We
represent here the nonlinear physiological system by using nonlinear kernels up to the
second order, i.e. c0, c1(i), and c2(i, j), and take into account the series of the
derivatives in order to improve stationarity69,70. Hence, the general quadratic form of a
Nonlinear Autoregressive Integrative (NARI) model becomes:

y kð Þ~y k{1ð Þzc0z
XM

i~1
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z
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i~1
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j~1
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where Dy(k 2 i) 5 y(k 2 i) 2 y(k 2 i 2 1) and Dy(k 2 j) 5 y(k 2 j) 2 y(k 2 j 2 1).
The quadratic kernel c2(i, j) is assumed to be symmetric. We also define the extended
kernels c’1 ið Þ and c’2 i,jð Þ as:

c’1 ið Þ~
1, if i~0

{c1 ið Þ if 1ƒiƒM

�
ð4Þ
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�
: ð5Þ

and link the NARI model to a general input-output form, here defined by using the
well-known Wiener-Volterra54 series:

y kð Þ~h0z
XM

i~1

h1 ið ÞDE k{ið Þ

z
X?
n~2

XM

i1~1

� � �
XM

in~1

hn i1, . . . ,inð Þ P
n

j~1
DE k{ij
� �

:

ð6Þ

where the functions hn(t1, …, tn) are the Volterra kernels. Mapping a quadratic NARI
model to an n-th order input-output model60 allows, after the input-output
trasformation of the kernels, the evaluation of all the High Order statistics (HOS) of
the system, such as the Dynamic Bispectrum and Trispectrum57,74. In the next
paragraph, the definition of the generic variable y(k) is used to represent the first-
moment statistic (mean) of the probabilistic generative mechanism of the heart rate.
In other words, the generic formulation of the NARI model parametrizes the
autonomic control on the cardiovascular system using linear and nonlinear terms
according to the Wiener-Volterra representation and point-process theory.

Point-process nonlinear model of the heartbeat. The point process framework
primarily defines the probability of having a heartbeat event at each moment in time.
Such a probability accounts for the instantaneous estimation of features which are
sensible to short-time emotional variations. Formally, defining t g (0, T], the
observation interval, and 0ƒu1v � � �vukvukz1v � � �vuKƒT the times of the
events, we can define N(t) 5 max{k : uk # t} as the sample path of the associated
counting process. Its differential, dN(t), denotes a continuous-time indicator
function, where dN(t) 5 1 when there is an event (the ventricular contraction), or
dN(t) 5 0 otherwise. The left continuous sample path is defined as
~N tð Þ~limt?t{ N tð Þ~max k : ukvtf g. Given the R-wave events uj

� 	J
j~1 detected

from the ECG, RRj 5 uj 2 uj21 . 0 denotes the jth RR interval. Assuming history
dependence, the inverse Gaussian probability distribution of the waiting time t 2 uj

until the next R-wave event is37:

f t Ht ,j tð Þjð Þ~ j0 tð Þ
2p t{uj
� �3

" #1
2

|exp {
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2

j0 tð Þ t{uj{mRR t,Ht ,j tð Þð Þ
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( ) ð7Þ

with j~~N tð Þ the index of the previous R-wave event before time
t,Ht~ uj,RRj,RRj{1, . . . ,RRj{Mz1

� �
is the history of events, j(t) the vector of the

time-varing parameters, mRR t,Ht ,j tð Þð Þ the first-moment statistic (mean) of the
distribution, and j0(t) . 0 the shape parameter of the inverse Gaussian distribution.

Since f t Ht ,j tð Þjð Þ indicates the probability of having a beat at time t given that a
previous beat has occurred at uj, mRR t,Ht ,j tð Þð Þ can be interpreted as the expected
waiting time until the next event could occur. The use of an inverse Gaussian
distribution f t Ht ,j tð Þjð Þ, characterized at each moment in time, is motivated both
physiologically (the integrate-and-fire initiating the cardiac contraction37) and by
goodness-of-fit comparisons39. In previous work38,39, the instantaneous mean
mRR t,Ht ,j tð Þð Þ was expressed as a linear and quadratic combination of present and
past R-R intervals, based on a nonlinear Volterra-Wiener expansion40. Here we
propose the novel NARI formulation in which the instantaneous RR mean is defined
as:

mRR t,Ht ,j tð Þð Þ~RR ~N tð Þzc0 tð Þ
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In this work, we consider nonlinearities associated to eq. 8 up to the third-order.
Cubic terms, in fact, allow for the estimation of the dominant Lyapunov exponent,
whereas quadratic terms account for the high-order spectral estimation. Considering
the derivative RR interval series improves the achievement of stationarity within the
sliding time window W (in this work we have chosen W 5 70 seconds)69. Since
mRR t,Ht ,j tð Þð Þ is defined in continuous time, we can obtain an instantaneous RR
mean estimate at a very fine timescale (with an arbitrarily small bin size D), which
requires no interpolation between the arrival times of two beats. Given the proposed
parametric model, all linear and nonlinear indices are defined as a time-varying
function of the parameters j(t) 5 [j0(t), c0(t), cn(i1, …, in, t)] with n 5 {1, 2, 3}. The
unknown time-varying parameter vector j(t) is estimated by means of a local
maximum likelihood method37,75,76. The model goodness-of-fit is based on the
Kolmogorov-Smirnov (KS) test and associated KS statistics (see details in37,77).
Autocorrelation plots are considered to test the independence of the model-
transformed intervals37. Optimal order of linear and nonlinear regressions is
determined by prefitting the point process model to a subset of the data37,75 and
comparing scores from KS tests, autocorrelation plots, and the Akaike Information
Criterion (AIC) which is defined as follows:

AIC~{2Lz2 dim jð Þ ð9Þ

where L is the maximized value of the likelihood function for the estimated model,
dim(j) is the number of parameters in the NARI model. We choose the parameter
setup having the autocorrelation plot within the boundaries of 95% confidence
interval and minimum AIC value and minimum KS distance. Once the order of linear
and nonlinear regressions is determined, the initial NARI coefficients are estimated
by the method of least squares78.

Estimation of the input-output volterra kernels. The nth-order spectral
representations are related to the the Volterra series expansion and the Volterra
theorem54. In functional analysis, a Volterra series denotes a functional expansion of a
dynamic, nonlinear, and time-invariant function, widely used in nonlinear
physiological modeling55,79,80. The quadratic NARI model can be linked to the
traditional input-output Volterra models by using a specific relationships60 between
the Fourier transforms of the Volterra kernels of order p, Hp(f1, …, fn), and the Fourier
transforms of the extended NAR kernels, C’1 f1ð Þ and C’2 f1,f2ð Þ. In general, a second-
order NARI model has to be mapped into a infinite-order input-output Volterra
model60, although there is the need to truncate the series to a reasonable order for
actual application. Here, we choose to model the cardiovascular activity with a cubic
input-output Volterra by means of the following relationships with the NARI:

H1 fð Þ~ 1
C’1 fð Þ ð10Þ

H2 f1,f2ð Þ~{
C’2 f1,f2ð Þ

C’1 f1ð ÞC’1 f2ð Þ
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1
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� �
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� �

:
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Quantitative tools: high order spectral analysis. Our framework allows for three
levels of quantitative characterization of heartbeat dynamics: instantaneous time-
domain estimation, linear power spectrum estimation, and higher order spectral
representation. The time-domain characterization is based on the first and the second
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order moments of the underlying probability structure. Namely, given the time-
varying parameter set j(t), the instantaneous estimates of mean R-R, R-R interval
standard deviation, mean heart rate, and heart rate standard deviation can be
extracted at each moment in time37. The linear power spectrum estimation reveals the
linear mechanisms governing the heartbeat dynamics in the frequency domain. In
particular, given the input-output Volterra kernels of the NARI model for the
instantaneous R-R interval mean mRR t,Ht ,j tð Þð Þ, we can compute the time-varying
parametric (linear) autospectrum81 of the derivative series:

Q f ,tð Þ~Sxx f ,tð ÞH1 f ,tð ÞH1 {f ,tð Þ

{
3

2p

ð
H3 f ,f2,{f2,tð ÞSxx f2,tð Þdf2

ð13Þ

where Sxx f ,tð Þ~s2
RR. The time-varying parametric autospectrum of the R-R intervals

is given by multiplying its derivative spectrumQ f ,tð Þ by the quantity 2(1 2 cos(v))69.
Importantly, previous derivations of the expressions for the autospectrum40,73 were
possible because the first- and second-order Volterra operators are orthogonal to each
other for Gaussian inputs. This property does not hold for orders greater than two81,
and in cubic nonlinear input-output Volterra systems the autospectrum is estimated
by considering also the third order term. By integrating (13) in each frequency band,
we can compute the index within the very low frequency (VLF 5 0.01–0.05 Hz), low
frequency (LF 5 0.05–0.15 Hz), and high frequency (HF 5 0.15–0.5 Hz) ranges. The
higher order spectral representation allows for consideration of statistics beyond the
second order, and phase relations between frequency components otherwise
suppressed57,82. Higher order spectra (HOS), also known as polyspectra, are spectral
representations of higher order statistics, i.e. moments and cumulants of third order
and beyond. HOS can detect deviations from linearity, stationarity or Gaussianity.
HOS analysis has been proven to be effective in several HRV applications (e.g.
arrhythmia recognition58,59). Particular cases of higher order spectra are the third-
order spectrum (Bispectrum) and the fourth-order spectrum (Trispectrum)82,
defined from the Volterra kernel coefficients estimated within the point process
framework.

Dynamical bispectrum estimation. Let H2(f1, f2, t) denote the Fourier transform of
the second-order Volterra kernel coefficients. The cross-bispectrum (Fourier
transform of the third-order moment) is56,57:

CrossBis f1,f2,tð Þ<2Sxx f1,tð Þ

Sxx f2,tð ÞH2 {f1,{f2,tð Þ
ð14Þ

where Sxx f ,tð Þ is the autospectrum of the input (i.e. s2
RR). Note that we use the

approximation shown in eq. 14 since the equality only strictly holds when the input
variables are jointly Gaussian. The analytical solution for the bispectrum of a
nonlinear system response with stationary, zero-mean Gaussian input is83:

Bis f1,f2,tð Þ~2H2 f1zf2,{f2,tð Þ
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|H1 {f1{f2,tð ÞH1 f1,tð ÞSxx f1zf2,tð ÞSxx f1,tð Þ
z2H2 {f1,{f2,tð ÞH1 f1,tð ÞH1 f2,tð Þ

|Sxx f1,tð ÞSxx f2,tð Þ

ð15Þ

Of note, an expression similar to 15 was derived in the appendix of84. The dynamic
bispectrum is an important tool for evaluating the instantaneous presence of non-
linearity in time series53,56,57. The bispectrum presents several symmetry properties82

and for a real signal it is uniquely defined by its values in the triangular region of
computationV, 0 # f1 # f2 # f1 1 f2 # 185. Within this region, it is possible to estimate
several features, which are summarized in Table 1 of the supporting information. The
bispectral invariant86, P(a, t) represent the phase of the integrated bispectrum along
the radial line with the slope equal to a (with mean P a,tð Þ and variance sP(a,t)). The
parameter 0 , a # 1 is the slope of the straight line on which the bispectrum is
integrated. The variables Ir(a, t) and Ii(a, t) refer to the real and imaginary part of the
integrated bispectrum, respectively. The Mean magnitude Mmean(t) and the phase
entropy Pe(t)87 have n 5 0, 1, …, N 2 1; L as the number of points within the regionV,
W the phase angle of the bispectrum, and 1(.) the indicator function which gives a
value of 1 when the phase angle W is within the range of bin Yn. The normalized
bispectral entropy (P1(t))88 and the normalized bispectral squared entropy (P2(t))88 are
also considered (between 0 and 1) along with the sum of logarithmic amplitudes of the
bispectrum89. As the sympatho-vagal linear effects on HRV are mainly characterized
by the LF and HF spectral powers24,90,92–94, we evaluate the nonlinerar sympatho-vagal
interactions by integrating jB(f1, f2)j in the bidimensional combination of frequency
bands. LL(t),LH(t), and HH(t) (see Supporting Information for a graphical
representation in the bispectral plane).

Dynamical trispectrum estimation. Brillinger95, Billings54, Priestley96, and others
have demonstrated that there is a closed form solution for homogeneous systems with
Gaussian inputs. Thus, the transfer function of a m-order homogeneous system is
estimated by the relation:

Hm f1, . . . ,fm~
Syx...x {f1, � � � ,{fmð Þ
m!Sxx f1ð Þ � � � Sxx fmð Þ

� 
ð16Þ

where the numerator is the m 1 1 2 nthorder crosspolyspectrum between y and x.
This result is a generalization of the classical result for the transfer function of a linear
system resulting for m 5 1. Therefore, the cross-trispectrum (Fourier transform of the
third-order moment) can be estimated as:

T f1,f2,f3,tð Þ<3!Sxx f1,tð ÞSxx f2,tð ÞSxx f3,tð Þ

|H3 f1,f2,f3,tð Þ
ð17Þ

Dominant lyapunov exponent estimation. Cubic nonlinearities, in the framework
of the proposed NARI point-process model, account for the novel estimation of the
instantaneous Lyapunov spectrum. By definition, the generic Lyapunov exponent
(LE) of a real valued function f(t) defined for t . 0 is defined as:

l~ lim sup
t??

1
t

log f tð Þj jð Þ ð18Þ

Let us consider a generic n-dimensional linear system in the form yi 5 Y (t) pi, where
Y (t) is a time-varying fundamental solution matrix with Y (0) orthogonal, and {pi} is
an orthonormal basis of Rn. The key theoretical tools for determining the IDLE and
the whole spectrum of LEs is the continuous QR factorization of Y (t)61,65:

Y tð Þ~Q tð ÞR tð Þ ð19Þ

where Q(t) is orthogonal and R(t) is upper triangular with positive diagonal elements
Rii, 1 # i # n. Then, LEs are formulated as:

li~ lim
t??

1
t

log Y tð Þpik k

~ lim
t??

1
t

log R tð Þpik k~ lim
t??

1
t

log Rii tð Þk k:
ð20Þ

The cubic NAR model (eq. 8) can be rewritten in an M-dimensional state space
canonical representation:

r kð Þ
n ~

r kz1ð Þ
n{1 if kvM

F r Mð Þ
n{1,r M{1ð Þ

n{1 , � � � ,r 2ð Þ
n{1,r 1ð Þ

n{1

� �
if k~M

8<
: ð21Þ

By evaluating the Jacobian J(n) over the time series, which corresponds to the matrix
Y (t), the LE can be determined using the QR decomposition:

J nð ÞQ n{1ð Þ~Q nð ÞR nð Þ ð22Þ

This decomposition is unique except in the case of zero diagonal elements. Then the
LEs li are given by

li~
1

tH

XH{1

j~0

ln R jð Þii ð23Þ

where H is the available number of matrices within the local likelihood window of
duration W, and t the sampling time step. The estimation of the LEs is performed at
each time t from the corresponding time-varying vector of parameters, j(t)61. Here,
the first LE, l1(t) is considered as the instantaneous dominant Lyapunov exponent
(IDLE).
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