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Abstract

To examine dynamics of political processes using repeated cross-section data, effects
of age, cohort, and time period have to be disentangled. I propose a Bayesian dynamic
hierarchical model with cohort and period effects modeled as random walk through
time. It includes smoothly time-varying effects of covariates, allowing researchers to
study changing effects of individual characteristics on political behavior. It provides
a flexible functional form estimate of age by integrating a semi-parametric approach
in the hierarchical model. I employ this approach to examine religious voting in
the United States using repeated cross-sectional surveys from 1972 to 2008. I find
starkly differing nonlinear trends of de- and re-alignment among different religious
denominations.
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1 Examining socio-political processes

Students of political behavior are often not only interested in relationships between
individual characteristics and political outcomes, but want to describe evolution of
these relationships over time. In absence of panel data, repeated cross-sectional
surveys are used to examine the dynamics of social and political behavior (e.g.,
among many, De Graaf et al. 2001; Brooks and Manza 2004; Elff 2007, 2009). When
analyzing change, a well-known problem is the tightly knotted relationship between
age, time period and cohort membership, as outlined by Neundorf and Niemi (2013)
in this issue. Recent proposals (Yang and Land 2006, 2008), which use hierarchical
models to disentangle these effects by simultaneously nesting individuals in cohorts
and time periods, have become popular (for a recent application see Caren et al.
(2011) and Smets and Neundorf (2013) in this issue).

In this paper, I propose to extend these various models to ameliorate some of their
potential shortcomings. First, previous contributions have simply assumed that both
time and cohort random effects are exchangeable. The assumption that the ‘order’
of periods or cohorts does not matter seems hardly justifiable: both cohort and
period effects are (by definition) changes occurring in sequential time. In contrast, I
propose a hierarchical model where random effects are time-structured by modeling
them as a random walk through time. Second, hitherto proposed hierarchical age-
period-cohort (APC) specifications model time period and cohort differences in the
dependent variable, but assume time-homogeneity of effects of relevant individual
attributes, such as religion or class. However, changes in effects of these variables
are often of central interest to researchers (e.g., Manza and Brooks 1997; De Graaf
et al. 2001; Brooks and Manza 2004; Elff 2009; Jansen et al. 2011). Borrowing
from state-space modeling, I extend my model to estimate smoothly time-varying
effects of central covariates.1 Finally, in most applications researchers specify flexible
time and cohort effects, but treat age as linear or quadratic. I detail how to estimate
the functional form of age more flexibly by employing a nonparametric strategy
based on penalized splines. I specify my model in a Bayesian framework, which
allows me to implement this various extensions under a common hierarchical model
framework. Furthermore, using the Bayesian inferential paradigm, researchers do
not have to rely on the interpretation of random effects as random samples from a
(super-)population, which is questionable when working with APC models. Instead,
inferences are made based only on actually observed periods and cohorts.2

1These model specifications are increasingly common in public health and disease mapping research,
where researchers face the age-period-cohort problem with grouped data (such as cancer incidence
rates). See, e.g., Knorr-Held (2000); Knorr-Held and Rainer (2001); Schmid and Held (2004)
and the references therein.

2Add to this the general intellectual attractiveness of Bayesian inference (see, e.g., Jackman 2009:
ch.1 or Jaynes 2003). Yang and Land (2008) provide further specific arguments for using a
Bayesian approach for APC models.

2



I demonstrate the practical application of my proposed model specification by ana-
lyzing trends in religious voting in the United States. Researchers and pundits alike
have put renewed focus on the role of religion in shaping the political landscape
of the US (Wald et al. 2005; Wald and Wilcox 2006). Following the perception of
increased polarization, specific interest lies in examining changes in traditional party
alignments of different denominations (e.g., Brooks and Manza 2004). I use re-
peated cross-sectional surveys from 1972 to 2008 with detailed measures of religious
denominations. I find no effect of cohort membership, but starkly differing nonlinear
trends of de- and re-alignment among different religious denominations.

The paper is structured in two central parts. The next section contains a detailed
discussion of hierarchical age-period-cohort models and my proposed extensions.
I also discuss a strategy for comparing models of differing complexity. Section 3
contains the application of my model to denominational vote trends in the US. I
discuss data and imputation strategy and present detailed results. Finally, section 4
concludes the paper with a short discussion.

2 Dynamic hierarchical model

The key to a combined analysis of effects of age, cohort, and time period is to
account for the fact that individuals experience the same time period but are also
simultaneously members of a specific cohort. To capture this dependence structure,
recent contributions (e.g., Yang and Land 2006, 2008) propose the use of cross-
classified random effect models (Snijders and Bosker 2012; Browne et al. 2001;
Rasbash and Browne 2008).3 One models response y∗i tk of individual i in the cell
defined by the cross-classification of time period t (t = 1, . . . , T) and cohort k
(k = 1, . . . , K) as a function of age ai, covariates x i, and time (pt) and cohort (ck)
effects:

yi tk = ai + pt + ck + x i

More specifically, I propose to model responses as resulting from an individual’s
age ai, some theoretically relevant variables wi, a set of controls for socio-economic
background characteristics x i including an overall constant (i.e., for all i, x i1 = 1),
and random effects for time periods ζt and cohort membership ξk:

y∗i tk = f (ai) +
R
∑

r=1

β ′r wir +
S
∑

s=1

γ′s x is + ζt + ξk + εi tk (1)

Here, f (a) is some smooth functional form estimate of age effects (discussed in detail
later), βr and γs are effect coefficients for theoretically central and control variables,
respectively, and εi tk is a white noise error term. In this general formulation, the

3See Smets and Neundorf (2013) in this issue for a more detailed discussion of this model.
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model is applicable to outcomes that are either continuous, dichotomous or ordered
categorical, by suitably specifying the link between observed y and latent y∗ (Greene
and Hensher 2010). Since my application uses a binary dependent variable, the
following discussion refers to this situation. I use a probit model, obtained by
assuming that a latent variable – normally distributed with unit variance – generates
observed outcomes via some threshold or utility mechanism (Albert and Chib 1993;
Jackman 2000). Thus an individual responds yi tk = 0 if y∗i tk < 0 and yi tk = 1 if
y∗i tk ≥ 0.

Model specification is completed by specifying a distribution for cohort and time
period random effects. Existing proposals (e.g.,Yang 2006) rely on the standard
assumption of normally distributed random effects. For example, cohort random
effects are assumed to be drawn from a normal distribution with zero mean and
estimated variance σ2:

ξ∼ N(0,σ2).

While convenient, I argue that this specification is somewhat ignorant about our
knowledge of social processes. It seems implausible a priori, that each new cohort
of individuals or each new time period, is formed in a social and political vacuum –
independent of the past. Rather, most theoretical accounts of socio-political change
emphasize continuity between cohorts or time points, as well as elements of change.
Following these arguments, I propose to add structure to cohort and time period
random effects by including systematic dependencies between neighboring periods
and cohorts, while still allowing for the occurrence of sudden change.

2.1 Time-structured random effects

To yield a more realistic treatment of period and cohort succession, I model random
effects as following a non-stationary second order random walk transition process
(Besag et al. 1995; Knorr-Held and Rainer 2001):

ξk = 2ξk−1 − ξk−2 + vk, vk ∼ N(0,ω2). (2)

This injects some structure into the cohort random effects, since each new cohort
random effect now depends on past values to a certain extent. More precisely, the
conditional expected value of a new cohort random effect E(ξk|ξk−1,ξk−2) is a locally
linear extrapolation based on past random effects ξk−1 and ξk−2. As illustrated
in Figure 1, the key characteristic of this setup is that a priori one expects that
neighboring cohorts are similar and changes will occur gradually – that is, ω2 will
be small. However, if the data suggest that a new cohort differs strongly from the
previous one, the model will accommodate this and one will see a deviation from
the local linear trend.4

4Note that trends are only locally linear, that is, I do not impose a linear trend across all cohorts.
This model specification is known in macro-economics as Hodrick-Prescott filter, widely used to

4



ω2

ξk−2

ξk−1

E(ξk|ξk−1,ξk−2)

cohorts

effect

kk− 2 k− 1

Figure 1: Illustration of locally linear approximation by random walk

To realize this idea in a hierarchical model, I specify the cohort random effects prior
as:

ξk ∼ N(2ξk−1 − ξk−2,ω2) (3)

Here the mean of the prior distribution in equation (3) specifies the systematic time
trend, while the variance allows for deviations from it (for recent political science
applications see Jackman 2005 or Martin and Quinn 2002). The extent to which a
new cohort random effect value is determined by the time trend is determined by
the variance parameter ω2. As ω2→ 0 new cohorts will closely follow a linear trend,
while large values of ω2 yield cohort random effects which are rather different from
each other. In the Bayesian framework ω2 is estimated from the data by assigning it
an appropriate hyper-prior (details on priors are given in section 2.4.) A random
walk has to be initialized from some starting position. In absence of strong a priori
information, simply choose a random position on the real line, which in a Bayesian
framework amounts to specifying constant priors ξ1,ξ2∝ c and ζ1,ζ2∝ c for the
first two cohorts and years, respectively. To identify the random effects, one needs
some form of restriction, such as a corner constraint. Another option – used here –
is a sum-to-zero constraint, i.e.:5

K
∑

k=1

ξk = 0. (4)

Finally, specification of time period random effects follows the same logic by using a
second differences mean structure with estimated evolution variance ψ2,

ζt ∼ N(2ζt−1 − ζt−2,ψ2), (5)

smooth macro-economic time series (Hodrick and Prescott 1997).
5This constraint can be implemented by simply re-centering the cohort random effects on each

iteration of the MCMC sampler.
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and a sum-to-zero constraint on the vector of random effects.

2.2 Time-trends of covariate effects

So far the proposed model essentially performs a variance decomposition of the
dependent variable. However, I argue that many applications are more concerned
with following social and political processes through time. In other words, simply
stating that cohort or time periods differ is often less interesting than learning how
effects of substantive variables vary between cohorts or over time. To enable this
type of analysis, I extend the APC model to include varying effects of covariates. This
conceptualization of smoothly time-varying effects – as opposed to simple ‘random
slopes’ in a standard multilevel model, which again ignore the time-structured nature
of data – follows ideas from state space modeling (West and Harrison 1997; Fahrmeir
and Tutz 1997: ch.8) as well as the varying coefficient framework in spatial statistics
(e.g., Hastie and Tibshirani 1993).

Thus, following the logic of locally linear priors as discussed above, I model changing
covariate effects via a second order random walk. Instead of assuming time-constant
effects βr for each relevant covariate r (r = 1, . . . , R), I specify them as time period
specific (βr t) evolving according to the following stochastic process (cf. West and
Harrison 1997):

βr t = 2βr,t−1 − βr,t−2 + ur t with ur t ∼ N(0,υ2
r). (6)

In terms of my application this yields denomination effects on vote choice, which
evolve according to a locally linear trend. For large estimated values of υ2

r , no clear
trend exists – each new denomination-by-time effect will differ sharply from the
previous one. Contrary, if υ2→ 0 denomination effects (of group r) follow a clear
linear trend. The extended model now reads:

y∗i tk = f (ai) +
R
∑

r=1

β ′r t wir +
S
∑

s=1

γ′s x is + ζt + ξk + εi jk (7)

βr t ∼ N(2βr,t−1 − βr,t−2,υ2
r) (8)

ζt ∼ N(0,ψ2) (9)

ξk ∼ N(2ξk−1 − ξk−2,ω2) (10)

Again, to identify the newly added time-varying effects, one needs to impose a
restriction, such as the sum-to-zero constraint in (4). I enforce

∀r :
T
∑

t=1

βr t = 0, (11)

which implies that second differences can be identified from the data. In other words,
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we can learn about changing associations between religious group membership and
voting behavior if they depart from a linear trend. If all social change is strictly linear,
it is impossible to disentangle effects from the data alone.

Besides adding time-varying effects of theoretically central covariates, equation (9)
now contains a simplified distributional assumption for period random effects ζt .
After including several time trends via (8), I specify remaining period differences
as arising from a normal distribution centered at zero with an estimated variance
component ψ2. The purpose of this specification is to split the overall time period
trend into a correlated and an uncorrelated part (e.g., Besag et al. 1991). The part
that is correlated over time is due to changing effects of denominational group
membership on vote choice. The remaining part captures residual variation not
explained by these systematic trends. Cohort random effects ξk are still allowed to
be correlated through time.

2.3 Nonparametric estimation of age effects

Hierarchical APC models are very flexible in terms of cohort and time period effects.
The question remains how to treat age in this framework. This is especially relevant
when little is known a priori about its functional form. Simply including linear and
quadratic trends of age is a strong, and possible unwarranted, simplification. A more
complex strategy, such as including some polynomial transform of age might be
equally problematic when local features are unknown (Beck and Jackman 1998).

An alternative is to leave the functional form of age unspecified and estimate it
from the data. Estimation based on splines provides an established and easily
implementable approach (Keele 2008). I model the unknown functional form of
age by using B-splines with a quadratic basis (see de Boor 1978 for an introduction)
on L equally spaced knots:6 min (a) = κ1 < κ2 < · · · < κL−1 < κL =max (a). Thus,
age is modeled via L B-spline basis functions Bl(ai) and their associated regression
coefficients (η1, . . . ,ηL)

f (ai) =
L
∑

l=1

ηl Bl(ai) (12)

Specifying the number of knots L is a nontrivial enterprise. To avoid multiple trial
and error procedures, Eilers and Marx (1996, 2010) propose to use penalized splines,
or P-splines. The idea here is to specify the spline using a rather high number of
knots (often between 20 and 40) over the domain of the variable, and to avoid
overfitting by introducing a term which penalizes for too abrupt function jumps.

6When calculating the B-spline basis we actually need additional knots outside the range of the
variable. Thus the extended knot set is κ−1,κ0,κ1, . . . ,κL+1,κL+2. Knots are placed at equidistant
intervals: Let m = (max(a)−min(a))/(l − 1), then knots are placed at κl = min(a) + (l − 1)m
with l = −1, . . . , L + 2.
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More precisely, they introduce a penalty term λ for adjacent B-Spline coefficients
based on first differences (Eilers and Marx 1996):

λ

L
∑

l=2

(∆ηl)
2 (13)

where ∆ is the forward difference operator. Adding this term to (12) leads to
a penalized estimator which produces a smooth function as λ gets larger. This
penalized spline approach reduces the dependence of functional form estimates on
parameters like the number of knots, and thus leads to robust substantive inferences.
Currie and Durban (2002) show that this specification can be reformulated as a
hierarchical model; consequently, by choosing an appropriate hyperprior the degree
of smoothing (λ) can be estimated from the data (see Ruppert et al. 2003 for an
excellent introduction). Details on all my prior specifications are given in the next
section. As before, for identification age is restricted to have a zero mean effect (the
overall mean is captured by the constant in x i) by imposing a sum to zero constraint.

2.4 Priors

For fully Bayesian inference I need to specify appropriate (hyper-)priors for all
parameters. In my proposed model, the degree of smoothing of cohort and time
period random effects is estimated from the data. Thus, priors for evolution variances
of cohort and time period random walks are drawn from conjugate inverse Gamma
distributions (Gilks et al. 1996):

ω−2 ∼ Γ (a0, b0)

ψ−2 ∼ Γ (a0, b0).

Similarly, evolution variance priors for varying covariate effects are for all r:

υ−2
r ∼ Γ (a0, b0).

To yield diffuse or non-informative variance priors, common parametrizations of the
Gamma distribution used in practical applications are shape and scale parameters
close to zero, such as a0 = b0 = 0.001. An alternative is to set a0 = 1 and b0 set to
a small value such as 0.005 (Besag et al. 1991). I use the former for all reported
results.

A spline smoothness prior needs to ensure that the large number of spline coefficients
does not lead to an estimated functional form of age that is too rough. Following the
idea of a penalty term based on first differences of adjacent coefficients (Eilers and
Marx 1996), Brezger and Lang (2006) propose a joint penalty prior for the vector of
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all spline coefficients η= (η1, . . . ,ηL)

η∝ exp
�

−
1

2τ2
η′Pη
�

(14)

where P is an appropriate penalty matrix indicating neighboring coefficients. More
details are given in appendix A1. The variance τ2 acts as an inverse smoothing
parameter, in other words, the penalty term λ given in equation (13) is estimated
by λ= 1/τ2. Thus, smaller variances result in more smoothed function estimates.
In this mixed model setup the degree of smoothing is estimated from the data by
assigning it a conjugate inverse gamma prior: τ−2 ∼ Γ (a0, b0). Following the same
logic as in my discussion above, I use values leading to a rather diffuse prior, i.e.,
a0 = b0 = 0.001. Finally, using flat priors for βr and γs yields regression-type
estimates for all remaining covariate effects.

To check for the sensitivity of my results, I follow Geisser (1993) and perturb my
model with both small and large prior variances, in order to detect their effect on the
analysis. I also consider a prior which is not defined for the variance (or precision)
but for the standard deviation, as suggested by Gelman (2006). Gill (2008: ch
6.2) provides further discussion of robustness check strategies in Bayesian analysis.
Generally, results are rather insensitive to different prior choices. This is especially
the case for age estimates. Varying priors for period and cohort random effects leads
to estimated trends that are more or less ‘smooth’, but substantive results do not
change.

2.5 Model comparisons

With models of this level of complexity a means of comparing specifications is help-
ful.7 Different models can be compared using model deviance. However, deviance
decreases with added model complexity. To take model complexity into account,
Spiegelhalter et al. (2002) propose the Deviance Information Criterion (DIC), which
can be seen as a Bayesian analogue to the widely used Akaike information criterion.
They define DIC as deviance plus complexity penalty:

DIC = D(θ ) + pD

where D(θ ) is the mean deviance, θ represents the vector of all model parameters,
and pD is a penalty term for model complexity. Thus, DIC penalizes improvements in

7The most elegant solution – Bayes factors – are hardly computationally feasible for practical
applications, due to its computational intractability and its insistence on non-diffuse priors. Other
proposals exist that are easier to implement, such as conditional predictive ordinates (Geisser
1993; Gelfand et al. 1992). I do not discuss these here as the close relationship to the AIC makes
DIC the most straightforward choice for practical applications. See the discussion following
Spiegelhalter et al. (2002) for a number of disadvantages of the DIC.
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deviance for the fact that a more complex model has been used. The penalty term is
given by an estimate of model complexity, the effective number of model parameters.8

This strategy is preferable to simply ‘counting parameters’, since in models where
random effects priors are highly structured, each random effect is likely to represent
far less than one parameter.9 For more elaborate discussions see Spiegelhalter et al.
(2002) and Gill (2008: 260).

3 Application: Religious voting in the US, 1972–2008

To illustrate the application of this setup, I analyze trends in religious voting in the
United States between 1972 and 2008. Previous research on religious trends usually
does not include cohort differences, and a more complete APC specification will
show if this omission was reasonable. However, my application goes beyond a simple
decomposition of age, period, and cohort effects and examines trends in voting
behavior of different groups (following the seminal work by Manza and Brooks
(1997) and Brooks and Manza (2004)). Changing alignments of major religious
groups have been of central interest in recent research, as they are supposed to be a
major source of (macro-)political change (e.g., Rozell and Wilcox 1996; Wuthnow
and Evans 2002; Green et al. 2003). For a more detailed discussion of arguments
about, and previous research on, denominational voting differences, see Brooks et al.
(2003) and Brooks and Manza (2004).

3.1 Data

Following previous research on religion and voting (e.g., Brooks and Manza 2004), I
analyze data from the American National Election Studies for the ten presidential
elections and seven midterm elections from 1972 through 2008. Possible level
differences for midterm elections are checked by including an indicator variable.
The pooled data-set provides information for 17,896 individuals. Their vote choice
is represented by an indicator variable equal to one if they voted for the Democratic
candidate and zero for the choice of Republican candidates. Individuals who explicitly
state that they abstained from voting or supported third candidates are excluded.10

8It is calculated as pD = D(θ )− D(θ ), i.e., the mean Deviance minus the Deviance evaluated at
the means of parameters. The Deviance is defined as minus two times the log-likelihood, i.e.,
D(θ ) = −2 log(p(y |θ )).

9Thus, pD can be understood as the sum of all model parameters each weighted by (Gill 2008: 261):
wp = 1 if a parameter is not constrained by any prior information, wp = 0 if all information comes
from the prior, and wp ∈ [0, 1] for parameters which depend on priors to a varying extent, such
as random walks.

10I do not use data prior to 1972 since they do not contain detailed enough denominational in-
formation. Midterm elections in 2003 and 2006 are not covered by the ANES. Furthermore,
including third candidates such that the dependent variable indicates choice of Democratic vs.
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The three central time variables are age, time period (or survey year) and cohort.
Age is measured in years and only individuals older than eighteen are included.
Seventeen time periods represent bi-annual elections from 1972 to 2008. Finally, I
constructed 18 five-year birth cohorts ranging from 1895 to 1980. 115 individuals
born before 1895 and 104 individuals born after 1985 are included in the first,
respectively last, cohort since they are too small in size to form their own cohort.

My central theoretical variable, major American religious groups, is captured by a
six category scheme comprised of Protestant, Catholic and Jewish faiths. Protestants
are subdivided into three denominational families, viz., Mainline, Evangelical and
Black Protestants. The latter are members of historically Black protestant churches,
which recent scholarship argues form a distinct religious group “manifestly different
from that of other white Protestant traditions” combing economic liberalism with
social conservatism (Steensland et al. 2000: 294; and the references therein). The
final, sixth category is made up of those who explicitly state that they have no
denomination. This group also includes a small number of individuals who belong to
‘other’ denominations, such as Muslim and Hindu, which are too few in numbers to
include on their own. This classification is derived from detailed information (with
roughly 70 detailed categories) on individuals’ religious preference contained in the
ANES, following the classification scheme of Steensland et al. (2000) and Brooks
and Manza (2004). Differences in the frequency of church attendance are included
by a pseudo-continuous variable measuring how often a respondent attends church.

Table 1 shows means and standard deviations of all variables included in my anal-
ysis before and after imputation (discussed below). Income is measured in real
dollars deflated using the consumer price index with base year 2000. Education
is measured by the number of years spent in full-time education. An individual’s
party identification is included via the well-known three category measure, differ-
entiating Democrats, Republicans and Independents. Stable regional differences
in voting behavior are captured by a categorical variable for a respondent’s region
of residence. Finally, further individual background characteristics are captured
by dummy variables indicating if a respondent is female, African-American, and
currently married.

3.2 Imputation of missing data

As Table 1 shows, several variables have imputed missing values. Missing data is
an ubiquitous feature of social surveys and a problem likely to be encountered by
every practical application of the models presented in this special issue. Thus, I
provide details of my imputation strategy, which takes into account the repeated
cross-section nature of the pooled dataset.

‘other’ candidates does not change results.
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Table 1: Means and standard deviations (Pre- and Post-Imputation) of variables

Pre-imputation Post-imputation Imputed

means sd mean sd [%]

Vote (Democrats) 0.53 0.50 0.53 0.50 2.7
Age (years) 48.15 16.97 48.15 16.97 0.3
Education (years) 13.12 2.86 13.12 2.86 0.2
Income (10,000 $)a 4.77 3.33 4.74 3.34 7.6
Female 0.55 0.50 0.55 0.50
African-American 0.12 0.32 0.12 0.32 0.5
Married 0.62 0.49 0.62 0.49 0.2

Denominationb 0.8
Mainline Protestant 0.33 0.47 0.33 0.47
Evangelical Protestant 0.22 0.41 0.22 0.41
Black Protestant 0.06 0.24 0.06 0.24
Catholic 0.25 0.44 0.25 0.43
Jewish 0.03 0.16 0.03 0.16

Church attendance 3.11 1.55 3.11 1.55 0.5
Party identificationc 0.3
Independent 0.33 0.47 0.33 0.47
Democrat 0.39 0.49 0.39 0.49

Regiond

North 0.19 0.39 0.19 0.39
South 0.32 0.47 0.32 0.47
West 0.21 0.40 0.21 0.40

N individuals 17896
N periods 17
N cohorts 18

Note: Post-imputation statistics calculated from 5 imputed data sets. Full data set contains 17,896 in-
dividuals, 18 cohorts, 17 periods.
a Deflated using CPI, base year: 2000
b Reference category is no or other denomination
c Reference category is Republican party ID
d Reference category is East

Following the strategy outlined by Gelman et al. (1998), I employ a hierarchical
multivariate normal model. More precisely, let individuals i, (i = 1, . . . , ns) partake
in several surveys s, (s = 1, . . . , S) which consists of Q questions (q = 1, . . . ,Q). An
individual’s vector of survey responses is assumed to follow a multivariate normal
distribution,

yis ∼ NQ(µs,Σ)

where µs is a vector of means and Σ is a Q ×Q variance covariance matrix. The
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survey means are (conditionally) exchangeable and follow a normal distribution

µs ∼ NQ(θ ,Φ)

with its location determined by a vector of means, θ , and its variance governed by a
Q×Q diagonal matrix of variances, Φ = diag(φ2

1 , . . . ,φ2
Q). Informally, this model can

be seen as an extension of the widely used multivariate normal imputation model
(e.g., King et al. 2001) to a multilevel setting, where the ‘second level’ hierarchy is
given by the ANES surveys.

To set up this model in a Bayesian framework, one needs to choose priors for all
elements. The prior for the individual level variance-covariance matrix Σ is an
inverse Wishart distribution:

Σ∼W−1(Σ0,ν0).

Following Gelman et al. (1998), I use a relatively non-informative specification,
where the scale matrix Σ0 is specified as identity matrix, IQ, and the degrees of
freedom parameter ν0 equals the number of survey questions included. Elements of
the survey level variance matrix Φ follow an inverse gamma distribution,

φ−2
q ∼ Γ (0.001, 0.001), q = 1, . . . ,Q,

with shape and scale set to 0.001 to yield a diffuse prior. Imputed values are not
sensitive to different parametrization of the gamma distribution. Finally, priors for
means µ and θ are normally distributed, centered at zero and with a variance of
100.

I obtain five imputations by running two chains of the Gibbs sampler (Tanner and
Wong 1987; Gelfand and Smith 1990) for 5000 iterations (after which they have set-
tled in their equilibrium distribution) and by drawing from the posterior distribution
every 500 iterations. This creates five data sets with missing values imputed from the
resulting posterior predictive distribution of each set of draws. All results presented
in the following are based on these five imputed data sets (cf. Rubin 1987).

3.3 Results

Table 2 shows Bayesian fit statistics for a series of models of increasing complexity.11

I start with a simple decomposition of the Democratic vote into effects of age, cohort

11All models are fitted using Markov Chain Monte Carlo sampling following the strategy outlined
in Knorr-Held and Rainer (2001) and Rue and Held (2005). For further details and code of the
models see the supplementary material online. The sampler is run for 100,000 iterations (thinned
by a factor of 20) after a burn-in of 50,000. Mixing is very good quite early in the evolution of the
chain. Standard convergence diagnostics (Cowles and Carlin 1996) suggest that the chain has
reached its steady state.
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Table 2: Posterior deviance, effective number of parameters, and de-
viance information criterion for fitted models.

Deviance pD DIC

M0 APC decomposition 24132 32.9 24165
M1 M0 + socio-economic variables 18022 37.0 18059
M2 M1 + religion variables 17678 44.8 17723
M3 M2 + denomination time trends 17544 71.9 17615

Note: Combined results from five imputations.

membership, and time period in Model M0 and add control variables and religious
variables in Models M1 and M2. The impressive decrease in deviance from M0 to
M1 shows the importance of taking into account the changing composition of the
electorate – e.g., due to educational expansion and rising incomes. M2 stresses
that, even after controlling for individuals’ basic social and economic characteristics,
religion plays an important part in explaining Democratic vote choice. M3 is the
most complex specification as it includes time trends of denomination effects on
vote choice (as specified in section 2.2). This complexity is reflected by the jump of
effective number of parameters pD relative to M2. However, the clear decrease in
Deviance as well as the DIC difference of over 100 makes clear that this specification
represents the data much better. Thus, I focus most of my following discussion
on results obtained from M3. In practical applications, one would likely explore
simpler specifications suggested by this flexible model, say by restricting age effects
to simpler functional forms.

Table 3 shows estimates of covariate effects for both M2, which includes time-constant
denomination effects, and M3, which models denomination effect time trends. Dis-
played are posterior means and highest posterior density (HPD) regions, which can
be understood as Bayesian analogue to the frequentist confidence interval.12 Esti-
mated effects differ little or not at all between both specifications, which is reassuring
in light of the added complexity of M3. Not surprisingly, strong effects of individual
background characteristics are apparent. Individuals who obtain higher incomes, are
married, and live in the South are less likely to vote for the Democrats.13 On the other
hand, women and African-Americans show a clear tendency to cast a Democratic
vote, which is also true for individuals who identify themselves as Democrats and (to
a lesser extent) as Independents. Individuals who attend church more frequently are

12More precisely a region R is a 100(1− α) percent HPD region (not necessarily contiguous) for
parameter θ if (1) P(θ ∈ R) = 1−α and (2) P(θ1)≥ P(θ2) for all θ1 ∈ R and θ2 /∈ R, i.e., it yields
an interval estimate with the added requirement that each value in the interval is larger than
those outside of it. For a discussion of Frequentist versus Bayesian intervals see Jaynes (1976).

13For a much more sophisticated discussion of income and regional differences see Gelman et al.
(2008). In a future extension of this paper, I plan to allow for spatially varying effects.
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Table 3: Posterior summary of covariate effects on the Democratic vote. Posterior means
and 90% highest posterior density regions

M2 M3

Mean HPD region Mean HPD region

Education −0.032 −0.076 0.008 −0.030 −0.073 0.014
Income −0.237 −0.280 −0.193 −0.240 −0.284 −0.197
Female 0.118 0.084 0.156 0.119 0.082 0.155
Black 1.296 1.191 1.405 1.305 1.200 1.412
Married −0.076 −0.118 −0.037 −0.075 −0.117 −0.032
Church attendance −0.235 −0.276 −0.197 −0.237 −0.276 −0.196
Denomination

Mainline Protestant −0.203 −0.266 −0.141
————–
see Fig. 4
————–

Evangelical Protestant −0.342 −0.413 −0.277
Black Protestant −0.283 −0.441 −0.145
Catholic −0.024 −0.089 0.042
Jewish 0.518 0.387 0.647

Party identification
Independent 0.877 0.830 0.923 0.887 0.839 0.934
Democrat 1.662 1.614 1.709 1.683 1.635 1.731

Region
North −0.042 −0.097 0.009 −0.036 −0.091 0.018
South −0.079 −0.124 −0.029 −0.087 −0.135 −0.038
West −0.007 −0.057 0.048 −0.004 −0.058 0.050

Midterm election 0.240 0.085 0.403 0.253 0.051 0.461
(Intercept) −0.869 −0.980 −0.769 −0.877 −1.032 −0.725

Note: Based on 5.000 MCMC samples. Combined results from five imputations. Evolution variances of random walks
and variance of period random effects not shown.

less likely to vote for Democratic candidates.14 My central variables of interest show
expected patterns: Protestants are far less likely to vote Democratic, a tendency
most marked among Evangelical Protestants, followed by Black Protestants. Those
of Jewish faiths are of course more likely to vote for Democratic candidates. Finally,
the estimated Catholic effect is substantively small and statistically indistinguishable
from zero. Note that my results for Catholics and Jewish voters differ from findings
in Brooks and Manza (2004), who use data from 1972–2000. This sensitivity to the
analysis time-span stresses the importance of modeling changing denominational
vote trends. But before analyzing time-varying variants of these effects, I inspect the

14The model does of course allow more detailed investigations of time trends in covariates described
here. For example, a specification of a smoothly time-varying effect of church attendance shows a
slight curvilinear pattern with a decreasing effect starting from 1988 and a slight increase since
2002. However, the focus of this application is one denominational effects – and these results
remain unchanged.
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Figure 2: Penalized spline estimate of age effect f (ai) on propensity of Democratic vote.
Posterior means and 90% highest posterior density regions.

estimated functional form of age and systematic cohort differences.

To gauge the role of individual aging, looking at dozens of estimated spline coeffi-
cients will not be very helpful. Therefore, I plot the estimated functional form of age
on the propensity to vote for the Democrats in Figure 2. It shows posterior means
with highest posterior density regions, which together indicate that age estimates are
not systematically different from zero. This is reflected in the estimated magnitude
of the penalty parameter λ, which is estimated by its inverse as E(1/λ) = 0.002.
This shows that there is virtually no variability between spline coefficients and thus
no deviation from a constant trend. In fact a model that replaces the flexible spline
function of age with a simple linear specification or even a zero coefficient restriction
describes the data just as well.15 Thus, these results provide strong evidence for the
absence of any ‘age effect’. In other words, there is nothing intrinsic in individu-
als’ aging – as opposed to individual socio-economic characteristics and changing
political and social contexts – that would influence voting behavior.

Are there systematic time trends in cohorts’ propensity to vote for the Democrats?
To answer that question, Figure 3 plots posterior means of cohort random effects ξk

and their associated HPD regions. Estimates of ξk can be interpreted as differences
in trends between cohorts after taking into account compositional differences of
the electorate, differences between time periods, and changing trends in the voting

15I re-estimated M3 with these restrictions. A model with a linear age effect has a deviance of 17544
and a DIC of 17614. A model with a zero restriction for age yields a deviance of 17544 and a
DIC of 17612. Thus both show little or no difference in fit to the more complex specification.
Estimated denomination time trends (Figure 4) as well as covariate effects (Table 3) stay the same
in both specifications.
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Figure 3: Cohort random effects ξk. Posterior means and 90% HPD regions.

behavior of religious groups. Overall, Figure 3 suggest that cohorts are of little
relevance in explaining long-term trends in voting behavior in the United States.
This is reflected in an estimated evolution variance for the second order random walk
used to model the cohort random effects ofω2 = 0.005. Its small value indicates that
successive cohort random effects vary little, and instead follow an overall systematic
trend, which here is essentially constant. Only recent cohorts born in the seventies
and early eighties show some tendencies to favor the Democrats, even after including
socio-economic changes such as incomes, education, and denominations. However,
given that these cohorts are at the boundary of our data set, where estimates are
considerable less precise, these finding are very premature.

If cohorts matter little (or not at all) and neither does aging, what does? Estimates
from M2 in Table 3 already showed large time-constant denomination effects. The
more flexible specification in M3 allows denomination effects to vary over time.
More specifically, my proposed model specifies denomination-specific effects as
following a (locally) linear trend, unless changes are suggested by the data. These
smoothed time-varying denomination effects on the Democratic vote are displayed
in Figure 4. Before discussing trends in denomination effects on vote choice, I
compare their average levels to estimates obtained from the simpler, time-constant
model specification (M2, Table 3). It is generally advisable to inspect time-constant
estimates and compare them to more flexible specifications to ensure that sign and
magnitude of time-varying estimates are reasonable. This is the case here. However,
one can immediately discern interesting changes over time, which are obscured by
the simpler specification. Note that many of the found patterns are also likely to be
missed when exploring simpler denomination times linear-time interaction models.
These are included in this model setup as a limiting case, and can be substituted
back into the model if findings suggest the appropriateness of simpler trends (e.g.,
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the almost linear trend found for Catholics below).

Mainline Protestants have moved (even) closer to the center, rendering their voting
behavior almost indistinguishable from the non-religious. This trend towards more
‘centrism’ is markedly reversed for Evangelical Protestants, whose opposition to
voting for the Democrats increases at an almost constant rate since the early eighties,
bringing them close to previous levels of support for Nixon in his landslide victory
of 1972. Most marked is the recent turn of Black Protestants towards Democratic
candidates. This trend is of course most marked for the 2008 election of Barack
Obama. But it is already evident in the re-election of George W. Bush in 2004.16

This demonstrates that when the data overwhelm the prior (which prefers smooth
trends) the model allows for large shifts in estimated effects.

Jewish voters, generally regarded as core constituency for Democratic candidates,
seem to become even closer allies. Starting from the mid eighties their propensity
to vote Democratic has increased markedly. In contrast, time-varying estimates of
Catholic voting behavior confirm the finding from M2 that they do not differ from the
secular population. A model using a constant effect for Catholics fits the data equally
well (with a DIC of 17620). This emphasizes an important characteristic of the
proposed model: simple linear or constant time trends are included as limiting cases
and will be estimated if the data suggest little or no variation over time. This makes
superfluous exhaustive (and problematic) ‘specification searches’ with multiple tests
of a large number of models with linear, quadratic or even higher covariate-by-time
interactions.

After accounting for trends in denomination effects, variation between time periods
that is not explained by denominational trends or cohort differences is captured by
time period random effects ζt , which are displayed in Figure 5. It shows that many
random effects are indistinguishable from zero or close to it, suggesting that most
characteristic features of these elections have been captured by systematic parts
of the model. Obvious exceptions are the swing in the midterm election following
the Watergate scandal, Reagan’s landslide victory in 1980 and re-election in 1984,
and Clinton’s re-election in 1996. Those random effects capture swings in voter
behavior likely to be influenced by current events and conditions – beyond what
can be predicted from individuals’ basic economic and social characteristics. These
results could be improved upon by extending the model to include macro-level
changes in inflation or national or regional unemployment rates – but this beyond
the scope of this illustration.

16This trend reversal is also found by a model with normally distributed random effects. In other
words, this finding is not due to the random walk prior ‘pulling’ up the estimate towards the 2008
election. A model specification where the fixed effect of African-American is allowed to differ in
2008 – capturing the fact that this group was more likely to vote for Obama – yields essentially
the same Black Protestant trend estimate with increased statistical uncertainty.
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4 Conclusion

In this paper, I outlined a general model setup for analyzing age-period-cohort
models. My key contribution concerns three issues. First, I link the model closer
to theoretical ideas about the nature of social change, which is – in the absence of
strong shocks – gradual and evolutionary. By using time-structured priors for cohort
and time-period random effects, I explicitly model dependence of new cohorts and
periods on the past. Shocks or important events can still influence random effect
estimates provided that there is enough evidence for them in the data.

Second, I detail how to estimate changing effects of individual characteristics on
the outcome of interest. For many applications, decomposing a dependent variable
into age, cohort and time period effects is only a first step. Describing how effects of
a small number of theoretically relevant variables change over time can yield new
insights into social and political change, and may explain large parts of previously
unmodeled period or cohort effects. Again, I propose to model changing effects as
essentially gradual, unless they are upset by some strong event. The slow convergence
of Mainline Protestants towards the center of the political spectrum on the one hand,
and the reversal in Black Protestants’ voting alignments on the other, illustrate that
the model can capture gradual change as well as large-scale shifts in behavior.

Third, I extend the model to deal with situations where little previous knowledge
about the shape of a possible age effects exists and researchers may worry that
misspecification of its functional form may lead to distorted results for periods and
cohorts. Age – or any other covariate for which strong nonlinearities are expected –
can be estimated via penalized spline regressions. Embedding this nonparametric
model in the already existing model allows for straightforward and robust inference.
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Not every part of my model setup described here will be necessary, or even sensible,
in all settings. However, its different building blocks enable flexible construction
of models tailored to all kinds of research questions where focus lies on change
rather than static relationships. Thus, even if one’s main interest is not in a ‘variance
decomposition’ of age-period-cohort effects, the framework outlined here hopefully
contributes to the study of the dynamics of individual behavior.

Appendix

A1. Smoothness prior

To derive the multivariate penalty prior used in (14) start from a conditional random
walk prior of first order (i.e., the stochastic equivalent of first differences:)

ηl |ηl−1, . . . ,η1 ∼ N(ηl−1,τ2)

It’s multivariate variant is:

p(η|τ2) =
L
∏

l=1

p(ηl |ηl−1, . . . ,η1)

which can be refactored into

p(η1)
L
∏

l=2

p(ηl |ηl−1)

using the law of total probability. Assuming a constant prior for η1 and using the
first order Markov property, we get after some rearranging:

p(η|τ2)∝
L
∏

l=2

1
p

2πτ2
exp
�

−
1

2τ2
(ηl −ηl−1)

2
�

=
1

(2πτ2)(L−1)/2
exp

�

−
1

2τ2

L
∑

l=2

(ηl −ηl−1)
2

�

=
1

(2πτ2)(L−1)/2
exp
�

−
1

2τ2
η′Pη
�

with P as appropriate penalty matrix. P is constructed by using the first difference
matrix D with P = D′D. Higher order penalties can by using appropriate difference
matrices.
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