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Abstract

This paper examines tests for a unit root in skip-sampled data. A generalisation of the usual
discrete time framework is proposed that allows for a continuous time detrending procedure
prior to estimation of the resulting discrete time dynamic model that embodies exactly the
restrictions imposed by the process of temporal aggregation. A simulation study reveals
that taking these restrictions into account can yield improved size and power properties
compared to a statistic based on a model that ignores the temporal aggregation, and an
empirical illustration of the methods using monthly producer price data for the UK and US
is provided. Further avenues for investigation in future work are also highlighted.
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1. INTRODUCTION

The research of John Nankervis was based firmly in the analysis of time series, and some

of his most influential work was concerned with the study of tests for a unit root, a topic

that established itself at the forefront of econometric research in the late 1980s and into

the 1990s. Prominent examples of John’s contributions to this literature include DeJong,

Nankervis, Savin and Whiteman (1992a, 1992b).1 One of the main findings to emerge from

this work (and that of others) was that many unit root tests suffer from significant size

distortions and low power, leading DeJong, Nankervis, Savin and Whiteman (1992a, p.432)

to conclude that “inferences based exclusively on tests for integration may be fragile.” A

significant volume of subsequent research has attempted to develop tests with improved size

and power properties, and the choice of tests available to applied researchers is now quite

substantial.

A popular approach to testing for a unit root nowadays derives the test statistic from

a sufficiently long autoregressive approximation based on data that have been detrended

prior to estimation. Choice of lag length (k) in the autoregression is a critical part of the

process, and Ng and Perron (2001) have proposed modified information criteria designed for

the optimal choice of k in the construction of unit root test statistics that allow k to grow

at an appropriate rate with sample size. A key advantage of employing an autoregression as

the basis for the unit root test is that it is easy to estimate (repeatedly, for different values of

k) with standard regression software. However, one reason why the choice of k is so critical

is that the autoregression will typically be misspecified and so k needs to be large enough to

capture the serial correlation in the detrended series. For example, if the series is in fact of

autoregressive moving average (ARMA) form (a type of process often employed to evaluate

the properties of tests in simulation studies) then k may have to be large to account for the

serial correlation induced by the moving average (MA) component.

An area where moving average disturbances arise naturally is when the observed series is

temporally aggregated.2 For example, discrete time observations generated by an underlying

continuous time autoregressive process of order p satisfy an ARMA(p, p − 1) process if the

variable is a stock (observed at single points in time i.e. skip-sampled) or an ARMA(p, p)

process for a flow variable (observed as an integral of the underlying rate of flow over the

sampling interval); see, for example, Bergstrom (1984, pp.1201–1202 in particular). The

same discrete time ARMA orders have also been shown to hold by Chambers and Thorn-

ton (2012) if the underlying continuous time process is ARMA(p, q) (with q < p). One

advantage of using an underlying continuous time process is that the orders of the resulting

ARMA process for the discrete time observations are invariant to the sampling frequency,

an invariance property that is not universally true when the underlying process operates in

discrete time on a finer timescale than the observations; see, for example, Weiss (1984). The

observed temporally aggregated discrete time process also inherits its integration order from

1I based my presentation at John’s Memorial Conference at the University of Essex in July 2013 on these
two articles in a personal account of how I first came to know John’s work as a young lecturer in the early
1990s. I would particularly like to thank Gene Savin for the additional insight and background that he was
able to give me concerning these articles.

2We use the term ‘temporal aggregation’ in a generic sense to denote the discrete time sampling of both
stock and flow variables but note that sometimes it is used in the literature purely for the latter while the
former is referred to as skip-sampling or systematic sampling.
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the underlying continuous time process, as demonstrated by Phillips (1991), who also shows

that the property of cointegration of multiple series is preserved under temporal aggregation.

For example, the discrete time process will have a unit root (and be integrated of order one)

if the continuous time process has a zero root (integrated of order one in continuous time).

The above preservation of integration order under temporal aggregation suggests that

standard unit root tests can be applied to temporally aggregated data to determine the order

of integration of the underlying process. The presence of MA disturbances does suggest,

however, that the number of lags in the autoregression used to carry out the test may have

to be quite large in order to capture adequately the serial correlation properties. However, if

the temporal aggregation is to be taken seriously, it is possible that there may be efficiency

gains to be made by accounting for the restrictions on the discrete time data implied by the

process of temporal aggregation. For example, a continuous time AR(p) process contains p

AR parameters plus the variance of the disturbance, which implies that, if the variable is

a stock, the p+ (p− 1) discrete time ARMA parameters (plus the innovation variance) are

functions of this smaller number of underlying parameters. It therefore seems apposite to

investigate whether accounting for temporal aggregation yields improvements in testing the

order of integration in a time series, and this investigation is the aim of the present paper.

The paper is organised as follows. Section 2 summarises a typical approach to testing for

the presence of a unit root in a discrete time series, including a discussion of generalised least

squares (GLS) data detrending. The framework is then modified to show how the procedure

can be carried out in a continuous time setting with skip-sampled data, allowing for an

arbitrary sampling interval and data span. Theorem 1 establishes the appropriate continuous

time GLS detrending procedure based on skip-sampled discrete time data, and two unit root

tests are discussed – one is the normalised estimator of the continuous time (zero root)

parameter, the other being a likelihood ratio statistic. Section 3 provides an illustrative

example of the methods at work in a model driven by an AR(1) disturbance in continuous

time. The discrete time skip-sampled data are shown in Theorem 2 to satisfy a discrete time

ARMA(2,1) process and an explicit representation for the MA(1) disturbance is shown, in

Proposition 1, to have a strictly positive moving average parameter. This representation

provides a particularly convenient basis for computing the Gaussian likelihood function. In

order to investigate the effectiveness of the two tests and to compare them with a test based

on an unrestricted discrete time ARMA(2,1) model that ignores the temporal aggregation,

a simulation study is conducted in section 4 using the model in section 3 as a basis for

data generation. The test results obtained from 10,000 replications are presented in four

tables, allowing for two types of detrending, and both raw and size-adjusted power results

are reported. The main conclusion is that the tests that allow for temporal aggregation

generally outperform the test that does not, implying that in circumstances where temporal

aggregation is an issue, then it should be taken seriously in the conduct of unit root tests.

An empirical illustration of the methods is provided in section 5 using monthly data on

producer price indices for the UK and the US. An appendix contains the proofs of the two

theorems and proposition in the main text, as well as an additional lemma that is utilised

in the proof of Proposition 1.

The following notation will be used throughout: L denotes the lag operator such that
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Ljxt = xt−j ; D denotes the mean square differential operator which satisfies

lim
h→∞

E

[
x(t+ h)− x(t)

h
−Dx(t)

]2

= 0

for some continuous time process x(t) that is mean square continuous; xt ∼ iid(0, σ2
x) means

that xt is independently and identically distributed with mean zero and variance σ2
x; W (r)

denotes a standard Wiener process; Wc(r) denotes an Ornstein Uhlenbeck process with

parameter c that satisfies dWc(r) = cWc(r)dr + dW (r) (so that W0(r) = W (r)); ⇒ denotes

weak convergence; and integrals such as
∫ 1

0 Wc(r)dW (r) will be denoted more simply as∫ 1
0 WcdW for notational convenience.

2. THE TESTING FRAMEWORK

A common framework for testing a scalar random process, yt, for the presence of a unit root

in discrete time assumes that yt satisfies

yt = dt + ut, ut = ρut−1 + vt, vt = δ(L)εt, t = 1, . . . , T, (1)

where dt is a deterministic time trend, ρ = 1 + c/T for some finite constant c, εt ∼ iid(0, σ2
ε ),

δ(z) =
∑∞

j=0 δjz
j , δ0 = 1,

∑∞
j=0 j|δj | < ∞, and T denotes sample size. The constant c is

often referred to as a local-to-unity parameter because it measures the extent of deviations

from a unit root (ρ = 1). The deterministic term, dt, is usually assumed to be a low-order

polynomial in t of the form dt = ψ′zt, where zt = [1, t, t2, . . . , tτ ] and ψ is a (τ + 1)-vector of

coefficients, the cases τ = 0 and τ = 1 receiving most attention; we will also use τ = −1 to

denote the case where no deterministic trend is present.

In practice, the coefficients of ψ are unknown and have to be estimated from the data,

and a form of quasi-differencing – usually referred to as GLS detrending – is often employed.

For a variable xt the quasi-differenced variable is denoted xρ̄t and is defined for t = 1, . . . , T

as xρ̄t = xt − ρ̄xt−1 (with xρ̄0 = x0) for some appropriate choice of ρ̄ = 1 + c̄/T . Elliott,

Rothenberg and Stock (1996) recommend that when τ = 0, c̄ = −7 and when τ = 1,

c̄ = −13.5, these values being chosen so as to make the asymptotic local power function of

tests tangent to the asymptotic Gaussian power envelope at the point where power equals

one half. The detrended series is obtained as ydt = yt − ψ̂′zt where ψ̂ is obtained from a

regression of yρ̄t on zρ̄t .

A large number of tests exist for assessing whether ρ = 1 based on the detrended variable

ydt , and many attempt to replicate the asymptotically pivotal distribution that is obtained

under the ideal (but typically unrealistic) setting where vt = εt ∼ iid(0, σ2
ε ). Often a test is

based on an estimator of ρ, say ρ̂, or on its associated t-ratio for testing ρ = 1. In the former

case, the limiting distributions of the normalised estimator of ρ are as follows when T →∞:

T (ρ̂− ρ)⇒



∫ 1
0 WcdW∫ 1

0 W
2
c

, τ = −1, 0,

∫ 1
0 VcdW∫ 1

0 V
2
c

, τ = 1,

(2)
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where the process Vc(r) arising when τ = 1 is given by

Vc(r) = Wc(r)− r
(
λWc(1) + 3(1− λ)

∫ 1

0
sWc(s)ds

)
and λ = (1− c̄)/(1− c̄+ c̄2/3). Under the null hypothesis (ρ = c = 0) critical values for these

distributions are widely available. In order to use these distributions for inference in practice

it is necessary to deal in an appropriate way with the serial correlation that manifests itself

in vt. Some approaches to this include the nonparametric adjustments proposed by Phillips

and Perron (1988) as well as the fully parametric autoregressive approximations as in Said

and Dickey (1984) and the M -type tests of Ng and Perron (2001).

To analyse situations in which the variable of interest evolves at a finer timescale than

the sampling frequency, let N denote the span of time over which the variable is observed,

and let h denote the sampling interval (i.e. the length of time between observations – assumed

constant), so that the number of observations is given by T = N/h. The continuous time

variable y(t) is then assumed to satisfy

y(t) = d(t) + u(t), Du(t) = αu(t) + v(t), φ(D)v(t) = θ(D)ε(t), t ≥ 0, (3)

where d(t) is a deterministic trend function, α = c/N , φ(z) = zp +
∑p−1

j=0 φjz
j , θ(z) =

1 +
∑q

j=1 θjz
j , ε(t) is a continuous time white noise process with mean zero and variance

σ2
ε , and q < p to ensure that the spectral density of v(t) is integrable (and, hence, that v(t)

has finite variance). It is also assumed that the roots of the equation φ(z) = 0 have negative

real parts to ensure that v(t) is covariance stationary. The deterministic trend function is

assumed to be of the form d(t) = ψ′z(t), where z(t) = [1, t, t2, . . . , tτ ] and ψ is a (τ + 1)-

vector of coefficients, as in the discrete time setup except that t is now continuous rather

than discrete. The observations will be assumed to be of the form yth = y(th) (t = 1, . . . , T )

so that the observed sequence is

y0, yh, y2h, . . . , yTh, (4)

where yTh = y(N).3 Note that the objective is to test the null hypothesis that α = 0

(equivalently, that c = 0) and that stationary alternatives correspond to α < 0 (equivalently,

c < 0).

According to (3), the trend-adjusted continuous time variable u(t) = y(t)−d(t) satisfies

the stochastic differential equation

φ̃(D)u(t) = θ(D)ε(t), φ̃(z) = (z − α)φ(z), (5)

which is a continuous time ARMA(p + 1, q) process. When α < 0 the process u(t) is

covariance stationary but when α = 0 it possesses a zero root and is, therefore, integrated,

in which case the variable Du(t) is ARMA(p, q). A discrete time sequence generated by

this specification is shown in Chambers and Thornton (2012) to satisfy the discrete time

3It is also possible to consider the case of flow variables where the observations are instead of the form
yth = h−1

∫ th

th−h
y(r)dr, which induces an additional moving average order into the disturbances of the discrete

time representations; see Working (1960).
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ARMA(p+ 1, p) model

uth = f1uth−h + . . .+ fp+1uth−(p+1)h + wth, (6)

where wth is MA(p) and the coefficients f1, . . . , fp+1 depend on α as well as the coefficients

of the autoregressive polynomial φ(z). The zero root in continuous time translates into a

unit root in discrete time so that, when α = 0, ∆huth = uth−uth−h satisfies the ARMA(p, p)

model

∆huth = f10∆huth−h + . . .+ fp0∆huth−ph + wth, (7)

where wth is also MA(p) and f10, . . . , fp0 depend only on the coefficients of φ(z). The serial

correlation arising from the MA disturbance would typically result in the need for additional

lags (beyond p) in a unit root test based on an autoregressive approximation. Taking the

temporal aggregation into account provides a more parsimonious representation.

It is possible to detrend the data in continuous time even though observations are avail-

able only at discrete intervals of length h. In essence, what is required is estimation of the

equation

Dy(t) =
c̄

N
y(t) + ψ′

(
Dz(t)− c̄

N
z(t)

)
+ e(t) (8)

for a suitable choice of c̄, where e(t) is a continuous time random disturbance process. This

representation is motivated by noting that GLS detrending in discrete time is based on a

regression that can be written in the form

∆yt −
c̄

T
yt−1 = ψ′

(
∆zt −

c̄

T
zt−1

)
+ et,

because yρ̄t = ∆yt − (c̄/T )yt−1 and similarly for zρ̄t . The following Theorem presents the

results for the case τ = 1.

Theorem 1. Let y(t) be generated according to (3) with the observed sequence given by

(4). Then GLS detrending in continuous time when τ = 1 is carried out by estimating the

equation

Dy(t) =
c̄

N
y(t)− ψ0

c̄

N
+ ψ1

(
1− c̄

N
t
)

+ e(t), t > 0, (9)

where c̄ is the detrending parameter. Estimation of (9) is equivalent to the following regres-

sion using the discrete time observations:

yth − ec̄/T yth−h = ψ0

(
1− ec̄/T

)
+ ψ1

(
th− ec̄/T (th− h)

)
+ eth, t = 1, . . . , T, (10)

where eth is a discrete time random disturbance.

The form of continuous time detrending equation (9) arises because, when τ = 1, we

have z(t) = [1, t]′ and Dz(t) = [0, 1]′. The discrete time equivalent in (10) is of the same

form as in the usual discrete time approach except that ec̄/T replaces 1 + c̄/T (which are the

first two terms of the series expansion of ec̄/T ) and we are explicitly allowing for an arbitrary

sampling interval h; the deterministic terms on the right-hand-side of (10) are clearly of the

form ψ′(zth − ec̄/T zth−h). Theorem 1 also encompasses the case τ = 0 which arises when

ψ1 = 0. If ψ̂ denotes the estimator of ψ obtained from (10) then the detrended series is

given by ydt = yt − ψ̂′zth.
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Testing the hypothesis that α = 0 in (3) typically requires an estimate of this key

parameter. The simple model Du(t) = αu(t) + ε(t) obtained by setting φ(z) = θ(z) = 1 in

(3) is sufficient for highlighting some of the key results. Discrete time data generated by this

model satisfy uth = eαhuth−h+wth where wth is white noise with variance σ2
ε (e

2αh−1)/(2α).

Recall that α = c/N . For τ = −1 Phillips (1987) shows that the OLS estimator, f̂ , of

f = eαh satisfies

T (f̂ − f)⇒
∫ 1

0 WcdW∫ 1
0 W

2
c

as T →∞, which is, of course, the distribution in (2). Noting that α̂ = ln(f̂)/h enables the

following result to be obtained via a Taylor expansion:

N(α̂− α)⇒
∫ 1

0 WcdW∫ 1
0 W

2
c

(11)

as N →∞; see also Zhou and Yu (2010) who also analyse what happens when h→ 0 either

simultaneously or when N is fixed. Note that it is data span, N , rather than sample size,

T , that is the appropriate normalisation for this distribution. The distribution in (11) also

holds under GLS detrending when τ = 0 but when τ = 1 we obtain

N(α̂− α)⇒
∫ 1

0 VcdW∫ 1
0 V

2
c

, (12)

also as in (2).

Although the above results are obtained under a simple model which abstracts from

additional serial correlation, it is, nevertheless, the pivotal distributions reported above

that unit root test statistics would attempt to achieve (under the null of c = 0). Under

more general and realistic scenarios the objective would be to estimate the continuous time

parameter α on the basis of the discrete time ARMA(p+1, q) representation (6). A common

approach to estimating continuous time models based on discrete time observations is to

maximise the likelihood function under the assumption of a Gaussian distribution, and

a number of approaches are available for the construction of the likelihood function. The

approach of Bergstrom (see the articles collected in Bergstrom (1990), for example) is to base

the likelihood on the T × 1 vector w = [wh, . . . , wTh]′ with covariance matrix Γw = E(ww′)

which, due to the MA properties of wth, is known to have a sparse Toeplitz form – only the

elements on the principal diagonal and the q − 1 neighbouring bands are non-zero. If φ and

θ denote the vectors of AR and MA parameters, respectively, then this approach leads to

the form (ignoring a constant)

Lw(α, φ, θ, σ2
ε ) = −1

2
ln |Γw| −

1

2
w′Γ−1

w w, (13)

and Bergstrom (1990) proposes methods to deal with the efficient inversion of the covariance

matrix. Provided the serial correlation is dealt with appropriately (for example, the orders p

and q are chosen correctly) the normalised estimator Nα̂ will have the limiting distributions

in (11) and (12) above (with c = 0), depending on the form of detrending employed, under

the null hypothesis that α = 0. Such results in likelihood-based approaches to unit root

testing have been demonstrated by, for example, Yap and Reinsel (1995) and Shin and
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Fuller (1998). An alternative to using the statistic Nα̂ for inference would be to use a

likelihood ratio statistic. Denoting unrestricted estimates as θ̂, for example, and restricted

estimates under the null of α = 0 as θ̂0, for example, leads to the statistic

LR = 2
[
Lw(α̂, φ̂, θ̂, σ̂2

ε )− Lw(0, φ̂0, θ̂0, σ̂
2
ε,0)
]
.

In the case of no detrending (τ = −1) Yap and Reinsel (1995) have shown that, under the

null hypothesis (where c = 0 and noting that W0 = W ),

LR⇒

(∫ 1
0 WdW

)2

∫ 1
0 W

2
(14)

as T → ∞. We conjecture that a similar result would arise under GLS detrending with

τ = 0 and with W replaced by V0 when τ = 1; this appears to be borne out by simulations

reported in the next section.

3. AN ILLUSTRATIVE EXAMPLE

In order to investigate the performance of unit root tests with temporally aggregated data it

is necessary to be able to generate the discrete time data {yth}Tt=1 that satisfy the temporal

aggregation scheme exactly. From (3) it is obvious that yth = dth+uth where dth = d(th) and

uth = u(th); the task, therefore, is to generate {uth}Tt=1 to satisfy the underlying continuous

time mechanism in (3). Given that u(t) depends on v(t) we consider the following continuous

time AR(1) specification for v(t):

Dv(t) = φv(t) + ε(t), t > 0, (15)

where φ < 0 to ensure that v(t) is stationary; in effect we have taken φ(z) = z−φ and θ(z) = 1

in (3). This implies that the detrended variable u(t) is the continuous time ARMA(2,1)

process

D2u(t) = (φ+ α)Du(t)− φαu(t) + ε(t); (16)

under the null hypothesis (α = 0) u(t) satisfies D2u(t) = φDu(t) + ε(t) as it is now Du(t),

rather than u(t) itself, that is a stationary continuous time process. An exact discrete time

representation for continuous time ARMA(p, q) processes can be found in Chambers and

Thornton (2012) whose Corollary 1 is relevant to the (stock) sampling scheme considered

here; we are also, in effect, dealing with a special case of the continuous time ARMA(2,1)

process analysed in Thornton and Chambers (2013) in which the continuous time moving

average parameter is set equal to zero. However, we follow an alternative method of deriving

the discrete time representation here that proceeds in two steps – first, the discrete time

representation for uth based on the equation Du(t) = αu(t) + v(t) is obtained; secondly,

the exact form for the disturbance in this representation is obtained based on (15). A

unique feature is that an exact discrete time representation for the integral of a function of

a continuous time process is obtained – see the proof of Theorem 2 for details (in particular,

the variable ζth defined in (24)).

Theorem 2. Let u(t) satisfy Du(t) = αu(t) + v(t) where v(t) is generated according to (15)

7



with v(0) given. Then the sequence u0, uh, u2h, . . . , uTh, where uth = u(th), satisfies:

(i) when α 6= 0,

uth = (eαh + eφh)uth−h − e(α+φ)huth−2h + wth, t = 1, . . . , T, (17)

where wth is an MA(1) process with variance and autocovariance given by, when α 6= φ,

γ0 = E(w2
th) =

σ2
ε

(φ− α)2

[
(e2αh + 1)

(
e2φh − 1

2φ

)
+ (e2φh + 1)

(
e2αh − 1

2α

)

−2

(
e2(φ+α)h − 1

φ+ α

)]
,

γ1 = E(wthwth−h) =
σ2
ε

(φ− α)2

[
(eφh + eαh)

(
e(φ+α)h − 1

φ+ α

)
− eαh

(
e2φh − 1

2φ

)

−eφh
(
e2αh − 1

2α

)]
,

and when α = φ,

γ0 = σ2
ε

[
e4αh − 1

4α3
− he2αh

α2

]
,

γ1 = σ2
ε

[
heαh

(
e2αh + 1

)
4α2

−
eαh

(
e2αh − 1

)
4α3

]
;

(ii) when α = 0,

∆huth = eφh∆huth−h + wth, t = 1, . . . , T, (18)

where ∆h = 1− Lh and the autocovariances of wth are given by

γ0 = E(w2
th) =

σ2
ε

φ2

[
h(e2φh + 1)−

(
e2φh − 1

φ

)]
,

γ1 = E(wthwth−h) =
σ2
ε

φ2

[(
e2φh − 1

2φ

)
− heφh

]
.

Theorem 2 demonstrates that uth is an ARMA(2,1) process under the maintained hy-

pothesis while ∆uth is ARMA(1,1) under the null. Note that the variance and autocovariance

of wth are functions of all the parameters of the continuous time model, and these restrictions

need to be taken into account in estimation in order to account properly for the temporal

aggregation in the observed variable. Moreover it can be shown that the autocovariance, γ1,

is strictly positive; see Lemma 1 in the Appendix. Although one representation of the log-

likelihood was provided in (13) we follow here an alternative approach based on an explicit

MA(1) representation of wth given below.

Proposition 1. Let wth be the disturbance process defined in Theorem 2 with the stated

variance (γ0) and autocovariance (γ1). Then wth has the representation

wth = ηth + θηth−h, (19)
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where 0 < θ = (γ0 − d)/(2γ1) < 1, d =
√
γ2

0 − 4γ2
1 , and ηth is a white noise process with

mean zero and variance σ2
η = γ1/θ.

Note that Proposition 1 is valid both when α 6= 0 and when α = 0. An alternative but

equivalent representation for σ2
η is σ2

η = γ0/(1 + θ2), and this expression can be shown to be

equal to the one in Proposition 1 by some straightforward algebra.4 In view of Proposition

1 we can derive the Gaussian likelihood by taking ηth ∼ N(0, σ2
η), resulting in (apart from a

constant)

Lη(α, φ, σ
2
ε ) = −T

2
lnσ2

η −
1

2σ2
η

T∑
t=1

η2
th. (20)

For given values of (α, φ, σ2
ε ) the residuals can be computed using the formula

ηth = uth − (eαh + eφh)uth−h + e(α+φ)huth−2h − θηth−h.

The two likelihood-based statistics are, then, the normalised estimator of α, Nα̂, and the

likelihood ratio statistic LR = Lη(α̂, φ̂, σ̂
2
ε ) − L(0, φ̂0, σ̂

2
ε0), where φ̂0 and σ̂2

ε0 denote the

estimated values of φ and σ2
ε , respectively, when the restriction α = 0 is imposed.

4. SIMULATION RESULTS

We explore three tests for the existence of a unit root in the observed series yth based

on the model in section 3. Two of the tests take into account the fact that the data are

temporally aggregated, and both are based on the Gaussian likelihood function. The first

is the normalised estimator of α (normalised by span, rather than sample size), Nα̂, based

on the exact discrete time representation in Theorem 2, the second is the likelihood ratio

statistic, LR. In order to examine the specific role that temporal aggregation is playing

when carrying out tests using aggregated data, the third test is based on a discrete time

ARMA(2,1) model that ignores the temporal aggregation. The model, based on (1), is given

by

yt = dt + ut, ut = ρut−1 + vt, vt = κvt−1 + εt,

and the statistic considered is T (ρ̂ − 1), where ρ̂ denotes the estimator of ρ obtained by

maximising the Gaussian likelihood function.5

In the simulations two values of the detrending parameter are considered, τ = 0, 1,

these being the most relevant from an empirical point of view, while two values of the

stationary continuous time parameter are used, φ = {−0.5,−0.25}. In view of the asymptotic

distribution for α̂ being dependent on N rather than on T or h, we fix h = 1 and consider

two values for the span, N = {120, 240} (so that T = {120, 240} as well). These values can

be interpreted as corresponding to 10 and 20 years of monthly data or 30 and 60 years of

quarterly data. Nine values of the local-to-unity parameter, c, are considered, covering the

4It would, in principle, be possible to extend Proposition 1 to higher-order MA processes although the
complexity of deriving the solution increases as the MA order increases.

5An earlier version of this paper used a statistic based on a misspecified autoregression in which the lag
length was chosen by minimising a modified information criterion proposed by Ng and Perron (2001). The
statistics used in the current paper allow a more direct investigation of the effects of accounting for temporal
aggregation.
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interval −20 to 0 inclusive in steps of length 2.5. A total of 10,000 replications were carried

out for each of the four combinations of φ and N . Asymptotic critical values for the test

statistics under the null at the 5% significance level were obtained for Nα̂ from the (exact)

values reported in Perron (1989) for τ = 0 (equal to −8.038) and Chambers (2013) for τ = 1

(−16.594), while for the LR statistic they were obtained by simulation using one million

replications of 10,000 observations yielding the values 4.133 (for τ = 0) and 8.118 (τ = 1).6

Table 1 reports the values of some of the discrete time parameters that correspond to

the various continuous time parameters. Although the same values of c are used for each

value of N it is worth noting that the values of α = c/N are much further away from zero

when N = 120 than when N = 240 so it might be expected that unit (zero) root tests would

be more powerful in the former case for each value of c. The coefficient eφh that appears in

the discrete time representation in Theorem 27 is larger for smaller (absolute) values of φ;

in fact, eφh = 0.6065 when φ = −0.5 and eφh = 0.7788 when φ = −0.25. These differences

can also be expected to have an impact on the performance of the tests.

The size and power properties of the three test statistics are reported in Tables 2–5.

The first two contain the results for τ = 0, with Table 2 containing the size and raw power

of the tests and Table 3 containing the size-adjusted power. Tables 4 and 5 report the

same information for the case τ = 1. A test can have high power due to it having a larger

than nominal size and so the size-adjusted power results are also reported so as to put the

comparison of the tests on the same empirical 5% level. Taking Table 2 first, it is apparent

that the size of the LR test is closest to the nominal 5% level except when N = 240 and

φ = −0.25, a situation where both continuous time-based tests are under-sized. Otherwise

the size of Nα̂ is slightly better than T (ρ̂ − 1). There is a fiarly clear ranking in terms of

raw power, however, with Nα̂ tending to have the highest power, followed by T (ρ̂− 1) and

then LR, although the poorer performance of LR is undoubtedly due it not suffering from

the size distortions of the other two tests. The size-adjusted power results in Table 3 put all

three tests on the same empirical 5% size footing and show that both continuous time-based

tests dominate T (ρ̂− 1) with Nα̂ having highest size-adjusted power for smaller values of c

i.e. those values of α closest to the null of α = 0. For the case of τ = 1 detrending Table 4

shows that the sizes of the tests tend to be slightly larger than for the τ = 0 case but again

it is the LR test that is closest to the nominal 5% level. In terms of raw power the ranking

tends to be Nα̂ > T (ρ̂− 1) > LR but for size-adjusted power Table 5 indicates the ranking

Nα̂ > LR > T (ρ̂−1) although T (ρ̂−1) does better than LR when N = 120 and φ = −0.25.

In summary the evidence, at least based on these simulations, appears to be that taking

temporal aggregation into account can result in tests with better size and power properties

than tests that ignore the temporal aggregation restrictions, even though the latter are based

on an ARMA model with the correct orders.

6Yap and Reinsel (1995) report the value 8.16 but used a degrees of freedom adjustment in calculating
their corresponding statistic.

7This is also the AR(1) coefficient for ζth, the disturbance in the representation (24) of uth, given in the
Appendix.
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5. AN EMPIRICAL EXAMPLE

We apply the continuous time unit root tests to monthly time series data on the producer

price index for the UK and the US over the period February 1996 to March 2014, yielding a

total of 218 observations. Letting p(t) denote the unobserved price index in continuous time,

and pt = p(t) denote the observed monthly counterpart (for t = 1, . . . , 218), the continuous

time model is defined by the following three equations:

ln p(t) = ψ0 + ψ1t+ u(t), (21)

Du(t) = αu(t) + v(t), (22)

Dv(t) = φv(t) + ε(t). (23)

These equations imply that the detrended variable u(t) = ln p(t) − ψ0 − ψ1t satisfies the

second-order stochastic differential equation given by

D2u(t) = (φ+ α)Du(t)− φαu(t) + ε(t).

The objective is to test the null hypothesis that α = 0 based on the discrete time observations

ln pt.

Defining udt = ln pt − ψ̂0 − ψ̂1t to be the GLS-detrended variable in accordance with

Theorem 1, it follows from Theorem 2 that udt follows the ARMA(2,1) process

udt = (eα + eφ)udt−1 − e(α+φ)udt−2 + ηt + θηt−1, t = 3, . . . , T,

where use has also been made of the result in Proposition 1. Under the null hypothesis

(α = 0) this becomes an ARMA(1,1) in first differences of the form

∆udt = eφ∆udt−1 + ηt + θηt−1, t = 3, . . . , T.

Note that two observations are required for initial conditions, resulting in an effective sample

size of T − 2 = 216 in this application. There is no loss in generality by taking h = 1 here

(with span N = T = 216) as no mixed frequency comparisons are being made. The same

results for the test statistics are obtained when setting h = 1/12, for example, and defining

the span to be N = Th = 18.

The results of the continuous time unit root tests (i.e. the statistics Nα̂ and LR) are

contained in Table 6, which also contains the estimated unrestricted and restricted contin-

uous time models (upon which the test statistics are based) in the lower panel. Both tests

are unable to reject the null hypothesis that α = 0 i.e. that there is a zero root in continuous

time (and a unit root in discrete time).8 The implication is that the continuous time variable

Du(t) (the derivative of the detrended variable u(t)) satisfies the stationary process

D[Du(t)] = φDu(t) + ε(t).

Indeed, the estimates of φ are significantly negative ruling out the possibility of a second

8For comparison, the statistic T (ρ̂ − 1) obtained from an unrestricted discrete time ARMA(2,1) model
yielded a value of −1.6200 for the UK and −12.1392 for the US, neither being able to reject the null that
ρ = 1.
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zero (unit) root in these two series, implying that producer price inflation is not itself an

integrated process. The statistics S4 and S12 reported in Table 6 are portmanteau-type

statistics suggested by Bergstrom (1990, p.160) that have an approximate chi-squared dis-

tribution with 4 and 12 degrees of freedom, respectively (these correspond to the number of

lags of residuals used in their construction); the Table reports the corresponding marginal

probability values of the statistics. The null hypothesis can be interpreted as the model

being adequately specified, at least in terms of capturing the dynamic features of the data.

For the UK price series neither statistic is able to reject the null but there is some evidence

of misspecification for the US series.

6. CONCLUDING COMMENTS

This paper has attempted to obtain some evidence as to whether there are gains to be made

by taking into account the restrictions implied on discretely-observed data by the process

of temporal aggregation when constructing unit root tests. A general framework has been

proposed which, effectively, enables GLS detrending to be carried out in continuous time

prior to estimating the continuous time parameter of interest in a discrete time ARMA

model that accounts for the temporal aggregation. Simulations suggest that this approach

leads to test statistics with better size and power properties than a test, based on an ARMA

model of the correct orders, that ignores the temporal aggregation.

While the results reported here are encouraging, they also call for further work. For

example, extending the framework to allow for a flow variable would be a logical next step.

This would result in an additional order of moving average that may further enhance the

advantages of accounting for the temporal aggregation. It would also be interesting to

examine the effects in simulations of more general continuous time ARMA processes, such

as in (3), using the exact discrete time models of Chambers and Thornton (2012), which

would have the potential effect of increasing both the AR and MA orders compared to the

simulations conducted here. Of course, all of the above could be analysed in a more detailed

theoretical study to derive the asymptotic properties of the test statistics than has been

carried out here and would be an important avenue to pursue.9

It is perhaps appropriate at this stage to return to the contributions of John Nankervis

mentioned in the introductory paragraph to this paper. In the concluding section of DeJong,

Nankervis, Savin and Whiteman (1992b, p.342) the authors, when reflecting on the simula-

tion results they have obtained, state: “Given the slimness of this reed on which unit root

testing now stands, efforts directed toward developing tests with higher power are in order.”

A great deal of work has been carried out since those articles were published in order to

achieve this aim, and it is hoped that the current contribution provides another small step

along this path.

9Indeed, the author has ongoing work on this topic with Roderick McCrorie and Michael Thornton that
will be reported in the future. The current paper can be regarded as a prequel to this work.
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APPENDIX:

Proof of Theorem 1. Let z̃(t) = [−c̄/N, 1 − (c̄/N)t]′ and ψ = [ψ0, ψ1]′. Then (9) can be

written

Dy(t) =
c̄

N
y(t) + ψ′z̃(t) + e(t)

whose solution (which is unique in the mean square sense) is given by

y(th) = e(c̄/N)thy(0) +

∫ th

0
e(c̄/N)(th−s)ψ′z̃(s)ds+

∫ th

0
e(c̄/N)(th−s)e(s)ds, t > 0.

This solution can be used to show that

y(th) = e(c̄/N)hy(th− h) +

∫ th

th−h
e(c̄/N)(th−s)ψ′z̃(s)ds+ eth, t = 1, . . . , T,

where eth =
∫ th
th−h e

(c̄/N)(th−s)e(s)ds. Evaluating the deterministic integral requires the com-

ponents ∫ th

th−h
e(c̄/N)(th−s)ψ0

c̄

N
ds = ψ0

c̄

N

∫ h

0
erc̄/Ndr = ψ0

(
e(c̄/N)h − 1

)
,

∫ th

th−h
e(c̄/N)(th−s)ψ1ds = ψ1

∫ h

0
erc̄/Ndr =

ψ1

c̄/N

(
e(c̄/N)h − 1

)
,

and∫ th

th−h
e(c̄/N)(th−s)ψ1

c̄

N
sds = ψ1

c̄

N

∫ h

0
erc̄/N (th− r)dr

= ψ1
c̄

N
th

∫ h

0
erc̄/Ndr − ψ1

c̄

N

∫ h

0
erc̄/Nrdr

= ψ1th
(
e(c̄/N)h − 1

)
− ψ1

[
e(c̄/N)h

(
h− 1

c̄/N

)
+

1

c̄/N

]
.

Combining these deterministic terms, and noting that the observations are yth = y(th) and

that h/N = 1/T implies that e(c̄/N)h = ec̄/T , results in (10) as required.

Proof of Theorem 2. (i) α 6= 0: It is well known that uth satisfies

uth = eαhuth−h + ζth, ζth =

∫ th

th−h
eα(th−r)v(r)dr; (24)

see, for example, Theorem 1 of Bergstrom (1984) which has been generalised above to allow

for an arbitrary sampling interval h. The objective is to derive the law of motion for ζth,

given that v(t) is assumed to satisfy (15). The solution of (15) yields

v(th) = eφhv(th− h) +

∫ th

th−h
eφ(th−s)ε(s)ds;

substituting this into the definition of ζth yields

ζth = eφh
∫ th

th−h
eα(th−r)v(r − h)dr + wth, wth =

∫ th

th−h
eα(th−r)

(∫ r

r−h
eφ(r−s)ε(s)ds

)
dr.
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The first integral on the right-hand-side can be written (using the substitution s = r − h)∫ th

th−h
eα(th−r)v(r − h)dr =

∫ th−h

th−2h
eα(th−h−s)v(s)ds = eth−h

and so ζth = eφhζth−h +wth. Applying the operator (1− eφhLh) to uth in (24) yields the law

of motion for uth given in the Theorem.

The double integral defining wth can be expressed as the sum of two single integrals.

Taking, first, the case α 6= φ we obtain

wth =

∫ th

th−h

(∫ th

s
eα(th−r)eφ(r−s)dr

)
ε(s)ds+

∫ th−h

th−2h

(∫ s+h

th−h
eα(th−r)eφ(r−s)dr

)
ε(s)ds

=

∫ th

th−h
π1(th− s)ε(s)ds+

∫ th−h

th−2h
π2(th− h− s)ε(s)ds,

where π1(r) = (eφr − eαr)/(φ− α) and π2(r) = (eφheαr − eαheφr)/(φ− α); see, for example,

McCrorie (2000) for details of this procedure. When α = φ we find that

wth =

∫ th

th−h

(∫ th

s
eα(th−s)dr

)
ε(s)ds+

∫ th−h

th−2h

(∫ s+h

th−h
eα(th−s)dr

)
ε(s)ds

but where, now, π1(r) = reαr and π2(r) = eαh(h− r)eαr. Clearly, wth is an MA(1) process

in both cases with autocovariances given by

E(w2
th) = σ2

ε

∫ h

0
π1(r)2dr + σ2

ε

∫ h

0
π2(r)2dr, E(wthwth−h) = σ2

ε

∫ h

0
π1(r)π2(r)dr

woth E(wthwth−jh) = 0 for j ≥ 2. The expressions in the Theorem are obtained by evaluating

these integrals.

(ii) α = 0: In this case the law of motion for uth follows from that in part (i) by setting

α = 0. The autocovariances of the resulting wth process can be obtained by taking the limits

of those in part (i) as α → 0 or by setting α = 0 in the expression for wth and evaluating

the integrals; we follow the second option and find that

wth =

∫ th

th−h

(∫ th

s
eφ(r−s)dr

)
ε(s)ds+

∫ th−h

th−2h

(∫ s+h

th−h
eφ(r−s)dr

)
ε(s)ds

=

∫ th

th−h
π10(th− s)ε(s)ds+

∫ th−h

th−2h
π20(th− h− s)ε(s)ds,

where π10(r) = (eφr − 1)/φ and π20(r) = (eφh − eφr)/φ. The resulting autocovariances are

E(w2
th) = σ2

ε

∫ h

0
π10(r)2dr + σ2

ε

∫ h

0
π20(r)2dr, E(wthwth−h) = σ2

ε

∫ h

0
π10(r)π20(r)dr,

while E(wthwth−jh) = 0 for j ≥ 2. Evaluation of these integrals results in the stated

expressions.
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Proof of Proposition 1. From the representation (19) we obtain

E(w2
th) = γ0 = σ2

η(1 + θ2), E(wthwth−h) = γ1 = θσ2
η.

The second expression implies σ2
η = γ1/θ and so it remains to determine θ. Substituting

into the first expression for σ2
η gives γ0 = (γ1/θ)(1 + θ2), which is a quadratic in θ and can

be written

γ1θ
2 − γ0θ + γ1 = 0.

Let d =
√
γ2

0 − 4γ2
1 . We first show that d > 0 by noting that it can be written in the form

d =
√

(γ0 − 2γ1)(γ0 + 2γ1). Lemma 2 (below) establishes that (γ0 − 2γ1) > 0 and γ1 > 0,

the latter implying that (γ0 +2γ1) > 0, hence the term under the square-root sign is positive.

The roots of the quadratic of interest are

r1 =
γ0 − d

2γ1
, r2 =

γ0 + d

2γ1
.

We shall demonstrate that these roots are reciprocals of each other, and that the smallest

(r1) is the invertible root. If r1 = r−1
2 then it must be the case that

γ0 − d
2γ1

=
2γ1

γ0 + d
,

which implies that (γ0 − d)(γ0 + d) = 4γ2
1 i.e. γ2

0 − d2 = 4γ2
1 . But this is clearly satisfied

by the definition of d and hence the roots are reciprocals of each other. Next, we show that

0 < r1 < 1. Let x = (γ0/γ1)− 2 and note that

r1 =
1

2

(
γ0

γ1
− d

γ1

)
=

1

2

(
x+ 2−

√
x(x+ 4)

)
where we have used the result that

d

γ1
=

√
γ2

0 − 4γ2
1

γ2
1

=

√(
γ2

0

γ2
1

− 4

)
=

√(
γ0

γ1
− 2

)(
γ0

γ1
+ 2

)
=
√
x(x+ 4).

Lemma 1 (below) implies that x = (γ0/γ1) − 2 > 0 and so we need to consider r1 as the

function of x defined above for x > 0. Doing so establishes that r1 is a positive monotonically

decreasing function of x with a maximum point r1 = 1 at x = 0 and, hence, r1 denotes the

invertible root.

Lemma 1. For γ0 and γ1 defined in Theorem 2, γ1 > 0 and γ0 − 2γ1 > 0.

Proof of Lemma 1. We begine with the case where α 6= 0, α 6= φ. It is convenient to

write γ1 in the form

γ1 =
σ2
ε

(φ− α)2

{
eαh

[(
e(φ+α)h − 1

φ+ α

)
−
(
e2φh − 1

2φ

)]

+ eφh

[(
e(φ+α)h − 1

φ+ α

)
−
(
e2αh − 1

2α

)]}
.
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We can ignore the positive scaling factor outside the braces which means that we need to

show that

eαh

[(
e(φ+α)h − 1

φ+ α

)
−
(
e2φh − 1

2φ

)]
> eφh

[(
e2αh − 1

2α

)
−

(
e(φ+α)h − 1

φ+ α

)]
.

It is convenient to multiply through by e−(φ+α)h and to express both sides in terms of the

common denominator M = 2φα(φ+ α); the first term becomes

T1 =
1

M

[
2φα(eαh − e−φh)− α(φ+ α)(eφh − e−φh)

]
=

1

M

[
2φα(eαh − eφh) + [2φα− α(φ+ α)](eφh − e−φh)

]
=

1

M

[
2φα(eαh − eφh) + 2α(φ− α) sinh(φh)

]
,

while applying similar operations to the second term yields

T2 =
1

M

[
2φα(eαh − eφh) + 2φ(φ− α) sinh(αh)

]
.

Consider the difference

T1 − T2 =
2(φ− α)

M
[α sinh(φh)− φ sinh(αh)]

and note that α sinh(φh) − φ sinh(αh) ≶ 0 is equivalent to sinh(φh)/φ ≶ sinh(αh)/α. For

x < 0 the function sinh(x)/x is a decreasing function of x, enabling us to consider the

following cases:

(a) φ < α < 0: here, φ − α < 0, M < 0 and sinh(φh)/φ > sinh(αh)/α, resulting in

T1 − T2 > 0.

(b) α < φ < 0: in this case, φ − α > 0, M < 0 and sinh(φh)/φ < sinh(αh)/α, resulting in

T1 − T2 > 0.

(c) α = φ < 0:

This establishes that γ1 > 0 for all combinations of α and φ when α 6= 0 and α 6= φ; a similar

approach can be used to show that the same result holds when α = φ.

To show that γ0− 2γ1 > 0 we can normalise the difference by the common denominator

M as above and multiply through by e−(φ+α)h to give

γ0 − 2γ1 =
1

M

[
α(φ+ α)e−αh(eαh + 1)2(eφh − e−φh)− 4φα(e(φ+α)h − e−(φ+α)h)

+ φ(φ+ α)e−φh(eφh + 1)2(eαh − e−αh)− 4φα(e−φh + e−αh)(e(φ+α)h − 1)
]
.

Noting that (after expanding the term in brackets and simplifying)

e−αh(eαh + 1)2 = 2[1 + cosh(αh)]

(and similarly for the term with α replaced by φ), and that

(e−φh + e−αh)(e(φ+α)h − 1) = 2 sinh(φh) + 2 sinh(αh),
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the difference can be written (with some further simplification)

γ0 − 2γ1 = 4(α− φ) {α sinh(φh) [1 + cosh(αh)]− φ sinh(αh) [1 + cosh(φh)]} .

The term in braces is ≶ 0 according to whether

r(φ) =
sinh(φh)

φ[1 + cosh(φh)]
≶

sinh(αh)

α[1 + cosh(αh)]
= r(α).

For x < 0 the function sinh(x)/[x(1+cosh(x))] is a positive monotonically increasing function

and so we can consider the following cases:

(a) φ < α < 0: here, α− φ > 0, M < 0 and r(φ) < r(α), resulting in γ0 − 2γ1 > 0.

(b) α < φ < 0: in this case, α− φ < 0, M < 0 and r(φ) > r(α), resulting in γ0 − 2γ1 > 0.

(c) α = φ < 0:

This establishes that γ0 − 2γ1 > 0 for all combinations of α and φ when α 6= 0 and α 6= φ; a

similar approach can be used to show that the same result holds when α = φ.

When α = 0, from Theorem 2 we have

γ1 =
σ2
ε

φ2

[(
e2φh − 1

2φ

)
− heφh

]
.

As the scaling factor is positive we focus on(
e2φh − 1

2φ

)
− heφh = eφh

(
eφh − e−φh

2φ

)
− heφh = eφh

(
sinh(φh)

φ
− h
)
> 0

for φ < 0 as sinh(x)/x > 1 for x < 0.
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Table 1. Discrete time parameter values

h = 1, φ = −0.5, eφh = 0.6065

c −20 −15 −10 −5 0

N = 120

α −0.1667 −0.1250 −0.0833 −0.0417 0.0000

eαh 0.8465 0.8825 0.9200 0.9592 1.0000

γ0 0.3519 0.3664 0.3817 0.3977 0.4146

γ1 0.0868 0.0904 0.0942 0.0982 0.1024

θ 0.2637 0.2639 0.2640 0.2641 0.2641

σ2
η 0.3290 0.3426 0.3568 0.3718 0.3875

N = 240

α −0.0833 −0.0625 −0.0417 −0.0208 0.0000

eαh 0.9200 0.9394 0.9592 0.9794 1.0000

γ0 0.3817 0.3896 0.3977 0.4060 0.4146

γ1 0.0942 0.0962 0.0982 0.1003 0.1024

θ 0.2640 0.2641 0.2641 0.2641 0.2641

σ2
η 0.3568 0.3642 0.3718 0.3795 0.3875

h = 1, φ = −0.25, eφh = 0.7788

c −20 −15 −10 −5 0

N = 120

α −0.1667 −0.1250 −0.0833 −0.0417 0.0000

eαh 0.8465 0.8825 0.9200 0.9592 1.0000

γ0 0.4435 0.4618 0.4810 0.5012 0.5225

γ1 0.1104 0.1150 0.1198 0.1249 0.1302

θ 0.2666 0.2667 0.2669 0.2670 0.2670

σ2
η 0.4141 0.4311 0.4490 0.4679 0.4877

N = 240

α −0.0833 −0.0625 −0.0417 −0.0208 0.0000

eαh 0.9200 0.9394 0.9592 0.9794 1.0000

γ0 0.4810 0.4910 0.5012 0.5117 0.5225

γ1 0.1198 0.1223 0.1249 0.1275 0.1302

θ 0.2669 0.2669 0.2670 0.2670 0.2670

σ2
η 0.4490 0.4583 0.4679 0.4777 0.4877
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Table 2. Size and power of tests: τ = 0

h = 1, φ = −0.5

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 11.2 9.8 5.8 7.0 6.4 5.0

−2.5 25.0 28.3 14.4 19.5 20.7 13.3

−5.0 42.8 48.1 27.1 37.3 43.1 27.7

−7.5 61.0 67.3 44.0 56.8 63.2 45.9

−10.0 74.1 80.3 58.3 73.2 78.7 63.1

−12.5 83.1 87.2 71.6 86.2 88.9 79.2

−15.0 90.0 91.8 82.4 92.5 95.4 87.9

−17.5 93.1 95.3 87.6 96.9 98.0 93.9

−20.0 96.0 97.3 92.2 98.4 99.4 96.7

h = 1, φ = −0.25

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 13.6 12.9 5.0 5.0 4.6 2.8

−2.5 32.4 43.4 10.7 22.1 33.4 12.7

−5.0 49.2 57.5 22.5 39.5 46.2 27.0

−7.5 62.7 66.7 36.1 57.6 66.1 42.5

−10.0 71.1 74.4 48.9 72.0 79.9 57.6

−12.5 77.3 80.8 58.2 82.3 87.3 70.7

−15.0 83.8 86.3 67.1 89.2 93.1 80.3

−17.5 87.7 89.5 74.9 93.4 95.3 86.7

−20.0 89.9 92.1 80.0 96.1 97.3 92.3
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Table 3. Size and size-adjusted power of tests: τ = 0

h = 1, φ = −0.5

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 11.2 9.8 5.8 7.0 6.4 5.0

−2.5 12.0 18.1 12.3 14.3 17.5 13.3

−5.0 21.9 30.1 23.8 29.3 38.0 27.7

−7.5 33.9 46.6 39.1 46.6 57.9 46.0

−10.0 45.7 60.9 53.8 63.4 73.3 63.1

−12.5 55.8 69.0 67.8 77.4 85.4 79.4

−15.0 64.4 74.6 78.1 86.9 93.0 88.0

−17.5 71.2 81.7 85.0 93.1 96.5 93.9

−20.0 75.9 87.0 90.0 96.7 98.8 96.7

h = 1, φ = −0.25

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 13.6 12.9 5.0 5.0 4.6 2.8

−2.5 14.2 34.6 11.0 22.0 33.8 21.2

−5.0 24.7 39.3 22.7 39.4 47.8 41.0

−7.5 39.7 46.6 36.5 57.5 68.1 59.3

−10.0 50.9 52.1 49.4 72.0 81.7 74.4

−12.5 59.3 58.2 58.4 82.3 88.6 84.2

−15.0 65.9 65.7 67.5 89.2 93.6 91.4

−17.5 72.0 72.9 75.1 93.4 95.9 94.4

−20.0 76.4 76.4 80.2 96.1 97.4 97.0
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Table 4. Size and power of tests: τ = 1

h = 1, φ = −0.5

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 13.9 12.4 3.2 11.2 10.1 5.6

−2.5 26.7 31.0 6.4 14.2 18.7 7.5

−5.0 35.4 34.3 10.3 21.1 24.5 11.4

−7.5 43.6 46.5 15.8 31.4 37.0 18.6

−10.0 54.6 58.2 23.5 41.1 46.8 28.5

−12.5 62.3 64.6 32.2 52.8 59.2 38.6

−15.0 68.6 70.4 42.0 63.3 70.2 50.2

−17.5 72.7 76.2 49.2 73.2 80.2 61.0

−20.0 78.7 80.5 58.3 80.4 87.5 70.3

h = 1, φ = −0.25

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 12.8 15.7 1.3 18.2 16.5 4.8

−2.5 18.1 30.1 2.2 22.3 31.6 6.6

−5.0 27.6 47.1 3.6 31.0 50.6 10.2

−7.5 38.5 49.3 5.4 41.8 53.5 17.3

−10.0 50.6 56.3 10.0 50.8 62.2 25.3

−12.5 60.1 65.1 15.4 57.5 67.0 31.8

−15.0 65.2 70.0 20.4 66.8 72.6 42.2

−17.5 72.9 76.7 27.1 73.6 78.6 49.9

−20.0 77.7 80.0 32.2 77.1 81.3 58.2
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Table 5. Size and size-adjusted power of tests: τ = 1

h = 1, φ = −0.5

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 13.9 12.4 3.2 11.2 10.1 5.6

−2.5 10.2 13.1 10.4 5.9 10.9 6.9

−5.0 14.7 18.4 15.8 9.9 15.7 11.0

−7.5 21.5 26.7 23.7 14.8 22.3 17.2

−10.0 29.6 33.8 33.5 20.7 29.5 26.5

−12.5 37.2 42.9 43.5 26.5 38.2 35.8

−15.0 47.0 48.4 53.7 35.6 50.8 47.6

−17.5 53.5 57.6 60.5 44.1 59.6 58.3

−20.0 61.9 64.7 69.9 53.0 69.1 67.7

h = 1, φ = −0.25

N = T = 120 N = T = 240

c T (ρ̂− 1) Nα̂ LR T (ρ̂− 1) Nα̂ LR

0.0 12.8 15.7 1.3 18.2 16.5 4.8

−2.5 7.3 11.8 7.5 6.7 27.5 7.0

−5.0 12.6 17.9 13.3 10.9 34.5 10.7

−7.5 20.3 30.7 19.9 16.9 40.8 17.6

−10.0 28.8 34.4 28.0 25.1 42.5 25.9

−12.5 39.5 42.7 37.9 30.6 43.9 32.7

−15.0 46.0 47.8 44.8 41.4 48.0 43.0

−17.5 55.9 57.9 51.7 48.4 49.8 51.7

−20.0 63.8 67.6 57.4 53.8 52.9 59.3
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Table 6. Unit root tests: UK and US producer prices,

April 1996 – March 2014

UK US

Statistic Critical Statistic Critical
value value

Nα̂ −1.1448 −16.594 −6.6312 −16.594

LR 0.4116 8.118 3.2550 8.118

Continuous time model estimates

Parameter Unrestricted Restricted Unrestricted Restricted

α −0.0053 0.0000 −0.0307 0.0000
(0.0084) (0.0177)

φ −1.1726 −1.1854 −2.0486 −2.1460
(0.1944) (0.1942) (0.4113) (0.4270)

σε 0.0056 0.0056 0.0312 0.0319
(0.0005) (0.0005) (0.0042) (0.0044)

lnL 1185.6476 1185.4418 879.3238 877.6963

S4 0.5150 0.5479 0.0285 0.0572

S12 0.2510 0.2854 0.0124 0.0098

Numbers in parentheses are standard errors; entries for S4 and S12 are

probability values.
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