
SOLVING THE TOP-PERCENTILE TRAFFIC ROUTINGPROBLEM BY APPROXIMATE DYNAMIC PROGRAMMINGANDREAS GROTHEY, XINAN YANGSCHOOL OF MATHEMATICSCOLLEGE OF SCIENCE AND ENGINEERINGTHE UNIVERSITY OF EDINBURGHAbstrat. Multi-homing is used by Internet Servie Provider (ISP) to on-net to the Internet via di�erent network providers. This study investigatesthe optimal routing strategy under multi-homing in the ase where networkproviders harge ISPs aording to top-perentile priing (i.e. based on the θ-th highest volume of tra� shipped). We all this problem the Top-perentileTra� Routing Problem (TpTRP). The TpTRP is a multi-stage stohasti op-timisation problem in whih routing deision should be made before knowingthe amount of tra� that is to be shipped in the following time period. Thestohasti nature of the problem forms the ritial di�ulty of the problem.Solution approahes based on Stohasti Integer Programming (SIP) teh-niques or Stohasti Dynami Programming (SDP) su�er from the urse ofdimensionality whih restrits their appliability. To overome this we suggestto use Approximate Dynami Programming (ADP) whih exploit the stru-ture of the problem to onstrut approximations of the value funtion in SDP.Thus the urse of dimensionality is largely avoided.Keywords: top-perentile priing, multi-homing, stohasti, routing poliy,approximate dynami programming1. IntrodutionInternet Servie Providers (ISPs) do not generally have their own network infras-truture to route the inoming tra� of their ustomers, but instead use externalnetwork providers. Multi-homing is used by ISPs to onnet to the Internet viamore than one network provider. This tehnique is urrently widely adopted toprovide fault tolerane and tra� engineering apabilities [1℄.Traditionally network providers harge ISPs based on a ombination of �xedost and per usage priing. Top-perentile priing is a relatively new and inreas-ingly popular priing regime used by network providers to harge servie providers(although it usually appears as part of a mixed priing strategy), that is quiklybeoming established [6℄. In this sheme, the network provider divides the hargeperiod, say a month, into several time intervals with equal, �xed length. Then, itmeasures and evaluates the amount of data (tra�) sent in these time intervals. Atthe end of the harge period, the network provider selets the tra� volume of thetop q-perentile interval as the basis for omputing the ost. For example, if theharge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10mins, and if top 5-perentile priing is used, the ost omputed by top-perentilepriing is based on the tra� volume of the top 216th interval.1
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2 ANDREAS GROTHEY, XINAN YANGIt has been disussed (e.g. in [6℄) what the optimal multi-homing routing strate-gies looks like under traditional priing regimes and whether they are eonomiallyviable. In ontrast, very little work has been done on network operation under top-perentile priing. The deterministi problem (in whih we assume that we know allthe tra�s in advane) has been analysed in [2℄, where the authors build a mixed-integer linear programming model to evaluate if multi-homing is eonomially viableand develop an e�ient B&B algorithm to solve it with ombined top-perentilepriing and �xed ost. In the stohasti ase, Levy et al. in [5℄ develops a prob-abilisti model and provides an analysis of the expeted osts, thus demonstratethat multi-homing an be eonomial e�ient under top-perentile priing thoughthey did not give the optimal routing poliy. On the other hand, Goldenberg etal. [3℄ fous on the development of smart routing algorithms for optimising bothost and performane for multi-homing users under top-perentile priing, but notin the stohasti ase. To the best of our knowledge however, there is no resultdealing with the optimal multi-homing routing poliy under top-perentile priingin the stohasti ase.The purpose of this study is to �nd the optimal routing strategy in order to allowthe ISP to make full use of the underlying networks with minimum ost, when allnetwork providers harge the ISP based on the volume of the top q-perentile timeinterval's tra� (pure top-perentile priing). Under pure top-perentile priing,the ISP an ship several time intervals' tra� via a network without being hargedprovided tra� shipped during the top-perentile time interval is zero. In thefollowing parts of this paper we all this problem, the Top-perentile Tra� RoutingProblem (TpTRP). The TpTRP is a stohasti problem, where the ISP an notantiipate the volume of future time intervals' tra�. Instead, we assume that theISP knows the probabilisti distributions of every time intervals' tra� ahead oftime.In [4℄, we have shown that solving the TpTRP as an SIP is intratable for allbut the smallest instanes, due to the fat that modelling of the top-perentile ostrequires the introdution of integer variables within the last time stage. On theother hand, we suggested a Stohasti Dynami Programming (SDP) model basedon a disretization of the state spae, whih gives routing poliies that outperformany naive routing poliy and whose mean ost is lose to the lower bound givenby the deterministi ase for medium sized instanes. However due to the urse ofdimensionality derived from the disretization in dynami programming, the hugenumber of states prevents the use of the SDP model on larger problem instanes.It has been suggested in [7℄ that Approximate Dynami Programming (ADP) isa promising tehnique to avoid the urse of dimensionality. The fous of this workis on the appliation of ADP to the TpTRP. In the remainder of this report, wepresent the deision spae and justify its appropriateness in Setion 2. In Setion 3,we introdue the urses of dimensionality involved in our SDP model and show howto deal with them with ADP tehniques. Then we give details of our implementationof ADP on the TpTRP problem in Setion 4. Setion 5 gives the numerial resultsand shows how the aggregation with ADP an be used to solve real-world sizedinstanes. Finally we make onlusions in Setion 6.



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 32. Top-perentile Traffi Routing ProblemInstead of building the ADP model diretly, in this setion we would like toinvestigate the important features of the TpTRP problem �rst. This setion gives aformal desription of the TpTRP model and highlights a few of its key prospetiveswhih will be useful in de�ning our set of onsidered deision rules.2.1. Notations and Assumptions.Problem parameters.
• I, |I| = n : The set of network providers.
• Γ : The set of time intervals.
• q : The perentile parameter.
• θ = ⌊|Γ| ∗ q⌋: The index of the top-perentile time interval.
• ci, i ∈ I : The per unit ost harged by network provider i on the top-perentile tra�.We assume that there is no upper bound on the volume of tra� that an beshipped to eah network provider, and no failure ourring in any network duringthe harge period. All network providers divide the harge period into the same

|Γ| time intervals of equal length and use top-perentile priing with a same q. Atthe end of the harge period, ost harged by provider i is Costi = ciyi, if yi is the
θ-th highest volume of tra� shipped to network provider i.

• T τ , τ ∈ Γ : The volume of tra� in time interval τ .We assume that before the routing deision for period τ is made, T τ (ωτ ) is arandom variable depending on the random event ωτ . When the random event ω̂τbeomes known, we use T̂ τ = T τ (ω̂τ ) to represent the realisation of T τ .Deision variables.
• xτ , τ ∈ Γ : The routing deision for time interval τ .Note that xτ should be made and implemented before knowing the whole valueof the random tra� T τ (see Setion 2.3 for detail).2.2. State variable and value funtion. In our problem, at the beginning oftime interval τ , we know all the previous realisations of tra� volumes T̂ t, t =

1, ..., τ − 1 and routing deisions xt, t = 1, ..., τ − 1. The implied usage T̂ t
i =

T t
i (T̂ t, xt), t = 1, ..., τ − 1 of network i an be omputed. Then a ombination of

{T̂ t
i |t = 1, ..., τ − 1; i = 1, ..., n} de�nes the urrent state Sτ of the system. We use

T̂ j,τ
i to represent the j-th highest volume of tra� in T̂ t

i , t = 1, ..., τ −1 and rewrite
Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., τ − 1}.However, under pure top-perentile priing poliy the ost is solely determinedby the θ-th highest volume of tra� shipped by every network provider, at the endof the harging period. We an see that at any time interval τ , tra�s whih aregreater than the urrent θ-th volume of tra� an be the θ-th highest in later stages,thus have an in�uene on the �nal ost. Instead, any tra� whih is no higher thanthe urrent θ-th volume of tra� (namely, tra�s T̂ j,τ
i , j = θ + 1, ..., τ − 1 at timeinterval τ) has no impat on the �nal ost. Noting this, we delete these redundantinformation from the state spae, whih makes the state variable at τ desribed by

Sτ = {T̂ j,τ
i |i = 1, ..., n; j = 1, ..., θ}.



4 ANDREAS GROTHEY, XINAN YANGThe value funtion Vτ (Sτ ) represents the expeted ost for the ISP, given state
Sτ at the beginning of time interval τ and optimal deisions in all future timeintervals.2.3. Implementable Routing Poliies. As mentioned above, in our TpTRPproblem tra� T τ is a random variable, of whih the distribution is known be-forehand. In reality, the tra� is revealed ontinuously over the time period. Thismeans, as shown in Figure 2.1, we annot see the omplete amount of T̂ τ beforethe end of time interval τ .

t(t−1) (t+1)

for stage t+1
make decision

see realization and implemente decision

for stage t
make decisionFigure 2.1: Proess of data revelation and implementation of deisionsHowever, any bit of data must be sent as soon as it is generated instead of waitinguntil the end of time interval τ when the whole tra� T̂ τ has been revealed. There-fore in addition to being non-antiipative with respet to the whole volume T̂ τ , an-other neessary ondition for a feasible routing deision is that it is implementablewithout knowing T̂ τ . In the simplest ase, we an deide at the start of every timeperiod where to send the whole tra� for this period. However, sine the revela-tion of tra� is gradual, more sophistiated routing poliies an be onsidered. Weare, of ourse, limited by what is tehnially implementable. In partiular, we as-sume that perentage based routing poliies (i.e., xτ = (xτ

1 , xτ
2 , ..., xτ

n)T ,
∑

i∈I

xτ
i = 1,where xτ

i represents the proportion of the whole tra� T τ to be routed to networkprovider i) or ut-o� based routing poliies (i.e., xτ = (yτ
1 , yτ

2 , ..., yτ
n)T , where the�rst yτ

1 unit of tra� are sent to provider 1, the next yτ
2 to provider 2 and so forth)or a ombination of these are implementable by operating a 'time sliing' sheme.In this work we onsider a partiular mixed routing poliy. Firstly, we set up aut-o� yτ

i for network provider i, any remaining tra� T̂ τ −
∑

i∈I

yτ
i (if there is) isrouted aording to the proportional deision xτ

i . Thus our feasible deision set is
F = {(xτ

i , yτ
i ) ≥ 0|i = 1, ..., n;

∑

i∈I

xτ
i = 1}.Note that any deision (xτ , yτ ) ∈ F gives an implementable routing deision.When implementing it, we alloate the random tra� T τ aording to the followingrule:

• If ĩ
∑

i=1

yτ
i ≤ T̂ τ <

ĩ+1
∑

i=1

yτ
i for some ĩ ∈ I, we send:� newT τ

i = yτ
i to network provider 1 ≤ i ≤ ĩ,� newT τ

i = T̂ τ −
ĩ

∑

i=1

yτ
i to network provider ĩ + 1,



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 5� newT τ
i = 0 to network provider i > ĩ + 1.

• If T̂ τ ≥
∑

i∈I

yτ
i , we send:� newT τ

i = yτ
i + xτ

i (T̂ τ −
∑

i∈I

yτ
i ) to provider i ∈ I.In the following setion we investigate the proper hoie of ut-o� level yτ , whihgives some idea about the optimal routing poliy.2.4. Revised deision spae.Lemma 2.1. At any time stage τ ∈ Γ, if there are two states 1Sτ = {1T̂ j,τ

i },
2Sτ = {2T̂ j,τ

i } whih satisfy 1Sτ ≤ 2Sτ , i.e., 1T̂ j,τ
i ≤ 2T̂ j,τ

i , ∀i ∈ I, 1 ≤ j ≤ θ. Thenwe have Vτ (1Sτ ) ≤ Vτ (2Sτ ).Proof. We proof this assertion by indution over τ .At τ = |Γ|, we ompute the ost harged on the ISP based on the θ-th highestvolume of tra� sent to every network provider. It is obvious that V|Γ|(
1S|Γ|) ≤

V|Γ|(
2S|Γ|) holds.Now we assume for arbitrary 1Sτ+1 ≤ 2Sτ+1 we know Vτ+1(

1Sτ+1) ≤ Vτ+1(
2Sτ+1).At time stage τ , assume (2x̂τ ,2 ŷτ ) is the optimal routing deision we made forstate 2Sτ = {2T̂ j,τ

i }. Aording to the implementation rule given in Setion 2.3,the amount of tra� newT τ
i sent to network provider i does not depend on the ur-rent state. This means if we apply the same deision set (2x̂τ ,2 ŷτ ) on an arbitrarystate 1Sτ ≤ 2Sτ , every network provider gets the same amount of newT τ

i as whenwe were on state 2Sτ . Thus for every single senario ω̂τ , we will go to 1S̃τ+1 =
Sτ+1(1Sτ ; ω̂τ ;2 x̂τ ,2 ŷτ ) whih is no greater than 2Sτ+1 = Sτ+1(2Sτ ; ω̂τ ;2 x̂τ ,2 ŷτ )on all entries. From the indution we have Vτ+1(

1S̃τ+1) ≤ Vτ+1(
2Sτ+1). Take theexpetation over ωτ we get

Ṽτ (1Sτ ) = Eωτ [Vτ+1(
1S̃τ+1)] ≤ Eωτ [Vτ+1(

2Sτ+1)] = Vτ (2Sτ ).However, the deision set (2x̂τ ,2 ŷτ ) we used might not be optimal on state
1Sτ , whih means the best funtion value Vτ (1Sτ ) ≤ Ṽτ (1Sτ ). Combine these twoinequalities together, we have proved that Vτ (1Sτ ) ≤ Vτ (2Sτ ) holds for ∀τ ∈ Γ.

�From Lemma 2.1 we an see, value funtion Vτ (Sτ ) is non-dereasing with everyentry of the state Sτ . Notifying this, when we make routing deision at every timeinterval we hope the inrease on state omponents an be as small as possible,namely minimise the di�erene between Sτ+1 and Sτ . Assume this minimisationan be represented by |Sτ+1 − Sτ |1 =
∑

i∈I

∑

1≤j≤θ

(T̂ j,τ+1
i − T̂ j,τ

i ), then for networkprovider i we have:
(|Sτ+1 − Sτ |1)i =

{

0, if newT τ
i ≤ T̂ θ,τ

i
newT τ

i − T̂ θ,τ
i , otherwiseThus,

|Sτ+1 − Sτ |1 =
∑

i∈I

(|Sτ+1 − Sτ |1)i =
∑

i∈I

max{newT τ
i − T̂ θ,τ

i , 0}



6 ANDREAS GROTHEY, XINAN YANG
≥ max{

∑

i∈I

newT τ
i − T̂ θ,τ

i , 0} (2.1)

= max{T̂ τ −
∑

i∈I

T̂ θ,τ
i , 0}.Let us de�ne TAdd(S

τ ) = max{T̂ τ−
∑

i∈I

T̂ θ,τ
i , 0}. We all TAdd(S

τ ), the additionaltra�, whih represents the amount of tra� that annot be sent without a�etingthe urrent θ-th highest volume of tra� of any network provider. Aording tothe inequality (2.1), TAdd(S
τ ) is the lower bound of |Sτ+1 − Sτ |1.Lemma 2.2. Assume we are on state Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., θ} at timestage τ ∈ Γ. In the optimal routing poliy whih minimising Eωτ [|Sτ+1 − Sτ |1], wehave yτ
i = T̂ θ,τ

i , ∀i ∈ I.Proof. Firstly, it is obvious to see that with yτ
i = T̂ θ,τ

i , ∀i ∈ I, for every singlesenario ωτ ∈ Ωτ we an guarantee |Sτ+1 − Sτ |1 = TAdd(S
τ ).Seondly, we proof that with any other hoie of yτ

i , we an always �nd senariosin whih ase |Sτ+1 − Sτ |1 > TAdd(S
τ ).

• Assume ∃i0 ∈ I, ŷτ
i0

< T̂ θ,τ
i0

. Then if we get a new tra� T̂ τ whih satis�es
ŷτ

i0
+

∑

i6=i0

T̂ θ,τ
i < T̂ τ <

∑

i∈I

T̂ θ,τ
i , the amount of tra� sent to every networkprovider satis�es� newT τ

i0
= ŷτ

i0
+ x̂τ

i0
(T̂ τ − ŷτ

i0
−

∑

i6=i0

T̂ θ,τ
i );� newT τ

i = T̂ θ,τ
i + x̂τ

i (T̂ τ − ŷτ
i0
−

∑

i6=i0

T̂ θ,τ
i ), ∀i 6= i0.As T̂ τ <

∑

i∈I

T̂ θ,τ
i , we have:

newT τ
i0

< ŷτ
i0

+ x̂τ
i0

(
∑

i∈I

T̂ θ,τ
i − ŷτ

i0
−

∑

i6=i0

T̂ θ,τ
i ) = ŷτ

i0
+ x̂τ

i0
(T̂ θ,τ

i0
− ŷτ

i0
) ≤ T̂ θ,τ

i0
.and

∑

i6=i0

newT τ
i = T̂ τ −new T τ

i0
> T̂ τ − T̂ θ,τ

i0
.Thus under this senario,

|Sτ+1 − Sτ |1 =
∑

i6=i0

(newT τ
i − T̂ θ,τ

i ) > T̂ τ −
∑

i∈I

T̂ θ,τ
i = TAdd(S

τ ).

• Assume ∃i0 ∈ I, ŷτ
i0

> T̂ θ,τ
i0

. Then if we get a new tra� T̂ τ whih satis�es
i0
∑

i=1

T̂ θ,τ
i < T̂ τ <

i0−1
∑

i=1

T̂ θ,τ
i + ŷτ

i0
, the amount of tra� sent to every networkprovider satis�es� newT τ

i = T̂ θ,τ
i , i = 1, ..., i0 − 1;� newT τ

i0
= T̂ τ −

i0−1
∑

i=1

T̂ θ,τ
i ;� newT τ

i = 0, i = i0 + 1, ..., n.
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i0
∑

i=1

T̂ θ,τ
i , we have newT τ

i0
> T̂ θ,τ

i0
. As for all other networkproviders, newT τ

i ≤ T̂ θ,τ
i . Thus under this senario,

|Sτ+1 − Sτ |1 =new T τ
i0
− T̂ θ,τ

i0
> 0 = TAdd(S

τ ).As for all senario we annot do better than TAdd(S
τ ), thus taking the expeta-tion we an prove yτ

i = T̂ θ,τ
i , ∀i ∈ I is optimal.

�In Lemma 2.2 we have proved yτ
i = T̂ θ,τ

i , ∀i ∈ I in the optimal deision. Thismeans in this work, our deision should be made on the additional tra� only.Thus the feasible deision set is
χτ = {xτ

1 , xτ
2 , ..., xτ

n|0 ≤ xτ
i ≤ 1, ∀i ∈ I,

∑

i∈I

xτ
i = 1}.with the understanding that deision xτ

i means we send at most T τ
i,add = T̂ θ,τ

i +

xτ
i TAdd(S

τ ) to provider i during τ .3. Introdution to Approximate Dynami Programming3.1. Curse of dimensionality. All dynami programs an be written in terms ofa reursion that relates the value Vτ (Sτ ) of being in a partiular state Sτ at τ tothe value of the states that we are arried into at time stage τ + 1. In the disreteSDP model given in [4℄, we use a look-up table representation of Vτ (Sτ ). Thatis we disretize the state Sτ = {T̂ j,τ
i |i = 1, ..., n; j = 1, ..., θ} by allowing T̂ j,τ

i tobe one of L possible values. Sine T̂ 1,τ
i ≥ T̂ 2,τ

i ≥ ... ≥ T̂ θ,τ
i , ∀i ∈ I, this gives atotal of Cθ

L+θ−1 =

(

L + θ − 1
θ

) 1 di�erent states Sτ
i for provider i and a total of

(

L + θ − 1
θ

)n di�erent values for Sτ .Traditional SDP alulates and tabulates a value Vτ (Sτ ) for eah possible stateand time period, resulting in a total time and memory omplexity of |Γ|( L + θ − 1
θ

)n.The resulting exponential inrease with L, θ and n is referred to in [7℄ as the '�rsturse of dimensionality' � the dimensionality in state spae.3.2. Main onepts in ADP. The SDP model in [4℄ is hit by the urse of dimen-sionality in two ways: �rst we need to evaluate Vτ (Sτ ) for an exponential number ofstates and then we need to store these values. Approximate Dynami Programming(ADP) avoids these by two modi�ations:Value funtion approximation. Instead of a look-up table, ADP approximates thevalue funtion Vτ (Sτ ) by a ontinuous model funtion with a small number ofparameters that need to be estimated.1„

L + θ − 1

θ

« is the number of possibilities whih satis�es T̂
j,τ
i ∈ Ωτ , j = 1, ..., θ and T̂

1,τ
i ≥

T̂
2,τ
i ≥ ... ≥ T̂

θ,τ
i .



8 ANDREAS GROTHEY, XINAN YANGStep forward in time. Another important di�erene is that ADP is based on analgorithmi strategy that steps forward through time, rather than bakward inSDP. In ADP we hoose a sample senario and step forward in time. At eah timestep τ , we solve the deision problem based on the urrent estimation of the valuefuntion approximation V̄
(m−1)
τ+1 at time interval τ for the given sample senario, andthen update V̄

(m−1)
τ with the optimal sample value v̂

(m)
τ . By repeating these stepsthe proess onverges the parameters to a stable estimation of the value funtion.The proess an be interpreted as applying the stohasti gradient method () tothe problem of �nding an optimal regression funtion V̄τ (Sτ ) for Vτ (Sτ ).Note that with ontinuous regression model representation of value funtionapproximation, although we follow a single senario during every iteration we ef-fetively update the value funtion approximation for all states when hanging itsoe�ients. This makes the proess more e�ient than the dynami programming,in whih by eah omputation we get the value for a single, disrete state variable.In ADP it fouses more on the states whih are more likely to be visited, ratherthan treat all the possible states as equally important.3.3. Main proedure of ADP. A basi approximate dynami programming al-gorithm is summarised below: [7℄Step 0. Initialisation:Step 0a. Build a initial value funtion approximation V̄

(0)
τ (Sτ ) for all time in-terval τ .Step 0b. Choose an initial state S1

(1).Step 0. Set m = 1.Step 1. Choose a sample path ω(m) = (ω1
(m), ..., ω

|Γ|
(m)).Step 2. For τ = 0, 1, 2, ..., |Γ| do:Step 2a. Solve

v̂(m)
τ = min

xτ∈χτ
(Eωτ∈Ωτ V̄

(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )) (3.1).Step 2b. Update the value funtion approximation V̄

(m−1)
τ (Sτ ) with the valueof v̂

(m)
τ .Step 2. Compute Sτ+1

(m) (Sτ
(m), ω

τ
(m), x̂

τ ), where x̂τ is the optimal solution of(3.1).Step 3. If we have not met our stopping rule, let m = m + 1 and go to step 1.4. ADP model4.1. Value funtion approximation � regression model. As disussed in Se-tion 3.2, the traditional look-up-table representation of value funtion su�ers fromthe �rst urse of dimensionality. To estimate the value funtion with as few pa-rameters as possible, in ADP we use regression model to approximate the valuefuntion. To get a good �t to the real value funtion, it requires us to exploit thespeial struture of it. Thus before the de�nition of a proper regression model letus go through several examples of value funtions given by the SDP model [4℄, tosee what struture we an take to use.
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Figure 4.1: Examples of how funtion value hanges with a single entry of statevariableFigure 4.1 shows four examples of how the funtion value varies with a singleentry of the state variable. Although the value of Vτ (Sτ ) shown in these �guresmight not be exat sine SDP itself is an approximation of the problem (withdisretization of state spae and restritions on the deision spae), we an stillget some insight of the basi harater of value funtions. From these three spei�examples we an see that the value funtion is neither a onvex or a onave funtionof its variables, sometimes it is not even smooth. Apart from this, atually somestates (e.g. very extreme ones) in SDP model are muh less important than othersas they are rarely visited. This requires us to fous more on the entre part of valuefuntions.In Lemma 2.1 we have proved that the funtion value is non-dereasing withevery entry of the state variable. In this work we use the simplest model, linearregression to approximate the value funtion for every time period. Namely at state
Sτ , we estimate Vτ (Sτ ) by:

V̄τ (Sτ ) = βτ
0 +

∑

i∈I

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i (4.1).Although a linear model is ertainly not exat, we feel that it will give the besttrade-o� between providing good approximation and maintaining omputabilityand avoiding the risk of over-�tting. It also provides robustness against possi-ble spurious behaviour (loally dereasing approximations) of more omplex value



10 ANDREAS GROTHEY, XINAN YANGfuntion approximations. We feel this hoie is justi�ed by the numerial results inSetion 5.2.4.2. Deision problem. Step 2a of the ADP algorithm requires the solution ofthe deision problem. In the m-th iteration, our deision problem at time interval
τ is

v̂(m)
τ = min

xτ∈χτ
(Eωτ∈Ωτ V̄

(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )) (4.2),where V̄

(m−1)
τ+1 as given by (4.1) is the approximation of the value funtion Vτ+1build with the estimated oe�ients after m− 1 iterations. Deision problem (4.2)is a minimisation problem, whose objetive is an expetation of the value funtionestimation in next time stage.It is worth investigating the exat form of this objetive funtion. As given in(4.1), V̄τ+1 is a linear funtion of the state Sτ+1 = {T̂ j,τ

i }. Further V̄τ deomposesby network provider, that is if we de�ne V̄τ,i(S
τ
i ) =

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i , then we an write

V̄τ (Sτ ) = βτ
0 +

∑

i∈I

V̄τ,i(S
τ
i ). On the other hand, the state Sτ+1

i is obtained fromthe state Sτ
i , the deision xτ and the realisation of random tra� T̂ τ = T τ (ω̂τ )by applying the rules given in Setion 2.3 to obtain the new tra� for networkprovider i, newT̂ τ

i and then reordering entries in non-inreasing order. It is easy tosee that for every given realisation ω̂τ , V̄τ+1,i(S
τ+1
i |Sτ

i , ω̂τ , xτ
i )) is a pieewise linearfuntion of xτ

i . In priniple it is possible to give an analyti expression for V̄τ+1,i,as in
V̄τ+1,i(S

τ+1
i ) =











































































P

1≤j≤θ

β
τ+1
i,j

T̂
j,τ
i

for Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

;

P

1≤j≤θ−1
β

τ+1
i,j

T̂
j,τ
i

+ β
τ+1
i,θ

(T̂
θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

))for P

i∈I

T̂
θ,τ
i

< Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

+
T̂

θ−1,τ
i

−T̂
θ,τ
i

xτ
i

;

P

1≤j≤θ−2
β

τ+1
i,j

T̂
j,τ
i

+ β
τ+1
i,θ−1

(T̂
θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

)) + β
τ+1
i,θ

T̂
θ−1,τ
ifor P

i∈I

T̂
θ,τ
i

+
T̂

θ−1,τ
i

−T̂
θ,τ
i

xτ
i

< Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

+
T̂

θ−2,τ
i

−T̂
θ,τ
i

xτ
i

;...
β

τ+1
i,1 (T̂

θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

)) +
P

2≤j≤θ

β
τ+1
i,j

T̂
j−1,τ
ifor P

i∈I

T̂
θ,τ
i

+
T̂

1,τ
i

−T̂
θ,τ
i

xτ
i

< Tτ (ω̂τ ).Thus the objetive funtion of the deision problem beomes:
Eωτ (V̄ m−1

τ+1 (Sτ+1)) =

�
ωτ

f(ωτ )βτ
0 dωτ +

∑

i∈I

�
ωτ

f(ωτ )V̄ m−1
τ+1,i(S

τ+1) dωτ (4.3),whih is di�ult to simplify further due to the omplex form of V̄τ+1,i(S
τ+1).Atually, numerially examining some instanes we observed that the objetivefuntion of the deision making problem (4.2) might not be onvex, even for thelinear regression model (4.1). Therefore an algorithm based on utting planes assuggested by [7℄ annot be used. In addition, sine the objetive is given by an



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 11expetation (4.3) whih we are unable to evaluate analytially, any funtion orgradient evaluations are expensive and inexat.In ADP, as we need to solve the deision problem at every time stage for everyiteration, an optimisation method that is e�ient (solve the problem in reasonabletime) in addition to reliable (�nd the optimal or near optimal solution) is required.We have settled to solving this problem by a simple disretization of the deisionspae, i.e., generating several disrete deisions (for example xτ = 0.0, 0.1, 0.2...1.0),alulating their objetive value and hoosing the best one. Although with the sim-ple disretization way we annot �nd the optimal solution of the deision problem,it gives a good ompromise between speed and auray. We an see from thenumerial results given in Setion 5.2 that the pratial advantage from solving thedeision problem more aurately is minimal.4.3. Reursive methods for regression model � parameter estimation.We assume we are given an initial approximation V̄
(0)
τ (Sτ ) of Vτ (Sτ ) for all τ . Initeration m, we update V̄

(m)
τ from its previous estimation V̄

(m−1)
τ . As in this workwe use the linear regression model to estimate the value funtion, our value funtionapproximation after m iterations an be written as V̄

(m)
τ = V̄τ (β(m)). To updateparameters for the regression model, we want to �nd β(m) that solves:

min
β(m)

E[(V̄τ (β(m)) − v̂τ )2],where v̂τ is the sample estimate of the real funtion value Vτ (Sτ ) obtained bysolving (4.2). Applying stohasti gradient algorithm, we obtain the updatingsheme [7℄:
β(m) = β(m−1) − αm−1[V̄

(m−1)
τ (Sτ ) − v̂(m)

τ ]∇β(m−1) V̄ (m−1)
τ (Sτ ) (4.4).The value αm in formula (4.4) is the updating stepsize from iteration m to m+1,whih tells us how far we should go in the diretion of ∇β(m−1) V̄

(m−1)
τ (Sτ ). Findingthe proper stepsize αm is one of the hallenges in stohasti gradient methods.Poor hoie of stepsize may ause the provably onvergent algorithm not to work.However, in most appliations of stohasti problem it is impossible to �nd anoptimal stepsize due to the intratable alulation of expetations. Thus for theseek of easy in implementing, in this work we use one of the typial determinististepsize � MClain's formula:

αMC
m =

αMC
m−1

(1 + αMC
m−1 − ᾱ)

,where ᾱ is a spei�ed parameter. Steps generated by this formula satisfy αMC
m >

αMC
m+1 > ᾱ. MClain's rule ombines the features of the 1/n rule whih is idealfor stationary data (when values to estimate are mainly dereasing) and onstantstepsizes for non-stationary data (when noise in the observations is dominating).Moreover, as in the limit αMC

m → ᾱ, the stepsize avoids going to zero. This makesthe rule work well in non-stationary environments, and also e�etive when we arenot sure how many iterations are required to start onverging.In addition to the 'smoothing fator' (0 < αm ≤ 1), an important prati-al problem is the saling of units of the left hand side and the right hand side



12 ANDREAS GROTHEY, XINAN YANGin the updating equation (4.3). Sine the value of β(m−1) and [V̄
(m−1)
τ (Sτ ) −

v̂
(m)
τ ]∇β(m−1) V̄

(m−1)
τ (Sτ ) may possess ompletely di�erent sale, we need an adap-tively hosen α0 to over this di�erene. Thus our stepsize onsists of two ompo-nents, whih means αm = α0α

MC
m . As we expet the β(m) to move monotoniallyat the beginning of the algorithm and start alterating near onvergene, we will in-rease α0 if we observe monotoni behaviour in the β(m) for the �rst few iterationsand derease otherwise.4.4. Stopping riterion. As in ADP we update the value funtion estimation it-eratively, when to stop beomes an important pratial issue. Generally speaking,in ADP we expet to end up with a onverged set of oe�ients for our regressionmodel. However, as we introdued many parameters in the value funtion estima-tion, it is hard to de�ne a single guideline for onvergene whih works well for alloe�ients. In addition, stohasti gradient algorithm typially onverge rapidlyat the beginning and then vibrate with noise. As in our problem, what we areseeking for is whether a routing poliy gives us a mean osts that is low enough ina long run, instead of the exat expression of the regression model (4.1). Thereforein our ADP model, we numerially evaluate the mean ost over every 10, 000 runsand one we observe the mean ost hanges mainly with noise instead of dereas-ing/inreasing rapidly, we stop and treat the urrent oe�ients as the onvergedparameters for (4.1). For more detail please see Setion 5.2.2.5. Numerial Results5.1. Test Problems with 10 periods. In this setion we give some numerialresults on several small instanes of the TpTRP taken from [4℄. For larity, we�rstly haraterise and index these instanes whih are examined in the later partof this setion. Parameters Stohasti InformationIndex

|Γ| θ n distribution time dependenyIns.2 10 3 2 U(6000, 14000) i.i.d.Ins.3 10 3 2 uniform see Fig. 5Ins.4 10 3 2 trunated N(10000, 106) i.i.d.Ins.5 10 3 2 trunated normal see Fig. 6Table 1: List of TpTRP InstanesTable 1 summarises the instanes used. In all instanes, we assume that wedivide the modelling region into 10 time intervals and ost are based on the timeinterval with the θ = ⌊q ∗ |Γ|⌋ = 3rd (q = 0.3) highest volume of tra�. In allases we use 2 network providers (n = 2) with osts c1 = 10, c2 = 11, 12 or 15. Theinstanes di�er by the assumptions made on the random tra�. In instane 2 and4 the tra� in every period follows the same uniform (U(6000, 14000) in Instane2) or normal (N(10000, 106) in Instane 4) distribution. Instane 3 and 5 on theother hand, use tra� distributed aording to a time varying uniform or normaldistribution. The parameter for eah time interval are displayed in Figures 5.1.Note that Instane 4 and 5 uses a trunated normal distribution in whih tra�outside the 99.7% (±3σ) on�dene region is projeted onto the boundary of theregion to avoid negative tra� volumes.
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9(b) Mean and 99.7% on�dene region fornormal distributions in Ins.5Figure 5.1: Tra� distribution used in testing instanes5.2. Numerial results on TpTRP instanes with 10 periods.5.2.1. Mean ost. To evaluate the quality of this routing poliy we get from theADP model, we examine it in a simulation of 1, 000, 000 random senarios takenfrom the original distribution on all the instanes shown above. We ompare resultswith the following benhmarks:
• SRP - Single-homing Routing Poliy, i.e. send everything to the heapestnetwork provider � provider 1;
• TMRP - Trivial Multi-homing Routing Poliy, i.e. send randomly θ − 1tra�s to the expensive provider and all the rest to the heaper one. Inthis way the ISP is only harged by the heapest network provider, but usesthe free time intervals of all network providers;
• SDPRP - Stohasti Dynami Programming Routing Poliy given as a dis-rete look-up table by solving the SDP model in [4℄, whih requires dis-retization of the tra� region. We repeat the model with di�erent numberof disretization levels (L in Table 2) used;
• DRP - Deterministi Routing Poliy, i.e. assuming we know all tra�s inadvane. The optimal routing poliy (as proved in [4℄) is to send the θ − 1highest tra�s to the expensive provider and the rest to the heaper one.Note that as we assume that we have full knowledge of the tra� ahead intime, the DRP is not implementable. It provides us with lower bound onall the stohasti routing poliies.Results with di�erent ost ratios c2/c1 are summarised in Table 2. We an seethat the ADP routing poliy outperforms trivial routing poliies and works betterthan the SDP routing poliy in most ases for oarse disretizations (e.g. L = 7and 14). Sometimes, the ADP routing poliy an be even better than SDP with

L = 28, whih is the �nest model for whih SDP is tratable (due to the 'urse ofdimensionality' in state spae). We think the reason for ADP outperforming SDPis due to the fat that, in SDP the new random tra� is rounded to the nearesttabulated value before taking a deision. However, the ADP model approximatethe value funtion with a ontinuous linear regression model, thus the deisionis made based on the real value of the state. Apart from this, forward dynamiprogramming fouses attention on the states that we atually visit. As in normaldistribution instanes the tra� is more lustered around the mean, we an getbetter oe�ients for those more likely happen states. We think this is why in



14 ANDREAS GROTHEY, XINAN YANGIns. SRP TMRP L SDPRP ADPRP DRP7 107219.29±12.69Ins.2 118178.53±10.28 113335.54±11.93 14 106090.86±12.18 107140.45±12.35 103637.95±11.5028 105734.36±12.037 104728.46±8.15Ins.3 114340.25±7.52 104294.38±7.86 14 103543.13±7.53 103254.88±7.45 102303.09±6.9928 103140.84±7.427 103564.95±5.25Ins.4 106564.38±4.18 104727.88±4.48 14 102808.01±4.51 102470.25±4.30 101226.33±3.8928 102255.24±4.117 108078.29±5.89Ins.5 112379.96±4.53 105986.18±4.95 14 106005.25±4.83 105315.85±4.57 105003.32±4.3728 105536.23±4.64(a) c2 = 11Ins. SRP TMRP L SDPRP ADPRP DRP7 107811.61±12.90Ins.2 118178.53±10.28 113335.54±11.93 14 106602.73±12.33 107335.60±12.35 103637.95±11.5028 106203.10±12.177 105256.80±8.44Ins.3 114340.25±7.52 104294.38±7.86 14 103853.99±7.71 103361.52±7.50 102303.09±6.9928 103375.22±7.547 104097.79±5.54Ins.4 106564.38±4.18 104727.88±4.48 14 103007.73±4.58 102561.69±4.31 101226.33±3.8928 102424.21±4.187 108541.85±6.09Ins.5 112379.96±4.53 105986.18±4.95 14 106172.45±4.89 105418.83±4.78 105003.32±4.3728 105677.18±4.73(b) c2 = 12Ins. SRP TMRP L SDPRP ADPRP DRP7 109022.21±13.42Ins.2 118178.53±10.28 113335.54±11.93 14 107432.60±12.60 107724.39±12.32 103637.95±11.5028 106932.48±12.387 106260.86±9.04Ins.3 114340.25±7.52 104294.38±7.86 14 104197.98±7.92 103544.28±7.58 102303.09±6.9928 103679.88±7.677 105733.64±6.65Ins.4 106564.38±4.18 104727.88±4.48 14 103736.17±4.98 102766.08±4.35 101226.33±3.8928 102750.73±4.377 109898.90±6.98Ins.5 112379.96±4.53 105986.18±4.95 14 106490.32±5.16 105694.71±5.13 105003.32±4.3728 105837.72±4.89() c2 = 15Table 2: Numerial result (mean ost ± s.d.) of implementing routing poliies on
1, 000, 000 random senariosase where the tra� volumes follow the normal distribution (i.e. Ins.4 and Ins.5),the ADP routing poliy seems performing better than where uniform distribution(Ins.2 and Ins.3) is applied. In onlusion, the ADP model gives very promisingresults with the linear regression model.5.2.2. Convergene and resoure onsumption. Apart from performane, anotherimportant pratial issue is running time of a model, spei�ally the onvergenetime in the ADP model. As noti�ed in Setion 4.4, we justify the onvergene ofour model by evaluating the mean ost of implementing the routing poliy derivedfrom the urrent oe�ients over every 10, 000 iterations.Figure 5.2 shows how the mean ost varies with time (x-axis represents thenumber of 10, 000 iterations) for eah instane. We see that initial onvergene isfast (within 100, 000 iterations or so), and after whih, it varies almost purely withnoise. We try to identify by a heuristi the onset of noise and stop the algorithm
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(d) Ins.5Figure 5.2: Mean ost over 10, 000 samples varies with number of iterations �onvergenethen. The resulting number of iterations until onvergene was determined aregiven in Table 3.In addition to the running time, the 'urse of dimensionality' in the SDP modelalso manifests itself in high memory use. In Table 3 we summarise the runningtime and the memory onsumption (theoretial) in the solution of the ADP andSDP model. ADP model SDP modelIns. Iterations Time Memory L Time Memory7 0.194s 0.38MBIns.2 80,000 9.391s 5.34e-4MB 14 15.628s 16.75MB28 11487.095s 880.32MB7 0.126s 0.38MBIns.3 70,000 7.481s 5.34e-4MB 14 12.486s 16.75MB28 9732.705s 880.32MB7 0.316s 0.38MBIns.4 130,000 170.824s 5.34e-4MB 14 27.074s 16.75MB28 21185.037s 880.32MB7 0.390s 0.38MBIns.5 120,000 130.022s 5.34e-4MB 14 27.211s 16.75MB28 22643.042s 880.32MBTable 3: Comparison of problem size and resoure onsumption



16 ANDREAS GROTHEY, XINAN YANGIn Table 3, the �rst olumn shows the number of iterations needed to see theonvergene in their own ADP model for all instanes, while the seond olumnshows the running time these iterations onsumes. From this table we an see thatin Ins.2 and Ins.3 the solution times of ADP model are omparable with the 14-level SDP model, while in Ins.4 and Ins.5 it seems the latter runs quiker. This isaused by the fat that, in ADP we need to alulate the expeted funtion valueover ontinuous region when solving the deision problem, for normal distributionit takes muh more time than for the uniform distribution.However, the most signi�ant advantage of ADP model is that it does not requireto disretize the tra� region, thus the omputer memory it onsumes is onstantfor a predetermined instane. Also, as we are working on ontinuous state spaein ADP, there is no need to reord all deisions expliitly at every node in thedynami tree. What we need to keep are only the oe�ients aording to statevariables, deision and value funtion are all impliit in these oe�ients. In fatthe omputer memory whih ADP model onsumes is inreasing linearly with thetop-perentile parameter θ and the number of network providers n. This solves the'urse of dimensionality' of the SDP model.5.2.3. Solving the deision problem to higher auray. As stated above, the dei-sion problem is not onvex, thus not easy to solve quikly to optimality. So farthe deision problem has been solved by trying all deisions {0.0, 0.1, 0.2, ...1.0}and hoosing the one whih leads to the best objetive. In Table 4 we investigatethe e�et of solving the deision problem to a higher auray, by hoosing fromdeisions {0.00, 0.01, 0.02, ...1.00}.ADPRP_0.1 ADPRP_0.01Ins. Mean Cost Running Time Mean Cost Running TimeIns.2 107335.60±12.35 9.391s 107335.43±12.35 84.473sIns.3 103361.52±7.50 7.481s 103361.51±7.50 68.245sIns.4 102561.69±4.31 170.824s 102561.69±4.31 1350.809sIns.5 105418.83±4.78 130.022s 105417.34±4.78 982.480sTable 4: Comparison of mean ost (± s.d.) and resoure onsumption of AD-PRP_0.1 and ADPRP_0.01, c2 = 12We an see that this does not enhane the quality of ADP solution (di�erenesin mean ost are not statistially signi�ant), while of ourse inreasing solutiontime. We therefore argue that our primitive but fast method to solve the deisionproblem is justi�ed.5.3. Solving real-world sized instanes with aggregation method. Despitethe improvement in terms of time and memory onsumption of the ADP model overthe SDP model, we are still not in a position to solve the real sized problem instaneswith thousands of time intervals diretly. Rather we suggest to aggregate timeperiods, suh that one model Vτ (Sτ ) is used for 100 time periods. Applying ADP tosuh a model would result in updating the parameters βτ
i for one partiular Vτ (Sτ )

100 onseutive times before moving on to Vτ+1(S
τ ), resulting in slow onvergene.To speed up onvergene we instead aggregate eah senario ωm ∈ R

|Γ| into aompat sample with |Γ|/100 omponents and use this to update in e�et a |Γ|/100-time period model.



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 17Table 5/6 give running time and performane for this approah on a 4320-timeperiod model with tra� distribution aording to Table 1.Ins. Iterations Running TimeIns.2 200,000 99.674sIns.3 400,000 179.029sIns.4 1,000,000 5281.945sIns.5 1,000,000 5468.437sTable 5: Resoure onsumption of solving the 43-periods ADP modelIns. SRP TMRP ADPRP DRPIns.2 136000.08±2.63 135789.57±2.75 134335.36±3.72 132008.21±2.69Ins.3 133874.68±1.90 133022.12±2.42 129956.59±3.15 127791.87±2.10Ins.4 116466.16±3.28 116216.75±3.33 114318.44±4.23 112840.00±2.60Ins.5 124737.71±3.75 123666.23±3.87 121618.19±4.24 120235.63±3.03Table 6: Numerial result (mean ost ± s.d.) of implementing 43-periods ADProuting poliy on real 4320-periods instane over 1, 000 senarios, c2 = 12From the numerial results we an see that the ombined ADP-time aggregationmethod work well on a 4320-period problem, onsistently outperforming the trivialrouting poliy in all instanes.6. Conlusions and Future Work6.1. Conlusions. In this work we have developed an ADP model to solve theTpTRP problem. Rather than using the disrete look-up table representation ofvalue funtion in SDP, in ADP we approximate the value funtion by a properregression model and train its oe�ients iteratively with fresh sample senarios toget the �nal estimation. As all works are done in a ontinuous state spae, ADPoveromes the urse of dimensionality we met in the SDP model whih preventedlarger instanes (more than 10-periods and 2 network providers and q = 5%) to besolved.ADP ompares favourable to the SDP model in the solution of small instanes(10-periods ones). Routing poliies derived from ADP model are no worse thanthose generated from 14-levels SDP model and sometimes even outer-performs theSDP routing poliy with 28-levels, while the running time is muh smaller. By om-bining ADP with time aggregation we an solve real sized instanes with thousandsof time periods in a reasonable time. The routing poliies obtained onsistentlyoutperform naive routing poliies on real sized problem instane.6.2. Future works. Currently we work on tra� routing problems under pure top-perentile priing poliy, where if we send no more than θ− 1 tra�s to a provider,we are not going to pay anything to this provider. However in pratise, networkprovider might ombine top-perentile priing with other priing poliies suh asan additional start up ost. What we need to do is examine whether ADP modelwith linear regression value funtion approximation an manage these hanges aswell. If not try to �nd proper regression models for this problem.
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