View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Essex Research Repository

SOLVING THE TOP-PERCENTILE TRAFFIC ROUTING
PROBLEM BY APPROXIMATE DYNAMIC PROGRAMMING

ANDREAS GROTHEY, XINAN YANG
SCHOOL OF MATHEMATICS
COLLEGE OF SCIENCE AND ENGINEERING
THE UNIVERSITY OF EDINBURGH

ABSTRACT. Multi-homing is used by Internet Service Provider (ISP) to con-
nect to the Internet via different network providers. This study investigates
the optimal routing strategy under multi-homing in the case where network
providers charge ISPs according to top-percentile pricing (i.e. based on the 6-
th highest volume of traffic shipped). We call this problem the Top-percentile
Traffic Routing Problem (TpTRP). The TpTRP is a multi-stage stochastic op-
timisation problem in which routing decision should be made before knowing
the amount of traffic that is to be shipped in the following time period. The
stochastic nature of the problem forms the critical difficulty of the problem.

Solution approaches based on Stochastic Integer Programming (STP) tech-
niques or Stochastic Dynamic Programming (SDP) suffer from the curse of
dimensionality which restricts their applicability. To overcome this we suggest
to use Approximate Dynamic Programming (ADP) which exploit the struc-
ture of the problem to construct approximations of the value function in SDP.
Thus the curse of dimensionality is largely avoided.

Keywords: top-percentile pricing, multi-homing, stochastic, routing policy,
approximate dynamic programming

1. INTRODUCTION

Internet Service Providers (ISPs) do not generally have their own network infras-
tructure to route the incoming traffic of their customers, but instead use external
network providers. Multi-homing is used by ISPs to connect to the Internet via
more than one network provider. This technique is currently widely adopted to
provide fault tolerance and traffic engineering capabilities [1].

Traditionally network providers charge ISPs based on a combination of fixed
cost and per usage pricing. Top-percentile pricing is a relatively new and increas-
ingly popular pricing regime used by network providers to charge service providers
(although it usually appears as part of a mixed pricing strategy), that is quickly
becoming established [6]. In this scheme, the network provider divides the charge
period, say a month, into several time intervals with equal, fixed length. Then, it
measures and evaluates the amount of data (traffic) sent in these time intervals. At
the end of the charge period, the network provider selects the traffic volume of the
top g-percentile interval as the basis for computing the cost. For example, if the
charge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10
mins, and if top 5-percentile pricing is used, the cost computed by top-percentile
pricing is based on the traffic volume of the top 216th interval.

1

https://core.ac.uk/display/74370781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 ANDREAS GROTHEY, XINAN YANG

It has been discussed (e.g. in [6]) what the optimal multi-homing routing strate-
gies looks like under traditional pricing regimes and whether they are economically
viable. In contrast, very little work has been done on network operation under top-
percentile pricing. The deterministic problem (in which we assume that we know all
the traffics in advance) has been analysed in [2], where the authors build a mixed-
integer linear programming model to evaluate if multi-homing is economically viable
and develop an efficient B&B algorithm to solve it with combined top-percentile
pricing and fixed cost. In the stochastic case, Levy et al. in [5] develops a prob-
abilistic model and provides an analysis of the expected costs, thus demonstrate
that multi-homing can be economical efficient under top-percentile pricing though
they did not give the optimal routing policy. On the other hand, Goldenberg et
al. [3] focus on the development of smart routing algorithms for optimising both
cost and performance for multi-homing users under top-percentile pricing, but not
in the stochastic case. To the best of our knowledge however, there is no result
dealing with the optimal multi-homing routing policy under top-percentile pricing
in the stochastic case.

The purpose of this study is to find the optimal routing strategy in order to allow
the ISP to make full use of the underlying networks with minimum cost, when all
network providers charge the ISP based on the volume of the top g-percentile time
interval’s traffic (pure top-percentile pricing). Under pure top-percentile pricing,
the ISP can ship several time intervals’ traffic via a network without being charged
provided traffic shipped during the top-percentile time interval is zero. In the
following parts of this paper we call this problem, the Top-percentile Traffic Routing
Problem (TpTRP). The TpTRP is a stochastic problem, where the ISP can not
anticipate the volume of future time intervals’ traffic. Instead, we assume that the
ISP knows the probabilistic distributions of every time intervals’ traffic ahead of
time.

In [4], we have shown that solving the TpTRP as an SIP is intractable for all
but the smallest instances, due to the fact that modelling of the top-percentile cost
requires the introduction of integer variables within the last time stage. On the
other hand, we suggested a Stochastic Dynamic Programming (SDP) model based
on a discretization of the state space, which gives routing policies that outperform
any naive routing policy and whose mean cost is close to the lower bound given
by the deterministic case for medium sized instances. However due to the curse of
dimensionality derived from the discretization in dynamic programming, the huge
number of states prevents the use of the SDP model on larger problem instances.

It has been suggested in [7] that Approximate Dynamic Programming (ADP) is
a promising technique to avoid the curse of dimensionality. The focus of this work
is on the application of ADP to the TpTRP. In the remainder of this report, we
present the decision space and justify its appropriateness in Section 2. In Section 3,
we introduce the curses of dimensionality involved in our SDP model and show how
to deal with them with ADP techniques. Then we give details of our implementation
of ADP on the TpTRP problem in Section 4. Section 5 gives the numerical results
and shows how the aggregation with ADP can be used to solve real-world sized
instances. Finally we make conclusions in Section 6.

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 3

2. TOP-PERCENTILE TRAFFIC ROUTING PROBLEM

Instead of building the ADP model directly, in this section we would like to
investigate the important features of the TpTRP problem first. This section gives a
formal description of the TpTRP model and highlights a few of its key prospectives
which will be useful in defining our set of considered decision rules.

2.1. Notations and Assumptions.

Problem parameters.

e I,|I| =n : The set of network providers.

T" : The set of time intervals.

q : The percentile parameter.

6 = ||T'| * ¢]: The index of the top-percentile time interval.

c;i,t € I : The per unit cost charged by network provider ¢ on the top-
percentile traffic.

We assume that there is no upper bound on the volume of traffic that can be
shipped to each network provider, and no failure occurring in any network during
the charge period. All network providers divide the charge period into the same
IT'| time intervals of equal length and use top-percentile pricing with a same ¢. At
the end of the charge period, cost charged by provider i is Cost; = ¢;y;, if y; is the
f-th highest volume of traffic shipped to network provider i.

e 17 7 €T : The volume of traffic in time interval 7.
We assume that before the routing decision for period 7 is made, T7(w7”) is a
random variable depending on the random event w™. When the random event w7
becomes known, we use 77 = T7(&7) to represent the realisation of 7.

Decision variables.
e 27 7 € I' : The routing decision for time interval 7.

Note that 27 should be made and implemented before knowing the whole value
of the random traffic T (see Section 2.3 for detail).

2.2. State variable and value function. In our problem, at the beginning of
time interval 7, we know all the previous realisations of traffic volumes Tt,t =
1,..,7 — 1 and routing decisions zf,¢ = 1,..,7 — 1. The implied usage 7! =
THT! 2'),t = 1,...,7 — 1 of network i can be computed. Then a combination of
{Ti"'|t =1,...,7—1;i=1,...,n} defines the current state S7 of the system. We use
TZT to represent the j-th highest volume of traffic in Tit, t=1,...,7—1 and rewrite
ST = {Tfﬂi =1,.,nj=1,.,7—1}

However, under pure top-percentile pricing policy the cost is solely determined
by the 6-th highest volume of traffic shipped by every network provider, at the end
of the charging period. We can see that at any time interval 7, traffics which are
greater than the current 6-th volume of traffic can be the 6-th highest in later stages,
thus have an influence on the final cost. Instead, any traffic which is no higher than
the current #-th volume of traffic (namely, traffics Tg’T,j =60+1,..,7—1 at time
interval 7) has no impact on the final cost. Noting this, we delete these redundant
information from the state space, which makes the state variable at 7 described by

ST={T77|i=1,..,n;5=1,...,0}.

4 ANDREAS GROTHEY, XINAN YANG

The value function V,(S7) represents the expected cost for the ISP, given state
S7 at the beginning of time interval 7 and optimal decisions in all future time
intervals.

2.3. Implementable Routing Policies. As mentioned above, in our TpTRP
problem traffic 77 is a random variable, of which the distribution is known be-
forehand. In reality, the traffic is revealed continuously over the time period. This
means, as shown in Figure 2.1, we cannot see the complete amount of 17 before
the end of time interval 7.

(t-1) t (t+1)

<— see realization and implemente decision———————=

make decision make decision
for stage t for stage t+1

Figure 2.1: Process of data revelation and implementation of decisions

However, any bit of data must be sent as soon as it is generated instead of waiting
until the end of time interval 7 when the whole traffic 7™ has been revealed. There-
fore in addition to being non-anticipative with respect to the whole volume TT, an-
other necessary condition for a feasible routing decision is that it is implementable
without knowing 77. In the simplest case, we can decide at the start of every time
period where to send the whole traffic for this period. However, since the revela-
tion of traffic is gradual, more sophisticated routing policies can be considered. We
are, of course, limited by what is technically implementable. In particular, we as-
sume that percentage based routing policies (i.e., 27 = (27,27, ...,27)T, > 27 =1,

i€l
where 2] represents the proportion of the whole traffic 77 to be routed tg network
provider i) or cut-off based routing policies (i.e., 2™ = (y], 3, ...,y7)T, where the
first y7 unit of traffic are sent to provider 1, the next y7 to provider 2 and so forth)
or a combination of these are implementable by operating a time slicing’ scheme.

In this work we consider a particular mixed routing policy. Firstly, we set up a

cut-off y7 for network provider i, any remaining traffic 77 — > y7 (if there is) is
il
routed according to the proportional decision x]. Thus our feasible decision set is

F={(z],y]) >0]i =1, ,n,Za:ZT =1}
icl
Note that any decision (z7,y") € F gives an implementable routing decision.
When implementing it, we allocate the random traffic T7 according to the following
rule:

i1

i N -~
o If > o7 <T7 < > yTI for some i € I, we send:
i=1 i=1

— "ewTT = yT to network provider 1 <¢ < 2.,

A v ~
— newTT =TT — %" yT to network provider ¢ + 1,
i=1

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 5

— "WTT =0 to network provider ¢ > i+ 1.
o If 77 > Y 47, we send:
i€l
— mew T — T 4 gT(TT — Y y7) to provider i € I.
i€l
In the following section we investigate the proper choice of cut-off level 4™, which
gives some idea about the optimal routing policy.

2.4. Revised decision space.

Lemma 2.1. At any time stage 7 € T, if there are two states 1S™ = {1Tij’7},
287 = {2777} which satisfy ST <287, d.e., "T7T <2T/7 Vi€ I,1<j<6. Then
we have V,(1S7) < V,(257).

Proof. We proof this assertion by induction over 7.

At 7 = |T'|, we compute the cost charged on the ISP based on the #-th highest
volume of traffic sent to every network provider. It is obvious that Vm(lS‘F') <
Viry(25!T1) holds.

Now we assume for arbitrary 1571 < 257+ we know V41 (1S™1) <V, (2S7TT1).
At time stage 7, assume (227,297) is the optimal routing decision we made for
state 297 = {ZTfT} According to the implementation rule given in Section 2.3,
the amount of traffic "*“T7 sent to network provider ¢ does not depend on the cur-
rent state. This means if we apply the same decision set (227,27) on an arbitrary
state 157 < 287, every network provider gets the same amount of "*“T7 as when
we were on state 2S7. Thus for every single scenario &7, we will go to 'S7+! =
STHL(IST 7247 2 §7) which is no greater than 257! = STHI(287, 07227 247)
on all entries. From the induction we have V4 1(157%1) < V,,1(287*1). Take the
expectation over w” we get

Vo (1S7) = Eur [Ves (A577Y)] < B [V CS7H)] = V2 (257).

2T 2 AT
)

However, the decision set (*Z7,”¢") we used might not be optimal on state
187, which means the best function value V;(157) < V,(1S7). Combine these two
inequalities together, we have proved that V,(1S7) < V,(*S7) holds for V7 € T.

]

From Lemma 2.1 we can see, value function V,(S7) is non-decreasing with every
entry of the state S™. Notifying this, when we make routing decision at every time
interval we hope the increase on state components can be as small as possible,
namely minimise the difference between S7*! and S7. Assume this minimisation

can be represented by [STH! — ST|; = 57 S (777 — T97), then for network
i€l 1<5<6
provider ¢ we have:

O, if newTiT S Tf"r

ST-{—l - 97 J— ~
(] [1)i { newpr _ Tio,r’ otherwise

Thus,

|S7—+1 _ S-r|1 _ Z(|ST+1 _ ST|1)1’ — ZmaX{newT[_ Tie’T,O}
el iel

6 ANDREAS GROTHEY, XINAN YANG

>max{y "1 —T/7,0} (2.1)

iel
= max{T" — Z Tf’T, 0}.
icl
Let us define Tgq(S™) = max{T7™— 3 777 0}. We call T444(ST), the additional

icl
traffic, which represents the amount of traffic that cannot be sent without affecting
the current #-th highest volume of traffic of any network provider. According to
the inequality (2.1), Taqa(S7) is the lower bound of |S7TT! — S7|;.

Lemma 2.2. Assume we are on state ST = {TzJT|Z =1,.,n;j=1,..,0} at time
stage 7 € T'. In the optimal routing policy which minimising E,-[|STT! — ST|1], we
have yI = Tf’T,W el.

Proof. Firstly, it is obvious to see that with y] = Tf’T,Vi € I, for every single
scenario w”™ € Q7 we can guarantee STt — S|y = T44(S7).
Secondly, we proof that with any other choice of y], we can always find scenarios
in which case |S™! — ST|; > Taqa(S7).
e Assume Jip € I, g7, < Tii’T. Then if we get a new traffic 7™ which satisfies
i+ > 79T < T7 < S TP7, the amount of traffic sent to every network
i#io icl
provider satisfies
N AT (T IN 10,7y,
= T =g+ 2 (TT =g = T

iZio
— new T — Tfﬂ' + a7 (T’"’ — QZ) — 752 Tf’),w = 1.
1#10

As T7 < 2 TP, we have:
il

. - AT 20, N 20, N A (0, . ~0,
reeTr < gl + 3L O T —gn = > T = 0f 4+ &7 (T —) < T
iel i#ig

and

newrpT __ T __mew T T ™0, T
E 7 =17 — Ty >T" =1,
iig
Thus under this scenario,

ST = STy = (T =TT > TT =Y TP = Taaa(S7).
o iel

e Assume Jig € I, §] > Tg)’T. Then if we get a new traffic 7™ which satisfies
io . . do—1
STET < T < Y TP+ 97, the amount of traffic sent to every network
i=1 i=1
provider satisfies
ro,7 ; .
— new T =TT =1, 00— 1;
ig—1

a 0
_ newTig =TT — E Ti 7"';
i=1

— new T — 0 =4y +1,...,n.

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 7

. A .
As T™ > S TP7, we have newTr > Tii’T. As for all other network
=1

. ~ 0 . .
providers, "“T7 < T.". Thus under this scenario,

T 3 ~0,
|ST+1 - S |1 ="ew T;[; — TiOT >0= TAdd(ST).
As for all scenario we cannot do better than T444(S7), thus taking the expecta-

tion we can prove y] = Tf’T,W € I is optimal.
U

In Lemma 2.2 we have proved y] = Tie’T,Vi € I in the optimal decision. This
means in this work, our decision should be made on the additional traffic only.
Thus the feasible decision set is

X" =A{al, 23, .., 2|0 <z] <1,Vie I,fo =1}
icl
with the understanding that decision 2] means we send at most T, = Tie’T +
2T T4qa(ST) to provider ¢ during 7.

3. INTRODUCTION TO APPROXIMATE DYNAMIC PROGRAMMING

3.1. Curse of dimensionality. All dynamic programs can be written in terms of
a recursion that relates the value V;(S7) of being in a particular state S™ at 7 to
the value of the states that we are carried into at time stage 7 + 1. In the discrete
SDP model given in [4], we use a look-up table representation of V,(S7). That
is we discretize the state S™ = {TzJT|z =1,..,n;5 = 1,...,0} by allowing Tij’T t0
be one of L possible values. Since Til’T > Tf’T > ... > Tie’T,Vi € I, this gives a
L+6-1

total of Cz+971 = 0

) ! different states ST for provider i and a total of

n

L+6-1 different values for S7.

0
Traditional SDP calculates and tabulates a value V-(S7) for each possible state
L+6-1
0
The resulting exponential increase with L, 6 and n is referred to in [7] as the ’first
curse of dimensionality’ the dimensionality in state space.

and time period, resulting in a total time and memory complexity of |T'|

3.2. Main concepts in ADP. The SDP model in [4] is hit by the curse of dimen-
sionality in two ways: first we need to evaluate V. (S7) for an exponential number of
states and then we need to store these values. Approximate Dynamic Programming
(ADP) avoids these by two modifications:

Value function approzimation. Instead of a look-up table, ADP approximates the
value function V;(S7) by a continuous model function with a small number of
parameters that need to be estimated.

1 (L+6-1) is the number of possibilities which satisfies Tij"T €™ ,j=1,..,0 and Til’T >

n

8 ANDREAS GROTHEY, XINAN YANG

Step forward in time. Another important difference is that ADP is based on an
algorithmic strategy that steps forward through time, rather than backward in
SDP. In ADP we choose a sample scenario and step forward in time. At each time
step 7, we solve the decision problem based on the current estimation of the value
function approximation VT(Tl_l) at time interval 7 for the given sample scenario, and
then update Vr(m_l) with the optimal sample value f)gm). By repeating these steps
the process converges the parameters to a stable estimation of the value function.
The process can be interpreted as applying the stochastic gradient method () to
the problem of finding an optimal regression function V;(S7) for V,(S7).

Note that with continuous regression model representation of value function
approximation, although we follow a single scenario during every iteration we ef-
fectively update the value function approximation for all states when changing its
coefficients. This makes the process more efficient than the dynamic programming,
in which by each computation we get the value for a single, discrete state variable.
In ADP it focuses more on the states which are more likely to be visited, rather
than treat all the possible states as equally important.

3.3. Main procedure of ADP. A basic approximate dynamic programming al-
gorithm is summarised below: [7]

Step 0. Initialisation:
Step 0Oa. Build a initial value function approximation VT(O)(ST) for all time in-
terval 7.
Step 0b. Choose an initial state S(ll).
Step Oc. Set m = 1.
Step 1. Choose a sample path w(,,) = (w(lm), ...,wg)).
Step 2. For 7 =0,1,2,...,|T| do:
Step 2a. Solve

o = min (Burear Vi P (787, w7,a7) (3.1),

Step 2b. Update the value function approximation VT(mfl)(ST) with the value
of 8™,

Step 2c. Compute S(TJ)l(S(Tm),w(Tm),iT), where &7 is the optimal solution of
(3.1).
Step 3. If we have not met our stopping rule, let m = m + 1 and go to step 1.

4. ADP MODEL

4.1. Value function approximation — regression model. As discussed in Sec-
tion 3.2, the traditional look-up-table representation of value function suffers from
the first curse of dimensionality. To estimate the value function with as few pa-
rameters as possible, in ADP we use regression model to approximate the value
function. To get a good fit to the real value function, it requires us to exploit the
special structure of it. Thus before the definition of a proper regression model let
us go through several examples of value functions given by the SDP model [4], to
see what structure we can take to use.

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 9

x 10° x 10°
1.0688 1.1
1.0688 1.05
1.0688 1
1.0687 0.95
1.0687 0.9
0 5 10 15 0 5 10 15
x 10° x 10°
9.5 11
9
10
8.5
9
8
7.5 8
0 2 4 6 8 0 5 10 15

Figure 4.1: Examples of how function value changes with a single entry of state
variable

Figure 4.1 shows four examples of how the function value varies with a single
entry of the state variable. Although the value of V;(S7) shown in these figures
might not be exact since SDP itself is an approximation of the problem (with
discretization of state space and restrictions on the decision space), we can still
get some insight of the basic character of value functions. From these three specific
examples we can see that the value function is neither a convex or a concave function
of its variables, sometimes it is not even smooth. Apart from this, actually some
states (e.g. very extreme ones) in SDP model are much less important than others
as they are rarely visited. This requires us to focus more on the centre part of value
functions.

In Lemma 2.1 we have proved that the function value is non-decreasing with
every entry of the state variable. In this work we use the simplest model, linear
regression to approximate the value function for every time period. Namely at state
ST, we estimate V- (S7) by:

V(ST =05+ > AT (4.
iel 1<5<0
Although a linear model is certainly not exact, we feel that it will give the best
trade-off between providing good approximation and maintaining computability
and avoiding the risk of over-fitting. It also provides robustness against possi-
ble spurious behaviour (locally decreasing approximations) of more complex value

10 ANDREAS GROTHEY, XINAN YANG

function approximations. We feel this choice is justified by the numerical results in
Section 5.2.

4.2. Decision problem. Step 2a of the ADP algorithm requires the solution of
the decision problem. In the m-th iteration, our decision problem at time interval
T is

o = min (Eureor VIV (S7TST,), 07 a7)) (42),

where VT(rl_l) as given by (4.1) is the approximation of the value function V4,
build with the estimated coefficients after m — 1 iterations. Decision problem (4.2)
is a minimisation problem, whose objective is an expectation of the value function
estimation in next time stage.

It is worth investigating the exact form of this objective function. As given in
(4.1), V;41 is a linear function of the state ST+ = {777}. Further V, decomposes
by network provider, that is if we define V. ;(S7) = ﬂzjfzj’T, then we can write

1<j<6
Vo (S7) = B5 + 3. V,4(S7). On the other hand, the state S7 ™' is obtained from
=

the state S7, the decision 27 and the realisation of random traffic 77 = T7(&7)
by applying the rules given in Section 2.3 to obtain the new traffic for network
provider 1, ”E“’T[and then reordering entries in non-increasing order. It is easy to
see that for every given realisation &7, V11 ,(STT1ST,&7, x7)) is a piecewise linear
function of x7. In principle it is possible to give an analytic expression for VTJFM,
as in

14 N 70,
Y BITMIT for TT(@T) < X)T
1<j<6 i€l

10, 1,70, N 0,
BITITIT 4+ 8T PN AT 2l (TT(@T) - = TT))
1<j<6—-1 ’ icl
N N FO-LT 0.7
for Y Tie‘T <TT(@7) < '%I Ti@‘T 4 i i
K2

T 5
il @i

13, 1 ~0, ~ ~6, 1:6—1,
V gLy — S BTHMEIT 4 pTEL (BT 42l (1T (@) = X BT + 8T R T
7—+17i(i)— 1<j<6-2 iel
o FO-LT 70,7 o 70=27 _ 70,7
for N LT 4 A= < TT@T) < BT 4 At
iel i eI i

Tl e, . -0, Lji—1,
BITNI)T 42l (TT(@T) = S AT+ 2 BT
’ icl 2<j<6
1,7 20,7
N T =T
for ZITf’T-F’“miT’“ <TT(@7).
i€ [

Thus the objective function of the decision problem becomes:

Eor (7357 = [fn)f de + 3 / F@NVmTLEH) doT (43),
wr el 7

which is difficult to simplify further due to the complex form of V4 ;(S71).

Actually, numerically examining some instances we observed that the objective
function of the decision making problem (4.2) might not be convex, even for the
linear regression model (4.1). Therefore an algorithm based on cutting planes as
suggested by [7] cannot be used. In addition, since the objective is given by an

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 11

expectation (4.3) which we are unable to evaluate analytically, any function or
gradient evaluations are expensive and inexact.

In ADP, as we need to solve the decision problem at every time stage for every
iteration, an optimisation method that is efficient (solve the problem in reasonable
time) in addition to reliable (find the optimal or near optimal solution) is required.
We have settled to solving this problem by a simple discretization of the decision
space, i.e., generating several discrete decisions (for example 7 = 0.0,0.1,0.2...1.0),
calculating their objective value and choosing the best one. Although with the sim-
ple discretization way we cannot find the optimal solution of the decision problem,
it gives a good compromise between speed and accuracy. We can see from the
numerical results given in Section 5.2 that the practical advantage from solving the
decision problem more accurately is minimal.

4.3. Recursive methods for regression model — parameter estimation.
We assume we are given an initial approximation VT(O)(ST) of V.(S7) for all 7. In
iteration m, we update VT(m) from its previous estimation VT(m_l). As in this work
we use the linear regression model to estimate the value function, our value function
approximation after m iterations can be written as VT(m) = V,(8™)). To update
parameters for the regression model, we want to find S(™ that solves:

H(llr)lE[(VT (5(m)) - 7)),
B m

where 9, is the sample estimate of the real function value V;(S7) obtained by
solving (4.2). Applying stochastic gradient algorithm, we obtain the updating
scheme [7]:

B = pm=b — qp, [VIMmTD(ST) — 0™V g VIMTD(ST) (4.4).

The value o, in formula (4.4) is the updating stepsize from iteration m to m+1,

which tells us how far we should go in the direction of V gm-1) Vr(m_l)(ST). Finding
the proper stepsize a,, is one of the challenges in stochastic gradient methods.
Poor choice of stepsize may cause the provably convergent algorithm not to work.
However, in most applications of stochastic problem it is impossible to find an
optimal stepsize due to the intractable calculation of expectations. Thus for the
seek of easy in implementing, in this work we use one of the typical deterministic
stepsize — McClain’s formula:
GMC — _ Omo1
" (1+ € —a)’
where @ is a specified parameter. Steps generated by this formula satisfy oM< >
oM > a. McClain’s rule combines the features of the 1/n rule which is ideal
for stationary data (when values to estimate are mainly decreasing) and constant
stepsizes for non-stationary data (when noise in the observations is dominating).
Moreover, as in the limit a¢ — &, the stepsize avoids going to zero. This makes
the rule work well in non-stationary environments, and also effective when we are
not sure how many iterations are required to start converging.
In addition to the ’smoothing factor’ (0 < «,, < 1), an important practi-
cal problem is the scaling of units of the left hand side and the right hand side

12 ANDREAS GROTHEY, XINAN YANG

in the updating equation (4.3). Since the value of (™~ and [VT(m_l)(ST) —
@ﬁm)]vm,,H)VT(m’”(ST) may possess completely different scale, we need an adap-
tively chosen aq to cover this difference. Thus our stepsize consists of two compo-
nents, which means a,, = aga®. As we expect the 6™ to move monotonically
at the beginning of the algorithm and start alterating near convergence, we will in-
crease oy if we observe monotonic behaviour in the 5™ for the first few iterations
and decrease otherwise.

4.4. Stopping criterion. Asin ADP we update the value function estimation it-
eratively, when to stop becomes an important practical issue. Generally speaking,
in ADP we expect to end up with a converged set of coefficients for our regression
model. However, as we introduced many parameters in the value function estima-
tion, it is hard to define a single guideline for convergence which works well for all
coefficients. In addition, stochastic gradient algorithm typically converge rapidly
at the beginning and then vibrate with noise. As in our problem, what we are
seeking for is whether a routing policy gives us a mean costs that is low enough in
a long run, instead of the exact expression of the regression model (4.1). Therefore
in our ADP model, we numerically evaluate the mean cost over every 10,000 runs
and once we observe the mean cost changes mainly with noise instead of decreas-
ing/increasing rapidly, we stop and treat the current coefficients as the converged
parameters for (4.1). For more detail please see Section 5.2.2.

5. NUMERICAL RESULTS

5.1. Test Problems with 10 periods. In this section we give some numerical
results on several small instances of the TpTRP taken from [4]. For clarity, we
firstly characterise and index these instances which are examined in the later part
of this section.

Index | Parameters Stochastic Information
T % n distribution time dependency
Ins.2 | 10 3 2 U (6000, 14000) i.i.d.
Ins.3 | 10 3 2 uniform see Fig. 5
Ins.4 | 10 3 2 | truncated N(10000,10%) ii.d.
Ins.5 | 10 3 2 truncated normal see Fig. 6

Table 1: List of TpTRP Instances

Table 1 summarises the instances used. In all instances, we assume that we
divide the modelling region into 10 time intervals and cost are based on the time
interval with the § = |g x |T'|] = 3rd (¢ = 0.3) highest volume of traffic. In all
cases we use 2 network providers (n = 2) with costs ¢; = 10,¢9 = 11,12 or 15. The
instances differ by the assumptions made on the random traffic. In instance 2 and
4 the traffic in every period follows the same uniform (U (6000, 14000) in Instance
2) or normal (N(10000,10°) in Instance 4) distribution. Instance 3 and 5 on the
other hand, use traffic distributed according to a time varying uniform or normal
distribution. The parameter for each time interval are displayed in Figures 5.1.
Note that Instance 4 and 5 uses a truncated normal distribution in which traffic
outside the 99.7% (+30) confidence region is projected onto the boundary of the
region to avoid negative traffic volumes.

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 13

1 B 3 2 5 6 7 B 9 10 tme interve 1 2 3 7 5 3 7 B 9 10 tme interv:

(a) Upper and lower bounds for uniform dis- (b) Mean and 99.7% confidence region for
tributions in Ins.3 normal distributions in Ins.5

Figure 5.1: Traffic distribution used in testing instances

5.2. Numerical results on TpTRP instances with 10 periods.

5.2.1. Mean cost. To evaluate the quality of this routing policy we get from the
ADP model, we examine it in a simulation of 1,000,000 random scenarios taken
from the original distribution on all the instances shown above. We compare results
with the following benchmarks:

e SRP - Single-homing Routing Policy, i.e. send everything to the cheapest
network provider provider 1;

e TMRP - Trivial Multi-homing Routing Policy, i.e. send randomly 6 — 1
traffics to the expensive provider and all the rest to the cheaper one. In
this way the ISP is only charged by the cheapest network provider, but uses
the free time intervals of all network providers;

e SDPRP - Stochastic Dynamic Programming Routing Policy given as a dis-
crete look-up table by solving the SDP model in [4], which requires dis-
cretization of the traffic region. We repeat the model with different number
of discretization levels (L in Table 2) used;

e DRP - Deterministic Routing Policy, i.e. assuming we know all traffics in
advance. The optimal routing policy (as proved in [4]) is to send the 6 — 1
highest traffics to the expensive provider and the rest to the cheaper one.
Note that as we assume that we have full knowledge of the traffic ahead in
time, the DRP is not implementable. It provides us with lower bound on
all the stochastic routing policies.

Results with different cost ratios ca/c; are summarised in Table 2. We can see
that the ADP routing policy outperforms trivial routing policies and works better
than the SDP routing policy in most cases for coarse discretizations (e.g. L =7
and 14). Sometimes, the ADP routing policy can be even better than SDP with
L = 28, which is the finest model for which SDP is tractable (due to the 'curse of
dimensionality’ in state space). We think the reason for ADP outperforming SDP
is due to the fact that, in SDP the new random traffic is rounded to the nearest
tabulated value before taking a decision. However, the ADP model approximate
the value function with a continuous linear regression model, thus the decision
is made based on the real value of the state. Apart from this, forward dynamic
programming focuses attention on the states that we actually visit. As in normal
distribution instances the traffic is more clustered around the mean, we can get
better coefficients for those more likely happen states. We think this is why in

14 ANDREAS GROTHEY, XINAN YANG

Ins. SRP TMRP L SDPRP ADPRP DRP
7 107219.29+12.69

Ins.2 | 118178.534+10.28 113335.54£11.93 | 14 | 106090.86+12.18 | 107140.45+£12.35 103637.95+11.50
28 | 105734.36+£12.03
7 104728.46+8.15

Ins.3 114340.2547.52 104294.38+7.86 14 103543.13£7.53 103254.884+7.45 102303.09+6.99
28 103140.84£7.42
7 103564.954+5.25

Ins.4 106564.38+4.18 104727.881+4.48 14 102808.01+4.51 102470.254+4.30 101226.331+3.89
28 102255.24+4.11
7 108078.2945.89

Ins.5 112379.96+4.53 105986.18+4.95 14 106005.25+4.83 105315.85+4.57 105003.3244.37
28 105536.23+4.64

(a) Co = 11

Ins. SRP TMRP L SDPRP ADPRP DRP
7 107811.61£12.90

Ins.2 | 118178.534+10.28 113335.54£11.93 | 14 | 106602.73+12.33 | 107335.60+£12.35 103637.951+11.50
28 | 106203.10+£12.17
7 105256.80+£8.44

Ins.3 114340.2547.52 104294.38+7.86 14 103853.99£7.71 103361.5247.50 102303.09+6.99
28 103375.2247.54
7 104097.7945.54

Ins.4 106564.38+4.18 104727.881+4.48 14 103007.73+4.58 102561.69+4.31 101226.331+3.89
28 102424.21£4.18
7 108541.8546.09

Ins.5 112379.96+4.53 105986.18+4.95 14 106172.45+4.89 105418.83+4.78 105003.3244.37
28 105677.18£4.73

(b) Cc2 = 12

Ins. SRP TMRP L SDPRP ADPRP DRP
7 109022.21£13.42

Ins.2 | 118178.534+10.28 113335.54£11.93 | 14 | 107432.60+12.60 | 107724.39+12.32 103637.95+11.50
28 | 106932.48+12.38
7 106260.86+9.04

Ins.3 114340.2547.52 104294.38+7.86 14 104197.98+£7.92 103544.28+7.58 102303.09+6.99
28 103679.88+7.67
7 105733.6446.65

Ins.4 106564.38+4.18 104727.881+4.48 14 103736.17+4.98 102766.081+4.35 101226.331+3.89
28 102750.73+4.37
7 109898.90+6.98

Ins.5 112379.96+4.53 105986.18+4.95 14 106490.32+5.16 105694.7145.13 105003.3244.37
28 105837.72+£4.89

(C) c2 = 15

Table 2: Numerical result (mean cost + s.d.) of implementing routing policies on
1,000, 000 random scenarios

case where the traffic volumes follow the normal distribution (i.e. Ins.4 and Ins.5),
the ADP routing policy seems performing better than where uniform distribution
(Ins.2 and Ins.3) is applied. In conclusion, the ADP model gives very promising
results with the linear regression model.

5.2.2. Convergence and resource consumption. Apart from performance, another
important practical issue is running time of a model, specifically the convergence
time in the ADP model. As notified in Section 4.4, we justify the convergence of
our model by evaluating the mean cost of implementing the routing policy derived
from the current coefficients over every 10, 000 iterations.

Figure 5.2 shows how the mean cost varies with time (x-axis represents the
number of 10,000 iterations) for each instance. We see that initial convergence is
fast (within 100, 000 iterations or so), and after which, it varies almost purely with
noise. We try to identify by a heuristic the onset of noise and stop the algorithm

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING

1.085

1075

o 5 10 15 20 25

0 3 40 45

(a) Ins.2

1036

1034

1032

1028

1026

10 15 20 25 30 3 40 45 50

(b) Ins.3

1024,
0

Figure 5.2: Mean cost over 10,000 samples varies with number of iterations

convergence

then.
given in Table 3.

5 10 15 20 25

0 3 40 45

(c) Ins.4

10 15 20 25 30 3 40 45 50

(d) Ins.5

15

The resulting number of iterations until convergence was determined are

In addition to the running time, the ’curse of dimensionality’ in the SDP model
also manifests itself in high memory use. In Table 3 we summarise the running
time and the memory consumption (theoretical) in the solution of the ADP and

SDP model.

Ins ADP model SDP model
Iterations Time Memory L Time Memory
7 0.194s 0.38MB
Ins.2 80,000 9.391s 5.34e-4MB | 14 15.628s 16.75MB
28 11487.095s 880.32MB
7 0.126s 0.38MB
Ins.3 70,000 7.481s 5.34e-4MB | 14 12.486s 16.75MB
28 9732.705s 880.32MB
7 0.316s 0.38MB
Ins.4 | 130,000 170.824s 5.34e-4MB | 14 27.074s 16.75MB
28 21185.037s 880.32MB
7 0.390s 0.38MB
Ins.5 | 120,000 130.022s 5.34e-4MB | 14 27.211s 16.75MB
28 22643.042s 880.32MB

Table 3: Comparison of problem size and resource consumption

16 ANDREAS GROTHEY, XINAN YANG

In Table 3, the first column shows the number of iterations needed to see the
convergence in their own ADP model for all instances, while the second column
shows the running time these iterations consumes. From this table we can see that
in Ins.2 and Ins.3 the solution times of ADP model are comparable with the 14-
level SDP model, while in Ins.4 and Ins.5 it seems the latter runs quicker. This is
caused by the fact that, in ADP we need to calculate the expected function value
over continuous region when solving the decision problem, for normal distribution
it takes much more time than for the uniform distribution.

However, the most significant advantage of ADP model is that it does not require
to discretize the traffic region, thus the computer memory it consumes is constant
for a predetermined instance. Also, as we are working on continuous state space
in ADP, there is no need to record all decisions explicitly at every node in the
dynamic tree. What we need to keep are only the coefficients according to state
variables, decision and value function are all implicit in these coefficients. In fact
the computer memory which ADP model consumes is increasing linearly with the
top-percentile parameter 6 and the number of network providers n. This solves the
"curse of dimensionality’ of the SDP model.

5.2.3. Solving the decision problem to higher accuracy. As stated above, the deci-
sion problem is not convex, thus not easy to solve quickly to optimality. So far
the decision problem has been solved by trying all decisions {0.0,0.1,0.2,...1.0}
and choosing the one which leads to the best objective. In Table 4 we investigate
the effect of solving the decision problem to a higher accuracy, by choosing from
decisions {0.00,0.01,0.02, ...1.00}.

Ins. ADPRP 0.1 ADPRP 0.01

Mean Cost Running Time Mean Cost Running Time
Ins.2 107335.601+12.35 9.391s 107335.434+12.35 84.473s
Ins.3 103361.5247.50 7.481s 103361.51+7.50 68.245s
Ins.4 102561.694+4.31 170.824s 102561.694+4.31 1350.809s
Ins.5 105418.834+4.78 130.022s 105417.344+4.78 982.480s

Table 4: Comparison of mean cost (£ s.d.) and resource consumption of AD-
PRP_0.1 and ADPRP_0.01, co =12

We can see that this does not enhance the quality of ADP solution (differences
in mean cost are not statistically significant), while of course increasing solution

time. We therefore argue that our primitive but fast method to solve the decision
problem is justified.

5.3. Solving real-world sized instances with aggregation method. Despite
the improvement in terms of time and memory consumption of the ADP model over
the SDP model, we are still not in a position to solve the real sized problem instances
with thousands of time intervals directly. Rather we suggest to aggregate time
periods, such that one model V. (S7) is used for 100 time periods. Applying ADP to
such a model would result in updating the parameters g7 for one particular V. (S7)
100 consecutive times before moving on to V,41(S7), resulting in slow convergence.
To speed up convergence we instead aggregate each scenario w,, € RI'l into a
compact sample with |I'|/100 components and use this to update in effect a |I'|/100-
time period model.

SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING

17

Table 5/6 give running time and performance for this approach on a 4320-time

period model with traffic distribution according to Table 1.

Ins. | Iterations Running Time
Ins.2 200,000 99.674s
Ins.3 400,000 179.029s
Ins.4 1,000,000 5281.945s
Ins.5 1,000,000 5468.437s

Table 5: Resource consumption of solving the 43-periods ADP model
Tns. SRP TMRP ADPRP DRP
Tns.2 | 136000.08£2.63 135789.57£2.75 134335.363.72 132008.21£2.69
Tns.3 | 133874.6841.90 133022.1242.42 129956.59+3.15 127791.87+2.10
Ins.4 | 116466.1643.28 116216.75+3.33 114318.4444.23 112840.00+2.60
Ins.5 | 124737.7143.75 123666.23+3.87 121618.19+4.24 120235.63+3.03
Table 6: Numerical result (mean cost + s.d.) of implementing 43-periods ADP

routing policy on real 4320-periods instance over 1,000 scenarios, co = 12

From the numerical results we can see that the combined ADP-time aggregation
method work well on a 4320-period problem, consistently outperforming the trivial
routing policy in all instances.

6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions. In this work we have developed an ADP model to solve the
TpTRP problem. Rather than using the discrete look-up table representation of
value function in SDP, in ADP we approximate the value function by a proper
regression model and train its coefficients iteratively with fresh sample scenarios to
get the final estimation. As all works are done in a continuous state space, ADP
overcomes the curse of dimensionality we met in the SDP model which prevented
larger instances (more than 10-periods and 2 network providers and ¢ = 5%) to be
solved.

ADP compares favourable to the SDP model in the solution of small instances
(10-periods ones). Routing policies derived from ADP model are no worse than
those generated from 14-levels SDP model and sometimes even outer-performs the
SDP routing policy with 28-levels, while the running time is much smaller. By com-
bining ADP with time aggregation we can solve real sized instances with thousands
of time periods in a reasonable time. The routing policies obtained consistently
outperform naive routing policies on real sized problem instance.

6.2. Future works. Currently we work on traffic routing problems under pure top-
percentile pricing policy, where if we send no more than 6§ — 1 traffics to a provider,
we are not, going to pay anything to this provider. However in practise, network
provider might combine top-percentile pricing with other pricing policies such as
an additional start up cost. What we need to do is examine whether ADP model
with linear regression value function approximation can manage these changes as
well. If not try to find proper regression models for this problem.

18

1]

(2]

[3]

[4]

ANDREAS GROTHEY, XINAN YANG

REFERENCES

M. BagnuLo, A. GARCIA-MARTINEZ, J. RODRIGUEZ, AND A. Azcorra, The case for source
address dependent routing in multihoming, Lecture Notes In Computer Science, 3266 (2004),
pp. 237 246.

M. CHARDY, A. OUoroU, AND T. VANDONSELAAR, Optimization of interconnoction strateqy
in top-percentile pricing framework, technical report, Orange Labs, France Telecom, 38-40 rue
du général Leclerc, BP 92130, Issy-les-Moulineaux, 2009.

D. GoupeENBERG, L. Qiu, H. Xig, Y. YanG, AND Y. ZHANG, Optimizing cost and per-
formance for multihoming, ACM SIGCOMM Computer Communication Review, 34 (2004),
pp. 79 92.

A. GroTHEY AND X.YaNaG, Top-percentile traffic routing problem by dynamic programming,
Technical Report ERGO-09-006, School of Mathematics, University of Edinburgh, Edinburgh
EH9 3J7, Scotland, UK, March 2009.

J. Levy, H. Levy, anDp Y. KanaNa, Top percentile network pricing and the economics of
multi-homing, Annals of Operations Research, 146 (2006), pp. 153-167.

A. ObrLyzko, Internet pricing and the history of communications, Computer Networks, 36
(2001), pp. 493-517.

W. PoweLL, Approrimate Dynamic Programming - Solving the Curses of Dimensionality,
John Wiley & Suns, New Jersey, 2007.

