
SOLVING THE TOP-PERCENTILE TRAFFIC ROUTINGPROBLEM BY APPROXIMATE DYNAMIC PROGRAMMINGANDREAS GROTHEY, XINAN YANGSCHOOL OF MATHEMATICSCOLLEGE OF SCIENCE AND ENGINEERINGTHE UNIVERSITY OF EDINBURGHAbstra
t. Multi-homing is used by Internet Servi
e Provider (ISP) to 
on-ne
t to the Internet via di�erent network providers. This study investigatesthe optimal routing strategy under multi-homing in the 
ase where networkproviders 
harge ISPs a

ording to top-per
entile pri
ing (i.e. based on the θ-th highest volume of tra�
 shipped). We 
all this problem the Top-per
entileTra�
 Routing Problem (TpTRP). The TpTRP is a multi-stage sto
hasti
 op-timisation problem in whi
h routing de
ision should be made before knowingthe amount of tra�
 that is to be shipped in the following time period. Thesto
hasti
 nature of the problem forms the 
riti
al di�
ulty of the problem.Solution approa
hes based on Sto
hasti
 Integer Programming (SIP) te
h-niques or Sto
hasti
 Dynami
 Programming (SDP) su�er from the 
urse ofdimensionality whi
h restri
ts their appli
ability. To over
ome this we suggestto use Approximate Dynami
 Programming (ADP) whi
h exploit the stru
-ture of the problem to 
onstru
t approximations of the value fun
tion in SDP.Thus the 
urse of dimensionality is largely avoided.Keywords: top-per
entile pri
ing, multi-homing, sto
hasti
, routing poli
y,approximate dynami
 programming1. Introdu
tionInternet Servi
e Providers (ISPs) do not generally have their own network infras-tru
ture to route the in
oming tra�
 of their 
ustomers, but instead use externalnetwork providers. Multi-homing is used by ISPs to 
onne
t to the Internet viamore than one network provider. This te
hnique is 
urrently widely adopted toprovide fault toleran
e and tra�
 engineering 
apabilities [1℄.Traditionally network providers 
harge ISPs based on a 
ombination of �xed
ost and per usage pri
ing. Top-per
entile pri
ing is a relatively new and in
reas-ingly popular pri
ing regime used by network providers to 
harge servi
e providers(although it usually appears as part of a mixed pri
ing strategy), that is qui
klybe
oming established [6℄. In this s
heme, the network provider divides the 
hargeperiod, say a month, into several time intervals with equal, �xed length. Then, itmeasures and evaluates the amount of data (tra�
) sent in these time intervals. Atthe end of the 
harge period, the network provider sele
ts the tra�
 volume of thetop q-per
entile interval as the basis for 
omputing the 
ost. For example, if the
harge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10mins, and if top 5-per
entile pri
ing is used, the 
ost 
omputed by top-per
entilepri
ing is based on the tra�
 volume of the top 216th interval.1
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2 ANDREAS GROTHEY, XINAN YANGIt has been dis
ussed (e.g. in [6℄) what the optimal multi-homing routing strate-gies looks like under traditional pri
ing regimes and whether they are e
onomi
allyviable. In 
ontrast, very little work has been done on network operation under top-per
entile pri
ing. The deterministi
 problem (in whi
h we assume that we know allthe tra�
s in advan
e) has been analysed in [2℄, where the authors build a mixed-integer linear programming model to evaluate if multi-homing is e
onomi
ally viableand develop an e�
ient B&B algorithm to solve it with 
ombined top-per
entilepri
ing and �xed 
ost. In the sto
hasti
 
ase, Levy et al. in [5℄ develops a prob-abilisti
 model and provides an analysis of the expe
ted 
osts, thus demonstratethat multi-homing 
an be e
onomi
al e�
ient under top-per
entile pri
ing thoughthey did not give the optimal routing poli
y. On the other hand, Goldenberg etal. [3℄ fo
us on the development of smart routing algorithms for optimising both
ost and performan
e for multi-homing users under top-per
entile pri
ing, but notin the sto
hasti
 
ase. To the best of our knowledge however, there is no resultdealing with the optimal multi-homing routing poli
y under top-per
entile pri
ingin the sto
hasti
 
ase.The purpose of this study is to �nd the optimal routing strategy in order to allowthe ISP to make full use of the underlying networks with minimum 
ost, when allnetwork providers 
harge the ISP based on the volume of the top q-per
entile timeinterval's tra�
 (pure top-per
entile pri
ing). Under pure top-per
entile pri
ing,the ISP 
an ship several time intervals' tra�
 via a network without being 
hargedprovided tra�
 shipped during the top-per
entile time interval is zero. In thefollowing parts of this paper we 
all this problem, the Top-per
entile Tra�
 RoutingProblem (TpTRP). The TpTRP is a sto
hasti
 problem, where the ISP 
an notanti
ipate the volume of future time intervals' tra�
. Instead, we assume that theISP knows the probabilisti
 distributions of every time intervals' tra�
 ahead oftime.In [4℄, we have shown that solving the TpTRP as an SIP is intra
table for allbut the smallest instan
es, due to the fa
t that modelling of the top-per
entile 
ostrequires the introdu
tion of integer variables within the last time stage. On theother hand, we suggested a Sto
hasti
 Dynami
 Programming (SDP) model basedon a dis
retization of the state spa
e, whi
h gives routing poli
ies that outperformany naive routing poli
y and whose mean 
ost is 
lose to the lower bound givenby the deterministi
 
ase for medium sized instan
es. However due to the 
urse ofdimensionality derived from the dis
retization in dynami
 programming, the hugenumber of states prevents the use of the SDP model on larger problem instan
es.It has been suggested in [7℄ that Approximate Dynami
 Programming (ADP) isa promising te
hnique to avoid the 
urse of dimensionality. The fo
us of this workis on the appli
ation of ADP to the TpTRP. In the remainder of this report, wepresent the de
ision spa
e and justify its appropriateness in Se
tion 2. In Se
tion 3,we introdu
e the 
urses of dimensionality involved in our SDP model and show howto deal with them with ADP te
hniques. Then we give details of our implementationof ADP on the TpTRP problem in Se
tion 4. Se
tion 5 gives the numeri
al resultsand shows how the aggregation with ADP 
an be used to solve real-world sizedinstan
es. Finally we make 
on
lusions in Se
tion 6.



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 32. Top-per
entile Traffi
 Routing ProblemInstead of building the ADP model dire
tly, in this se
tion we would like toinvestigate the important features of the TpTRP problem �rst. This se
tion gives aformal des
ription of the TpTRP model and highlights a few of its key prospe
tiveswhi
h will be useful in de�ning our set of 
onsidered de
ision rules.2.1. Notations and Assumptions.Problem parameters.
• I, |I| = n : The set of network providers.
• Γ : The set of time intervals.
• q : The per
entile parameter.
• θ = ⌊|Γ| ∗ q⌋: The index of the top-per
entile time interval.
• ci, i ∈ I : The per unit 
ost 
harged by network provider i on the top-per
entile tra�
.We assume that there is no upper bound on the volume of tra�
 that 
an beshipped to ea
h network provider, and no failure o

urring in any network duringthe 
harge period. All network providers divide the 
harge period into the same

|Γ| time intervals of equal length and use top-per
entile pri
ing with a same q. Atthe end of the 
harge period, 
ost 
harged by provider i is Costi = ciyi, if yi is the
θ-th highest volume of tra�
 shipped to network provider i.

• T τ , τ ∈ Γ : The volume of tra�
 in time interval τ .We assume that before the routing de
ision for period τ is made, T τ (ωτ ) is arandom variable depending on the random event ωτ . When the random event ω̂τbe
omes known, we use T̂ τ = T τ (ω̂τ ) to represent the realisation of T τ .De
ision variables.
• xτ , τ ∈ Γ : The routing de
ision for time interval τ .Note that xτ should be made and implemented before knowing the whole valueof the random tra�
 T τ (see Se
tion 2.3 for detail).2.2. State variable and value fun
tion. In our problem, at the beginning oftime interval τ , we know all the previous realisations of tra�
 volumes T̂ t, t =

1, ..., τ − 1 and routing de
isions xt, t = 1, ..., τ − 1. The implied usage T̂ t
i =

T t
i (T̂ t, xt), t = 1, ..., τ − 1 of network i 
an be 
omputed. Then a 
ombination of

{T̂ t
i |t = 1, ..., τ − 1; i = 1, ..., n} de�nes the 
urrent state Sτ of the system. We use

T̂ j,τ
i to represent the j-th highest volume of tra�
 in T̂ t

i , t = 1, ..., τ −1 and rewrite
Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., τ − 1}.However, under pure top-per
entile pri
ing poli
y the 
ost is solely determinedby the θ-th highest volume of tra�
 shipped by every network provider, at the endof the 
harging period. We 
an see that at any time interval τ , tra�
s whi
h aregreater than the 
urrent θ-th volume of tra�
 
an be the θ-th highest in later stages,thus have an in�uen
e on the �nal 
ost. Instead, any tra�
 whi
h is no higher thanthe 
urrent θ-th volume of tra�
 (namely, tra�
s T̂ j,τ
i , j = θ + 1, ..., τ − 1 at timeinterval τ) has no impa
t on the �nal 
ost. Noting this, we delete these redundantinformation from the state spa
e, whi
h makes the state variable at τ des
ribed by

Sτ = {T̂ j,τ
i |i = 1, ..., n; j = 1, ..., θ}.



4 ANDREAS GROTHEY, XINAN YANGThe value fun
tion Vτ (Sτ ) represents the expe
ted 
ost for the ISP, given state
Sτ at the beginning of time interval τ and optimal de
isions in all future timeintervals.2.3. Implementable Routing Poli
ies. As mentioned above, in our TpTRPproblem tra�
 T τ is a random variable, of whi
h the distribution is known be-forehand. In reality, the tra�
 is revealed 
ontinuously over the time period. Thismeans, as shown in Figure 2.1, we 
annot see the 
omplete amount of T̂ τ beforethe end of time interval τ .

t(t−1) (t+1)

for stage t+1
make decision

see realization and implemente decision

for stage t
make decisionFigure 2.1: Pro
ess of data revelation and implementation of de
isionsHowever, any bit of data must be sent as soon as it is generated instead of waitinguntil the end of time interval τ when the whole tra�
 T̂ τ has been revealed. There-fore in addition to being non-anti
ipative with respe
t to the whole volume T̂ τ , an-other ne
essary 
ondition for a feasible routing de
ision is that it is implementablewithout knowing T̂ τ . In the simplest 
ase, we 
an de
ide at the start of every timeperiod where to send the whole tra�
 for this period. However, sin
e the revela-tion of tra�
 is gradual, more sophisti
ated routing poli
ies 
an be 
onsidered. Weare, of 
ourse, limited by what is te
hni
ally implementable. In parti
ular, we as-sume that per
entage based routing poli
ies (i.e., xτ = (xτ

1 , xτ
2 , ..., xτ

n)T ,
∑

i∈I

xτ
i = 1,where xτ

i represents the proportion of the whole tra�
 T τ to be routed to networkprovider i) or 
ut-o� based routing poli
ies (i.e., xτ = (yτ
1 , yτ

2 , ..., yτ
n)T , where the�rst yτ

1 unit of tra�
 are sent to provider 1, the next yτ
2 to provider 2 and so forth)or a 
ombination of these are implementable by operating a 'time sli
ing' s
heme.In this work we 
onsider a parti
ular mixed routing poli
y. Firstly, we set up a
ut-o� yτ

i for network provider i, any remaining tra�
 T̂ τ −
∑

i∈I

yτ
i (if there is) isrouted a

ording to the proportional de
ision xτ

i . Thus our feasible de
ision set is
F = {(xτ

i , yτ
i ) ≥ 0|i = 1, ..., n;

∑

i∈I

xτ
i = 1}.Note that any de
ision (xτ , yτ ) ∈ F gives an implementable routing de
ision.When implementing it, we allo
ate the random tra�
 T τ a

ording to the followingrule:

• If ĩ
∑

i=1

yτ
i ≤ T̂ τ <

ĩ+1
∑

i=1

yτ
i for some ĩ ∈ I, we send:� newT τ

i = yτ
i to network provider 1 ≤ i ≤ ĩ,� newT τ

i = T̂ τ −
ĩ

∑

i=1

yτ
i to network provider ĩ + 1,



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 5� newT τ
i = 0 to network provider i > ĩ + 1.

• If T̂ τ ≥
∑

i∈I

yτ
i , we send:� newT τ

i = yτ
i + xτ

i (T̂ τ −
∑

i∈I

yτ
i ) to provider i ∈ I.In the following se
tion we investigate the proper 
hoi
e of 
ut-o� level yτ , whi
hgives some idea about the optimal routing poli
y.2.4. Revised de
ision spa
e.Lemma 2.1. At any time stage τ ∈ Γ, if there are two states 1Sτ = {1T̂ j,τ

i },
2Sτ = {2T̂ j,τ

i } whi
h satisfy 1Sτ ≤ 2Sτ , i.e., 1T̂ j,τ
i ≤ 2T̂ j,τ

i , ∀i ∈ I, 1 ≤ j ≤ θ. Thenwe have Vτ (1Sτ ) ≤ Vτ (2Sτ ).Proof. We proof this assertion by indu
tion over τ .At τ = |Γ|, we 
ompute the 
ost 
harged on the ISP based on the θ-th highestvolume of tra�
 sent to every network provider. It is obvious that V|Γ|(
1S|Γ|) ≤

V|Γ|(
2S|Γ|) holds.Now we assume for arbitrary 1Sτ+1 ≤ 2Sτ+1 we know Vτ+1(

1Sτ+1) ≤ Vτ+1(
2Sτ+1).At time stage τ , assume (2x̂τ ,2 ŷτ ) is the optimal routing de
ision we made forstate 2Sτ = {2T̂ j,τ

i }. A

ording to the implementation rule given in Se
tion 2.3,the amount of tra�
 newT τ
i sent to network provider i does not depend on the 
ur-rent state. This means if we apply the same de
ision set (2x̂τ ,2 ŷτ ) on an arbitrarystate 1Sτ ≤ 2Sτ , every network provider gets the same amount of newT τ

i as whenwe were on state 2Sτ . Thus for every single s
enario ω̂τ , we will go to 1S̃τ+1 =
Sτ+1(1Sτ ; ω̂τ ;2 x̂τ ,2 ŷτ ) whi
h is no greater than 2Sτ+1 = Sτ+1(2Sτ ; ω̂τ ;2 x̂τ ,2 ŷτ )on all entries. From the indu
tion we have Vτ+1(

1S̃τ+1) ≤ Vτ+1(
2Sτ+1). Take theexpe
tation over ωτ we get

Ṽτ (1Sτ ) = Eωτ [Vτ+1(
1S̃τ+1)] ≤ Eωτ [Vτ+1(

2Sτ+1)] = Vτ (2Sτ ).However, the de
ision set (2x̂τ ,2 ŷτ ) we used might not be optimal on state
1Sτ , whi
h means the best fun
tion value Vτ (1Sτ ) ≤ Ṽτ (1Sτ ). Combine these twoinequalities together, we have proved that Vτ (1Sτ ) ≤ Vτ (2Sτ ) holds for ∀τ ∈ Γ.

�From Lemma 2.1 we 
an see, value fun
tion Vτ (Sτ ) is non-de
reasing with everyentry of the state Sτ . Notifying this, when we make routing de
ision at every timeinterval we hope the in
rease on state 
omponents 
an be as small as possible,namely minimise the di�eren
e between Sτ+1 and Sτ . Assume this minimisation
an be represented by |Sτ+1 − Sτ |1 =
∑

i∈I

∑

1≤j≤θ

(T̂ j,τ+1
i − T̂ j,τ

i ), then for networkprovider i we have:
(|Sτ+1 − Sτ |1)i =

{

0, if newT τ
i ≤ T̂ θ,τ

i
newT τ

i − T̂ θ,τ
i , otherwiseThus,

|Sτ+1 − Sτ |1 =
∑

i∈I

(|Sτ+1 − Sτ |1)i =
∑

i∈I

max{newT τ
i − T̂ θ,τ

i , 0}



6 ANDREAS GROTHEY, XINAN YANG
≥ max{

∑

i∈I

newT τ
i − T̂ θ,τ

i , 0} (2.1)

= max{T̂ τ −
∑

i∈I

T̂ θ,τ
i , 0}.Let us de�ne TAdd(S

τ ) = max{T̂ τ−
∑

i∈I

T̂ θ,τ
i , 0}. We 
all TAdd(S

τ ), the additionaltra�
, whi
h represents the amount of tra�
 that 
annot be sent without a�e
tingthe 
urrent θ-th highest volume of tra�
 of any network provider. A

ording tothe inequality (2.1), TAdd(S
τ ) is the lower bound of |Sτ+1 − Sτ |1.Lemma 2.2. Assume we are on state Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., θ} at timestage τ ∈ Γ. In the optimal routing poli
y whi
h minimising Eωτ [|Sτ+1 − Sτ |1], wehave yτ
i = T̂ θ,τ

i , ∀i ∈ I.Proof. Firstly, it is obvious to see that with yτ
i = T̂ θ,τ

i , ∀i ∈ I, for every singles
enario ωτ ∈ Ωτ we 
an guarantee |Sτ+1 − Sτ |1 = TAdd(S
τ ).Se
ondly, we proof that with any other 
hoi
e of yτ

i , we 
an always �nd s
enariosin whi
h 
ase |Sτ+1 − Sτ |1 > TAdd(S
τ ).

• Assume ∃i0 ∈ I, ŷτ
i0

< T̂ θ,τ
i0

. Then if we get a new tra�
 T̂ τ whi
h satis�es
ŷτ

i0
+

∑

i6=i0

T̂ θ,τ
i < T̂ τ <

∑

i∈I

T̂ θ,τ
i , the amount of tra�
 sent to every networkprovider satis�es� newT τ

i0
= ŷτ

i0
+ x̂τ

i0
(T̂ τ − ŷτ

i0
−

∑

i6=i0

T̂ θ,τ
i );� newT τ

i = T̂ θ,τ
i + x̂τ

i (T̂ τ − ŷτ
i0
−

∑

i6=i0

T̂ θ,τ
i ), ∀i 6= i0.As T̂ τ <

∑

i∈I

T̂ θ,τ
i , we have:

newT τ
i0

< ŷτ
i0

+ x̂τ
i0

(
∑

i∈I

T̂ θ,τ
i − ŷτ

i0
−

∑

i6=i0

T̂ θ,τ
i ) = ŷτ

i0
+ x̂τ

i0
(T̂ θ,τ

i0
− ŷτ

i0
) ≤ T̂ θ,τ

i0
.and

∑

i6=i0

newT τ
i = T̂ τ −new T τ

i0
> T̂ τ − T̂ θ,τ

i0
.Thus under this s
enario,

|Sτ+1 − Sτ |1 =
∑

i6=i0

(newT τ
i − T̂ θ,τ

i ) > T̂ τ −
∑

i∈I

T̂ θ,τ
i = TAdd(S

τ ).

• Assume ∃i0 ∈ I, ŷτ
i0

> T̂ θ,τ
i0

. Then if we get a new tra�
 T̂ τ whi
h satis�es
i0
∑

i=1

T̂ θ,τ
i < T̂ τ <

i0−1
∑

i=1

T̂ θ,τ
i + ŷτ

i0
, the amount of tra�
 sent to every networkprovider satis�es� newT τ

i = T̂ θ,τ
i , i = 1, ..., i0 − 1;� newT τ

i0
= T̂ τ −

i0−1
∑

i=1

T̂ θ,τ
i ;� newT τ

i = 0, i = i0 + 1, ..., n.
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i0
∑

i=1

T̂ θ,τ
i , we have newT τ

i0
> T̂ θ,τ

i0
. As for all other networkproviders, newT τ

i ≤ T̂ θ,τ
i . Thus under this s
enario,

|Sτ+1 − Sτ |1 =new T τ
i0
− T̂ θ,τ

i0
> 0 = TAdd(S

τ ).As for all s
enario we 
annot do better than TAdd(S
τ ), thus taking the expe
ta-tion we 
an prove yτ

i = T̂ θ,τ
i , ∀i ∈ I is optimal.

�In Lemma 2.2 we have proved yτ
i = T̂ θ,τ

i , ∀i ∈ I in the optimal de
ision. Thismeans in this work, our de
ision should be made on the additional tra�
 only.Thus the feasible de
ision set is
χτ = {xτ

1 , xτ
2 , ..., xτ

n|0 ≤ xτ
i ≤ 1, ∀i ∈ I,

∑

i∈I

xτ
i = 1}.with the understanding that de
ision xτ

i means we send at most T τ
i,add = T̂ θ,τ

i +

xτ
i TAdd(S

τ ) to provider i during τ .3. Introdu
tion to Approximate Dynami
 Programming3.1. Curse of dimensionality. All dynami
 programs 
an be written in terms ofa re
ursion that relates the value Vτ (Sτ ) of being in a parti
ular state Sτ at τ tothe value of the states that we are 
arried into at time stage τ + 1. In the dis
reteSDP model given in [4℄, we use a look-up table representation of Vτ (Sτ ). Thatis we dis
retize the state Sτ = {T̂ j,τ
i |i = 1, ..., n; j = 1, ..., θ} by allowing T̂ j,τ

i tobe one of L possible values. Sin
e T̂ 1,τ
i ≥ T̂ 2,τ

i ≥ ... ≥ T̂ θ,τ
i , ∀i ∈ I, this gives atotal of Cθ

L+θ−1 =

(

L + θ − 1
θ

) 1 di�erent states Sτ
i for provider i and a total of

(

L + θ − 1
θ

)n di�erent values for Sτ .Traditional SDP 
al
ulates and tabulates a value Vτ (Sτ ) for ea
h possible stateand time period, resulting in a total time and memory 
omplexity of |Γ|( L + θ − 1
θ

)n.The resulting exponential in
rease with L, θ and n is referred to in [7℄ as the '�rst
urse of dimensionality' � the dimensionality in state spa
e.3.2. Main 
on
epts in ADP. The SDP model in [4℄ is hit by the 
urse of dimen-sionality in two ways: �rst we need to evaluate Vτ (Sτ ) for an exponential number ofstates and then we need to store these values. Approximate Dynami
 Programming(ADP) avoids these by two modi�
ations:Value fun
tion approximation. Instead of a look-up table, ADP approximates thevalue fun
tion Vτ (Sτ ) by a 
ontinuous model fun
tion with a small number ofparameters that need to be estimated.1„

L + θ − 1

θ

« is the number of possibilities whi
h satis�es T̂
j,τ
i ∈ Ωτ , j = 1, ..., θ and T̂

1,τ
i ≥

T̂
2,τ
i ≥ ... ≥ T̂

θ,τ
i .



8 ANDREAS GROTHEY, XINAN YANGStep forward in time. Another important di�eren
e is that ADP is based on analgorithmi
 strategy that steps forward through time, rather than ba
kward inSDP. In ADP we 
hoose a sample s
enario and step forward in time. At ea
h timestep τ , we solve the de
ision problem based on the 
urrent estimation of the valuefun
tion approximation V̄
(m−1)
τ+1 at time interval τ for the given sample s
enario, andthen update V̄

(m−1)
τ with the optimal sample value v̂

(m)
τ . By repeating these stepsthe pro
ess 
onverges the parameters to a stable estimation of the value fun
tion.The pro
ess 
an be interpreted as applying the sto
hasti
 gradient method () tothe problem of �nding an optimal regression fun
tion V̄τ (Sτ ) for Vτ (Sτ ).Note that with 
ontinuous regression model representation of value fun
tionapproximation, although we follow a single s
enario during every iteration we ef-fe
tively update the value fun
tion approximation for all states when 
hanging its
oe�
ients. This makes the pro
ess more e�
ient than the dynami
 programming,in whi
h by ea
h 
omputation we get the value for a single, dis
rete state variable.In ADP it fo
uses more on the states whi
h are more likely to be visited, ratherthan treat all the possible states as equally important.3.3. Main pro
edure of ADP. A basi
 approximate dynami
 programming al-gorithm is summarised below: [7℄Step 0. Initialisation:Step 0a. Build a initial value fun
tion approximation V̄

(0)
τ (Sτ ) for all time in-terval τ .Step 0b. Choose an initial state S1

(1).Step 0
. Set m = 1.Step 1. Choose a sample path ω(m) = (ω1
(m), ..., ω

|Γ|
(m)).Step 2. For τ = 0, 1, 2, ..., |Γ| do:Step 2a. Solve

v̂(m)
τ = min

xτ∈χτ
(Eωτ∈Ωτ V̄

(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )) (3.1).Step 2b. Update the value fun
tion approximation V̄

(m−1)
τ (Sτ ) with the valueof v̂

(m)
τ .Step 2
. Compute Sτ+1

(m) (Sτ
(m), ω

τ
(m), x̂

τ ), where x̂τ is the optimal solution of(3.1).Step 3. If we have not met our stopping rule, let m = m + 1 and go to step 1.4. ADP model4.1. Value fun
tion approximation � regression model. As dis
ussed in Se
-tion 3.2, the traditional look-up-table representation of value fun
tion su�ers fromthe �rst 
urse of dimensionality. To estimate the value fun
tion with as few pa-rameters as possible, in ADP we use regression model to approximate the valuefun
tion. To get a good �t to the real value fun
tion, it requires us to exploit thespe
ial stru
ture of it. Thus before the de�nition of a proper regression model letus go through several examples of value fun
tions given by the SDP model [4℄, tosee what stru
ture we 
an take to use.
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Figure 4.1: Examples of how fun
tion value 
hanges with a single entry of statevariableFigure 4.1 shows four examples of how the fun
tion value varies with a singleentry of the state variable. Although the value of Vτ (Sτ ) shown in these �guresmight not be exa
t sin
e SDP itself is an approximation of the problem (withdis
retization of state spa
e and restri
tions on the de
ision spa
e), we 
an stillget some insight of the basi
 
hara
ter of value fun
tions. From these three spe
i�
examples we 
an see that the value fun
tion is neither a 
onvex or a 
on
ave fun
tionof its variables, sometimes it is not even smooth. Apart from this, a
tually somestates (e.g. very extreme ones) in SDP model are mu
h less important than othersas they are rarely visited. This requires us to fo
us more on the 
entre part of valuefun
tions.In Lemma 2.1 we have proved that the fun
tion value is non-de
reasing withevery entry of the state variable. In this work we use the simplest model, linearregression to approximate the value fun
tion for every time period. Namely at state
Sτ , we estimate Vτ (Sτ ) by:

V̄τ (Sτ ) = βτ
0 +

∑

i∈I

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i (4.1).Although a linear model is 
ertainly not exa
t, we feel that it will give the besttrade-o� between providing good approximation and maintaining 
omputabilityand avoiding the risk of over-�tting. It also provides robustness against possi-ble spurious behaviour (lo
ally de
reasing approximations) of more 
omplex value
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tion approximations. We feel this 
hoi
e is justi�ed by the numeri
al results inSe
tion 5.2.4.2. De
ision problem. Step 2a of the ADP algorithm requires the solution ofthe de
ision problem. In the m-th iteration, our de
ision problem at time interval
τ is

v̂(m)
τ = min

xτ∈χτ
(Eωτ∈Ωτ V̄

(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )) (4.2),where V̄

(m−1)
τ+1 as given by (4.1) is the approximation of the value fun
tion Vτ+1build with the estimated 
oe�
ients after m− 1 iterations. De
ision problem (4.2)is a minimisation problem, whose obje
tive is an expe
tation of the value fun
tionestimation in next time stage.It is worth investigating the exa
t form of this obje
tive fun
tion. As given in(4.1), V̄τ+1 is a linear fun
tion of the state Sτ+1 = {T̂ j,τ

i }. Further V̄τ de
omposesby network provider, that is if we de�ne V̄τ,i(S
τ
i ) =

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i , then we 
an write

V̄τ (Sτ ) = βτ
0 +

∑

i∈I

V̄τ,i(S
τ
i ). On the other hand, the state Sτ+1

i is obtained fromthe state Sτ
i , the de
ision xτ and the realisation of random tra�
 T̂ τ = T τ (ω̂τ )by applying the rules given in Se
tion 2.3 to obtain the new tra�
 for networkprovider i, newT̂ τ

i and then reordering entries in non-in
reasing order. It is easy tosee that for every given realisation ω̂τ , V̄τ+1,i(S
τ+1
i |Sτ

i , ω̂τ , xτ
i )) is a pie
ewise linearfun
tion of xτ

i . In prin
iple it is possible to give an analyti
 expression for V̄τ+1,i,as in
V̄τ+1,i(S

τ+1
i ) =











































































P

1≤j≤θ

β
τ+1
i,j

T̂
j,τ
i

for Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

;

P

1≤j≤θ−1
β

τ+1
i,j

T̂
j,τ
i

+ β
τ+1
i,θ

(T̂
θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

))for P

i∈I

T̂
θ,τ
i

< Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

+
T̂

θ−1,τ
i

−T̂
θ,τ
i

xτ
i

;

P

1≤j≤θ−2
β

τ+1
i,j

T̂
j,τ
i

+ β
τ+1
i,θ−1

(T̂
θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

)) + β
τ+1
i,θ

T̂
θ−1,τ
ifor P

i∈I

T̂
θ,τ
i

+
T̂

θ−1,τ
i

−T̂
θ,τ
i

xτ
i

< Tτ (ω̂τ ) ≤
P

i∈I

T̂
θ,τ
i

+
T̂

θ−2,τ
i

−T̂
θ,τ
i

xτ
i

;...
β

τ+1
i,1 (T̂

θ,τ
i

+ xτ
i (Tτ (ω̂τ ) −

P

i∈I

T̂
θ,τ
i

)) +
P

2≤j≤θ

β
τ+1
i,j

T̂
j−1,τ
ifor P

i∈I

T̂
θ,τ
i

+
T̂

1,τ
i

−T̂
θ,τ
i

xτ
i

< Tτ (ω̂τ ).Thus the obje
tive fun
tion of the de
ision problem be
omes:
Eωτ (V̄ m−1

τ+1 (Sτ+1)) =

�
ωτ

f(ωτ )βτ
0 dωτ +

∑

i∈I

�
ωτ

f(ωτ )V̄ m−1
τ+1,i(S

τ+1) dωτ (4.3),whi
h is di�
ult to simplify further due to the 
omplex form of V̄τ+1,i(S
τ+1).A
tually, numeri
ally examining some instan
es we observed that the obje
tivefun
tion of the de
ision making problem (4.2) might not be 
onvex, even for thelinear regression model (4.1). Therefore an algorithm based on 
utting planes assuggested by [7℄ 
annot be used. In addition, sin
e the obje
tive is given by an
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tation (4.3) whi
h we are unable to evaluate analyti
ally, any fun
tion orgradient evaluations are expensive and inexa
t.In ADP, as we need to solve the de
ision problem at every time stage for everyiteration, an optimisation method that is e�
ient (solve the problem in reasonabletime) in addition to reliable (�nd the optimal or near optimal solution) is required.We have settled to solving this problem by a simple dis
retization of the de
isionspa
e, i.e., generating several dis
rete de
isions (for example xτ = 0.0, 0.1, 0.2...1.0),
al
ulating their obje
tive value and 
hoosing the best one. Although with the sim-ple dis
retization way we 
annot �nd the optimal solution of the de
ision problem,it gives a good 
ompromise between speed and a

ura
y. We 
an see from thenumeri
al results given in Se
tion 5.2 that the pra
ti
al advantage from solving thede
ision problem more a

urately is minimal.4.3. Re
ursive methods for regression model � parameter estimation.We assume we are given an initial approximation V̄
(0)
τ (Sτ ) of Vτ (Sτ ) for all τ . Initeration m, we update V̄

(m)
τ from its previous estimation V̄

(m−1)
τ . As in this workwe use the linear regression model to estimate the value fun
tion, our value fun
tionapproximation after m iterations 
an be written as V̄

(m)
τ = V̄τ (β(m)). To updateparameters for the regression model, we want to �nd β(m) that solves:

min
β(m)

E[(V̄τ (β(m)) − v̂τ )2],where v̂τ is the sample estimate of the real fun
tion value Vτ (Sτ ) obtained bysolving (4.2). Applying sto
hasti
 gradient algorithm, we obtain the updatings
heme [7℄:
β(m) = β(m−1) − αm−1[V̄

(m−1)
τ (Sτ ) − v̂(m)

τ ]∇β(m−1) V̄ (m−1)
τ (Sτ ) (4.4).The value αm in formula (4.4) is the updating stepsize from iteration m to m+1,whi
h tells us how far we should go in the dire
tion of ∇β(m−1) V̄

(m−1)
τ (Sτ ). Findingthe proper stepsize αm is one of the 
hallenges in sto
hasti
 gradient methods.Poor 
hoi
e of stepsize may 
ause the provably 
onvergent algorithm not to work.However, in most appli
ations of sto
hasti
 problem it is impossible to �nd anoptimal stepsize due to the intra
table 
al
ulation of expe
tations. Thus for theseek of easy in implementing, in this work we use one of the typi
al deterministi
stepsize � M
Clain's formula:

αMC
m =

αMC
m−1

(1 + αMC
m−1 − ᾱ)

,where ᾱ is a spe
i�ed parameter. Steps generated by this formula satisfy αMC
m >

αMC
m+1 > ᾱ. M
Clain's rule 
ombines the features of the 1/n rule whi
h is idealfor stationary data (when values to estimate are mainly de
reasing) and 
onstantstepsizes for non-stationary data (when noise in the observations is dominating).Moreover, as in the limit αMC

m → ᾱ, the stepsize avoids going to zero. This makesthe rule work well in non-stationary environments, and also e�e
tive when we arenot sure how many iterations are required to start 
onverging.In addition to the 'smoothing fa
tor' (0 < αm ≤ 1), an important pra
ti-
al problem is the s
aling of units of the left hand side and the right hand side



12 ANDREAS GROTHEY, XINAN YANGin the updating equation (4.3). Sin
e the value of β(m−1) and [V̄
(m−1)
τ (Sτ ) −

v̂
(m)
τ ]∇β(m−1) V̄

(m−1)
τ (Sτ ) may possess 
ompletely di�erent s
ale, we need an adap-tively 
hosen α0 to 
over this di�eren
e. Thus our stepsize 
onsists of two 
ompo-nents, whi
h means αm = α0α

MC
m . As we expe
t the β(m) to move monotoni
allyat the beginning of the algorithm and start alterating near 
onvergen
e, we will in-
rease α0 if we observe monotoni
 behaviour in the β(m) for the �rst few iterationsand de
rease otherwise.4.4. Stopping 
riterion. As in ADP we update the value fun
tion estimation it-eratively, when to stop be
omes an important pra
ti
al issue. Generally speaking,in ADP we expe
t to end up with a 
onverged set of 
oe�
ients for our regressionmodel. However, as we introdu
ed many parameters in the value fun
tion estima-tion, it is hard to de�ne a single guideline for 
onvergen
e whi
h works well for all
oe�
ients. In addition, sto
hasti
 gradient algorithm typi
ally 
onverge rapidlyat the beginning and then vibrate with noise. As in our problem, what we areseeking for is whether a routing poli
y gives us a mean 
osts that is low enough ina long run, instead of the exa
t expression of the regression model (4.1). Thereforein our ADP model, we numeri
ally evaluate the mean 
ost over every 10, 000 runsand on
e we observe the mean 
ost 
hanges mainly with noise instead of de
reas-ing/in
reasing rapidly, we stop and treat the 
urrent 
oe�
ients as the 
onvergedparameters for (4.1). For more detail please see Se
tion 5.2.2.5. Numeri
al Results5.1. Test Problems with 10 periods. In this se
tion we give some numeri
alresults on several small instan
es of the TpTRP taken from [4℄. For 
larity, we�rstly 
hara
terise and index these instan
es whi
h are examined in the later partof this se
tion. Parameters Sto
hasti
 InformationIndex

|Γ| θ n distribution time dependen
yIns.2 10 3 2 U(6000, 14000) i.i.d.Ins.3 10 3 2 uniform see Fig. 5Ins.4 10 3 2 trun
ated N(10000, 106) i.i.d.Ins.5 10 3 2 trun
ated normal see Fig. 6Table 1: List of TpTRP Instan
esTable 1 summarises the instan
es used. In all instan
es, we assume that wedivide the modelling region into 10 time intervals and 
ost are based on the timeinterval with the θ = ⌊q ∗ |Γ|⌋ = 3rd (q = 0.3) highest volume of tra�
. In all
ases we use 2 network providers (n = 2) with 
osts c1 = 10, c2 = 11, 12 or 15. Theinstan
es di�er by the assumptions made on the random tra�
. In instan
e 2 and4 the tra�
 in every period follows the same uniform (U(6000, 14000) in Instan
e2) or normal (N(10000, 106) in Instan
e 4) distribution. Instan
e 3 and 5 on theother hand, use tra�
 distributed a

ording to a time varying uniform or normaldistribution. The parameter for ea
h time interval are displayed in Figures 5.1.Note that Instan
e 4 and 5 uses a trun
ated normal distribution in whi
h tra�
outside the 99.7% (±3σ) 
on�den
e region is proje
ted onto the boundary of theregion to avoid negative tra�
 volumes.
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on�den
e region fornormal distributions in Ins.5Figure 5.1: Tra�
 distribution used in testing instan
es5.2. Numeri
al results on TpTRP instan
es with 10 periods.5.2.1. Mean 
ost. To evaluate the quality of this routing poli
y we get from theADP model, we examine it in a simulation of 1, 000, 000 random s
enarios takenfrom the original distribution on all the instan
es shown above. We 
ompare resultswith the following ben
hmarks:
• SRP - Single-homing Routing Poli
y, i.e. send everything to the 
heapestnetwork provider � provider 1;
• TMRP - Trivial Multi-homing Routing Poli
y, i.e. send randomly θ − 1tra�
s to the expensive provider and all the rest to the 
heaper one. Inthis way the ISP is only 
harged by the 
heapest network provider, but usesthe free time intervals of all network providers;
• SDPRP - Sto
hasti
 Dynami
 Programming Routing Poli
y given as a dis-
rete look-up table by solving the SDP model in [4℄, whi
h requires dis-
retization of the tra�
 region. We repeat the model with di�erent numberof dis
retization levels (L in Table 2) used;
• DRP - Deterministi
 Routing Poli
y, i.e. assuming we know all tra�
s inadvan
e. The optimal routing poli
y (as proved in [4℄) is to send the θ − 1highest tra�
s to the expensive provider and the rest to the 
heaper one.Note that as we assume that we have full knowledge of the tra�
 ahead intime, the DRP is not implementable. It provides us with lower bound onall the sto
hasti
 routing poli
ies.Results with di�erent 
ost ratios c2/c1 are summarised in Table 2. We 
an seethat the ADP routing poli
y outperforms trivial routing poli
ies and works betterthan the SDP routing poli
y in most 
ases for 
oarse dis
retizations (e.g. L = 7and 14). Sometimes, the ADP routing poli
y 
an be even better than SDP with

L = 28, whi
h is the �nest model for whi
h SDP is tra
table (due to the '
urse ofdimensionality' in state spa
e). We think the reason for ADP outperforming SDPis due to the fa
t that, in SDP the new random tra�
 is rounded to the nearesttabulated value before taking a de
ision. However, the ADP model approximatethe value fun
tion with a 
ontinuous linear regression model, thus the de
isionis made based on the real value of the state. Apart from this, forward dynami
programming fo
uses attention on the states that we a
tually visit. As in normaldistribution instan
es the tra�
 is more 
lustered around the mean, we 
an getbetter 
oe�
ients for those more likely happen states. We think this is why in



14 ANDREAS GROTHEY, XINAN YANGIns. SRP TMRP L SDPRP ADPRP DRP7 107219.29±12.69Ins.2 118178.53±10.28 113335.54±11.93 14 106090.86±12.18 107140.45±12.35 103637.95±11.5028 105734.36±12.037 104728.46±8.15Ins.3 114340.25±7.52 104294.38±7.86 14 103543.13±7.53 103254.88±7.45 102303.09±6.9928 103140.84±7.427 103564.95±5.25Ins.4 106564.38±4.18 104727.88±4.48 14 102808.01±4.51 102470.25±4.30 101226.33±3.8928 102255.24±4.117 108078.29±5.89Ins.5 112379.96±4.53 105986.18±4.95 14 106005.25±4.83 105315.85±4.57 105003.32±4.3728 105536.23±4.64(a) c2 = 11Ins. SRP TMRP L SDPRP ADPRP DRP7 107811.61±12.90Ins.2 118178.53±10.28 113335.54±11.93 14 106602.73±12.33 107335.60±12.35 103637.95±11.5028 106203.10±12.177 105256.80±8.44Ins.3 114340.25±7.52 104294.38±7.86 14 103853.99±7.71 103361.52±7.50 102303.09±6.9928 103375.22±7.547 104097.79±5.54Ins.4 106564.38±4.18 104727.88±4.48 14 103007.73±4.58 102561.69±4.31 101226.33±3.8928 102424.21±4.187 108541.85±6.09Ins.5 112379.96±4.53 105986.18±4.95 14 106172.45±4.89 105418.83±4.78 105003.32±4.3728 105677.18±4.73(b) c2 = 12Ins. SRP TMRP L SDPRP ADPRP DRP7 109022.21±13.42Ins.2 118178.53±10.28 113335.54±11.93 14 107432.60±12.60 107724.39±12.32 103637.95±11.5028 106932.48±12.387 106260.86±9.04Ins.3 114340.25±7.52 104294.38±7.86 14 104197.98±7.92 103544.28±7.58 102303.09±6.9928 103679.88±7.677 105733.64±6.65Ins.4 106564.38±4.18 104727.88±4.48 14 103736.17±4.98 102766.08±4.35 101226.33±3.8928 102750.73±4.377 109898.90±6.98Ins.5 112379.96±4.53 105986.18±4.95 14 106490.32±5.16 105694.71±5.13 105003.32±4.3728 105837.72±4.89(
) c2 = 15Table 2: Numeri
al result (mean 
ost ± s.d.) of implementing routing poli
ies on
1, 000, 000 random s
enarios
ase where the tra�
 volumes follow the normal distribution (i.e. Ins.4 and Ins.5),the ADP routing poli
y seems performing better than where uniform distribution(Ins.2 and Ins.3) is applied. In 
on
lusion, the ADP model gives very promisingresults with the linear regression model.5.2.2. Convergen
e and resour
e 
onsumption. Apart from performan
e, anotherimportant pra
ti
al issue is running time of a model, spe
i�
ally the 
onvergen
etime in the ADP model. As noti�ed in Se
tion 4.4, we justify the 
onvergen
e ofour model by evaluating the mean 
ost of implementing the routing poli
y derivedfrom the 
urrent 
oe�
ients over every 10, 000 iterations.Figure 5.2 shows how the mean 
ost varies with time (x-axis represents thenumber of 10, 000 iterations) for ea
h instan
e. We see that initial 
onvergen
e isfast (within 100, 000 iterations or so), and after whi
h, it varies almost purely withnoise. We try to identify by a heuristi
 the onset of noise and stop the algorithm
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(d) Ins.5Figure 5.2: Mean 
ost over 10, 000 samples varies with number of iterations �
onvergen
ethen. The resulting number of iterations until 
onvergen
e was determined aregiven in Table 3.In addition to the running time, the '
urse of dimensionality' in the SDP modelalso manifests itself in high memory use. In Table 3 we summarise the runningtime and the memory 
onsumption (theoreti
al) in the solution of the ADP andSDP model. ADP model SDP modelIns. Iterations Time Memory L Time Memory7 0.194s 0.38MBIns.2 80,000 9.391s 5.34e-4MB 14 15.628s 16.75MB28 11487.095s 880.32MB7 0.126s 0.38MBIns.3 70,000 7.481s 5.34e-4MB 14 12.486s 16.75MB28 9732.705s 880.32MB7 0.316s 0.38MBIns.4 130,000 170.824s 5.34e-4MB 14 27.074s 16.75MB28 21185.037s 880.32MB7 0.390s 0.38MBIns.5 120,000 130.022s 5.34e-4MB 14 27.211s 16.75MB28 22643.042s 880.32MBTable 3: Comparison of problem size and resour
e 
onsumption



16 ANDREAS GROTHEY, XINAN YANGIn Table 3, the �rst 
olumn shows the number of iterations needed to see the
onvergen
e in their own ADP model for all instan
es, while the se
ond 
olumnshows the running time these iterations 
onsumes. From this table we 
an see thatin Ins.2 and Ins.3 the solution times of ADP model are 
omparable with the 14-level SDP model, while in Ins.4 and Ins.5 it seems the latter runs qui
ker. This is
aused by the fa
t that, in ADP we need to 
al
ulate the expe
ted fun
tion valueover 
ontinuous region when solving the de
ision problem, for normal distributionit takes mu
h more time than for the uniform distribution.However, the most signi�
ant advantage of ADP model is that it does not requireto dis
retize the tra�
 region, thus the 
omputer memory it 
onsumes is 
onstantfor a predetermined instan
e. Also, as we are working on 
ontinuous state spa
ein ADP, there is no need to re
ord all de
isions expli
itly at every node in thedynami
 tree. What we need to keep are only the 
oe�
ients a

ording to statevariables, de
ision and value fun
tion are all impli
it in these 
oe�
ients. In fa
tthe 
omputer memory whi
h ADP model 
onsumes is in
reasing linearly with thetop-per
entile parameter θ and the number of network providers n. This solves the'
urse of dimensionality' of the SDP model.5.2.3. Solving the de
ision problem to higher a

ura
y. As stated above, the de
i-sion problem is not 
onvex, thus not easy to solve qui
kly to optimality. So farthe de
ision problem has been solved by trying all de
isions {0.0, 0.1, 0.2, ...1.0}and 
hoosing the one whi
h leads to the best obje
tive. In Table 4 we investigatethe e�e
t of solving the de
ision problem to a higher a

ura
y, by 
hoosing fromde
isions {0.00, 0.01, 0.02, ...1.00}.ADPRP_0.1 ADPRP_0.01Ins. Mean Cost Running Time Mean Cost Running TimeIns.2 107335.60±12.35 9.391s 107335.43±12.35 84.473sIns.3 103361.52±7.50 7.481s 103361.51±7.50 68.245sIns.4 102561.69±4.31 170.824s 102561.69±4.31 1350.809sIns.5 105418.83±4.78 130.022s 105417.34±4.78 982.480sTable 4: Comparison of mean 
ost (± s.d.) and resour
e 
onsumption of AD-PRP_0.1 and ADPRP_0.01, c2 = 12We 
an see that this does not enhan
e the quality of ADP solution (di�eren
esin mean 
ost are not statisti
ally signi�
ant), while of 
ourse in
reasing solutiontime. We therefore argue that our primitive but fast method to solve the de
isionproblem is justi�ed.5.3. Solving real-world sized instan
es with aggregation method. Despitethe improvement in terms of time and memory 
onsumption of the ADP model overthe SDP model, we are still not in a position to solve the real sized problem instan
eswith thousands of time intervals dire
tly. Rather we suggest to aggregate timeperiods, su
h that one model Vτ (Sτ ) is used for 100 time periods. Applying ADP tosu
h a model would result in updating the parameters βτ
i for one parti
ular Vτ (Sτ )

100 
onse
utive times before moving on to Vτ+1(S
τ ), resulting in slow 
onvergen
e.To speed up 
onvergen
e we instead aggregate ea
h s
enario ωm ∈ R

|Γ| into a
ompa
t sample with |Γ|/100 
omponents and use this to update in e�e
t a |Γ|/100-time period model.



SOLVING TPTRP BY APPROXIMATE DYNAMIC PROGRAMMING 17Table 5/6 give running time and performan
e for this approa
h on a 4320-timeperiod model with tra�
 distribution a

ording to Table 1.Ins. Iterations Running TimeIns.2 200,000 99.674sIns.3 400,000 179.029sIns.4 1,000,000 5281.945sIns.5 1,000,000 5468.437sTable 5: Resour
e 
onsumption of solving the 43-periods ADP modelIns. SRP TMRP ADPRP DRPIns.2 136000.08±2.63 135789.57±2.75 134335.36±3.72 132008.21±2.69Ins.3 133874.68±1.90 133022.12±2.42 129956.59±3.15 127791.87±2.10Ins.4 116466.16±3.28 116216.75±3.33 114318.44±4.23 112840.00±2.60Ins.5 124737.71±3.75 123666.23±3.87 121618.19±4.24 120235.63±3.03Table 6: Numeri
al result (mean 
ost ± s.d.) of implementing 43-periods ADProuting poli
y on real 4320-periods instan
e over 1, 000 s
enarios, c2 = 12From the numeri
al results we 
an see that the 
ombined ADP-time aggregationmethod work well on a 4320-period problem, 
onsistently outperforming the trivialrouting poli
y in all instan
es.6. Con
lusions and Future Work6.1. Con
lusions. In this work we have developed an ADP model to solve theTpTRP problem. Rather than using the dis
rete look-up table representation ofvalue fun
tion in SDP, in ADP we approximate the value fun
tion by a properregression model and train its 
oe�
ients iteratively with fresh sample s
enarios toget the �nal estimation. As all works are done in a 
ontinuous state spa
e, ADPover
omes the 
urse of dimensionality we met in the SDP model whi
h preventedlarger instan
es (more than 10-periods and 2 network providers and q = 5%) to besolved.ADP 
ompares favourable to the SDP model in the solution of small instan
es(10-periods ones). Routing poli
ies derived from ADP model are no worse thanthose generated from 14-levels SDP model and sometimes even outer-performs theSDP routing poli
y with 28-levels, while the running time is mu
h smaller. By 
om-bining ADP with time aggregation we 
an solve real sized instan
es with thousandsof time periods in a reasonable time. The routing poli
ies obtained 
onsistentlyoutperform naive routing poli
ies on real sized problem instan
e.6.2. Future works. Currently we work on tra�
 routing problems under pure top-per
entile pri
ing poli
y, where if we send no more than θ− 1 tra�
s to a provider,we are not going to pay anything to this provider. However in pra
tise, networkprovider might 
ombine top-per
entile pri
ing with other pri
ing poli
ies su
h asan additional start up 
ost. What we need to do is examine whether ADP modelwith linear regression value fun
tion approximation 
an manage these 
hanges aswell. If not try to �nd proper regression models for this problem.
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