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Decomposition of a Multiobjective Optimization
Problem into a Number of Simple Multiobjective

Subproblems
Hai-Lin Liu, Fangqing Gu and Qingfu Zhang, Senior Member, IEEE

Abstract—This letter suggests an approach for decomposing a
multiobjective optimization problem (MOP) into a set of simple
multiobjective optimization subproblems. Using this approach,
it proposes MOEA/D-M2M, a new version of multiobjective
optimization evolutionary algorithm based decomposition. This
proposed algorithm solves these subproblems in a collaborative
way. Each subproblem has its own population and receives
computational effort at each generation. In such a way, popula-
tion diversity can be maintained, which is critical for solving
some MOPs. Experimental studies have been conducted to
compare MOEA/D-M2M with classic MOEA/D and NSGA-II.
This letter argues that population diversity is more important
than convergence in multiobjective evolutionary algorithms for
dealing with some MOPs. It also explains why MOEA/D-M2M
performs better.

Keywords-Multiobjective optimization, decomposition, hybrid
algorithms

I. INTRODUCTION

This letter considers the following continuous multiobjec-
tive optimization problem (MOP):

minimize F (x) = (f1(x), . . . , fm(x)) (1)

subject to x ∈
n∏

i=1

[ai, bi]

where
∏n

i=1[ai, bi] is the decision space. f :
∏n

i=1[ai, bi] →
Rm consists of m real-valued continuous objective functions
f1, . . . , fm. Rm is the objective space. Since these objectives
conflict with one another, no single solution can optimize them
at the same time. Let u = (u1, ..., um) and v = (v1, ..., vm),
u dominates v if and only if ui ≤ vi for every i and there
exists one index j such that uj < vj . If there is no x ∈ [a, b]n

such that F (x) dominates F (x∗), x∗ is called a (globally)
Pareto-optimal point and F (x∗) is a Pareto-optimal objective
vector. In other words, any improvement in one objective at
a Pareto-optimal point must lead to a deterioration in at least
one other objective. A Pareto-optimal solution is an optimal
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tradeoff candidate among all objectives. The set of all Pareto-
optimal points is called the Pareto set (PS) and the set of all
Pareto-optimal objective vectors is the Pareto front (PF) [3].
Under mild conditions, both the PS and the PF are (m− 1)-
D piecewise continuous manifolds [1]. Very often, a decision
maker requires an approximation to the PF for having a good
insight to the problem and making her final choice.

A number of multiobjective optimization evolutionary al-
gorithms (MOEAs) have been developed for finding a set
of solutions to approximate the PF in a single run [2]–[6].
Most MOEAs such as NSGA-II [4] mainly rely on Pareto
dominance to guide their search, particularly, their selection
operators. In contrast, MOEA/D (multiobjective Evolutionary
Algorithm based on Decomposition) [6] makes use of tradi-
tional aggregation methods to transform the task of approxi-
mating the PF into a number of single objective optimization
subproblems. Then a population based algorithm is employed
to solve these subproblems in a collaborative way. Some
MOEA/D variants have been proposed for dealing with various
MOPs (e.g. [7], [8]). MOEA/D has also been used as a basic
element in some hybrid algorithms (e.g. [9]–[11]).

Any effective MOEAs require good population diversity
since their goal is to approximate a set instead of a single
point. The current MOEA/D algorithms achieve their popu-
lation diversity via the diversity of their subproblems. These
algorithms adopt an elite strategy in their selection. Whether
or not a new solution replaces an old solution is completely
determined by their aggregation function values. In some
cases, such replacement can cause a severe loss of population
diversity. As a result, they may miss some search regions
and slow down their search. Another shortcoming is that a
good performance of MOEA/D on a particular problem often
requires a user to choose an appropriate aggregation method
and a suitable setting of weight vectors, which may not always
be an easy task. To reduce these shortcomings, this letter
generalizes the original MOEA/D and proposes an approach
for decomposing (1) into a number of simple multiobjective
optimization subproblems. Based on this decomposition, a new
MOEA/D algorithm, MOEA/D-M2M, is designed. We show
that MOEA/D-M2M can significantly outperform MOEA/D
and NSGA-II on a set of test instances used in our experimen-
tal studies. Taking one instance as an example, we explain why
MOEA/D-M2M can maintain a better population diversity
than the other two algorithms.
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II. MAIN IDEA AND ALGORITHM

A. Decomposition

For simplicity, this letter assumes that all the individual
objective functions f1, . . . , fm are nonnegative1. Therefore, all
the objective vectors and thus the PF of (1) are in Rm

+ .
The main idea of MOEA/D-M2M is to decompose (1) into

a set of simple multiobjective optimization subproblems and
then solve them in one single run. For this purpose, we first
choose K unit vectors v1, . . . , vK in Rm

+ . Then divide Rm
+

into K subregions Ω1, . . . ,ΩK , where Ωk (k = 1, . . . ,K) is:

Ωk = {u ∈ Rm
+ |⟨u, vk⟩ ≤ ⟨u, vj⟩ for any j = 1, . . . ,K.}, (2)

where ⟨u, vj⟩ is the acute angle between u and vj . In other
words, u in Ωk if and only if vk has the smallest angle to u
among all the K direction vectors. Based on this division,
(1) can be transformed into K constrained multiobjective
optimization subproblems. Subproblem k is:

minimize F (x) = (f1(x), . . . , fm(x)), (3)

subject to x ∈
n∏

i=1

[ai, bi],

F (x) ∈ Ωk.

We would like to make the following comments on the
above transformation:

• This transformation is equivalent in a sense that the PFs
of all these subproblems constitute the PF of (1). In
contrast, the transformation used in the original MOEA/D
is approximate since the optimal solutions of all the
single objective optimization subproblems are just an
approximation to the PF of (1).

• Even when the PS of (1) has a nonlinear geometric shape,
the PS of (3) could be close to linear due to the constraint
F (x) ∈ Ωk since it is just a small part of the PS of (1).
Therefore, (3) could be simpler than (1), at least in terms
of PS shapes. Note that Pareto based MOEAs such as
NSGA-II are suitable to deal with simple PSs [1] and thus
elements from these algorithms can be used for tackling
these subproblems.

• This transformation does not require any aggregation
methods. What a user needs to do is to choose a set of
direction vectors. To some extent, it requires less human
labor than the transformation used in original MOEA/D
framework.

B. Algorithm

MOEA/D-M2M uses the decomposition strategy proposed
above to decompose (1) into K multiobjective optimization
subproblems and solves them in a collaborative manner. At
each generation, MOEA/D-M2M maintains K subpopulations:
P1, . . . , PK , where Pk is for subproblem k. Each subpop-
ulation contains S individual solutions. The F -value (i.e.
objective function vector) of each solution is also recorded.

MOEA/D-M2M works as follows:

1otherwise, we can replace fi by fi + M , where M is a large enough
positive number so that fi +M > 0 for all i.

Algorithm 1: MOEA/D-M2M
Input :

• MOP (1);
• A stopping criterion;
• K: the number of the subproblems;
• K unit direction vectors: v1, . . . , vK ;
• S: the size of subpopulation;
• Genetic operators and their associated parameters.

Output: Ψ: a set of nondominated solutions
Initialization: Uniformly randomly choose K × S points
from [a, b]n, compute their F -values and then use them
to set P1, . . . , PK .
while the stopping criterion is not met do

Generation of New Solutions:
Set R = ∅;;
for k ← 1 to K do

foreach x ∈ Pk do
Randomly choose y from Pk;;
Apply genetic operators on x and y to
generate a new solution z; ;
Compute F (z); ;
R := R ∪ {z}; ;

end
Q := R ∪ (∪Kk=1Pk); ;
use Q to set P1, . . . , PK .;

end
Find all the nondominated solutions in ∪Kk=1Pk and
output them.

end

Both line 1 and line 13 in MOEA/D-M2M use a number of
individual solutions to set P1, . . . , PK . We use the following
simple approach to do it.

Algorithm 2: Allocation of Individuals to Subpopulations
Input : Q: a set of individual solutions in [a, b]n and

their F -values.
Output: P1, . . . , PK .
for k ← 1 to K do

Initialize Pk as the solutions in Q whose F -values
are in Ωk;;
if |Pk| < S then

randomly select S − |Pk| solutions from Q and
add them to Pk.

end
if |Pk| > S then

rank the solutions in Pk using the nondominated
sorting method [4] and remove from Pk the
S − |Pk| lowest ranked solutions.

end
end

Algorithm 2 ensures that each Pk has S solutions at each
generation and thus promotes population diversity during the
search. This is very important when some multiobjective sub-
problems are much more difficult than others. The MOEA/D



variants in [1] [6] and most Pareto dominance algorithms may
not be able to solve such MOPs in an efficient way. The
MOEA/D variants in [1] [6] make its selection by using ag-
gregation functions and these Pareto dominance algorithms do
nondominance ranking globally in their selection. Therefore,
some hard multiobjective subproblems may receive very few
or even no solutions for the next generation if, as it is very
likely to happen, the current solutions in their feasible regions
are completely dominated by other solutions. As a result, a
great loss of population diversity will be made.

Line 2 of Algorithm 2 uses the nondominated sorting
method in NSGA-II. Actually, any other selection strategies
can be used for this purpose.

Some parallel MOEAs and multiobjective particle swarm
optimization (e.g. [12]–[15]) and multiple populations based
MOEAs (e.g. [16]–[19]) also make use of multiple populations
to target different parts of the PF explicitly or implicitly.
Among these existing algorithms, Cone-separated NSGA-II
(CS-NSGA-II) [19] works in a similar way to our proposed
MOEA/D-M2M. The major differences between CS-NSGA-II
and MOEA/D-M2M include:

• The decomposition method in MOEA/D-M2M is much
simpler than one in CS-NSGA-II. CS-NSGA-II nor-
malizes the objective functions so that all the current
solutions are in a unit m-D cube, and then divides this
cube into several cones. [19] only explained how to do
it in the case of two and three objectives. It is not trivial
to use their method to do space division in the case of
more than three objectives. Whereas the decomposition in
MOEA/D-M2M is quite straightforward and only needs
several unit direction vectors.

• The space division in CS-NSGA-II is intended for a
parallel computing environment with several processors.
At some generations, a processor shares its infeasible
solutions with some other processors. Whereas decompo-
sition in MOEA/D-M2M is mainly for balancing diversity
and convergence, at each generation, it merges all the
subpopulations and then re-allocates them to different
subproblems.

III. EXPERIMENTAL STUDIES

We have compared MOEA/D-M2M with MOEA/D-DE
and NSGA-II in our experimental studies. MOEA/D-DE is
an efficient and effective implementation of MOEA/D for
continuous MOPs proposed in [1].

A. Experimental Setting

• The crossover and mutation operators with the same
control parameters in [20] are used in the three algorithms
for generating new solutions.

• For the biobjective instances, the population size is 100 in
both NSGA-II and MOEA/D-DE. In the case of the three
objectives, it is 300 for NSGA-II and MOEA/D-DE.

• For the biobjective instances, K = S = 10 in MOEA/D-
M2M. For the triobjective instances, K = S = 17 in
MOEA/D-M2M.

• Stopping Condition: all the three algorithms stop after
3000 generations.

• Other control parameters in MOEA/D-DE: T = 20, δ =
0.9 and nr = 2, which are the same as in [1].

• The K direction vectors are uniformly selected from the
unit sphere in the first octant in MOEA/D-M2M.

Clearly, with the above settings, MOEA/D-M2M evaluates
slightly fewer solutions at each generation than MOEA/D and
NSGA-II in the case of three objectives.

B. Performance Metrics

1) IGD-metric: The IGD-metric is used to measure the
quality of a solution set P in our experiments. Suppose that
P ∗ is a set of points which are uniformly distributed along
the PF in objective space, and P is an approximation to the
PF. The distance between the P ∗ and P can be defined as:

IGD(P ∗, P ) =

∑
v∈P∗

d(v, P )

|P ∗|
,

where d(v, P ) is the minimum Euclidean distance from the
point v to P . Obviously, the smaller value of IGD is, the
better the algorithm performs. 500 points for 2-objective test
instances and 1, 000 points for 3-objective test instances are
uniformly sampled on the PF to form P ∗.

2) Hypervolume: Let y∗ = (y∗1 , . . . , y
∗
m) be a point in the

objective space which is dominated by any Pareto-optimal
objective vectors. Let S be the obtained approximation to the
PF in the objective space. Then the IH value of S (with regard
to y∗) is the volume of the region which is dominated by S
and dominates y∗. In our experiments, y∗ = (1, . . . , 1). The
larger the hypervolume is, the better the approximation is.

C. Test Instances

The following modified ZDT and DTLZ instances are
used [21]. g(x) functions used in our modified instances are
different from those in their original versions. Their search
space is [0, 1]n. n = 10 unless stated otherwise. All these
instances are for minimization.

MOP1:
{

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))
(
1−√x1

)
where
g(x) = 2 sin(πx1)

∑n
i=2

(
−0.9t2i + |ti|0.6

)
,

ti = xi − sin(0.5πx1),
its PF is f2 = 1−

√
f1, 0 ≤ f1 ≤ 1,

its PS is xj = sin(0.5πx1), 0 ≤ x1 ≤ 1, j = 2, · · · , n.

MOP2:
{

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))
(
1− x2

1

)
where
g(x) = 10 sin(πx1)

∑n
i=2

|ti|
1+e5|ti|

,
ti = xi − sin(0.5πx1),
its PF is f2 = 1− f2

1 , 0 ≤ f1 ≤ 1,
its PS is xj = sin(0.5πx1), 0 ≤ x1 ≤ 1, j = 2, · · · , n.

MOP3:
{

f1(x) = (1 + g(x)) cos(πx1

2 )
f2(x) = (1 + g(x)) sin(πx1

2 )



where
g(x) = 10 sin(πx1

2 )
∑n

i=2
|ti|

1+e5|ti|
,

ti = xi − sin(0.5πx1),
its PF is f2 =

√
1− f2

1 , 0 ≤ f1 ≤ 1,
its PS is xj = sin(0.5πx1), 0 ≤ x1 ≤ 1, j = 2, · · · , n.

MOP4:
{

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1− x0.5
1 cos2(2πx1))

where
g(x) = 1 + 10 sin(πx1)

∑n
i=2

|ti|
1+e5|ti|

,
ti = xi − sin(0.5πx1),
its PF is Discontinuous,
its PS is xj = sin(0.5πx1), 0 ≤ x1 ≤ 1, j = 2, · · · , n.

MOP5:
{

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))
(
1−√x1

)
where
g(x) = 2| cos(πx1)|

∑n
i=2

(
−0.9t2i + |ti|0.6

)
,

ti = xi − sin(0.5πx1),
its PF is f2 = 1−

√
f1, 0 ≤ f1 ≤ 1,

its PS is xj = sin(0.5πx1), 0 ≤ x1 ≤ 1, j = 2, · · · , n.

MOP6:

 f1(x) = (1 + g(x))x1x2

f2(x) = (1 + g(x))x1(1− x2)
f3(x) = (1 + g(x))(1− x1)

where
g(x) = 2 sin(πx1)

∑n
i=3

(
−0.9t2i + |ti|0.6

)
,

ti = xi − x1x2,
its PF is f1 + f2 + f3 = 1, 0 ≤ f1, f2, f3 ≤ 1,
its PS is xj = x1x2, 0 ≤ x1, x2 ≤ 1, j = 3, · · · , n.

MOP7:

 f1(x) = (1 + g(x)) cos(x1π
2 ) cos(x2π

2 )
f2(x) = (1 + g(x)) cos(x1π

2 ) sin(x2π
2 )

f3(x) = (1 + g(x)) sin(x1π
2 )

where
g(x) = 2 sin(πx1)

∑n
i=3

(
−0.9t2i + |ti|0.6

)
,

ti = xi − x1x2,
its PF is f2

1 + f2
2 + f2

3 = 1, 0 ≤ f1, f2, f3 ≤ 1,
its PS is xj = x1x2, 0 ≤ x1, x2 ≤ 1, j = 3, · · · , n.

D. Results

Table I shows the smallest (i.e. best) and the mean of the
IGD-metric values of the algorithms for each test instance in
20 independent runs. Table II presents the largest (i.e. best)
and the mean of the H-metric values in 20 runs. It is clear
from these two tables that MOEA/D-M2M is much better than
MOEA/D-DE and NSGA-II in terms of both metrics on all the
test instances.

Fig. 1 plots in the objective space, the distribution of the
final solutions obtained in the run with the median IGD-metric
value of each algorithm for each test instance. Obviously, both
MOEA/D-DE and NSGA-II cannot locate the global PF on any
instance. In contrast, MOEA/D-M2M can approximate the PFs
of these instances quite well.

To understand why MOEA/D-M2M performs much better
than the two other algorithms, we take MOP1 with n = 2 as
an instance and analyze the Pareto dominance relations among
all the points in the search space [0, 1]2. In Fig. 2, Region A in

TABLE I
THE MEAN AND BEST OF IGD-METRIC VALUES OF MOEA/D-M2M,

MOEA/D-DE AND NSGA-II IN 20 INDEPENDENT RUNS FOR EACH TEST
INSTANCE

IGD-metric MOEA/D-M2M MOEA/D-DE NSGA-II

Instance best mean best mean best mean

MOP1 0.0151 0.0179 0.2897 0.3239 0.2129 0.2206

MOP2 0.0103 0.0118 0.2167 0.2342 0.2103 0.2121

MOP3 0.0116 0.0123 0.4437 0.4798 0.2611 0.2660

MOP4 0.0091 0.0102 0.2662 0.2738 0.2745 0.2826

MOP5 0.0153 0.0209 0.2657 0.2925 0.2419 0.2442

MOP6 0.0513 0.0526 0.3039 0.3040 0.3040 0.3044

MOP7 0.0623 0.0780 0.3507 0.3507 0.3505 0.3505

TABLE II
THE MEAN AND BEST OF H-METRIC VALUES OF MOEA/D-M2M,

MOEA/D-DE AND NSGA-II IN 20 INDEPENDENT RUNS FOR EACH TEST
INSTANCE

H-metric MOEA/D-M2M MOEA/D-DE NSGA-II

Instance best mean best mean best mean

MOP1 0.6500 0.6499 0.1326 0.1208 0.1862 0.1503

MOP2 0.3057 0.2947 0.0812 0.0678 0.0570 0.0375

MOP3 0.1871 0.1837 0.0012 0.0004 0.0545 0.0286

MOP4 0.5079 0.5077 0.1346 0.1026 0.1641 0.1326

MOP5 0.6361 0.6340 0.2143 0.1801 0.2156 0.1841

MOP6 0.7532 0.7257 0.5433 0.5431 0.5432 0.5404

MOP7 0.3773 0.3762 0.2014 0.2014 0.2014 0.2014

the search space is corresponding to a very tiny area including
(1, 0) in the objective space, every point in A dominates any
point in Region B. Since both MOEA/D and NSGA-II adopt
the “convergence first and diversity second” selection strategy,
they can be easily trapped in Region A. By contrast, MOEA/D-
M2M always allocates the same number of solutions to each
subproblems, for this reason, it will not spend its most efforts
in Region A and thus be able to find the global PF.
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Fig. 2. Plot of the search space of MOP1 with n = 2. A point in Region A
dominates any point in Region B.

N = K × S can be regarded as the whole population
size in MOEA/D-M2M. If we fix N , then MOEA/D-M2M
has one extra control parameters K compared with NSGA-
II. To investigate the effect of the parameter on the algorithm
performance, we have conducted experiments with different
values of K on MOP1. In our experiments, S is set to be
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Fig. 1. Plot of the nondominated front with the median IGD-metric value found by MOEA/D-M2M (the left panel), MOEA/D-DE (the middle panel) and
NSGA-II (the right panel).
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K to keep N = 100, all the other settings are the same

as in Section III.A. The smallest value of S is 2 since the
crossover operator requires at least two different solutions in
each subpopulation. Therefore, the largest value of K is 50.
The experimental results from 20 runs are summarized in Fig.
3 and 4.
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Fig. 3. Plot of the bar of the IGD-metric for different values of K for MOP1.
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Fig. 4. Plot of the bar of the H-metric for different values of K for MOP1.

It is evident from these two figures that the performance
of the algorithm does not change dramatically when K ≥ 10.
These results indicate that MOEA/D-M2M is not very sensi-
tive to this parameter. We should point out that a large value
of K requires a large number of direction vectors, which can
increase the computational overhead in allocation of individual
solutions to subproblems.

IV. CONCLUSION

This letter has proposed a simple way to decompose a
MOP into a number of simple multiobjective subproblems
and designed an algorithm called MOEA/D-M2M, which
generalizes the MOEA/D framework. MOEA/D-M2M aims at
solving these multiobjective subproblems in a collaborative
manner. Each subproblem has a subpopulation and always
receives computational effort during the search. In such a
way, good population diversity can be achieved, which is
essential for solving some MOPs. Experimental studies on a
set of test instances have implied that MOEA/D-M2M can
significantly outperform MOEA/D-DE and NSGA-II on a set
of test instances.

The future work includes combinations of MOEA/D-M2M
with other evolutionary search techniques and investigation
of its performance on other hard multiobjective optimization
problems.
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