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Abstract

Attended home delivery services face the challenge of providing narrow delivery time slots
to ensure customer satisfaction, whilst keeping the significant delivery cost under control. To
that end, the firm can try to influence customers when they are booking their delivery time
slot so as to steer them towards choosing slots that are expected to result in cost-effective
schedules. We estimate a multinomial logit customer choice model from historic booking
data and demonstrate that this can be calibrated well on a genuine e-grocer data set. We
propose dynamic pricing policies based on this choice model to determine which and how much
incentive (discount or charge) to offer for which time slot at the time a customer intends to
make a booking. A crucial role in these dynamic pricing problems is played by the delivery
cost, which is also estimated dynamically. We show in a simulation study based on real data
that anticipating the likely future delivery cost of an additional order in a given location can
lead to significantly increased profit as compared to current industry practice.

1 Introduction

For many firms, the delivery of goods or services to a customer at an appointed time constitutes
a crucial part of their business. Examples include e-grocers and e-tailers such as Sainsburys.com,
Tesco.com, Ocado, parcel delivery (e.g. FedEx, VelocityExpress), repair or servicemen (e.g. BT),
furniture delivery and many more. The growing demand for such services can be illustrated by
the British online grocery sector which grew by 17.2% in 2011, with sector sales being forecast
to rise by 79% over the next five years relative to 2012’s levels [Mintel, 2012]. They all face the
trade-off between the substantial fulfillment costs that are typically associated with making such
deliveries on the one hand, and customer satisfaction particularly with regard to narrow delivery
time windows on the other. The importance of getting this trade-off right was dramatically
demonstrated by business failures such as Webvan (bankrupt in 2001) or Publix Direct (shut down
2003). Other companies learned from these failures and successfully provide delivery services with
larger delivery time windows, using appropriate scheduling and vehicle routing software and, at
the same time, often have become very good at collecting valuable customer information that is
used for customer segmentation and targeted marketing. The sales process typically consists of
collecting orders including delivery time requests (subject to available capacity) until a certain
cut-off time, and subsequent planning of the delivery schedule using appropriate routing software.
Clearly, the requested delivery times have a potentially large impact on scheduling and routing
efficiency: for example, the given delivery time specifications might require much longer routes
than if demand were geographically clustered for each time window. Furthermore, some delivery
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time slots might be much more popular than others, so that a large vehicle fleet would be needed
for peak times while many vehicles would be idle in off-peak times.

A reservoir of great profit-generating potential is to manage demand (in the form of online
bookings) by setting incentives in such a way that customers are steered towards selecting time
slots that maximize the firm’s expected profits. Such incentives can take a variety of forms: the
size of the delivery charge for different time slots, rewards such as discounts or shopping points
for choosing unpopular slots, or even indications of environmental impact as e.g. used by Ocado,
who label certain time slots with a “green van” symbol representing delivery slots where an order
would save fuel as compared to slots without this symbol. Note that the objective of maximizing
profit implies knowledge of expected fulfilment costs, which links demand management to vehicle
routing. The customers’ choices of delivery times directly impact on delivery costs so that steering
their choices could cause significant profit increases.

We consider the following problem: service requests for a fixed delivery day arrive at random
over a finite time horizon until a cut-off time before the delivery day. A schedule/routing plan is
subsequently needed for the delivery of the collected orders. The firm has a number of homogeneous
delivery vehicles with a certain capacity. Each request for a specific delivery day consists of
customer information (including post code); a revenue; and a capacity consumption corresponding
to the number of standard-sized transport boxes that are required to accommodate the goods that
this customer has ordered. The firm needs to check which delivery time slots are feasible for this
post code given the orders collected to date (in the sense that there is capacity for delivery at
that time), and has to decide in real-time which time slots receive which monetary incentive. In
particular, the incentive can be positive or negative, representing either a cost or a discount for
the customer. The resulting time slot/discount combinations are subsequently displayed to the
customer who makes a decision on which time slot to request. The firm is then committed to
delivering at the requested time.

Our main contribution lies in the formulation of pricing policies that are based on a more
advanced customer choice model (namely, a multinomial logit model) than has been considered in
this context before; moreover, our proposed policies also take dynamically estimated delivery cost
into account and hence combine models from the traditional vehicle routing and the revenue man-
agement literature. We show in a simulation study that including the impact of future expected
orders in the estimation of delivery cost produces higher profits “foresight policy” than only using
orders accepted-to-date in this estimation “hindsight policy”. The practical applicability of the
proposed methodology including estimation of the entire demand model is demonstrated on real
data that we obtained from our industrial collaboration partner in the online grocery sector.

The paper is organized as follows: in Section 2 we review the relevant literature, followed
by a formal statement of the home delivery pricing problem in Section 3. Then we describe the
methodology of how to fit a demand model of the realistic booking process that is using by the
e-retailer, and conclude with estimations of Poisson Process for arrival time and an MNL choice
model for customer selection in Section 4. The dynamic pricing policy that we propose is discussed
in Section 5, and we compare it with benchmark policies in a simulation study based on real data
in Section 6. Finally, we summarize and draw conclusions in Section 7.

2 Literature Review

While there is a rich literature for both vehicle routing and revenue management (RM), little
research has been carried out at the interface between the two areas. Agatz et al. [2008] give a
qualitative introduction into the use of RM techniques in managing demand for delivery services,
when estimates of the costs of fulfilling the orders are taken into account. In their comparison
of the use of RM in the airline sector and its potential use in home deliveries, they segment
potential solution methodologies into the four categories of Table 1, corresponding to a similar
categorization used in RM.

The static methods of differentiated slotting and differentiated pricing are fed by forecast data
and can be used to solve problems such as deciding on the number, length and selection of delivery
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Table 1: Classification of Demand Management.
Time slot allocation Pricing

Static (off-line, forecast-based) Differentiated slotting Differentiated pricing
Dynamic (real-time, order-based) Dynamic slotting Dynamic pricing

slots on offer or setting off-peak discounts to smooth out demand. In reality, static methods should
be updated as soon as new forecasts are available; and in this sense, they become “dynamic”. The
opportunity cost is the expected loss in future revenue that will be incurred if the request is ac-
cepted, i.e. the revenue we will miss out on if we use the capacity now rather than saving it for
later requests. In principle, the methods of dynamic slotting and dynamic pricing will re-evaluate
opportunity cost estimates at each request arrival in order to make a decision; nonetheless they
can (and should) also exploit knowledge on expected future demand using appropriate forecasts.
We have found little research in the area of differentiated pricing of delivery slots, but structure
the literature review around the remaining categories of Table 1.

Differentiated slotting: Agatz et al. [2011] consider the problem of selecting which time slots to
offer in each post code of the delivery region in a case study with Dutch Internet grocer Albert.nl,
given service requirements and average weekly demands for each post code. The objective is to
minimize expected delivery costs while meeting the service requirements. Note that this time
slot allocation takes place before receiving any orders (as opposed to real-time management of
time slots in dynamic slotting). The resulting time slot schedule could then serve as a starting
point for subsequent real-time adjustments. The optimization requires estimates of the routing
costs from the time slot schedule; however, since calculating a full routing model is generally
computationally too expensive, they instead propose two options: either to use the continuous
approximation method, which represents demand by continuous functions and assesses system-
wide costs by aggregating over local cost estimates, or to explicitly model routing decisions but
on a more aggregate level than a full vehicle routing problem, using the seed-based scheme put
forward in Fischer and Jaikumar [1981].

Their approach is interesting in that the problem decomposes by shift, but this is due to rather
unrealistic demand assumptions:

1. The expected weekly demand for each post code is known and independent of the set of
offered time slots

2. The expected weekly demand for each post code is divided evenly over the set of offered time
slots.

The main motivation of demand management in this context is that many customers are not
flexible in time so that changes in the offered time slot menu can have significant consequences
in demand. Hence, the assumption of independence seems somewhat counter-intuitive. Likewise,
the second assumption means that all time slots are equally popular. While this can be achieved
in some cases (such as for Albert.nl) by means of appropriate differentiated pricing, it is not clear
why this would be reasonable to assume in general. The work offers no real-time control. As future
research directions, the authors point towards a better understanding of customer behavior, the
aforementioned real-time controls, and use of incentives.

Dynamic slotting: Campbell and Savelsbergh [2005] were among the first to propose a frame-
work for this problem: in their model, the company can decide whether to accept or to reject
service requests, and, furthermore, in which time slot to choose to deliver, so as to maximize
expected profits. Customer choice behavior is not taken into account and the fulfillment costs for
a new request are estimated by evaluating the estimated incremental cost of inserting the new
demand into the tentative delivery routes that encompass all accepted requests. The company’s
decision is to accept or to deny service requests. This can be problematic for industries where
service denials create considerable “bad will” among the customers, which leads to lost sales and
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potential brand damage if done on a large scale. In general, persuasive methods (such as dynamic
pricing) seem preferable to coercive methods (not offering slots).

Dynamic pricing: The work the closest to ours is Campbell and Savelsbergh [2006] who expand
on their previous work Campbell and Savelsbergh [2005] by adding a model of customer choice.
The firm is assumed to receive a series of orders of known size and revenue, and by setting
discounts is able to encourage customers to choose delivery slots corresponding to lower delivery
costs. Customer preferences for delivery slots are assumed to be known in advance but by offering
a discount in a particular slot the firm can increase a customer’s probability of selecting this slot
by an amount proportional to the discount. After a customer has selected a particular slot, the
firm updates the set of delivery routes to accommodate the new request and these are then used
for estimation of delivery costs when the next order request arrives.

We follow a similar approach to Campbell and Savelsbergh [2006] but make some significant
improvements. First, in the Foresight Policy described in Section 5.1.2, we use stochastic infor-
mation about future requests to estimate the expected delivery cost, rather than computing the
incentives based only on the requests that have already been accepted and the request under con-
sideration. If it is possible to construct reasonable forecasts, one would expect that this should
significantly improve the optimisation, especially as the routing cost estimates at the beginning
of the sales horizon are based on only a few arrivals, and therefore are unlikely to reflect the final
routing costs. This is underlined by the results presented by Campbell and Savelsbergh [2006]
who show that offering incentives can be critical even in the early stages. Second, we use the
multinomial logit (MNL) model to describe customer behavior, an area of improvement that they
highlight in their article.
Choice Modeling and RM: In an example from the airline sector, Vulcano et al. [2010] show
that by incorporating customer-choice behavior into RM, in the form of an MNL model to describe
customer behavior, revenues can be increased by 1-5% over RM methods where this choice behavior
is not taken into account. While coming from a different sector, this result does emphasize the
need for accurate modeling of customer choice behavior.

We use the MNL model to describe the behavior of customers who are choosing between
different delivery time slots. The MNL model is a random utility, discrete choice model where
the decision-maker is assumed to choose the option that maximizes his or her utility (see e.g.
Ben-Akiva and Lerman [1994], Train [2009]). In such random utility models, the utility that a
customer from a particular segment l places on option j, can be written as

U lj = ulj + εlj ,

where ulj is termed the representative utility and is dependent on choice factors that are known to

the person deriving the models. The error term, εlj is defined as the difference between the true

utility and the part of the utility that can be described by ulj . For an MNL model, the εlj are
assumed to be independent and identically distributed, following a Gumbel distribution. The MNL
model is well-known to have the property of the independence of irrelevant alternatives (IIA), i.e.
the relative odds of choosing an option i over a different option k are independent of the attributes
of any of the alternative options that are available. This has some interesting consequences, as
discussed in Chapter 3 of Train [2009]. In the application considered here, where the time slots
that customers are choosing between are allowed to overlap, the assumption of independence is
not strictly valid. While the IIA property is not a feature of other choice models such as the
nested logit model, these more complex choice models have other problems associated with them.
In particular, as discussed by Vulcano et al. [2010] and Vulcano et al. [2012], the estimation of the
nested logit model is considerably harder than that of the MNL because of the higher number of
parameters and the fact that the log-likelihood function is no longer globally concave.

Customer choice modeling is used by Asdemir et al. [2009] in determining how to dynamically
price delivery fees for time slots in home delivery. They use the MNL model to describe choice
behavior based on a RM formulation using dynamic programming. Their objective is to maximize
expected profits subject to known costs (including delivery costs). Consequently, the entire delivery
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routing aspect is ignored. For most practical situations, this seems to be problematic since one
would expect that the delivery fees should affect demand for time slots and therefore the routing
schedule and its associated costs. In particular, they assume independence of geographical regions
so that the model can be solved for each single, small area. However, if we also want to consider
routing costs, we should plan routes incorporating demand in neighboring areas as well.

The use of the MNL model in RM is widespread (e.g. Vulcano et al. [2010]; Suh and Aydin
[2011]; Meissner et al. [2013]; Vulcano et al. [2012]) and although the applications come almost
exclusively from the airline sector, the choice behavior follows a similar structure to the choice of
delivery slots. The standard problem encountered in the literature considers the optimal pricing of
multiple, substitutable flights offered by the same carrier, between the same origin and destination
airports. Customers will choose between the flights or opt not to purchase a ticket based upon
their own preferences and the prices being charged. A considerable amount of research has focused
on the estimation of the parameters in the MNL model. This is a difficult problem in the sale
of airline tickets because of the inability to distinguish between a period with no arrivals and a
period with an arrival and no purchases. Maximum likelihood methods that take account of this
missing data such as the Expectation-Maximization algorithm used by Vulcano et al. [2012] are
needed. Due to the requirement to register a delivery location before starting the ordering process,
this issue does not exist in the case of home deliveries and consequently the estimation is much
more straightforward. Standard maximum likelihood methods can be used to fit the MNL model,
as described in e.g. in McFadden [1974] or Train [2009], and this can be done separately from the
fitting of the arrival process.

3 Delivery Pricing Problem

Our model of the delivery pricing problem is motivated by real-life home delivery applications
where a customer reveals his identity to the firm by logging into the website before a delivery can
be booked. Then the customer can select a delivery day from a booking horizon that extends for a
fixed number of days into the future. We model these customer arrival events for a specific delivery
day by a time-dependent Poisson process. Once a delivery day has been selected, the firm has to
decide on both availability and pricing of slots before displaying them to the customer, who then
chooses to pick one of these slots (or not to book) according to a MNL model. We first state the
formal problem formulation that we investigate in this study, before providing more background
on the demand model in Section 4.

Given the arrival of a customer interested in a specified delivery day, our aim is to decide
dynamically how to set delivery charges for time slots on this day so as to steer the customer’s
choice to a slot that is likely to be cheap to serve, so that overall we intend to maximize profits
after fulfillment costs for this delivery day. The pricing policy for a specified delivery day can be
formulated based on a stochastic dynamic program, where the state xt = [xtas]a,s is a vector with
components xtas that represent the number of orders accepted in time slot s for area a until time t
in the booking horizon. In the following, we omit the time index from x since it will be clear from
the context. We consider a discretized booking horizon with T booking periods, each sufficiently
small such that the probability of having more than one arrival in a period is negligible. The final
time period T denotes the cut-off time after which no further bookings are taken. The stages of
the dynamic program are the time periods t ∈ [1, T ]. Let Vt(x) denote the value function at stage
t and state x; it represents the maximum profit obtainable from the sales process from time t until
the cut-off time T . Furthermore, we let C(x) represent an oracle that returns the minimum cost
solution to the vehicle routing problem with time windows for the set of orders x given a fixed fleet
of vehicles with known capacities. If there is no feasible solution for a given x, then C(x) := ∞.
The value function after cut-off is then

VT+1(x) = −C(x) ∀x ∈ X , (1)

where X denotes the set of all states that allow a feasible delivery schedule. The set Fa(x) := {s :
C(x+ 1as) <∞} contains all feasible time slots for area a into which order (a, s) can be feasibly
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inserted given orders on the books x, where 1as is the unit vector with 1 in the (a, s)th position.
There are a finite number of customer segments l for the fixed delivery day under consideration,
each with an arrival rate of λl. For a given customer arrival of segment l, µla is the probability
that this arrival will be for area a. Given an arrival, the probability that this customer chooses
slot s when the firm offers the vector of delivery charges ~da in area a is denoted by P ls,Fa(x)(

~da).
For a clearer exposition, we assume that all orders require the same known number of totes,

say one, and that the profit of the order (before distribution cost), r, is likewise known. The
assumption on the number of totes can be easily relaxed, and the assumption of a known profit
at the point in time where a pricing decision needs to be made is violated in practice since a
customer can often choose a time slot before shopping. Instead, we could e.g. use an estimated
revenue based on the average historic order value either for that delivery area or for the individual
customer, and multiply this revenue by the average profit margin before distribution cost.

With this notation, the dynamic programming recursion at stage t ∈ [1, T ] is

Vt(x) = max
~d

∑
l,a

λlµla
∑

s∈Fa(x)

P ls,Fa(x)(
~da)
[
r + das + Vt+1(x+ 1as)

]
+

[
1−

∑
l,a

λlµla
∑

s∈Fa(x)

P ls,Fa(x)(
~da)
]
Vt+1(x)

= max
~d

∑
l,a

λlµla
∑

s∈Fa(x)

P ls,Fa(x)(
~da)
[
r + das −

(
Vt+1(x)− Vt+1(x+ 1as)

)]
+ Vt+1(x),

∀x ∈ X . (2)

The dynamic program (1–2) is intractable due to the large state space X and the fact that the
computation of C(x) alone is intractable since it requires solving a large vehicle routing problem
with time windows. However, it offers some insights into the structure of a good policy: for a
given request of segment l at time t for area a, it shows that the time slot pricing decision is a
trade off between the immediate profit before distribution (r+ ds) and expected opportunity cost
(Vt+1(x) − Vt+1(x + 1as)) arising from collecting an order (a, s) at time t. Therefore, given the
arrival of a segment l customer at area a, a policy of the form

~d∗a = arg max
~da

∑
s∈Fa(x)

P ls,Fa(x)(
~da)
[
r + ds −Oxtas

]
, (3)

should perform well if the expression Oxtas is close to the true opportunity cost (Vt+1(x)−Vt+1(x+
1as)). In Section 5 we present an approximation of the opportunity cost in the form of order
insertion cost estimates. In the following section, we discuss the demand model and how to
estimate its parameters from real online shopping data.

4 Demand Model

This section is organized as follows: we first discuss the assumptions that we have to make in order
to carry out the study in Section 4.1, and then characterize customer segmentation in Section 4.2.
Estimation methodologies of the Poisson process and the MNL model are discussed in Section 4.3
and 4.4 respectively, each tested on artificial booking data with known parameters to evaluate
their quality. Finally, we present statistics of the estimation process based on real booking data.

4.1 Assumptions and Justifications

Our model is based on a number of assumptions:

• A customer can be identified when a delivery booking request is being made and the order
size is known when the delivery time selection is made. Although in practice the latter might
not be the case as the delivery selection is often required to be made before products are
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selected, e.g. at Tesco and Waitrose, we still can infer an expected revenue e.g. from past
purchases of this customer; if the application is an e-grocer, it is likely that such estimates
will be of good quality.

• Customer requests for a fixed delivery day arrive over time according to a time-dependent
Poisson process. This arrival process is independent of time slot pricing and availability;
we assume that this information is not known to the customer at this point. In practice,
customers may be able to see the slot availabilities/pricing of several days. The assumption
of choices being independent of alternative delivery days would hence be violated; however,
both we and the partner firm felt that it is a reasonable assumption to make in order to
obtain a choice model that can be calibrated in acceptable time. Removing the assumption
of independence between delivery days would be an interesting feature for future research.

• We can observe both time slot selections and decisions not to choose any time slot on the
fixed delivery day. This assumption is not restrictive in the home delivery business as orders
are usually taken only over the company’s own website where customers are required to
identify themselves before being able to book a delivery. Moreover, we also assume that the
firm records what time slot prices and availabilities were offered when a customer selects a
delivery day, regardless of whether or not the customer subsequently chooses a time slot.
This is indeed the case for our partner firm.

• Given the arrival of a customer, the probability that he selects a specific time slot on a fixed
delivery day is independent from the time in the booking horizon when the order is placed.
Time dependence is only captured via the arrival process.

• Customers are myopic, i.e. they do not anticipate future pricing/availability decisions. This
seems reasonable since most grocery orders are booked within only three days prior to
delivery, and the charges are usually small relative to the order value. In fact, the companies
usually impose a limit on delivery charges because of competition.

• We ignore cancelation and re-scheduling of orders. This assumption seemed not overly
restrictive since our real-life data set showed that most deliveries are booked only shortly in
advance and are therefore usually fulfilled as ordered.

4.2 Customer Segments

The definition of customer segments is a major design decision for the choice model, since the
demand model assumes that the choice behavior of all customers within a given segment is ho-
mogeneous. Remember that we assumed that customers only select time slots of a specific chosen
day, rather than also choosing time slots among various delivery days. Hence, as far as the choice
model is concerned, we can create customer segments as subsets of those customers who select a
specific delivery day; however, we need to keep in mind that therefore a customer viewing delivery
options on various delivery days will appear to the model as arrivals from several segments.

We investigated various definitions on the basis of a real data set from our industrial collabora-
tion partner, ranging from aggregating all customers into a single group, to aggregation according
to postcode or time slot preference. Eventually we chose to aggregate all customers into one seg-
ment for a fixed delivery day, and we assume that every customer considers all time slots on the
fixed delivery day. The customer’s decision is made based on availability and delivery charges.
The no-booking option is always available and can either represent that the customer did not book
at all, or that the customer chose to book delivery for a different day.

The reason for segmenting customers only by delivery day is that such a segmentation allows
us to attribute each delivery request to exactly one segment and we also have sufficiently dense
data available to calibrate a choice model for each segment. An intuitive alternative segmentation
could be to include time preference for the delivery time slot, e.g. “Monday Morning”, “Mon-
day Afternoon” and “Monday Evening”. However, this could result in two customers ordering
simultaneously for the same post code area and for the same delivery day, having different prices
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and availabilities quoted since their estimated choice preferences (and hence estimated time slot
selection probabilities) are likely to differ, which in turn impacts on the dynamic pricing opti-
mization. Price discrimination based on characteristics of individual customers is regarded as
unacceptable by many customer, as e.g. Amazon experienced in 2000 when experimenting with
customer-tailored DVD prices, see Ward [2000]. Our partner firm accordingly rejected models that
may result in different quotes in the same time slot, same location and same order value because
of potential damage to their reputation. For the same reason, analysis of an individual customer
is undesirable, even if sufficient data would be available for every customer.

4.3 Customer Arrival Process

Given the definition of a customer segment, we need to model the arrival process for customers of
a certain segment. A segment l arrival for delivery day d is defined as the event that a segment l
customer selects delivery day d on the web site. Note that this does not imply that this customer
books a time slot on this day; this arrival event takes place before any time slots are displayed, so
the customer may book on a different day or not book at all. Therefore, there are no slot-specific
arrival rates; slot-specific expected demand will be modeled in the next section with a multinomial
logit choice model. As mentioned in the previous section, our model excludes cancelation or re-
scheduling of orders. Given real data that does include occurrences of customers re-scheduling
arrivals, we accordingly only considered the final decision process on the day that led to the actual
delivery (or no delivery booking at all); all potential other arrival events on previous days in the
booking horizon were ignored in the estimation of the arrival intensity function.

Based on our knowledge of past booking histories, we intend to identify a partition of the
booking horizon with arrival intensities that are constant within each time period, such that the
arising cumulative intensity function is likely to be a good estimate of the (unknown) cumulative

intensity function Λl(t) :=
∫ t

0
λl(r)dr of the non-homogeneous continuous Poisson arrival process

λl(t). Note that although the arrival rate shall be constant for each time period by construction,
the resulting estimated cumulative intensity function is still time-dependent since the length of
time periods differs. Once an estimate of the cumulative intensity function has been found, we
can use inversion to define time periods for specified expected arrivals. In particular, let us look at
how to identify time periods in a way such that each time period has the same expected number of
arrivals, and moreover such that the probability of more than one arrival in a given time period is
smaller than a pre-specified value. The latter is not only required by the dynamic program (1–2),
but is also important for the estimation of the choice model parameters as described in the next
section.

There are various parametric and non-parametric models that could be used to estimate this
function; the following non-parametric procedure by Leemis [1991] seems appropriate for our
purpose because it does not require arbitrary decisions from the modeler. Furthermore, linear
interpolation allows inversion to be used to identify arrival times (otherwise there may be ties).
Let (0, τ ] denote the booking horizon leading up to a specific cut-off day at time τ . We refer to
all data of arrivals and choice processes associated with a fixed segment over the entire booking
horizon as booking histories. Assuming that each booking horizon leading up to e.g. a Monday
is based on the same demand model, we use all available H booking histories in the arrival
intensity estimation. This approach can be justified by the fact that the booking patterns for
each weekday in our data were fairly stable, even bank holidays did not appear to dramatically
change the booking pattern. In our data set, each booking horizon has a length of 22 days, and
we have H = 26 histories available. Leemis’ estimator Λ̄l(t) is the piecewise linear function that is
obtained by linear interpolation of the superposition of the historic arrival events: a very simple
example is depicted in Figure 1. We refer to Leemis [1991] for details on the implementation of
this method.

Having estimated the cumulative intensity function from the booking histories, we can now
determine time periods with a uniform arrival intensity λl by specifying the desired number of time
periods T . The time periods will typically have different lengths, reflecting the time-dependent
arrival intensity. The arrival intensity λl is given by the total expected number of arrivals divided
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Figure 1: Nonparametric estimate of the cumulative arrival intensity function. Example with
H = 2 histories, containing n1 = 0 and n2 = 1 observations, respectively.

by the number of time periods: λl := Λ̄l(τ)/T . This defines a uniform grid on the interval [0, Λ̄l(τ)]
with T subintervals of length λl. We can use the inverse of our estimate of the cumulative intensity
function to define time periods (ti, ti+1] with ti := Λ̄−1

l (iλl), i ∈ {0, . . . , T}, that therefore have
lengths such that the expected number of arrivals within each time period is equal to λl. Note
that the inverse is well-defined since Λ̄l is monotone and piecewise linear. Again we refer to Leemis
[1991] for details on the inverse.

To obtain time periods that are sufficiently small such that the probability of having more
than one arrival is negligible, we can use a result by Çinlar (1975) for a Poisson process λ(t): the
probability P(a,b](X > 1) of more than one arrival in (a, b] is

P(a,b](X > 1) = 1− exp(−
∫ b

a

λ(t)dt)[1 +

∫ b

a

λ(t)dt].

We can approximate the integral terms using
∫ b
a
λl(t)dt ≈ Λ̄l(b) − Λ̄l(a) in the formula for

P(a,b](X > 1) above. Note that by construction Λ̄l(ti+1) − Λ̄l(ti) = λl for all i ∈ {1, . . . , T − 1}.
Hence P(ti,ti+1](X > 1) = 1 − exp(−λl)(1 + λl) for all i. This gives us a rule for selecting the
number of time periods T : since λl := Λ̄(τ)/T , define T such that

1− exp(− Λ̄l(τ)

T
)(1 +

Λ̄l(τ)

T
) ≈ ζ,

where ζ > 0 represents the desired (approximate) probability of having more than one arrival per
time period.

The choice of ζ will need to take into account that very small ζ will produce very small time
periods, which in turn brings noise from the data into the estimated density function. On the other
hand, ζ should not be chosen too large since this would violate the assumption for the probability
of having more than one arrival per time period, i.e. ζ, being negligible. Based on a simulation
study with arrivals that follow known arrival rates similar to those in real data, we found that
ζ = 0.2 provided a good trade-off.

4.4 Multinomial Logit Choice Model

Let us consider the time slot selection process that follows the delivery day selection. More
precisely, we need to estimate the choice probability of a customer from each segment for selection
of any particular time slot, given their respective availability and incentive. Time slot availability
is considered pre-determined by whether or not the firm can feasibly insert the current order
in that time slot given the current delivery schedules based on all accepted orders to date. We
elaborate on schedule and pricing optimization in §5.

For a fixed delivery day, there is a fixed number of S (potentially partly overlapping) time slots
s ∈ {1, . . . , S}; we denote the delivery charge (or discount) for time slot s by ds. Each customer
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of a segment l is assumed to consider all delivery time slots for the chosen day, and the customer’s
utility perception is homogeneous across the segment population in that he attributes a utility
of U ls := uls + εls to time slot s. Customer behavior is assumed to follow an MNL model such
that uls is a known deterministic part that we can influence via the delivery charges, and εls is an
i.i.d. random variable that follows a Gumbel distribution with zero mean and variance µ2π2/6 for
π = 3.14 . . . and µ > 0. The deterministic part is assumed to be a linear function of the time
slots’ attributes, namely uls := βl0 + βls + βldds, where βl0 is a base utility across all options, βls is
the utility attributed to the slot itself, and βld is the sensitivity of utility to the delivery charge.
Let ul0 = 0 denote the utility for the no-purchase option for segment l, normalized to zero. We
can estimate βl for each segment separately since we are able identify which segment a customer
belongs to. We can assume that µ = 1 as this parameter is absorbed in the scaling of the vector
β. For a given segment l arrival in the booking horizon, we have given the set F ⊂ {1, . . . , S} of
feasible time slots that are available for selection.

Under the assumption that customers are utility maximizers, the probability that time slot s
is chosen given that time slots s ∈ F are available at delivery charges ~d := [ds]s∈F , can be shown
to be the following:

P ls(
~d) =

exp
(
βl0 + βls + βldds

)∑
k∈F exp

(
βl0 + βlk + βlddk

)
+ 1

,

and the probability that no time slot for this delivery day is chosen is given by

P l0(~d) =
1∑

k∈F exp
(
βl0 + βlk + βlddk

)
+ 1

.

We proceed with the estimation of the attribute sensitivity parameters βl by maximizing the
log-likelihood function with respect to βl. Let Ph denote the set of time periods in history h
where a time slot was selected, P̄h the set of time periods where there was an arrival but no time
slot selection on the fixed delivery day, ¯̄Ph the set of time periods without arrivals, Fht the set of
feasible time slots offered at delivery charges ~dht in history h and time period t, and s(h, t) the
index of the time slot s that was chosen in history h in time period t. The data that we were given
by the firm contains records of which delivery days customers looked at and on which one they
booked delivery, if at all. Hence we can observe directly when customers look at the fixed delivery
day but then choose not to book on this day, and all the sets Ph, P̄h and ¯̄Ph are observable. This
is a great advantage over e.g. airline data where P̄h can typically not be observed, and thus one
requires methods to estimate this set.
The complete log-likelihood function is given by∑

h

∑
t∈Ph

[
log λl + βl0 + βls(h,t) + βldds(h,t) − log(

∑
k∈Fht

exp(βl0 + βlk + βlddk) + 1)
]

+
∑
h

∑
t∈P̄h

(log λl − log(
∑
k∈Fht

exp(βl0 + βlk + βlddk) + 1)

+
∑
h

∑
t∈ ¯̄Ph

log(1− λl).

We discussed the estimation of the arrival rate λl for a segment l above; remember that we
constructed the time grids for each segment in a way such that λl is the same for each time
period. Note that the log-likelihood function is separable in βl and λl, so that we only need to
maximize:

L(βl) =
∑
h

∑
t∈Ph

[
βl0 + βls(h,t) + βldds(h,t) − log(

∑
k∈Fht

exp(βl0 + βlk + βlddk) + 1)
]

+
∑
h

∑
t∈P̄h

(− log(
∑
k∈Fht

exp(βl0 + βlk + βlddk) + 1).
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Table 2: Runtime of MNL estimation procedure. Runtime in minutes and average percentage
differences between true and recovered parameters for various sample sizes.

Sample Size Runtime (min) Average Difference (%)
20,000 36.9 18
40,000 69.6 13
80,000 121.5 10
160,000 226.5 9

Train [2003], p. 65, states that this function is concave, hence we can tackle it with standard
nonlinear programming solvers to find the global maximizer. E.g., we can use Quasi-Newton
methods; they only require the first-order derivatives but achieve superlinear convergence rates.

Example 4.1 We test our ability to recover the choice parameters depending on sample size and
the associated required runtime in a simulation study. Again, in our choice of number of time
slots, sensitivity parameters and range of sample choice observation we intend to be close to real-
life data, so that the example provides a feel for how many samples are required for achieving a
certain accuracy. We defined S = 27 partly overlapping one hour time slots, each with a pre-
defined sensitivity parameter βs, specified the base parameter β0 and delivery charge sensitivity βd.
The estimation is done for each customer segment individually, hence we focus on a single segment
in this simulation. We disregard the point in time when the booking is made in the simulation
since we assume that the time slot choice behavior (given a selected delivery day) is independent
from the time of booking.

To create the sample events, we generate randomly a set of available time slots by considering a
time slot to be open with a probability of 0.7, and otherwise to be closed. Next, for each open time
slot we sample a delivery charge from the discrete uniform distribution over three price points as
reported in Table 7 in the appendix. Finally, the customer’s decision is drawn from the probability
distribution defined by the MNL model for the given β parameters over all available time slots
and sampled price points. We repeat this process for sample sizes ranging from 20,000 to 160,000.
Again, such sample sizes are realistic in the real-life application as we concluded from our real
data set.

We use the attribute of time slot 23 with its associated sensitivity β23 as the reference variable
since this attribute featured most frequently in the observed choice sets (> 90%), re-define the β
parameters (we refer to Vulcano et al. [2010] for details on this standard transformation) and
attempt to recover the β parameters from the sampled observations using Matlab R2012a to
maximize the log-likelihood function. The maximization procedure used is fminunc in the large-
scale mode with user-supplied gradients, and the runtimes are based on solving it on an Intel Xeon
CPU X5650 @ 2.67GHz system.

The results and original parameters are reported in Tables 8–11 in the Appendix. It is inter-
esting to observe that for the large samples of 80,000 or 160,000 observations, most parameters
can be recovered with great accuracy; particularly the price sensitivity βd is recovered well. This is
encouraging since our real data set features around 160,000 observations in the booking histories
for any given weekday. We also report the quasi t-statistics, computed as the ratio between the
estimated value of the parameter and the asymptotic standard error (ASE), which has the critical
value of ±1.96 at the 0.05 significance level [Newey and McFadden, 1994]. The result shows that
we can reject the null hypothesis that the true parameter value is zero (meaning that the decision
maker is indifferent to this attribute) for all parameters for the 160,000 and 80,000 samples, and
even for 40,000 observations there is only one case β10 where it cannot be rejected, and in this
case the original β10 is indeed zero.

Runtime increases linearly with sample sizes as can be seen from Table 2; doubling the sample
size increases runtime by a factor of approximately 1.8. The runtime seems to be acceptable given
that this estimation process runs offline.
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5 Dynamic Pricing Policies

The main issue at stake is the question of how to control the booking process so as to maximize
the firm’s profit; more precisely, how to control time slot booking incentives so as to influence
the customers’ expected booking decisions so that the final routing schedules are likely to be
cost-effective, and to potentially earn auxiliary revenue from the delivery charges.

Under the premise that a time slot is made available for a given delivery request if and only if
that order can be feasibly inserted into the current routing schedule, the only decision that we can
make to control the booking process is the pricing of the time slots. As mentioned beforehand,
we can also offer negative prices as incentives, which would then be discounts coming off the
order’s total value. We mean by the term “pricing policy” a decision rule used to decide on these
incentives given a customer arrival for a particular delivery day.

The dynamic program (2) motivates an approximation Oxtas of the opportunity cost that not
only depends on the cost of inserting an order in slot s for area a based on the orders x collected
until time t, but also based on the future orders we expect to receive. This insight is reflected in
our proposed so-called hindsight and foresight policies that we discuss in the following.

5.1 Approximations to opportunity cost

By dynamic policy we mean a way of controlling delivery charges as we observe bookings over
time. Examples in industry are Ocado and Tesco Groceries who appear to change individual time
slot prices dynamically.

Before we can optimize pricing of time slots for a given order and given delivery day, we firstly
need to check whether insertion of this order in any specific time slot allows a feasible schedule
to be built, and secondly what cost would be affiliated with inserting this order in each time
slot (the so-called insertion cost). For a given set of accepted orders and a current order j∗

under consideration, we use the following heuristic approach to check feasibility as described in
Algorithm 1, which is loosely based on the approach chosen by Campbell and Savelsbergh [2006].
We label the time required to drive from the location of order i to the location of the next order
i + 1 by ti,i+1. We maintain a pool of at most 10 schedules for the orders accepted so far. This
includes the best schedule available when the last order arrived (empty at the outset), and the 9
others are randomly generated to increase the likelihood of finding feasible schedules. Naturally,
the final schedule will differ significantly from a schedule built earlier in the booking process since
it is constructed based on partial information on the accepted orders.

The cost of inserting a given order into a time slot is computed by examining the cost of
inserting the order into each schedule σ ∈ Σ, and selecting the cheapest as the insertion cost
estimate. We calculate these cost estimates as a function of the distance traveled, so f(di,i+1)
represents the fuel cost for traveling the distance di,i+1 from location of order i to that of the next
order i+ 1 on the route. We do not take the driver’s salaries, vehicle maintenance or other costs
into account. Under this assumption, the cost of inserting order j between an order i − 1 and
another order i for a given schedule σ ∈ Σ can be calculated by

Csσ ← f(di−1,j) + f(dj,i)− f(di−1,i) + C(σ)− C∗,

where C(σ) and C∗ are the total delivery cost of schedule σ and of the cheapest schedule in Σ,
respectively. The latter two terms need to be included in the calculation of Cs (as remarked by
Campbell and Savelsbergh [2006]) because otherwise an order might be inserted in a schedule
where f(di−1,j) + f(dj,i)− f(di−1,i) is small but that is otherwise very expensive. More details on
how to define the cost function f(·) are given in Section 6.3.

Campbell and Savelsbergh [2006] propose a dynamic pricing policy where the opportunity cost
is approximated by an estimate of the cost of inserting the order into a given time slot for a given
current order state x as seen in Algorithm 1. Recall that dynamic policies are likely to perform
well if they are in the form of (3) with a good opportunity cost approximation, meaning that
the impact of future expected deliveries should be taken into account as well when estimating
the insertion cost. Otherwise, we might make potentially bad decisions very early in the booking
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Algorithm 1 Procedure to find feasible schedules given a set of orders U .

Initialization: set of schedules Σ← {best previous schedule}.
for σ = 1 : 9 do

Initialize candidate list of yet unscheduled orders, U , to contain all accepted orders to date.
while U 6= ∅ do

Pick an order j ∈ U at random, check feasibility of inserting it in schedule σ its time slot
s (begins, ends) between already inserted orders i− 1 and i by computing the earliest and
latest insertion times ej and lj :

ej = max(ei−1 + service time + ti−1,j ,begins),

lj = min(li − service time− tj,i, ends).

The insertion is feasible if and only if ej ≤ lj .
if Insertion is feasible then

Insert order j in schedule σ. Remove order j from candidate list U .
else

Record that schedule σ is infeasible. Break from the while loop.
end if

end while
If schedule σ is feasible, add it to the set Σ.

end for

horizon. Since Campbell and Savelsbergh [2006] emphasize that “the use of incentives can be
critical even in the early stages of building a delivery schedule”, it seems important to address
this issue. To that end, we propose two approaches to constructing a decision policy based on
our demand model: the Hindsight Policy and the Foresight Policy, thus labeled to reflect the
omission/inclusion of information on the future demand in the optimization process.

5.1.1 Choice-based: Hindsight Policy

At a given point in time during the booking horizon, the Hindsight Policy only takes the informa-
tion into account that has been revealed in the sales process so far. It maintains a set of schedules
only for the accepted orders and updates them once a new order is accepted. In other words, no
information about future demand is included. These schedules are used to determine the increase
in delivery cost when accepting a new order, but since no knowledge on future demand is taken into
account, it does not tell us the cost of having potentially displaced a more valuable order arriving
later. In this regard, the Hindsight Approach is similar to the method proposed by Campbell and
Savelsbergh [2006] except that they use a simpler choice model where the reduction of the delivery
charge for a particular time slot results in a linear increase of selection probability for this time
slot and an equal reduction of selection probability across all alternative time slots.

As a rule, we make all time slots available that are feasible to the vehicle routing problem;
this is motivated by the fact that our partner firm wants to serve customers as long as there is a
feasible way of doing so; customer retention is very important in this line of business. The main
purpose of a delivery charge is to incentivize customers to choose time slots that allow cheaper
delivery schedules and to secure high-value orders.

The lowest insertion costs Cs need to be computed for each time slot s since they are required
in the subsequent optimization of delivery charges. Every time that an order (a, s) for a delivery
to area a and in time slot s arrives we compute the lowest insertion costs for all time slots, and
then carry out the pricing optimization. We maximize the immediate profit from (a, s) by deciding

on the vector ~d ∈ RS , where S is the number of time slots. Depending on the sign of the decision
variable ds, it represents a delivery charge or a discount to be deducted from the order value. The
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online decision problem that we need to solve is

max
∑

s∈Fa(x)

(r + ds − Cs)P ls,Fa(x)(
~d) (4)

~da ∈ RS ,

where Fa(x) denotes the set of feasible time slots in area a for given set of accepted orders x
(determined by the routing schedule optimization).

The problem (4) is not quasi-concave in price as shown by Hanson and Martin [1996], but Dong
et al. [2009] show that the problem is concave in the purchase probabilities. We apply their result
to (4) in what follows, where we omit the segment index for the sake of a clearer presentation.
Note that it follows from the MNL model that

Ps(~d)

P0(~d)
= exp(β0 + βdds + βs) ∀ s;

remember that the utility of the no-selection option u0 is normalized to zero. It follows that

ds = − 1

βd
(β0 + βs + lnP0 − lnPs) ∀ s,

where ~P = [P0, P1, . . . , PS ] is the vector of selection probabilities for the walk-away option and

each time slot option, and
∑S
s=0 Ps = 1. Substituting this into (4) results in the following concave

optimization problem (assuming βd < 0):

max
∑

s∈Fa(x)

[− 1

βd
(β0 + βs + lnP0 − lnPs) + r − Cs]Ps

S∑
s=0

Ps = 1

~P ∈ [0, 1]S+1.

Theorem 5.1 The optimal solution to (4) is given by

d∗s = Cs − r − m

βd
∀ s ∈ Fa(x),

where m is the unique solution of

(m− 1) exp(m) =
∑

s∈Fa(x)

exp(β0 + βs + βd(C
s − r)). (5)

Proof Proof. Theorem 1 in Dong et al. [2009].

Therefore, we can solve the online pricing problem efficiently by e.g. using a standard Newton root
search to find m in (5). We restrict the incentive range in our numerical study to [−10, 10], i.e. if
d∗s is outside this interval, we project d∗s onto the interval’s boundary. The choice of this interval
is motivated by the fact that delivery charges of our industry partner are always less than £10,
and promotional discounts on the order of about £10 are sometimes given e.g. to new customers.
Upper and lower limits should be specified to avoid occasional very large charges or discounts
that could not realistically be offered since customers will likely not accept large variations as fair
pricing.
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5.1.2 Choice-based: Foresight Policy

A shortcoming of the previous approach is the implicit assumption that the insertion cost estimates
are good approximations of the true opportunity costs of accepting orders. This assumption is
questionable particularly in the beginning of the booking horizon because the estimation only
takes observed orders into account. The Foresight Policy attempts to improve on that by creating
and maintaining two pools of schedules ΣH and ΣF , one for the accepted-to-date orders only, and
the other consisting of the most recent ten final schedules for the same delivery weekday. When
a new order arrives, we attempt to insert it into each schedule in each of the two pools so as to
obtain insertion cost estimates. For the pool ΣH we compute the insertion cost CsH for each time
slot s as described in the previous section.

For the pool ΣF , we try to insert the new order into every schedule. If it is feasible to insert
the new order, then we keep the corresponding insertion cost, otherwise we set the insertion cost
to a big value (say £10). We define the foresight insertion cost estimate CsF as the average of all
the insertion costs over the schedules in ΣF . If the new order appeared regularly in those histories,
the foresight insertion cost would be zero for those slots in which it had been delivered. On the
other hand, for some very popular time slots which are highly likely to be full in those schedule
histories, the foresight insertion cost will be fairly high.

The final insertion cost is estimated as a linear combination of CsH and CsF . For orders arriving
early in the booking horizon, the foresight insertion cost is likely to be a good estimate, whereas
for the late arrivals the hindsight insertion cost is more accurate. Hence we increase the weight
wj of CsH continually as orders come in by defining wj := j/J , assuming that we have accepted
j − 1 orders so far, and defining J as the maximum expected number of bookings over the entire
booking horizon. Thus the insertion cost for the jth order and time slot s is defined by

Csj = wjC
s
H + (1− wj)CsF .

We solve the pricing problem (4) with these new insertion cost estimates using Theorem 5.1
as before.

6 Numerical Results: Real Booking Data

To test our demand estimation methodology as well as the dynamic policies, we apply them to
the data set of our industrial collaboration partner. In this section, we first describe the data set

6.1 Description of the Data

We obtained anonymized booking data from a major e-grocer in the United Kingdom, ranging
over 6 months from beginning of June to the end of November 2011. All bookings were made over
the firm’s website, and the customers had to be registered and logged into their account when
booking a delivery time slot. A delivery could be booked up to 22 days in advance, though most
bookings occurred within three days to the delivery day. For a given weekday, say Monday, we
have 26 booking histories over the entire corresponding booking horizon available.

All deliveries were served by a single depot. The firm collects relevant data via their website:
customer arrivals are recorded with customer number, order number, arrival time, advisory period
and delivery day selected for order (if any). This arrival event is linked with detailed offer set
information including when which slots were offered at which price, and which (if any) slot was
selected by the customer. Finally, relevant order details included order number, postcode, customer
number, total number of totes, and delivery day and slot. All these entries are linked via system
event numbers. Our data does not include the revenue of any orders though the firm does record
this as well. We excluded cancelation and re-scheduling from our analysis.
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Table 3: Data Sample. Data extract for a specific order by a specific customer who re-schedules
the delivery time slot several times.

AdviseStart AdviseEnd Selected Creation
15/05/2011 17/05/2011 14/05/2011, 20:52
22/05/2011 23/05/2011 14/05/2011, 20:52
24/05/2011 25/05/2011 24/05/2011, 22:00–23:00 14/05/2011, 20:53
26/05/2011 27/05/2011 14/05/2011, 20:53
15/05/2011 17/05/2011 14/05/2011, 20:55
24/05/2011 25/05/2011 25/05/2011, 22:00–23:00 14/05/2011, 20:55
25/05/2011 27/05/2011 24/05/2011, 14:12
01/06/2011 02/06/2011 02/06/2011, 22:00–23:00 24/05/2011, 14:12
26/05/2011 28/05/2011 25/05/2011, 14:01
31/05/2011 01/06/2011 01/06/2011, 22:00–23:00 25/05/2011, 14:02

Table 4: Estimation results. Arrival rates and time grids based on the e-grocer data set using
ζ = 0.2. “Total arrivals” contains all arrivals over all 26 booking histories.

Mon Tue Wed Thu Fri Sat
Total arrivals 149,803 150,249 173,087 163,991 165,771 150,836
T 6,990 7,010 8,076 7,651 7,734 7,038
λl 0.824 0.824 0.824 0.824 0.824 0.824

6.2 Demand Estimation from E-Grocer Data

Example 6.1 We explain how we define a customer arrival using the example of a real booking
record for a specific order. All required information can be obtained if the firm sells over its own
web site, and it is available in our real-world data set. More specifically, our data contains the so-
called AdviseStart and AdviseEnd dates that represent the span of delivery days that the customer
looked at. If the customer selects a time slot, it is recorded in the Selected column. The firm allows
customers to change their selection both within the current session as well as later on up to a
certain cut-off time. Consider the data extract in Table 3: this is one customer who re-scheduled
repeatedly the delivery time slot for the same order and eventually settled for the first of June. How
should we count arrivals here for the delivery day 26 May, say? This date appears three times
in the booking history within the advisory period, but as we ignore re-scheduling in our model, we
only look at the decision process that occurred on the final creation day 25/05/2011. On that day,
the customer considers delivery on 26–28 May, 31 May and 1 June. Therefore, for each of these
days we would record an arrival for the corresponding segment; in particular, for 26 May we record
an arrival occurring at 14:01 on 25/05/2011. Note that this is a rather unusual example since the
vast majority of customers do not re-schedule their slot.

According to this definition of customer arrivals, there are around 6,000 to 7,000 arrivals in
each booking history for a given weekday. We chose the probability of having more than one arrival
per time periods as ζ = 0.2, which corresponds to an arrival rate of λl ≈ 0.824. The number of
time periods that achieve this rate are reported in Table 4.

Based on these time grids, we estimated the MNL parameters from the data. The β parameters
for Monday deliveries are reported in Table 5. There are 27 (overlapping) time slots, and we
chose time slot 23 as the reference point so that the parameter is eliminated. Based on the
quasi t-statistics we can reject the null hypothesis that the true parameter value is zero for each
parameter. When comparing time slot preference parameters with the price preference parameter
βp, we remark that there is a difference in scale since xs is on a scale from 0 to 1, whereas the
prices in the data ranged from £0 to £7. Based on the t-statistics, we can again reject the null
hypothesis that the true parameter value is zero for all parameters.
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Table 5: MNL parameters estimated from real sales data. ASE: asymptotic standard error.

Slot ID
Monday Delivery
β ASE t-stat

1 -0.8230 0.0955 -8.6178
2 -0.7436 0.0596 -12.4765
3 -0.5746 0.0509 -11.2888
4 -0.3181 0.0415 -7.6651
5 0.1529 0.0034 44.9706
6 0.1897 0.0319 5.9467
7 0.7656 0.0264 29.0000
8 0.9941 0.0237 41.9451
9 0.4561 0.0255 17.8863

10 0.9091 0.0226 40.2257
11 0.1340 0.0272 4.9265
12 -0.2514 0.0341 -7.3724
13 -1.2908 0.0522 -24.7280
14 -0.3500 0.0317 -11.0410
15 -0.6213 0.0341 -18.2199
16 -0.3435 0.0308 -11.1526
17 -0.5251 0.0326 -16.1074
18 -0.1118 0.0291 -3.8419
19 -0.5093 0.0330 -15.4333
20 0.2316 0.0263 8.8061
21 -0.2854 0.0293 -9.7406
22 -0.3950 0.0296 -13.3446
23 0.0000 n/a n/a
24 0.6395 0.0227 28.1718
25 -1.1516 0.0374 -30.7914
26 0.3912 0.0255 15.3412
27 -1.1656 0.0428 -27.2336
β0 -2.8618 0.0222 -128.9099
βd -0.0880 0.0033 -26.6788
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6.3 Evaluation of Policies

As a benchmark that represents industry practice of various online grocers, we use two static price
policies that do not require any optimization at all:

• Single static price: we simply define a fixed delivery charge across all time slots and all
delivery areas. For example, Boots (pharmacy-led health and beauty company) charges
£3.95 for a named weekday up to 14 days in advance. In general, the delivery charges are
often around £3 to £5, so we experiment with fixed prices at £3, £4 and £5.

• Order-value-based static price: we define a fixed delivery charge depending on the order
volume, namely £3 for delivery of groceries worth £50 or more, and £5 charge for smaller
orders (this also corresponds to current industry practice, e.g. Waitrose).

We test the performance of the various pricing policies with regard to profit in simulations
based on the real data provided by our industry partner. We simulate customer arrivals according
to the rate and time grid that were estimated for Monday deliveries as described above. The
location of the customer is subsequently sampled according to the proportional arrival-by-location
table that we extracted from the data. Next, we sample the order size in terms of profit before
distribution by sampling the number of totes requested from the normal distribution, where mean
and standard deviation are obtained from historical bookings in the corresponding location. We
multiply the resulting number of totes with the average revenue per tote and the profit margin
that we set at 30%. This percentage was estimated simply by the ratio of gross profits over gross
revenues as reported on the firm’s balance sheet, and company representatives felt that it is an
adequate rule of thumb.

The respective pricing policy is used to obtain a vector of delivery prices, based on which the
customer’s time slot selection is sampled from the corresponding distribution given by the MNL
model. The MNL parameters are estimated from Monday delivery data as discussed above. If
the customer selects a time slot, the corresponding profit is recorded. We assume orders are not
being canceled. This process is repeated for each of the T = 6990 time periods until the cut-off
time is reached. We generate 40 sample booking histories and use their average generated profit
as a measure of the quality of the respective pricing policy.

The number of vans is varied in the simulations between 100, 110, 120 and 150 to observe
the impact of various degrees of capacity tightness. The homogeneous van capacity, service and
reloading times, average speed and fuel cost that were used in the simulations were provided
by our industrial partner in the understanding that they remain confidential. Our real data set
contained post code sector information that we used to approximate the driving time ti,i+1 and
cost f(di,i+1) between two orders i and i + 1. To do this, we approximated the road distance
between two locations by multiplying the distance as the crow flies by a constant factor γ. If two
locations are in one district, the factor was set to γ = 1.35/(1000 ∗ 1.6), and γ = 1.25/(1000 ∗ 1.6)
otherwise. This reflects that the straight point-to-point distance is a better approximation of the
road distance if the locations are further apart. Hence, f(di,i+1) = γ(lineDistance)(costPerMile).

We consider the typical situation of all goods being stored in a central warehouse, from which
all orders are delivered. We simplify the model by assuming that there is only one warehouse, and
that all vans have only one compartment. In reality, grocery home delivery vans have different
compartments for frozen, chilled and non-chilled totes.

Table 6 reports the mean profit results of the various pricing policies, along with the average
number of orders accepted, the average total cost of the resulting schedules and the percentage gap
to the order-value-based static pricing policy (VS). The dynamic pricing policies both outperform
the static policies in most cases. In particular, the foresight policy improves on the VS policy
consistently by on average 3.8%. The latter is an important result as two-tier static price policies
such as the one that we use here as a benchmark are often found in industry. As expected, the
fixed price policies do not perform well, particularly under tight capacity limits, since they do not
even favor larger orders over smaller ones.

It becomes particularly interesting when investigating the hindsight policy: for the scenario
with only 100 vans, it is 3.5% worse than VS. This is due to the fact that the number of vans in
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Table 6: Policy performance. “#Deliv” is the average number of deliveries under the respective
policy, “TotalCost” the average total delivery cost, “MeanCost” is TotalCost/#Deliv, “Total-
Profit” the average profit after distribution, “StdDev” is the standard deviation of profits, and
“Gap” is the percentage gap to the total profit achieved by policy “VS”, which stands for order-
Value based Static pricing policy.

#Vans Policy #OrdersTaken TotalCost MeanCost Total Profit Stddev Gap (%)

100

VS 2,953 7,609 2.58 105,743 269.4 0.0
ds = 3 2,957 7,681 2.60 105,123 254.5 -0.6
ds = 4 2,880 7,550 2.62 105,493 250.4 -0.2
ds = 5 2,792 7,446 2.67 104,817 336.1 -0.9
Hindsight 3,183 8,059 2.53 102,125 282.5 -3.5
Foresight 3,052 7,941 2.63 109,139 300.6 3.1

110

VS 3,042 8,061 2.65 108,334 252.0 0.0
ds = 3 3,063 8,018 2.62 109,225 258.4 0.8
ds = 4 2,950 7,800 2.64 107,784 308.6 -0.5
ds = 5 2,844 7,614 2.68 106,398 316.1 -1.8
Hindsight 3,390 8,709 2.57 110,680 215.5 2.1
Foresight 3,165 8,356 2.64 112,215 298.8 3.5

120

VS 3,101 8,222 2.65 110,687 312.3 0.0
ds = 3 3,091 8,121 2.63 110,039 352.3 -0.6
ds = 4 2,997 7,886 2.63 109,309 343.7 -1.3
ds = 5 2,874 7,778 2.71 107,584 308.9 -2.9
Hindsight 3,486 8,821 2.53 113,504 236.5 2.5
Foresight 3,375 8,754 2.60 113,661 333.9 2.6

150

VS 3,120 8,204 2.63 110,910 396.2 0.0
ds = 3 3,145 8,209 2.61 111,673 301.2 0.7
ds = 4 3,026 7,964 2.63 110,171 340.7 -0.7
ds = 5 2,883 7,708 2.67 108,031 323.9 -2.7
Hindsight 3,511 8,942 2.55 116,016 302.3 4.4
Foresight 3,530 8,947 2.53 118,192 343.0 6.2

this scenario severely limits the number of orders that can be feasibly accepted, so it becomes very
difficult to find feasible slots later in the booking horizon if many bookings have been accepted
early on. Figure 2 shows a box plot of all delivery prices used in the simulations for the 100 vans
example. The prices tend to be dramatically lower than what the foresight policy recommends;
in fact, most of the time the hindsight policy offers discounts so as to increase the probability
that a given customer books a time slot. This can also be seen from Figure 4 that shows how
the average delivery charge changes over time for the two respective policies: the hindsight policy
starts already with discounts from early in the time horizon since it does not anticipate the high
future demand (relative to available capacity). Therefore, towards the end of the booking horizon,
the hindsight policy must offer even more discounts because all popular time slots are filled, and
it becomes very difficult to move customers to the remaining few unpopular slots. The foresight
policy however does anticipate future demand and hence starts off with positive charges, and only
towards the end offers discounts to fill remaining unpopular slots. Figures 3 and 5 illustrate that in
the situation of having plenty of capacity, both policies behave in a similar way as one would expect.
Still, even in the scenario of 150 vans, foresight produces about 2% more profit than hindsight.
This underlines the importance of basing the expected insertion cost not only on orders hitherto
accepted, particularly when demand is larger than delivery capacity. The strong performance of
the foresight policy versus the static order-value-based pricing policy also demonstrates the benefit
of using customer choice modeling in time slot pricing, rather than only basing the decision on
order value.
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Figure 2: Box plot of delivery price range for the 100 vans example.

Figure 3: Box plot of delivery price range for the 150 vans example.
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Figure 4: Average of delivery prices over intervals with 20 time periods for the 100 vans example,
with beginning of the time horizon at t = 0.

Figure 5: Average of delivery prices over intervals with 20 time periods for the 150 vans example,
with beginning of the time horizon at t = 0.
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6.4 Practical Aspects and Managerial Insights

For practical implementation, computational effort needs to be reasonable relative to whether the
task is carried out online or offline. The estimation of parameters of the arrival process and MNL
model can be done offline. Computational efforts regarding the arrival process is negligible, but
the MNL estimation takes approximately one hour with around 210,000 sample observations for
each customer segment using Matlab on an Intel Xeon CPU X5650 2.67GHz machine. However,
since it is computed offline, it is not a practical limitation.

The evaluation of feasibility of inserting an order and the estimation of insertion cost how-
ever needs to be done online, and the optimization of dynamic pricing policies as well. With
Theorem 5.1 the solution of problem (4) is easy; however the insertion cost calculation is not so
straightforward. In order to dynamically estimate the insertion cost, we have to keep a sample
schedule pool of 10 delivery schedules consisting of all of the orders that have been accepted so far.
For every order arrival we evaluate the best possible delivery cost for every time slot by inserting
the considered order into every feasible place in all of the sample schedules. This calculation
dominates the optimization of slot-prices in the online algorithm which takes around 97% percent
of running time.

When a customer selects a delivery day in practice, the system needs to display delivery slot
prices and availabilities virtually immediately. In our simulation, the calculation of feasibility and
optimal prices takes on average 0.18 seconds per arrival, which seems reasonable. Nevertheless, as
a potential improvement, parallel computing can be applied in managing a larger pool of sample
schedules in order to give more accurate estimations of insertion cost in practice, as the insertion
step is independent across sample schedules/vans. Also, the firm could reduce the size of the
insertion problem by using decomposition heuristics for the vehicle routing problem (e.g. by area)
to reduce runtime.

It is interesting to observe in the box plots in Figures 2 and 3 that delivery charges or dis-
counts are usually fairly small, confirming the conjecture that customers’ time slot choices can be
influenced by such small (dis-)incentives. Moreover, it means that most of the time the restriction
to the range [-10,10] does not impact on the price optimization problem. Relaxing the allowable
range can improve results somewhat, but may be less realistic due to customer acceptance issues
as mentioned before.

7 Conclusions and Future Research

We propose a framework for the dynamic pricing of delivery time slots for home delivery services,
which adds to the existing literature in that we include customer choice behavior and dynamically
estimate delivery costs based on both the accepted orders to date as well as on the orders that we
still expect to come; hence we call this the “foresight approach”. Customer choice is modeled via
the multinomial logit model, and we show how this can be estimated from data that e-tailers have
readily available, demonstrating the estimation on real data from a British e-grocer. Furthermore,
in a simulation study we show that our approach can outperform static two-tier delivery pricing
policies similar to those often found in practice, generating on average a 3.8% increase in profits.
In an industry that operates on very small margins (e.g. Ocado reported operating margins of
0.55% in H1 2012 according to Mintel [2012]), this profit potential is remarkable. We also show
numerically that dynamic pricing without taking future expected demand into account can produce
even worse results than static pricing when delivery capacity is scarce. Given the small margins
that most home delivery services (particularly e-grocers) work with, we conclude that adoption of
such a foresight dynamic pricing policy is a crucial means for improving profitability.

As for future research directions, there are various additions that would be of interest: e.g.,
given that usually around 10% of orders are rescheduled, it would be useful to extend the model to
include a probability that an order is canceled or re-scheduled. Furthermore, our model currently
approximates the opportunity cost of accepting a customer order in a time slot only with regard to
delivery cost, but not with regard to lost profit due to reduced capacity for future orders. Also, if
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past final delivery schedules are not a good approximation of future schedules, the foresight policy
could instead be based on final schedule predictions derived from the demand model. Major firms
such as Amazon, Ebay or Walmart are moving towards same-day delivery services according to
recent media reports, see e.g. Wirthman [2013]. In the light of companies such as WebVan who
went bankrupt when trying to offer such a service, the question of how to address this added
complexity in the model would be highly relevant to industry. In principle, our foresight approach
could be adapted to allow for same-day deliveries by determining feasibility and insertion cost of
time slots based on orders accepted-to-date and future anticipated orders, but taking into account
the on-going delivery operations.

APPENDIX

Table 7: Price points in Example 4.1.
Time Slot Start Price 1 Price 2 Price 3

06:00 AM $3.50 $4.00 $5.00
06:30 AM $4.50 $5.00 $6.00
07:00 AM $4.50 $5.00 $6.00
07:30 AM $4.50 $5.00 $6.00
08:00 AM $4.50 $5.00 $6.00
08:30 AM $4.50 $5.00 $6.00
09:00 AM $4.50 $5.00 $6.00
09:30 AM $4.50 $5.00 $6.00
10:00 AM $4.50 $5.00 $6.00
10:30 AM $3.50 $4.00 $4.50
11:00 AM $3.50 $4.00 $4.50
11:30 AM $3.50 $4.00 $4.50
12:00 PM $4.00 $5.00 $6.50
12:30 PM $4.00 $5.00 $6.50
01:00 PM $4.00 $5.00 $6.50
01:30 PM $4.00 $5.00 $6.50
02:00 PM $4.00 $5.00 $6.50
02:30 PM $4.00 $5.00 $6.50
03:00 PM $4.00 $5.00 $6.50
03:30 PM $4.00 $5.00 $6.50
04:00 PM $3.50 $4.00 $5.00
04:30 PM $3.50 $4.00 $5.00
05:00 PM $2.50 $3.00 $4.00
05:30 PM $2.00 $3.00 $4.00
06:00 PM $2.00 $3.00 $4.00
06:30 PM $1.50 $2.00 $2.50
07:00 PM $1.50 $2.00 $2.50
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Table 8: Recovery of MNL parameters based on 20,000 simulations.
Original Modified Original Recovered proportional diff ASE t-stat

β1 -1.96 -1.86 -1.8700 1% 0.1286 -14.5412
β2 -1.60 -1.50 -1.3759 -8% 0.1153 -11.9332
β3 -1.52 -1.42 -1.3785 -3% 0.1146 -12.0288
β4 -1.10 -1.00 -0.9770 -2% 0.0994 -9.8290
β5 -0.98 -0.88 -0.7488 -15% 0.0917 -8.1658
β6 -0.52 -0.42 -0.4271 2% 0.0839 -5.0906
β7 -0.35 -0.25 -0.2929 17% 0.0804 -3.6430
β8 0.10 0.20 0.1891 -5% 0.0721 2.6227
β9 -0.25 -0.15 -0.0197 -87% 0.0756 -0.2606
β10 0.00 0.10 0.0747 -25% 0.0649 1.1510
β11 -0.50 -0.40 -0.3671 -8% 0.0728 -5.0426
β12 -1.10 -1.00 -1.0789 8% 0.0924 -11.6764
β13 -1.50 -1.40 -1.4505 4% 0.1170 -12.3974
β14 -0.90 -0.80 -0.6622 -17% 0.0889 -7.4488
β15 -1.00 -0.90 -0.9004 0% 0.0958 -9.3987
β16 -0.81 -0.71 -0.7653 8% 0.0921 -8.3094
β17 -0.85 -0.75 -0.6934 -8% 0.0895 -7.7475
β18 -0.70 -0.60 -0.5625 -6% 0.0870 -6.4655
β19 -0.95 -0.85 -0.6958 -18% 0.0900 -7.7311
β20 -0.30 -0.20 -0.1818 -9% 0.0782 -2.3248
β21 -0.53 -0.43 -0.4337 1% 0.0754 -5.7520
β22 -0.20 -0.10 -0.0790 -21% 0.0683 -1.1567
β23 -0.10 0.00 n/a n/a n/a n/a
β24 -0.20 -0.10 -0.2156 116% 0.0656 -3.2866
β25 -1.13 -1.03 -0.9584 -7% 0.0829 -11.5609
β26 -0.30 -0.20 -0.3369 68% 0.0683 -4.9327
β27 -1.30 -1.20 -1.2000 0% 0.0885 -13.5593
β0 -2.50 -2.60 -2.4181 -7% 0.0701 -34.4950
βd -0.10 -0.10 -0.1399 40% 0.0171 -8.1813
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Table 9: Recovery of MNL parameters based on 40,000 simulations.
Original Modified Original Recovered proportional diff ASE t-stat

β1 -1.96 -1.86 -0.0585 3% 0.0922 -20.8080
β2 -1.60 -1.50 0.0414 -3% 0.0819 -17.8095
β3 -1.52 -1.42 -0.0282 2% 0.0815 -17.7693
β4 -1.10 -1.00 -0.0789 8% 0.0715 -15.0895
β5 -0.98 -0.88 0.0108 -1% 0.0666 -13.0511
β6 -0.52 -0.42 -0.0983 23% 0.0600 -8.6383
β7 -0.35 -0.25 0.0099 -4% 0.0562 -4.2722
β8 0.10 0.20 -0.0810 -41% 0.0517 2.3017
β9 -0.25 -0.15 -0.0274 18% 0.0551 -3.2196
β10 0.00 0.10 -0.0530 -53% 0.0464 1.0129
β11 -0.50 -0.40 0.0610 -15% 0.0513 -6.6082
β12 -1.10 -1.00 0.0054 -1% 0.0635 -15.6630
β13 -1.50 -1.40 -0.0630 5% 0.0822 -17.7981
β14 -0.90 -0.80 -0.0363 5% 0.0657 -12.7291
β15 -1.00 -0.90 -0.0751 8% 0.0693 -14.0707
β16 -0.81 -0.71 -0.0633 9% 0.0646 -11.9706
β17 -0.85 -0.75 -0.0441 6% 0.0650 -12.2169
β18 -0.70 -0.60 -0.0192 3% 0.0614 -10.0847
β19 -0.95 -0.85 -0.0918 11% 0.0680 -13.8500
β20 -0.30 -0.20 0.0008 0% 0.0549 -3.6284
β21 -0.53 -0.43 -0.0365 8% 0.0538 -8.6710
β22 -0.20 -0.10 -0.0697 70% 0.0495 -3.4283
β23 -0.10 0.00 n/a n/a n/a n/a
β24 -0.20 -0.10 -0.0097 10% 0.0459 -2.3900
β25 -1.13 -1.03 -0.0876 9% 0.0631 -17.7116
β26 -0.30 -0.20 -0.0601 30% 0.0486 -5.3519
β27 -1.30 -1.20 -0.0292 2% 0.0649 -18.9399
β0 -2.50 -2.60 0.0055 0% 0.0497 -52.2032
βd -0.10 -0.10 0.0057 -6% 0.0121 -7.7934
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Table 10: Recovery of MNL parameters based on 80,000 simulations.
Original Modified Original Recovered proportional diff ASE t-stat

β1 -1.96 -1.86 -1.8282 -2% 0.0628 -29.1115
β2 -1.60 -1.50 -1.4992 0% 0.0589 -25.4533
β3 -1.52 -1.42 -1.4206 0% 0.0572 -24.8357
β4 -1.10 -1.00 -0.9594 -4% 0.0484 -19.8223
β5 -0.98 -0.88 -0.9570 9% 0.0486 -19.6914
β6 -0.52 -0.42 -0.4727 13% 0.0418 -11.3086
β7 -0.35 -0.25 -0.3058 22% 0.0402 -7.6070
β8 0.10 0.20 0.1436 -28% 0.0365 3.9342
β9 -0.25 -0.15 -0.2451 63% 0.0397 -6.1738
β10 0.00 0.10 0.0827 -17% 0.0325 2.5446
β11 -0.50 -0.40 -0.4248 6% 0.0372 -11.4194
β12 -1.10 -1.00 -1.0018 0% 0.0449 -22.3118
β13 -1.50 -1.40 -1.4574 4% 0.0579 -25.1710
β14 -0.90 -0.80 -0.9214 15% 0.0476 -19.3571
β15 -1.00 -0.90 -0.9406 5% 0.0478 -19.6778
β16 -0.81 -0.71 -0.7735 9% 0.0457 -16.9256
β17 -0.85 -0.75 -0.8149 9% 0.0460 -17.7152
β18 -0.70 -0.60 -0.6564 9% 0.0441 -14.8844
β19 -0.95 -0.85 -0.8908 5% 0.0474 -18.7932
β20 -0.30 -0.20 -0.2156 8% 0.0390 -5.5282
β21 -0.53 -0.43 -0.4452 4% 0.0378 -11.7778
β22 -0.20 -0.10 -0.1306 31% 0.0347 -3.7637
β23 -0.10 0.00 n/a n/a n/a n/a
β24 -0.20 -0.10 -0.0976 -2% 0.0325 -3.0031
β25 -1.13 -1.03 -1.0517 2% 0.0437 -24.0664
β26 -0.30 -0.20 -0.2266 13% 0.0342 -6.6257
β27 -1.30 -1.20 -1.2365 3% 0.0464 -26.6487
β0 -2.50 -2.60 -2.6069 0% 0.0353 -73.8499
βd -0.10 -0.10 -0.0913 -9% 0.0086 -10.6163
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Table 11: Recovery of MNL parameters based on 160,000 simulations.
Original Modified Original Recovered proportional diff ASE t-stat

β1 -1.96 -1.86 -1.9698 6% 0.0472 -41.7331
β2 -1.60 -1.50 -1.5788 5% 0.0430 -36.7163
β3 -1.52 -1.42 -1.4794 4% 0.0413 -35.8208
β4 -1.10 -1.00 -1.0672 7% 0.0356 -29.9775
β5 -0.98 -0.88 -0.8955 2% 0.0336 -26.6518
β6 -0.52 -0.42 -0.4508 7% 0.0295 -15.2814
β7 -0.35 -0.25 -0.3060 22% 0.0284 -10.7746
β8 0.10 0.20 0.1730 -14% 0.0255 6.7843
β9 -0.25 -0.15 -0.1863 24% 0.0275 -6.7745
β10 0.00 0.10 0.0713 -29% 0.0230 3.1000
β11 -0.50 -0.40 -0.4383 10% 0.0263 -16.6654
β12 -1.10 -1.00 -0.9851 -1% 0.0315 -31.2730
β13 -1.50 -1.40 -1.4133 1% 0.0402 -35.1567
β14 -0.90 -0.80 -0.8002 0% 0.0324 -24.6975
β15 -1.00 -0.90 -0.9430 5% 0.0339 -27.8171
β16 -0.81 -0.71 -0.7429 5% 0.0318 -23.3616
β17 -0.85 -0.75 -0.7533 0% 0.0319 -23.6144
β18 -0.70 -0.60 -0.5968 -1% 0.0304 -19.6316
β19 -0.95 -0.85 -0.8753 3% 0.0331 -26.4441
β20 -0.30 -0.20 -0.2434 22% 0.0277 -8.7870
β21 -0.53 -0.43 -0.4588 7% 0.0268 -17.1194
β22 -0.20 -0.10 -0.1440 44% 0.0245 -5.8776
β23 -0.10 0.00 n/a n/a n/a n/a
β24 -0.20 -0.10 -0.1186 19% 0.0230 -5.1565
β25 -1.13 -1.03 -1.0582 3% 0.0308 -34.3571
β26 -0.30 -0.20 -0.2440 22% 0.0241 -10.1245
β27 -1.30 -1.20 -1.1945 0% 0.0320 -37.3281
β0 -2.50 -2.60 -2.5728 -1% 0.0249 -103.3253
βd -0.10 -0.10 -0.0979 -2% 0.0060 -16.3167
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