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Abstract

We propose a nonlinear �lter to estimate the time-varying instantaneous default

risk from the term structure of credit default swap (CDS) spreads. Based on the

numerical solution of the Fokker-Planck equation (FPE) using a meshfree inter-

polation method, the �lter performs a joint estimation of default intensities and

CIR model parameters. As the FPE can account for nonlinear functions and non-

Gaussian errors, the proposed framework provides more �exibility and accuracy.

We test the nonlinear �lter on simulated CDS spreads and apply it to daily CDS

spreads of the Dow Jones Industrial Average component companies from 2005 to

2010 with supportive results.
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1. Introduction

Accurately estimating the default risk of a certain �rm is of major importance for many

�nancial institutions and portfolio managers. In the recent �nance literature, di�erent

approaches in pricing credit default swap (CDS) contracts have been proposed (see, for

example, Houweling and Vorst (2005), Chen et al. (2008a), Chen et al. (2008b), Cao et al.

(2010), and Ericsson et al. (2009)). However, these studies mainly focus on obtaining

an accurate spread for the CDS contracts. In this paper, we are instead interested in

evaluating the default probability and its time-varying dynamics from observed CDS

spreads. We do so by developing a nonlinear �lter that is able to jointly estimates the

instantaneous default risk and the model parameters, including the volatility of default

intensity, from the term structure of CDS spreads.

Credit default swap contracts are a popular credit derivative heavily traded in the

�nancial market. They have gained considerable attention in the �nance industry in

recent years as they are able to hedge credit risk exposure and can be used to speculate.

According to survey data from the Bank for International Settlements (BIS)1, the total

notional amount of the credit default swap market was $32 trillion in June 2011 while it

was $6 trillion in 2004.

The rapid market growth is parallelled by the close scrutiny of these products in the

literature to better understand and evaluate them as they provide crucial information on

the dynamics of default probability not revealed by other �nancial instruments or market

indicators. A detailed analysis of the credit risk implicit in CDS spreads becomes essential

not only in their own pricing but also in the evaluation of more complex derivatives with

a similar credit risk pro�le (Brigo and Mercurio (2006), and Liu et al. (2007)).

1Please see http://www.bis.org/statistics/derstats.htm for details.
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There are two main approaches in the modeling of credit risk and the calibration of

CDS spreads, namely structural models and reduced-form models. First, the structural

models focus on the dynamics of �rm's structural variables to determine the time of

default (see, for example, Merton (1974), Pierides (1997), Giesecke (2006), Huang and

Yu (2010), and Camâra et al. (2012)).

Secondly, the reduced-form models, which enjoy more empirical success, are a popular

alternative in the literature. For example, Ueno and Baba (2006), Chen et al. (2008a),

and Chen et al. (2008b) study corporate CDS contracts; Wang et al. (2009) use a cop-

ula approach for pricing credit default index swaps; while Zhang (2003), Carr and Wu

(2007), Realdon (2007), and Pan and Singleton (2008) examine sovereign CDS securi-

ties. Chen et al. (2008a) provide an explicit solution for the valuation of CDS spreads

when the interest rate and default intensity are correlated. Adopting the risk-neutral

pricing framework, Pan and Singleton (2008) investigate the default risk and risk pre-

mium embedded in the term structure of sovereign CDS of Mexico, Turkey, and Korea.

They suggest that the single-factor model in which the risk-neutral default risk follows a

lognormal distribution is able to capture most of the variation in the CDS spreads and

report economically signi�cant risk premium.

In this paper, we adopt the reduced-form model approach due to its advantages in

credit risk modeling compared with other methods (Houweling and Vorst (2005) and

Lö�er and Maurer (2011)). A common feature of this class of models is that default is

assumed to be an exogenous random event that can occur at any time. Moreover, these

methods are able to de�ne a functional mapping from the default intensity and model

parameters to the CDS spreads by using a pricing formula. However, neither the default

intensity nor the parameter vector are observable in the market but need to be inferred.
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Our paper addresses this issue as a �ltering problem where the state of a stochastic

dynamic system needs to be estimated from a sequence of noisy observations, which in

essence are functions of latent state variables. Our model is hence related to Denault

et al. (2009) and Carr and Wu (2010), who propose Kalman �lters to estimate the model

parameters and the default intensity. The Kalman �lter is a conventional method often

adopted for the estimation of state vectors in the presence of linear Gaussian systems.

However, for most real-world applications, either the systems are nonlinear, or errors are

non-Gaussian, or both.

In order to deal with these complications, researchers usually extend the Kalman

�lter using linear approximations or transformations of the initial problem (Raol et al.

(2004), Daum (2005), and Grewal and Andrews (2008)). The extended Kalman �lter is a

suboptimal state estimator in nonlinear dynamic systems. It is based on the linearization

of the state and/or measurement equations of the state-space model (Bar-Shalom et al.

(2001)). The unscented Kalman �lter arises as an alternative to the extended Kalman

�lter and uses a deterministic sampling approach. Under this scheme, the method employs

a set of carefully chosen points to capture the mean and covariance of the Gaussian

random variables (Wan and van Der Merwe (2001)) and in essence assumes that errors

are Gaussian.

A more general and �exible approach in dealing with nonlinear or non-Gaussian �l-

tering problem is based on the solution of the Fokker-Plank equation (FPE). This is a

partial di�erential equation (PDE) that controls the dynamics of the conditional prob-

ability density function (PDF) of the state vector. This PDE has proven useful in the

modeling of nonlinear and non-Gaussian problems as it does not assume perfect knowl-

edge of the probability density (Challa and Bar-Shalom (2000), Kastella (2000), Daum
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(2005), and Daum and Krichman (2006)). However, the FPE has closed-form solution

only in very few cases and generally under restrictive assumptions. Hence, it needs to be

approximated numerically. In this paper, we solve this approximation problem using the

meshfree radial basis function (RBF) interpolation.

To the best of our knowledge, this is the �rst study that employs a nonlinear �l-

tering method based on the FPE to evaluate the instantaneous default risk from credit

derivatives. As the FPE is able to deal with models involving nonlinear functions and

non-Guassian errors, it provides more �exibility in modeling and a higher level of accu-

racy in estimation when compared to the standard extended or unscented Kalman �lter

adopted in previous studies (eg. Denault, et al. (2009) and Carr and Wu (2010)). Hence,

our paper contributes to the literature by developing a sophisticated nonlinear �lter that

is able to simultaneously infer the default risk and associated model parameters from the

term structure of CDS spreads. This is especially useful and practical in the real world

when variables need to be tracked in real time or a quick estimate of state variables is

required (Kitagawa and Sato (2001), Liu and West (2001) and Wan and Nelson (2001)).

Our study is related to Driessen (2005) and Bakshi et al. (2006) who are also interested

in estimating default risk but they use corporate bond data. Driessen (2005) adopts a

maximum likelihood method with Kalman �lter to infer risk premium associated with

default jump risk from US corporate bond prices. Meanwhile, Bakshi et al. (2006)

di�erentiate the roles of recovery rates and default probabilities in determining defaultable

bond prices. Di�erent from their methodology and data, we propose a nonlinear �lter to

perform a joint estimation of the latent default intensity and CIR parameters from CDS

spreads. Our nonlinear �lter is based on the recursive solution of the FPE by the RBF

interpolation and updated via the Bayes' formula with each new observation.
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We �rst evaluate the performance of the nonlinear �lter in a numerical experiment. We

assume realistic parameter values for the CIR (Cox et al. (1985)) model to generate CDS

spreads. Next, we implement the nonlinear �lter to recover default risk and parameter

values from simulated spreads. Our numerical results show that the �lter is able to infer

the dynamics of the state vector and provides estimates for the default intensity and

the model parameters with considerable levels of accuracy and reliability. This is very

impressive given the range of values we assume for the parameters, including volatility

between 8% and 20%.

In the subsequent empirical analysis, we use daily CDS spreads of the component

companies of the Dow Jones Industrial Average (DJIA) from January 2005 to June 2010.

Our sample precedes the onset of the banking crisis and covers the most turbulent episode

of the US economy as a result of the crisis. The �rms in our sample span di�erent

industries, some of which are more severely a�ected by the credit crunch than others.

Hence the length and breadth of our sample data allow us to investigate both time series

and cross sectional dynamics of corporate default risk before and during the �nancial

crisis.

We �nd that the default intensities of individual �rms were relatively stable and low

before the mid-2007. Since then the instantaneous default risk kept increasing until the

�rst quarter of 2009 and subsequently decreased but without dropping to the low level

prior to the credit crunch. We also show that although the recent �nancial crisis a�ects

all companies in our sample, there are important di�erences in the level of default risk

experienced by �rms in di�erent sectors. In particular, the crisis has a more severe im-

pact on the �nance sector and the economy-sensitive sector of industrial goods, including

American Express, the Bank of America, and the General Electric. In contrast, com-
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panies in the sectors of consumer goods and health care experience much lower default

intensities during the crisis period. Regarding the estimated model parameters, we ob-

serve structural changes after mid-2007 when there is a noticeable increase in the speed

of mean reversion along with a rise in the volatility for default intensity. The estimated

pricing errors as measured by root mean square error are low for the whole sample, but

higher for companies with the highest default intensities.

The rest of the paper is organized as follows. In Section 2, we de�ne the CDS spread

and discuss technical aspects to compute the survival probability. Section 3 outlines the

state-space model to estimate both the default intensity and the CIR parameters implicit

in the CDS spreads. Section 4 introduces the nonlinear �lter and its approximation

by the RBF interpolation method. In Section 5, we �rst assess the performance of the

nonlinear �lter on simulated CDS spreads. This is followed by an empirical investigation

and discussion using market CDS data. Finally, Section 6 concludes.

2. Credit Default Swap

In this section, we �rst review the de�nition of the CDS contract, its payo� and the

formula to compute its fair spread (Section 2.1). We assume that both the short interest

rate and the default intensity follow the one-factor CIR process (Section 2.2). This model,

besides being a common choice in the literature, has an analytical solution. This feature is

very convenient for our study because we are focused on the numerical solution of the FPE

and the nonlinear �lter rather than on the pricing method. Nonetheless, the �lter can

equally be applied to models with no closed-form solution (e.g. the exponential Vasicek

model in Brigo and Mercurio (2006)). Finally, the expressions to compute zero-coupon

bond prices and survival probabilities are presented (Section 2.3).
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2.1 De�nition and Payo�

A CDS is a contract between two entities, namely the protection buyer and the protection

seller. Under this agreement, the CDS seller ensures protection to the buyer against a

credit default event of a reference obligation issued by a third company.

We consider the CDS contract in the time [0, Tb], CDS0,b and its expected payo�,

ΠCDS0,b
. From protection seller's viewpoint, ΠCDS0,b

is computed as the di�erence between

the expected premium leg and the expected protection leg. The premium leg is the

sum of two discounted factors. The �rst factor is the regular payments made by the

protection buyer at times T1, . . . , Tb until either the obligation reaches maturity at Tb

without defaulting or it defaults at time τ ∈ (0, Tb). These �xed payments are denoted

as the rate R (i.e. spreads) on the notional value of the contract. The second factor

is the accrued amount between the last payment date Tβ(τ)−1 and the default time τ .

Meanwhile, the protection leg consists of the contingent payment that a CDS seller makes

to the buyer if the credit obligation defaults at time τ ∈ (0, Tb], otherwise this cash �ow

is 0.

Assume a stochastic interest rate r. The default time τ is modeled as the �rst jump

of a Cox process with stochastic default intensity λ. Following Brigo and Alfonsi (2005),

who show that the correlation between the interest rate and the default intensity has a

negligible impact on CDS spreads, we assume that r and τ are independent.

Under these assumptions, Brigo and Mercurio (2006) show that the fair spread R can

be written as

R =
−LGD

[´ Tb
0

P (0, t) dtQ (τ ≥ t)
]

−
´ Tb
0

P (0, t)
(
t− Tβ(t)−1

)
dtQ (τ ≥ t) +

∑b
i=1 P (0, Ti)αiQ (τ ≥ Ti)

(1)
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with

P (0, ·) = E
(
exp−

´ ·
0 rsds

)
(2)

Q (τ ≥ ·) = E
[
exp−

´ ·
0 λsds

]
, (3)

where P (0, ·) is the zero-coupon bond price at time 0 for maturity (·), Q (τ ≥ ·) is the

probability at time 0 of surviving to a future time (·), LGD is the loss given default on the

underlying credit obligation, and αi is the annualized time between Ti−1 and Ti. Hence,

we need to model the stochastic processes for the short interest rate and the default

intensity.

2.2 The CIR Model

We assume that the short interest rate rs follows the one-factor CIR model (see Cox et al.

(1985)). Following Brigo and Mercurio (2006), for a suitable choice of the market price

of risk, the factor rs under the risk-neutral measure Q follows the process

drs = κr (θr−rs) ds+ σr
√
rsdW

r
s . (4)

We also consider the same CIR process to model the default intensity λs. Under the

same assumptions considered for rs, the dynamics for λs under the risk-neutral measure

Q is de�ned by

dλs = κλ
(
θλ−λs

)
ds+ σλ

√
λsdW

λ
s . (5)

The parameters κ(·), θ(·) and σ(·) denote the speed of reversion, the long term mean

level and the instantaneous volatility of the variable (·) under the CIR process. The

variable W
(·)
s is a Wiener process for the variable (·).
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2.3 Zero-coupon Bond Prices and the Survival Probability

Based on the CIR process described by equation (4), the zero-coupon bond price

P (r; 0, t) = E
[
exp−

´ t
0 rsds

]
(6)

is computed using the closed-form solution given by Brigo and Mercurio (2006, equations

(3.24) and (3.25) on p. 66). The same analytical solution is performed to compute the

survival probability

Q (λ; τ ≥ t) = E
[
exp−

´ t
0 λsds

]
, (7)

given the CIR process in equation (5).

3. State Vector and Parameter Estimation

This section discusses the joint estimation of the state and parameter vectors of a dynamic

system using noisy observations. The problem is represented by a self-organizing model

and its solution is given by the Bayesian approach (Section 3.1). This framework is used

to describe the estimation procedure of both the short interest rate and the instantaneous

default intensity (Section 3.2), along with their associated CIR parameter vectors from

market data of interest rates and CDS spreads (Section 3.3).

3.1 The Self-organizing Model and the Bayesian Approach

Consider the �ltering problem of recursively estimating the augmented state vector xs

from noisy observations of the vector zs, which are processed sequentially as they become

available (see Kastella (2000) and Daum (2005)). The term s is the time index.
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Following Challa and Bar-Shalom (2000), the self-organizing model of this dynamic

system is given by

dxs = m (xs) ds+G (xs) dWs (8)

zs = h (xs, ϵs) . (9)

Equation (8) is an Ito process that describes the evolution of xs over time. The state xs

and the drift m are n1-dimensional column vectors, G is an n1×n2 di�usion matrix, and

Ws is a n2-dimensional Wiener process vector with covariance Q (s). Both m and G can

be nonlinear.

Equation (9) is the measurement model. The function h relates the n3-dimensional

vector of noisy observations zs to the augmented state vector xs and the white noise

vector ϵs. The function h can be nonlinear.

The vector xs stacks the unobservable target state ys and the unknown parameter

vector ψs as

xs =

 ys

ψs


such that ψs is automatically determined in the estimation of the state vector (see Kita-

gawa and Sato (2001)). Hence, equation (8) can be rewritten as

dys = f (ys)ds+GydWy
s (10)

dψs = GψdWψ
s , (11)

where ys evolves according to the Ito equation (10) with drift function f and di�usion

matrixGy. The parameters vector ψ is built as a vector of time-varying random variables
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by adding small random perturbations (see Liu and West (2001)). Hence, equation (11)

describes the vector ψs by a simple stochastic process with no drift and di�usion matrix

Gψ. The variables Wy
s and Wψ

s denote Wiener processes.

Following Ristic et al. (2004), from a Bayesian perspective the optimal estimate of

the state xs can be obtained from p (xs | Zs), the posterior probability density function

(PDF) of xs given the observations up to time s, Zs = [z1, . . . , zs]. Given an initial state

x0 with PDF p (x0), the posterior PDF can be recursively computed by a �lter in two

stages, namely prediction and update. The �rst stage gives the prior density of the state

p (xs | Zs−1) using the probabilistic model of the dynamic system in equation (8) (see also

Bar-Shalom et al. (2001) and Balaji (2009)). At the update stage, the prior density is

adjusted with the new observation zs in order to obtain the posterior PDF p (xs | Zs) of

the state xs by the Bayes' rule

p (xs | Zs) =
p (zs | xs) p (xs | Zs−1)

p (zs | Zs−1)
, (12)

where p (zs | xs) is the likelihood function de�ned by both equation (9) and the statistics

of ϵs, and

p (zs | Zs−1) =

ˆ
p (zs | xs) p (xs | Zs−1) dxs

is a normalizing factor. Ristic et al. (2004) suggest that the optimal state xs be estimated

using either the minimum mean-square error (MMSE) estimator

x̂s|s = E {xs | Zs} =

ˆ
xs · p (xs | Zs) dxs (13)
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or the maximum a posteriori (MAP) estimator

x̂s|s = argmax
xs

p (xs | Zs) . (14)

3.2 Joint Interest Rate and CIR Parameter Estimation

We consider a �lter that undertakes the recursive estimation of a joint vector formed by

the hidden short interest rate rs and the CIR model parameters at time s using noisy

observations of the zero-coupon bond prices. The self-organizing model of this problem

is given by



drs

dκrs

dθrs

dσrs


=



κrs−1

(
θrs−1−rs

)
ds+ σrs−1

√
rsdW

r
s

ϑrκdW
r
κ,s

ϑrθdW
r
θ,s

ϑrσdW
r
σ,s


Ps = hr (rs,ψ

r
s) + ϵ

r
s,

which can be written in a more compact form as follows,

 drs

dψr
s

 =

 f r
(
rs,ψ

r
s−1,W

r
s

)
ϑrdWr

s

 (15)

Ps = hr (rs,ψ
r
s) + ϵ

r
s. (16)

Equation (15) is the system model of this problem. This equation describes the dynamics

of both the time-dependent target state rs and the unknown CIR parameter vector ψr
s =

[κrs, θ
r
s, σ

r
s ]. The function f r denotes the CIR stochastic process given in equation (4).

13



The dynamics of the vector ψr
s is modeled by a stochastic process with di�usion matrix

ϑr. The term Wr
s denotes a Wiener process vector.

Equation (16) is the measurement model. The term Ps denotes a vector with zero-

coupon bond prices for a set of maturities. The function hr is given by the closed-form

solution of equation (6). This solution de�nes zero-coupon bond prices in function of rs

and ψr
s. The error ϵ

r
s is a white noise with variance Σr.

3.3 Joint Default Intensity and CIR Parameter Estimation

We consider a �ltering model to estimate recursively a joint vector formed by the hidden

default intensity λs and the unknown CIR process parameters using CDS spreads observed

in the market. The augmented self-organizing model of this problem is de�ned by



dλs

dκλs

dθλs

dσλs


=



κλs−1

(
θλs−1−λs

)
ds+ σλs−1

√
λsdWλ,s

ϑλκdW
λ
κ,s

ϑλθdW
λ
θ,s

ϑλσdW
λ
σ,s


Rs = hλ

(
λs,ψ

λ
s

)
+ ϵλs .

This model representation is summarized as

 dλs

dψλ
s

 =

 fλ
(
λs,ψ

λ
s−1,W

λ
s

)
ϑλdWλ

s

 (17)

Rs = hλ
(
λs,ψ

λ
s

)
+ ϵλs , (18)
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where the default intensity λs and the vector ψλ
s =

[
κλs , θ

λ
s , σ

λ
s

]
are concatenated in order

to form the system model in equation (17). The vector-valued function fλ is given by the

CIR process de�ned in equation (5). The evolution of vector ψλ
s is described by an Ito

process with no drift and a di�usion matrix ϑλ. The vector Wλ
s is a Wiener process.

Equation (18) is the measurement equation of this problem. The term Rs denotes a

vector at time s with CDS spreads for di�erent maturities. The function hλ corresponds

to the CDS pricing formula given in equation (1). This equation depends on the values of

the zero-coupon bond prices and the survival probabilities. The modeling of the interest

rate rs and zero-coupon bond prices is discussed in the previous subsection. Hence, these

elements are assumed as given in the current �ltering framework. The term ϵλs represents

a white noise error vector with variance Σλ.

4. Nonlinear Filtering

The estimation of the joint default intensity and CIR model parameters implicit in the

term structure of the CDS spreads is performed using a numerical nonlinear �lter. This

�lter is based on the recursive solution of the Fokker-Planck equation (FPE) and the

Bayes' formula. We �rst brie�y introduce the nonlinear �lter and provide a de�nition

of the FPE (Section 4.1). We motivate the use of meshfree methods and in particular

describe the radial basis function interpolation method (Section 4.2). Finally, we apply

the method to approximate the solution of the FPE (Section 4.3).

4.1 The Numerical Filter

As discussed above, the optimal �ltering estimator is obtained from the posterior PDF

p (xs | Zs). The estimator is recursively calculated by solving two related problems. The
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�rst one computes the conditional density p (xs | Zs−1) from an initial PDF p (xs−1 | Zs−1),

while the second one updates p (xs | Zs−1) by the Bayes' formula to obtain the posterior

PDF p (xs | Zs).

Given an Ito stochastic equation to describe the dynamics of the target state xs,

the PDF p (xs | Zs−1) can be computed as the solution of the FPE. This is a PDE that

governs the time evolution of the conditional PDF of the state vector (Kushner and

Dupuis (2001) and Balaji (2009)). Moreover, it is useful for modeling nonlinear functions

and non-Gaussian errors (Daum (2005) and Daum and Krichman (2006)). Hence, the

solution of the FPE and Bayes' formula provide a recursive method to obtain optimal

estimates for the nonlinear �ltering problem (Challa and Bar-Shalom (2000)).

De�nition 1. The Fokker-Planck Equation (Challa and Bar-Shalom (2000)). As-

sume that the dynamics of the target state xs is given by the stochastic di�erential

equation (SDE)

dxs = m (xs) ds+G (xs) dWs

as de�ned in equation (8). Under the assumption that the prior density for the system

above exists and is once continuously di�erentiable with respect to s and twice contin-

uously di�erentiable with respect to x, the evolution of the PDF of the state process

p̃ = p (xs | Zs−1) satis�es the FPE

∂p̃

∂s
= −

n1∑
i=1

∂

∂xi
[mip̃] +

1

2

n1∑
i=1

n1∑
j=1

∂2

∂xi∂xj

[
(GQG′)i,j p̃

]
(19)

with initial condition given by p (xs−1 | Zs−1).

In general, the FPE has to be approximated numerically due to the di�culty in ob-

taining an analytical solution. Grid-based standard methods have been employed for
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solving this PDE. For example, Kastella (2000) and Challa and Bar-Shalom (2000) ap-

proximate the FPE with �nite di�erence methods. Their results are used along with

Bayes' formula to deal with optimal nonlinear �ltering in real applications.

Nevertheless, the approximation of the FPE by standard �xed grid-based methods

faces several di�culties. For instance, Daum (2005) and Daum and Krichman (2006)

highlight that the computational complexity of these techniques grows exponentially with

the dimension of the state vector, that their applications become very time-consuming

in multi-dimensional problems, and that the grid does not change as the spatial domain

evolves over time. Therefore, they suggest the meshfree methods as a novel alternative

to mesh-based techniques for solving the FPE.

4.2 The Meshfree Methods and the Radial Basis Function Interpolation

The meshfree methods arise as novel numerical approximation techniques that overcome

some weaknesses faced by the mesh-based methods such as the �nite di�erence method

(Du�y (2006)). These meshfree techniques have been used in applications of engineer-

ing that require an accurate, e�cient and robust solution of problems associated with

PDEs and the scattered data modeling (Fasshauer (2006, 2007)). Nonetheless, there are

few studies that consider their application in �nance (Mei and Cheng (2008) and Kelly

(2009)).

Unlike the mesh-based approaches, the meshfree methods do not require the use of

an underlying grid with connectivity among its knots. Instead, they are based on a set

of independent nodes, which are scattered on the domain of the problem (Liu (2003)

and Li and Liu (2004)). The meshfree methods are adaptive and versatile approximation

techniques for the study of problems with complex geometries and irregular discretization
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(Fasshauer (2007)). As there is no mesh, these methods are relatively easy to implement

in multi-dimensional problems (Du�y (2006)).

One of the most popular meshfree methods is the radial basis function (RBF) inter-

polation, a powerful tool in scattered multivariate data modeling. They are widely used

in engineering in providing numerical solutions to PDEs (see Liu (2003) and Fasshauer

(2007)). In �nance, the applications are concentrated in the solution of time-dependent

PDEs for pricing options (Fasshauer et al. (2004), Pettersson et al. (2008) and Mei and

Cheng (2008)) and credit derivatives (Guarin et al. (2011)).

The RBF interpolation deals with univariate basis functions and use a speci�c norm

(commonly the Euclidean norm) to reduce a multi-dimensional problem into a one-

dimensional one (Fasshauer (2006, 2007)). Hence, the approach deals with high-dimensional

data with relative ease and its numerical results o�er an e�cient, highly accurate and ver-

satile spatial approximation to the true solution (Du�y (2006)). In addition, the technique

works easily with correlation terms without requiring special development (Fasshauer

et al. (2004)). This feature is of crucial importance in the growing market of multi-asset

derivative products.

Fasshauer (2006, 2007) explain that the RBF interpolation method approximates the

value of a function as the weighted sum of RBFs. These functions are evaluated on a

set of points called centers, which are quasi-randomly scattered over the domain of the

problem. The weights are found by matching the approximated and observed values of

the function. Once the interpolation weights are computed, they are used to estimate the

value of the function at any point over the entire domain.

Following Fasshauer (2007), we consider the set of centers Z = [z1, . . . , zK ]
′ with zk ∈
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Rd, d ≥ 1 and the data values gk ∈ R. We assume that

gk = f (zk, t) , k = 1, . . . , K,

where f is an unknown function and t is the time. We also de�ne f (Z, t) as a linear

combination of K certain basic functions

f (Z, t) ≃
K∑
k=1

δk (t)φ (∥ Z− zk ∥) , k = 1, . . . , K, (20)

where the coe�cients δk (t) are the unknown weights, φ (·) is the chosen RBF, and ∥ · ∥

is the Euclidean norm. Fasshauer (2007) shows that equation (20) is basically a system

of linear equations



f (z1, t)

f (z2, t)

...

f (zK , t)


≃



φ (∥ z1 − z1 ∥) φ (∥ z1 − z2 ∥) . . . φ (∥ z1 − zK ∥)

φ (∥ z2 − z1 ∥) φ (∥ z2 − z2 ∥) . . . φ (∥ z2 − zK ∥)

...
...

. . .
...

φ (∥ zK − z1 ∥) φ (∥ zK − z2 ∥) . . . φ (∥ zK − zK ∥)





δ1 (t)

δ2 (t)

...

δK (t)


which must be solved to obtain the interpolation coe�cients δk (t). Once these weights are

found, the value of the function f can be estimated at any set of points Z̃ = [z̃1, . . . , z̃L]
′

with z̃l ∈ Rd for l = 1, . . . , L and time t as

f
(
Z̃, t
)
≃

K∑
k=1

δk (t)φ
(
∥ Z̃− zk ∥

)
.

Table 1 lists four basic functions of RBFs often used in the literature. They are the

Gaussian RBF, the MQ RBF, the cubic RBF, and the TPS RBF (Koc et al. (2003)).
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4.3 Approximating the FPE-CIR Equation by the RBF Interpolation

In the following, we illustrate the application of the RBF interpolation to solve the FPE

(19) of the system de�ned in equation (17). This model involves the dynamics of the

default intensity λs and the CIR parameter vector ψλ
s .

Given the one-factor CIR process in equation (5) for the variable λs, the FPE is

written as

∂p̃

∂s
= −

∂
(
κλ
(
θ
λ − λ

)
p̃
)

∂λ
+

1

2

∂2
((

σλ
)2

λp̃
)

∂λ2
+

1

2

∂2
((

ϑλ
κ

)2
p̃
)

∂κ2
+

1

2

∂2
((

ϑλ
θ

)2
p̃
)

∂θ2
+

1

2

∂2
((

ϑλ
σ

)2
p̃
)

∂σ2

(21)

with initial condition given by p
(
λ̂s−1 | R̂s−1

)
.

The variable p̃ = p
(
λ̂s | R̂s−1

)
is the PDF of the state process, λ̂s =

 λs

ψλ
s

 is

the vector that stacks λs and ψ
λ
s , and R̂s−1 = [R1, . . . ,Rs−1] is the set of CDS spreads

observed in the market up to time s−1. The term (·) denotes the variable (·) at the time

s− 1, and therefore at time s that variable is a known constant.

After solving the derivatives in the PDE (21), we use the Crank-Nicolson averaging

to approximate it in time such that

p̃s − p̃s+1

∆s
+
(
κλ
(
θ
λ − λ

)
−
(
σλ
)2) ∂p̃s+ 1

2

∂λ
−
(
σλ
)2

λ

2

∂2p̃s+ 1
2

∂λ2
− κλp̃s+ 1

2

− 1

2

((
ϑλκ
)2 ∂2p̃s+ 1

2

∂κ2
+
(
ϑλθ
)2 ∂2p̃s+ 1

2

∂θ2
+
(
ϑλσ
)2 ∂2p̃s+ 1

2

∂σ2

)
= 0,

where p̃s+ 1
2
= 1

2
(p̃s + p̃s+1). With this discretization and separating the elements in s

and s+ 1 on both sides of the equation, we obtain

Hλ
+p̃s+1 = Hλ

−p̃s, (22)
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where

Hλ
+ =

[
1− ∆s

2
H̃λ

]
Hλ

− =

[
1 +

∆s

2
H̃λ

]
(23)

and

H̃λ =
(
κλ
(
θ
λ − λ

)
−
(
σλ
)2) ∂

∂λ
−
(
σλ
)2

λ

2

∂2

∂λ2
− κλ − 1

2

((
ϑλ
κ

)2 ∂2

∂κ2
+
(
ϑλ
θ

)2 ∂2

∂θ2
+
(
ϑλ
σ

)2 ∂2

∂σ2

)
.

Finally, we replace the variable p̃ in the last expression by the linear combination of

RBFs to approximate in space. We obtain

K∑
k=1

δλk (s+ 1)Hλ
+φ
(
λ̂, λ̂k

)
=

K∑
k=1

δλk (s)H
λ
−φ
(
λ̂, λ̂k

)
, (24)

where the coe�cients δλk (s) for k = 1, . . . , K at time s are the weights, and φ
(
λ̂, λ̂k

)
is

the chosen RBF. To obtain the solution δλk (s+ 1), we have to iteratively solve the system

of linear equations given the values δλk (s) from the previous step.

A similar solution is applied to estimate the vector r̂s =

 rs

ψr
s

 that stacks the short

interest rate rs and parameters ψr
s. The variable rs follows the CIR process in equation

(4). The approximation of the FPE (19) of the system (15) by the RBF interpolation

method is written as

K∑
k=1

δrk (s+ 1)Hr
+φ (r̂, r̂k) =

K∑
k=1

δrk (s)H
r
−φ (r̂, r̂k) , (25)
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where

Hr
+ =

[
1− ∆s

2
H̃r

]
Hr

− =

[
1 +

∆s

2
H̃r

]
(26)

and

H̃r =
(
κr
(
θ
r − r

)
− (σr)

2
) ∂

∂r
− (σr)

2
r

2

∂2

∂r2
− κr − 1

2

(
(ϑr

κ)
2 ∂2

∂κ2
+ (ϑr

θ)
2 ∂2

∂θ2
+ (ϑr

σ)
2 ∂2

∂σ2

)
.

5. Numerical Experiment and Empirical Analysis

In this section, we �rst evaluate the performance of the nonlinear �lter to recover the

default intensity λs and the CIR model parameters ψλ
s =

[
κλs , θ

λ
s , σ

λ
s

]
from simulated CDS

spreads (Section 5.1). The interest rate is assumed to be constant. We then introduce

the empirical data in Section 5.2. The proposed �lter is then performed on market data

of zero-coupon bond prices and CDS spreads to estimate both rs, λs and the associated

CIR model parameters ψr
s and ψ

λ
s , respectively (Section 5.3).

We employ the TPS-RBF stated in equation (31). This particular RBF is chosen

for two reasons. First, it does not require the calibration of additional parameters as

some RBFs do (e.g. the Gaussian- and MQ-RBF de�ned in equations (28) and (29),

respectively). Second, a previous study in option pricing by Koc et al. (2003) shows

the outstanding performance of the TPS-RBF compared with the Cubic-, Gaussian- and

MQ-RBF.

The accuracy of the RBF method is assessed by the conventional measure, the root

mean square error (RMSE) (see, for example, Fasshauer et al. (2004) and Fasshauer
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(2007)). The RMSE is computed as

RMSE =

√√√√ 1

H

H∑
h=1

(
Ôh −Oh

)2
, (27)

where H is the total number of observations.

5.1 The Numerical Experiment

We simulate a time series of 200 observations for the default intensity λs assuming that

it follows the one-factor CIR process described by equation (5). Table 2 presents four

sets of CIR model parameters employed in the simulation. Each set is used to simulate

50 observations. We consider that the initial default intensity is λ0 = 0.5%. This value

has been reported for companies with historical credit rating of A (Chaplin (2005)). We

also allow the volatility of default risk to reach 20% per annum, a very high level for the

parameter.

Given the simulated values for the default intensity, we employ equation (1) to com-

pute the vector of simulated CDS spreads. The simulation yields a 200 × 5 matrix Rs

with CDS spreads for time s = 1, . . . , 200 and maturities of 1, 3, 5, 7 and 10 years. A

noise ϵλs is added to Rs. The process ϵ
λ
s is drawn from a Normal distribution N

(
0,Σλ

)
,

where the variance matrix Σλ = 0.1I and I is an identity matrix of dimension d = 5,

the number of maturities. For simplicity, we consider a constant interest rate r = 3%.

We make conventional assumptions that the payments are quarterly, α = 0.25, and the

loss given default LGD = 60% (Houweling and Vorst (2005) suggest that the model is

comparatively less sensitive to the assumed recovery rate). As λs follows the CIR process,

the survival probability Q (y; τ ≥ t) is computed using the closed-form solution given by

Brigo and Mercurio (2006, equations (3.24) and (3.25) on page 66).
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Once the CDS spreads Rs have been simulated we assume that the vector Rs is

the only available data we have. Our aim then is to recover the values of the default

intensity λs and the CIR model parameters ψλ
s =

[
κλs , θ

λ
s , σ

λ
s

]
using the self-organizing

model described by equations (17) and (18).

At each time s, the vector Rs ∈ R5 depends on the nonlinear function hλ
(
λs,ψ

λ
s

)
and the noise ϵλs . The function h is given by equation (1).

The dynamics of the default intensity λs ∈ R is characterized by equation (5). We

assume that the parameters of the vector ψλ
s ∈ R3 follow a random walk. Moreover, we

consider for the parameter (·) a very small value for the variance,
(
ϑλ(·)

)2
= 1E− 3, such

that the parameter does not change too much over time (see Kitagawa and Sato (2001)

and Liu and West (2001)).

The nonlinear �lter is performed as follows. First, we approximate the FPE by the

RBF interpolation to obtain an approximation of the conditional probability density

p
(
λ̂s | R̂s−1

)
. To this end, we employ the iterative solution of the system (24). Once

p
(
λ̂s | R̂s−1

)
is computed, we apply the Bayes' rule given by equation (12) to sequentially

obtain values for the probability p
(
λ̂s | R̂s

)
. Finally, we compute the optimal estimate

of λ̂s using the MMSE estimator de�ned by equation (13).

Figure 1 illustrates the result of the simulation and the performance of the nonlinear

�lter. In this experiment, the simulated values are considered as benchmark. In Panels

A and C, the simulated values are plotted in black while the estimates are in blue. Panel

A plots the simulated and estimated values of the default intensity λs. The estimated

λs tracks the dynamics of the simulated values with high precision. The RMSE of the

estimated λs is 1.4E-4. Panel B shows a comparison between the CIR parameters ψλ
s =[

κλs , θ
λ
s , σ

λ
s

]
used in the simulation and those inferred from the estimation. The �gure
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shows that the �lter o�ers reliable estimates of the parameters even when the default risk

is very volatile. Panel C plots the simulated and estimated values of CDS spreads while

Panel D shows for each time s their RMSE. The average RMSE for the whole sample is

0.7204 basis points (bps) and the maximum value is 1.5529 bps. These results provide

evidence of the accuracy of the estimation.

5.2 The CDS Data

The data for the empirical investigation consists of daily CDS spreads for 27 component

companies of the Dow Jones Industrial Average (DJIA). Three component companies

are left out because either the data do not cover the whole sample period or the CDS

spreads are constant during long periods of time. We also obtain daily US Treasury

constant maturity (TCM) bond rates as a proxy for the risk-free interest rate. The

dataset includes observations for maturities of 1, 3, 5, 7 and 10 years. The sample period

is from January 2005 to June 2010. All data are downloaded from the DataStream.

Table 3 summarizes the name of each company, its sector and the main statistics

of the spreads for the 5-year CDS contracts. The time series exhibit some interesting

patterns. First, there exist substantial cross-sectional di�erences across the �rms; and

second, there is a clear structural change in the levels of the default risk between two

sub-periods before and after mid-2007, which we have arbitrarily chosen to divide our

sample.

The �rst period, from January 2005 to June 2007, is characterized by low and stable

CDS spreads. During this period, the term structure of CDS spreads has a downward

trend. The highest average spreads are reported by telecommunications companies, in-

cluding AT&T with 31.8 basis points (bps) and Verizon with 29.1 bps. AT&T and Verizon
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also experience the highest maximum CDS spreads at 139.6 bps (20 January 2005) and

93.2 bps (18 October 2006), respectively, and the largest standard deviation. At the same

time, the lowest values of CDS spreads are found in Johnson & Johnson, Exxon, P�zer,

3M and Chevron, with average spreads of less than 11 bps. These companies belong to

the sectors of health care, and oil & gas. During this period, the �rms in the �nancial

and industrial goods sectors, including the Bank of America and General Electric, enjoy

relatively low average CDS spreads indicating a very small default risk.

In the second sub-period from July 2007 to June 2010, the dynamics and levels of

the default risk change dramatically. The CDS spreads increase considerably with much

higher volatility on average. The term structure is upward sloping until the �rst quarter

in 2009, followed by a clear downward trend until the end of the year and then stabilizes.

The highest average CDS rates are reported by Alcoa, General Electric, American Express

and Bank of America with values of 274 bps, 247 bps, 193 bps and 128 bps, respectively.

These companies, which belong to the worst a�ected sectors of basic materials, industrial

goods, and �nancial services, also have standard deviations over 150 bps.

During the same period, the highest CDS maximum spreads were reached by General

Electric and Alcoa with 1, 037 bps (5 March 2009) and 1, 156 bps (9 March 2009), respec-

tively. These CDS spreads clearly re�ects the pessimistic view from the market regarding

the default risk of the two �rms during the �nancial crisis. For example, on 3 March,

2009, the share price of General Electric fell below $7 per share for the �rst time since

May 1993. The conglomerate was later stripped of its AAA credit rating by Standard

& Poor's on 12 March, 2009. The huge increase in CDS spreads captures these negative

news in a timely manner.
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5.3 Empirical Results and Discussion

The default intensity and the CIR model parameters are estimated using the nonlinear

�lter that we develop above. Contrary to the numerical experiment, in this empirical

analysis the interest rate is no longer assumed to be constant. Therefore, it is necessary

to infer rs using the same nonlinear �lter. Then the estimated short rates are used as

inputs to compute the optimal default intensity and model parameters using the MMSE

estimator de�ned in equation (13). In the following, we describe in turn the results for

the short rate and the default intensity.

Estimated Short Interest Rate

In this subsection, we use the numerical nonlinear �lter to estimate the augmented state

vector of the self-organizing model described in equations (15) and (16). The estimation

is carried out as described above, in particular Sections 3.1, 3.2, and 4.3.

Figure 2 presents the results of the joint estimation of rs and ψ
r
s = [κrs, θ

r
s, σ

r
s ]. Panel

A shows the US TCM rates. In Panel B, we plot the computed zero-coupon bond prices.

Panel C presents the estimated short interest rate. This variable tracks closely the dy-

namics of the observed TCM plotted in Panel A. The short interest rate rs goes up

between 2005 and mid-2006, then it stabilizes around 4.5% until mid-2007. Afterward, it

falls quickly to stabilize at very small values. Panel D shows the RMSE of the estimation,

which takes as benchmark the zero-coupon bond prices at each time s. The RMSE is

very small during the whole period. However, there is a clear increase in 2009 and 2010.

For the �rst sub-period from January 2005 to June 2007, the average RMSE is 0.13%; in

the second sub-period from July 2007 to June 2010, however, the average RMSE rises to

0.33%.
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Finally, Panel E illustrates the time series of estimated parameters [κrs, θ
r
s, σ

r
s ]. The

long term mean level θr is quite stable and moves around the value 0.053 for the whole

sample. The speed of reversion µr between the �rst and second period moved from 0.26

to 0.24 on average. For the same period, the volatility σr shows two clear levels. The

instantaneous volatility is found to be around 0.12 on average for the �rst period, and

drops slightly to 0.09 on average for the second subperiod.

These estimated values of the short interest rate r0 and the CIR model parameters

[κrs, θ
r
s, σ

r
s ] are now considered as given in order to carry out the estimation of the instan-

taneous default intensity λ0 below.

Estimated Instantaneous Default Intensity

Similar to the previous subsection, we use the numerical �lter to estimate the augmented

state vector of the self-organizing model de�ned in equations (17) and (18). The estima-

tion is undertaken as described in previous sections, in particular Sections 3.1, 3.3 and

4.3.

Figure 3 illustrates the time series of estimated default intensity for each company in

our sample.2 The companies are grouped by their respective sector. As we can see in

this �gure, before the mid-2007 the default intensity for all companies is relatively stable

and very low with an average of about 0.012%. However, since the second half of 2007,

the default intensity has experienced considerable changes in its dynamics. First, the

default intensity increases dramatically between July 2007 and the �rst quarter of 2009

when it tends to reach its maximum value for most companies in our sample. Note that

March 2009 was a particularly bad month for the US economy with a negative report

on unemployment �gures and with the Dow Jones and S&P 500 indexes both hitting a

2Please note that there are di�erent scales on the Y-axis for some plots.
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12-year low on the 9th of the month. Afterwards the default intensity gradually decreases

but without dropping to the low levels seen before the banking crisis.

Table 4 summarizes the main statistics of the estimated default intensities. Although

during the �nancial crisis, the default risk experiences similar dynamics for all companies,

there are important di�erences in the levels reached by di�erent �rms and sectors.

The highest default intensities are reached by Alcoa in the sector of basic materials

and General Electric in the sector of industrial goods, with values of 20% (9 March 2009)

and 19.4% (5 March 2009), respectively. The aluminum producer Alcoa is an economy-

sensitive company. Its stock price dropped to a historic low on 2 March 2009 as the

US economy struggled to deal with the turmoil of the credit crunch. At the same time,

General Electric also faced huge challenges due to the banking crisis. The fact that their

instantaneous default intensity peaked at this time not only substantiates the e�ciency

of the CDS market as a place for trading company speci�c information and expectation

but also attests to the accuracy and reliability of our nonlinear �lter to recover such

information from market CDS spreads.

Not surprisingly, other �rms with very high levels of default intensity are in the

�nancial sector. For example, the American Express is shown to have experienced a

maximum default intensity of 15.3% while the Bank of America reaches a value of 11.1%.

These �rms are followed by Caterpillar, J.P. Morgan, Boeing and Home Depot with

maximum probabilities of 7.17%, 5.16%, 4.33% and 4.16%, respectively.

In contrast, companies in the sectors of health care, oil & gas, soft drinks and consumer

services have a smoother ride during the credit crunch. The low levels of instantaneous

default intensities are inferred for companies such as Johnson & Johnson, Exxon, and

Coca Cola between 0.78% and 0.89%. These �rms are followed by McDonalds, 3M and
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United Technologies with default intensities between 1.06% and 1.27%.

In summary, our results show that the banking crisis a�ects all companies in our

sample. However, the crisis has in�icted more distress on �rms in the �nancial services

and industrial sectors in terms of skyrocketed default risk. Meanwhile, our method is

able to accurately recover the dynamics of the default intensities for individual �rms over

time and suggest a clear di�erentiation between �rms in di�erent sectors.

Tables 5 and 6 report the estimated CIR model parameters and the RMSE of the

estimation for the sub-period from 2005 to mid-2007 and from mid-2007 to 2010, re-

spectively. These values are computed as average of their estimated parameters over the

two sub-periods. The results show a large increase in the average speed of reversion and

instantaneous volatility. The average speed of reversion goes up from 0.068 to 0.228 and

the volatility of the default risk almost doubles from 0.041 before the banking crisis to

0.081. Again this is also consistent with the unfolding of the state of the economy during

that turbulent period. In addition, the computed RMSE of the estimation is 1.57 bps

on average during the �rst period, and rises to 3.39 bps in the second period. The com-

panies with the highest estimated errors include Alcoa, General Electric, Home Depot,

Bank of America, American Express and J.P. Morgan, the same �rms with high default

intensities.

6. Conclusion

Credit default risk is of major concern to �nancial markets and risk managers, providing

them with information on the probability of a company's potential �nancial distress,

bankruptcy or liquidation. Various approaches have been proposed in the literature to

evaluate CDS products, but not all of them concentrates on the actual default probability
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and its time-varying dynamics.

To �ll this important gap, we develop a nonlinear �lter to jointly estimate the latent

default intensity and unknown CIR parameter vector implicit in the term structure of

CDS spreads. The �lter is estimated on the basis on the recursive solution of the Fokker-

Planck equation (FPE) by the radial basis function (RBF) interpolation and updated via

the Bayes' formula with each new observation. As the FPE is able to deal with models

involving nonlinear functions and non-Gaussian errors, it is more �exible compared to

the standard extended or unscented Kalman �lters widely adopted in the literature. In

addition, the �lter allows for the simultaneous estimation of state variables and model

parameters, it is hence of great help to practitioners.

In order to evaluate the performance of the �lter, we �rst undertake a numerical

experiment using simulated CDS spreads. The results show that the �lter provides reliable

and accurate estimates of the model parameters and the estimated dynamics of the default

risk closely tracks the simulated process.

We apply the nonlinear �lter to 27 component companies of the DJIA using daily CDS

spreads with �ve di�erent maturities between January 2005 to June 2010. Our empirical

results suggest that the banking crisis has triggered a big increase in the default risk

of all sample �rms and led to a structural change in model parameters. However, the

level of default risk reached by di�erent entities and sectors show important di�erences.

In particular, the credit crunch has a dramatic e�ect on the �nancial �rms such as the

American Express and the Bank of America compared with �rms in the health care and

consumer services. In addition, the time series variation in the default risk we obtain for

these �rms is consistent with the unfolding of market events during the banking crisis, a

testimony of the accuracy and e�ciency of our numerical �lter.
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Table 1. Examples of popular radial basis functions (RBFs)

Gaussian RBF: φ (ck) = exp−ε2c2k (28)

MQ-RBF: φ (ck) =
√
ε2 + c2k (29)

Cubic RBF: φ (ck) = c3k (30)

TPS-RBF: φ (ck) = c4k ln (ck) (31)

In this table, φ (ck) is the basic function of the RBF Φk centered on ck, de�ned as ck =∥ Z−zk ∥,
where ∥ · ∥ is the Euclidean norm, Z is the set of centers [z1, . . . , zK ]

′
, and zk∈ Rd is the k-th

center. The constant ε is a shape parameter.
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Table 2. Simulation Parameters of the Default Intensity

Observation κλ θλ σλ

1 - 50 0.23 0.030 0.08

51 - 100 0.30 0.055 0.12

101 - 150 0.37 0.065 0.15

151 - 200 0.46 0.076 0.20

This table reports four sets of parameters used in the simulation of the default intensity for
samples of 50 observations. Each set consists of the parameters κλ, θλ and σλ for the one-factor
CIR model. The experiment is performed to simulate a total of 200 observations.
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Table 4. Summary statistics for the estimated default intensity

Company Name January 2005 - June 2007 July 2007 - June 2010

Mean Std. Max Mean Std. Max

3M Co. 0.002 0.001 0.008 0.30 0.31 1.24

Alcoa Inc. 0.006 0.015 0.176 3.38 4.42 20.00

American Express Co. 0.005 0.005 0.040 3.68 3.78 15.33

AT&T Inc. 0.011 0.028 0.158 0.31 0.33 1.49

Bank of America Corp. 0.014 0.010 0.061 1.88 2.05 11.12

Boeing Co. 0.003 0.004 0.041 0.74 0.69 4.33

Caterpillar Inc. 0.004 0.008 0.163 1.06 1.45 7.17

Chevron Corp. 0.023 0.012 0.084 0.35 0.31 1.36

Coca-Cola Co. 0.017 0.011 0.053 0.28 0.17 0.89

E.I. DuPont & Co. 0.012 0.011 0.082 0.46 0.55 2.44

Exxon Mobil Corp. 0.009 0.007 0.053 0.21 0.21 0.78

General Electric Co. 0.026 0.017 0.074 4.16 4.53 19.35

Hewlett-Packard Co. 0.010 0.009 0.129 0.38 0.40 1.99

Home Depot Inc. 0.005 0.009 0.126 1.18 1.11 4.16

IBM Corp. 0.010 0.007 0.077 0.36 0.45 2.43

Johnson & Johnson 0.005 0.003 0.024 0.29 0.20 0.81

JPMorgan Chase & Co. 0.025 0.017 0.093 1.06 0.93 5.16

Kraft Foods Inc. Cl A 0.033 0.034 0.181 0.56 0.39 1.58

McDonald's Corp. 0.012 0.021 0.144 0.24 0.25 1.06

Merck & Co. Inc. 0.010 0.010 0.066 0.32 0.31 1.81

P�zer Inc. 0.006 0.003 0.030 0.33 0.39 1.71

Procter & Gamble Co. 0.009 0.006 0.038 0.41 0.43 1.56

Travelers Cos. Inc. 0.031 0.024 0.201 0.69 0.59 2.00

United Technologies 0.004 0.004 0.036 0.40 0.30 1.27

Verizon Communications 0.006 0.010 0.137 0.49 0.48 1.84

Wal-Mart Stores Inc. 0.017 0.014 0.145 0.51 0.43 1.75

Walt Disney Co. 0.003 0.002 0.021 0.33 0.36 1.53

Average 0.012 0.011 0.090 0.902 0.956 4.302

This table provides summary statistics of the estimated default intensity λ of 27 component

companies of the DJIA. The instantaneous default intensity λ0 is inferred from CDS spreads

with maturities of t = 1, 3, 5, 7 and 10 years. The two subperiods considered are from January

2005 to June 2007 and from July 2007 to June 2010. The statistics reported include the mean,

the standard deviation and the maximum. The values are reported in percentages.
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Table 5. Estimated CIR parameters: CDS spreads, January 2005-June 2007

Company Name January 2005 - June 2007

κλ µλ σλ RMSE (bps)

3M Co. 0.090 (0.009) 0.006 (0.001) 0.028 (0.003) 1.556 (0.951)

Alcoa Inc. 0.084 (0.008) 0.023 (0.006) 0.041 (0.005) 2.347 (1.205)

American Express Co. 0.118 (0.034) 0.012 (0.003) 0.051 (0.010) 0.912 (0.557)

AT&T Inc. 0.047 (0.018) 0.048 (0.009) 0.021 (0.006) 3.587 (0.782)

Bank of America Corp. 0.122 (0.013) 0.009 (0.002) 0.042 (0.005) 1.044 (0.420)

Boeing Co. 0.047 (0.019) 0.024 (0.002) 0.044 (0.008) 1.377 (0.557)

Caterpillar Inc. 0.070 (0.040) 0.022 (0.005) 0.049 (0.007) 1.765 (0.858)

Chevron Corp. 0.021 (0.005) 0.029 (0.006) 0.031 (0.007) 0.736 (0.284)

Coca-Cola Co. 0.057 (0.018) 0.012 (0.001) 0.034 (0.004) 1.184 (0.352)

E.I. DuPont & Co. 0.113 (0.025) 0.013 (0.002) 0.051 (0.006) 1.690 (0.918)

Exxon Mobil Corp. 0.053 (0.021) 0.008 (0.002) 0.025 (0.006) 0.567 (0.321)

General Electric Co. 0.094 (0.003) 0.013 (0.004) 0.041 (0.001) 0.802 (0.331)

Hewlett-Packard Co. 0.055 (0.039) 0.033 (0.005) 0.053 (0.013) 1.937 (0.660)

Home Depot Inc. 0.096 (0.010) 0.012 (0.002) 0.040 (0.004) 1.633 (0.570)

IBM Corp. 0.077 (0.023) 0.016 (0.004) 0.047 (0.009) 1.782 (0.727)

Johnson & Johnson 0.058 (0.016) 0.005 (0.001) 0.021 (0.004) 0.670 (0.310)

JPMorgan Chase & Co. 0.082 (0.013) 0.017 (0.003) 0.051 (0.008) 0.927 (0.501)

Kraft Foods Inc. Cl A 0.049 (0.014) 0.034 (0.004) 0.051 (0.006) 1.992 (0.676)

McDonald's Corp. 0.042 (0.019) 0.035 (0.003) 0.050 (0.011) 1.707 (0.727)

Merck & Co. Inc. 0.064 (0.025) 0.018 (0.004) 0.046 (0.013) 1.709 (0.965)

P�zer Inc. 0.043 (0.018) 0.012 (0.001) 0.028 (0.005) 1.134 (0.375)

Procter & Gamble Co. 0.067 (0.014) 0.014 (0.003) 0.039 (0.006) 0.966 (0.468)

Travelers Cos. Inc. 0.076 (0.008) 0.024 (0.004) 0.058 (0.007) 1.382 (0.671)

United Technologies 0.050 (0.016) 0.024 (0.002) 0.045 (0.006) 1.654 (0.587)

Verizon Communications 0.056 (0.013) 0.041 (0.017) 0.021 (0.006) 3.391 (1.764)

Wal-Mart Stores Inc. 0.066 (0.020) 0.012 (0.002) 0.037 (0.007) 1.374 (0.574)

Walt Disney Co. 0.037 (0.020) 0.050 (0.008) 0.055 (0.012) 2.554 (0.736)

Average 0.068 (0.018) 0.021 (0.004) 0.041 (0.007) 1.570 (0.661)

This table summarizes the mean of the estimated parameters of the one-factor CIR model(
κλ, θλ, σλ

)
for the default intensity λ0 between January 2005 and June 2007. These parameters

are estimated for 27 component companies of the DJIA using CDS spreads with maturities of

t = 1, 3, 5, 7 and 10 years. The numbers in parentheses are the standard deviation. The mean of

the root mean square errors (RMSE) of the estimated CDS spreads for the same period is also

reported. The RMSE and its standard deviation are presented in basis points.
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Table 6. Estimated CIR parameters: CDS spreads, July 2007-June 2010

Company Name July 2007 - June 2010

κλ µλ σλ RMSE (bps)

3M Co. 0.228 (0.078) 0.015 (0.007) 0.068 (0.022) 1.955 (1.178)

Alcoa Inc. 0.139 (0.131) 0.099 (0.052) 0.133 (0.032) 9.022 (8.031)

American Express Co. 0.367 (0.208) 0.023 (0.009) 0.098 (0.038) 4.683 (3.515)

AT&T Inc. 0.081 (0.024) 0.029 (0.011) 0.030 (0.016) 2.020 (0.908)

Bank of America Corp. 0.263 (0.107) 0.023 (0.009) 0.093 (0.025) 7.707 (5.530)

Boeing Co. 0.345 (0.216) 0.025 (0.009) 0.101 (0.047) 3.283 (2.692)

Caterpillar Inc. 0.258 (0.201) 0.025 (0.011) 0.082 (0.046) 3.067 (2.768)

Chevron Corp. 0.196 (0.138) 0.022 (0.009) 0.070 (0.028) 1.730 (1.133)

Coca-Cola Co. 0.198 (0.130) 0.019 (0.008) 0.068 (0.021) 1.871 (0.847)

E.I. DuPont & Co. 0.342 (0.248) 0.019 (0.006) 0.095 (0.037) 3.482 (3.052)

Exxon Mobil Corp. 0.218 (0.121) 0.013 (0.006) 0.062 (0.023) 1.467 (0.690)

General Electric Co. 0.130 (0.107) 0.087 (0.072) 0.119 (0.043) 8.993 (7.436)

Hewlett-Packard Co. 0.198 (0.121) 0.020 (0.010) 0.070 (0.016) 2.484 (1.396)

Home Depot Inc. 0.356 (0.160) 0.030 (0.013) 0.123 (0.031) 6.605 (4.553)

IBM Corp. 0.244 (0.116) 0.016 (0.006) 0.077 (0.017) 2.368 (1.244)

Johnson & Johnson 0.094 (0.021) 0.015 (0.005) 0.045 (0.012) 1.707 (0.931)

JPMorgan Chase & Co. 0.344 (0.141) 0.018 (0.005) 0.104 (0.032) 4.503 (2.896)

Kraft Foods Inc. Cl A 0.241 (0.114) 0.025 (0.008) 0.088 (0.022) 2.956 (1.933)

McDonald's Corp. 0.119 (0.059) 0.018 (0.008) 0.058 (0.015) 2.191 (1.122)

Merck & Co. Inc. 0.121 (0.046) 0.015 (0.003) 0.057 (0.014) 2.141 (3.021)

P�zer Inc. 0.232 (0.112) 0.016 (0.004) 0.074 (0.023) 1.708 (0.827)

Procter & Gamble Co. 0.279 (0.093) 0.016 (0.006) 0.084 (0.027) 1.958 (0.848)

Travelers Cos. Inc. 0.268 (0.081) 0.019 (0.004) 0.093 (0.017) 2.882 (2.740)

United Technologies 0.211 (0.121) 0.020 (0.007) 0.080 (0.027) 1.997 (1.050)

Verizon Communications 0.307 (0.149) 0.023 (0.008) 0.074 (0.036) 3.678 (2.292)

Wal-Mart Stores Inc. 0.208 (0.102) 0.015 (0.003) 0.072 (0.022) 2.088 (1.234)

Walt Disney Co. 0.170 (0.126) 0.028 (0.016) 0.074 (0.020) 2.891 (1.652)

Average 0.228 (0.121) 0.026 (0.012) 0.081 (0.026) 3.387 (2.427)

This table summarizes the mean of the estimated parameters of the one-factor CIR model(
κλ, θλ, σλ

)
for the default intensity λ0 from July 2007 to June 2010. These parameters are

estimated for 27 component companies of the DJIA using CDS spreads with maturities of t =

1, 3, 5, 7 and 10 years. The numbers in parentheses are the standard deviation. The mean of

the root mean square errors (RMSE) of the estimated CDS spreads for the same period is also

reported. The RMSE and its standard deviation are presented in basis points.
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Figure 1. Performance of the Nonlinear Filter on Simulated CDS Spreads

(a) Default Intensity (b) Parameters

(c) CDS Rates (d) RMSE

This �gure shows the performance of the nonlinear �lter on simulated CDS spreads data. Panel A plots the simulated and
estimated values of the default intensity λs. Panel B compares the values of the parameters of the one-factor CIR model
ψλ

s =
[
κλ, θλ, σλ

]
used in the simulation and those estimated with the �lter. Panel C shows the simulated and estimated

CDS spreads for maturities t = 1, 3, 5, 7 and 10 years. In Panels A and C, the simulated values are plotted in black while
estimated values are in blue. Panel D presents the RMSE of the estimated CDS spreads. The simulated values are assumed
as benchmark.
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Figure 2. Estimation of the short interest rate and CIR model parameters

(a) Treasury Constant Maturity Rates (b) Zero-Coupon Bond Prices

(c) Estimated Short Interest Rate r0 (d) Estimated Error

(e) Estimated Parameters

This �gure shows the performance of the nonlinear �lter in inferring the short interest rate r0 from zero-coupon bond
prices. Panel (a) shows the US treasury constant maturity bond rates. Following Chen et al. (2008b) , these rates are used
to compute the zero-coupon bond prices in Panel (b). The maturities considered are t = 1, 3, 5, 7 and 10 years. Panels (c)
and (e) show the evolution of the estimated short interest rate r0 and the one-factor CIR parameters ψr

s = [κrs, θ
r
s , σ

r
s ].

Panel (d) presents the root mean square errors (RMSE) of the estimated zero-coupon bond prices. The values of Panel
(b) are taken as benchmark.
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