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Abstract 

Marine diesel engines operate in highly 
dynamic and uncertain environments, hence 
they require robust and accurate speed 
controllers that can handle the uncertainties 
encountered in these environments. The 
current speed controllers for marine diesel 
engines are based on PID and type-1 Fuzzy 
Logic Controllers (FLCs) which cannot fully 
handle the uncertainties encountered in such 
environments. Type-2 FLCs can handle such 
uncertainties to produce a better control 
performance. However, manually designing a 
type-2 FLC is a difficult task. In this paper, 
we will introduce an embedded type-2 Neuro-
Fuzzy Controller (T2NFC) which learns the 
parameters of interval type-2 FLC to control 
marine diesel engines. We have performed 
numerous experiments on a real diesel engine 
testing platform in which the T2NFC operated 
on an industrial embedded controller and 
handled the uncertainties to produce an 
accurate and robust speed controller that 
outperformed the currently used commercial 
engine controller, even though we have 
trained the T2NFC with data collected from 
the commercial controller. 

Keywords: Interval type-2 FLC, Neuro-Fuzzy Systems  

1     Introduction 
Marine diesel engines are huge engines that are 
used in large container ships, high speed ferries, 
harbour tugs, offshore patrol crafts, etc. The 
engines vary in power and speed from a few 
hundred rpm and 90,000 kW to several thousand 
rpm and less than 10,000 kW. Figure 1 shows 
two of these huge engines namely the Wartsila-
Sulzer RTA96-C and the MAN B&W RK 270. 

Due to their vast sizes and large power 
outputs, marine diesel engines require accurate 
and robust speed control/governing. Accurate 

speed control of marine diesel engines is of 
critical importance as significant deviations 
from the speed set point could be detrimental 
and damaging to the engine and the respective 
loads. Moreover, for applications such as power 
generation sets, significant speed deviation can 
cause the generation of incorrect frequencies 
resulting in loss of synchronisation between the 
generator and the associated power grid. 
Robustness in speed control is required to 
overcome and recover quickly from the inherent 
instabilities and disturbances associated with the 
fast and dynamic changes of the environment, 
load and operation conditions. The ability to 
provide improved speed control response for 
marine diesel engines is not just desirable but a 
requirement of the British Standard BS5514 
“Reciprocating internal combustion engines: 
Speed Governing”, which details regulations 
concerning the speed controllers ability to 
recover from load changes and disturbances in 
terms of settling time and overshoot/undershoot.  

 
Figure 1: Examples of marine diesel engines: 

RTA96-C (left) and the RK270 (right). 

Due to their simplicity and their suitability for 
the industrial embedded controllers, various 
forms of the PID controller have been used for 
speed control in marine diesel engines. It has 
been shown that FLCs and Fuzzy PID 
controllers can provide improved control over 
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traditional PID controllers [1], [2]. As a result, 
FLCs have found use in the speed control of 
various marine diesel engines [1], [6]. However, 
there are many sources of uncertainty facing the 
FLC for the speed control of marine diesel 
engines; we list some of them as follows: 

• Uncertainties in inputs to the FLC which 
translate to uncertainties in the antecedents 
Membership Functions (MFs) as sensors 
measurements are affected by high noise 
levels and their characteristics also change due 
to the diverse environmental conditions facing 
the engines [9].  

• Uncertainties in control outputs which 
translate to uncertainties in the output MFs of 
the FLC. Such uncertainties can result from 
change of the actuators characteristics due to 
wear and tear or environmental changes [9].  

• Linguistic uncertainties as the meaning of 
words that are used in the antecedents and 
consequents linguistic labels can be uncertain, 
as words mean different things to different 
people [12]. In addition, experts do not always 
agree and they often provide different 
consequents for the same antecedents. [13].    

• Uncertainties associated with the change in 
engine operation and load conditions due to 
varying loads, weather and sea conditions, 
wind strength, hull fouling (growth of algae, 
sea grass and barnacles) and vessel 
displacement which is dependant on cargo. 
These uncertainties are considered the most 
dynamic and severe uncertainties that can 
affect both the input and output of the FLC to 
cause serious degradation in the performance 
of the engine [10]. For example the resistance 
(the force working against the ship 
propulsion) as a result of weather and sea 
variations could in general increase by as 
much as 50-100% of the total ship resistance 
in calm weather [10].  

The above uncertainties can translate to 
uncertainties in the antecedents and/or 
consequents MFs [12]. All the FLCs previously 
used in marine diesel engines were based on the 
traditional type-1 FLCs that use precise type-1 
fuzzy sets. Type-1 fuzzy sets handle the 
uncertainties associated with the FLC inputs and 
outputs by using precise and crisp MFs that 
might be only valid under specific conditions 
[3], [11]. However, type-1 FLCs cannot fully 
handle or accommodate the high levels of 
linguistic and numerical uncertainties present in 
changing and dynamic environments such as the 

marine diesel engines environments [9]. 
Alternatively type-2 FLCs that use type-2 fuzzy 
sets have been proven to directly model and 
handle these uncertainties [9]. However, 
manually designing a type-2 FLC is a difficult 
task, particularly as the number of MFs and 
rules increase. In this paper, we will introduce a 
Type-2 Neuro-Fuzzy Controller (T2NFC) which 
learns the parameters of interval type-2 FLC to 
control marine diesel engines.  

There has been other work that used neural 
based systems to learn the parameters of type-2 
FLCs that were Mamdani based like [7], [14] or 
TSK based like [5]. However, according to the 
author’s knowledge, this is the first work that 
develops on an embedded industrial controller a 
type-2 Neuro fuzzy system that is trained from 
the commercial existing controller to learn the 
parameters of an interval type-2 FLC for the 
real-time control of a heavy industrial 
application like marine diesel engines.  

The remainder of this paper is organised as 
follow: In section 2, we will introduce the 
testing platform for marine engines. Section 3 
will briefly review the interval type-2 fuzzy sets. 
Section 4 will present the T2NFC. Section 5 will 
present our experiments and results followed by 
the conclusions in section 6.  

2     The Testing Platform 
Due to the size and cost of the engines, it is 
important to test and verify the engine speed 
controllers under different operation and load 
conditions before deployment on the target 
engine. The speed controllers are tested and 
verified using the testing platform shown in 
Figure 2(a) which is designed to realistically 
reflect the characteristics and operating 
conditions of the marine diesel engines with the 
ability to alter speed, load, inertia and torque. 
The platform uses the same noisy sensors and 
actuators used in the engine with the ability to 
introduce the same uncertainty levels faced in 
the real engines. 

The T2NFC was embedded on the 32-bit Texas 
Instruments TMS320F2812 150MHz industrial 
DSP which was programmed in ANSI C and 
Assembly. The embedded T2NFC controls the 
speed of the engine by controlling a hydraulic 
servo actuator which manages the rate of fuel 
delivery to the cylinders. Communication with 
the DSP was achieved via a Controller Area 



Network (CAN) bus using Vectors automotive 
“CAN analyzer” software used in industry to 
observe, analyse and supplement data traffic on 
up to 32 CAN channels. The real engines use the 
Viking 25 controller (shown in Figure 2(b)) 
which is an embedded commercial controller 
designed and marketed specifically for the 
control of diesel engines. The Viking 25 is based 
on a PID algorithm with various non-linear and 
gain scheduling functions. 

 

differentiable i.e. each branch is differentiable 
over its segment domain [11].  For example the 
piece-wise derivatives of Equations (2) and (3) 
with respect to  and  are given as 
follows: 
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Figure 2: (a) The testing platform (b) Viking 25. 

3     Interval Type-2 Fuzzy sets  

An interval type-2 fuzzy set F~  can be written as 
follows:   
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Where )(~ xFµ , )(~ x
F

µ  represent the upper and 
lower MFs respectively. For each input k and 
rule i, we will use the interval type-2 fuzzy set 
shown in Figure 4(a) which is represented by 
gaussian primary MF having uncertain mean  
and uncertain standard deviation  where 

 and . The upper 
and lower MFs for this interval type-2 fuzzy set 
can be written as follows: 
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When an input,  is located in a specific x-
domain segment, we call its corresponding MF 
an active branch [11]. The MF is piece-wise 

kx

4 The Type-2 Neuro-Fuzzy Controller  

4.1 The T2NFC Structure 
Figure 3 shows the structure of the proposed 
T2NFC which mimics the well known interval 
type-2 FLC reported in [3],[8],[11]. The T2NFC 
architecture is inspired from the T2FNN in [14], 
however the T2NFC is targeted mainly for 
control applications and in this paper we will 
address the correct equations and operations 
which were not correctly presented in [14].  

In the T2NFC, Layer I is the Input Layer which 
interfaces to the crisp inputs. Layer II is the 
Fuzzification Layer which maps a crisp input to 
a type-2 fuzzy set. Singleton fuzzification was 
chosen due to its low computational burden. 

Using singleton fuzzification, the upper )x( ki
kF~µ  

and lower )x( ki
kF~

µ  membership values are 

calculated using Equations (2) and (3) 
respectively. Layer III is the Inference and Rule 
Base Layer, where each node in layer III 
represents a given rule connecting antecedents 
to consequents.  The ith rule (i=1…M, where M 
is the number of rules) which has n inputs and c 
outputs can be written as follows:  
       iR MIMO: IF x1 is …and  is iF~1 nx i

nF~  THEN  y1 is 

[ , ],…...  , yi
lw 1

i
rw 1 c is [ , ]                            (9) i

lcw i
rcw

Where [ , ] represent the centroid interval 
set of the consequent type-2 fuzzy set for a 
given output of the i

i
lw i

rw

th rule. Layer III combines 



rules and gives a mapping from input type-2 sets 
to output type-2 sets. The firing strength  of 
the i

if
th rule  is an interval type-1 set determined 

by its left most point if  and its right most point 
i

f  which are calculated as follows [8], [11]: 
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Where * denotes the product t-norm. Layer IV is 
the Type Reduction Layer which takes us from 
the type-2 output sets of the inference engine to 
a type-1 set called the “type reduced set”. We 
will use the “centre of sets” type reduction, as it 
has reasonable computational complexity that 
lies between the computationally expensive 
centroid type reduction and the simple height 
and modified height type reductions which have 
problems when only one rule fires [11]. The 
type reduced set using the centre of sets type 
reduction is expressed as an interval set defined 
by its left and right most points and  which 
can be written as follows: 
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It is assumed that , are arranged in an 
ascending order such that  and 

. Where L and R could be 
obtained from the iterative Karnik-Mendel 
procedure [8], [11]. Layer V is the 
Defuzzification Layer which calculates the 
T2NFC crisp outputs by taking the average of y

i
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M
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The T2NFC operates as an interval type-2 FLC 
in the forward mode mapping crisp inputs to 
crisp outputs. In the next subsection, we will 
introduce the T2NFC backward mode which is 
used to learn the parameters of the interval type-
2 FLC for the speed control of marine engines.  
 
4.2 Learning the type-2 FLC Parameters 
In order to make sure that the type-2 FLC learnt 
by the T2NFC is suitable for the speed control 
of marine diesel engines, we have to ensure that 

the its performance will be at least as good as 
the currently used Viking 25 commercial 
controller. Hence, the T2NFC will be trained 
with input/output data captured from the Viking 
25 so that a satisfactorily trained T2NFC will 
produce a type-2 FLC that will have the same 
performance as the Viking controller under no 
or limited uncertainty levels associated with the 
change in engine operation and load conditions. 
However, as these uncertainty levels increase 
the type-2 FLC will outperform the Viking 25 
controller to give a very good performance as 
will be demonstrated in the experiments section.  
For the ith rule, the T2NFC learns the needed 
parameters for each input k antecedent fuzzy 
sets which are , , as well as the 
consequent parameters for each output , . 
By using the Back Propagation (BP) method, for 
P input-output training data supplied from the 
Viking 25 
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From the above equations, it is clear that the 
tuning process depends on the active branch that 

 belongs to and the situation of the rule i 
compared to L and R. So for example if If i≤ L 
and i≤ R and <  (hence 
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By following a similar procedure as above we 
can derive the BP update equation for . In 
the same manner the   can be tuned, so 
for example if < ,  and 
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Where in (27) we must take care to use 
 and in (28) use . M
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The type-2 FLC consequent parameters can be 
tuned in the same way by following the same 
procedure. So for example if ,  can be 
tuned as follows:  

Li ≤ i
lw

( ) ( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−=+

∑∑
∏

+==

=
M

Li

i
L

i

i

n

j Fppi
l

i
l

ff
dxypwpw

i
j

11

1
~

)(
2
1)()1(

µ
α r (29) 

 

 
Figure 3: The Type-2 Neuro-Fuzzy Controller 

As it is possible to over-fit the training data 
(10,000 samples) by monitoring of the Scaled 
Root Mean Squared Error (SRMSE) alone, we 
have split our training data into an estimation 
subset (6000 samples) and a validation subset 
(4000 samples). The estimation subset of 
examples is used to train the T2NFC in the usual 
way, except for a minor modification: the 
training session is stopped periodically (i.e. 
every so many epochs), and the network is 
tested on the validation subset [4]. The 
estimation learning curve decreases 
monotonically for each successive epoch, in 
contrast the validation learning curve decreases 
monotonically to a minimum at which point it 
start to increase as the training continues [4]. 
Training beyond this minimum point is 
essentially learning from noise contained within 



the training data [4]; thus stopping the training 
at this point will allow us to avoid over-fitting 
the training data. Therefore, we stop training the 
T2NFC at this minimum point to produce a 
type-2 FLC that can be used in real-time control. 
Figure 4(b) illustrates how the validation subset 
can be used as an indication to stop training 
where the training SRMSE decreases for each 
successive epoch whilst the validation SRMSE 
decreases until a minimum (epoch 16) at which 
point it then begins to increase for each 
successive epoch. Training was stopped at this 
point and the T2NFC operated in the forward 
mode to control the speed of the engine.     

From the above discussion it is obvious that the 
learning of the type-2 FLC parameters within 
the T2NFC besides requiring to find the active 
branches of the MFs, it also necessitates to keep 
in memory track of L, R and the sorted 
consequents centroid list (such that 

and ) that were 
computed and used in the forward pass. These 
requirements were not considered in [14], in 
addition the BP tuning equations quoted in [14] 
were also erroneous. 
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Figure 4: (a) Interval type-2 fuzzy which is 
represented by gaussian primary MF having 
uncertain standard deviation and uncertain 

mean. (b) The use of the validation set to stop 
the T2NFC training 

5     Experiments and Results 
In this section, we will compare the T2NFC 
performance against the Viking 25 commercial 
controller as well as an expert designed type-1 
FLC in handling the uncertainties and 
disturbances that are associated with the change 
of operation and load conditions. 

Each of the compared controllers had a rule base 
of 42 rules with two inputs; Error (Percentage 
Nominal Error represented by 7 antecedent MF) 

and the Error Integral (represented by 6 
antecedent MF). The outputs of all controllers 
controlled the Manipulating Variable (MV) 
which was used to drive a hydraulic actuator on 
the engine testing platform.  

The experiments shown in this section are a 
representative subset of an extensive set of 
experiments we performed all of which 
repeatedly led to the same results shown below. 
All the experiments were performed on the 
engine testing platform presented in Section (2). 
Both the T2NFC and the type-1 FLC were 
coded in ANSI C and embedded in the DSP 
(discussed in Section (2)). For the engine testing 
platform, a set-point of 905 rpm was chosen to 
correspond with the requirements of medium 
speed diesel engines. We used the same noisy 
sensors and actuators utilised on the real engine 
and we introduced the same uncertainty levels 
faced in the real engines. We mimicked the real 
operation of diesel engines where in each 
experiment the controllers were allowed to reach 
the set-point and stabilise with no load, after 
which we began to add different loads suddenly 
to mimic the uncertainties associated with 
change of operation and load conditions. It is 
necessary for the diesel engine speed controller 
to be able to deal quickly with the uncertainties 
associated with a change of load, producing 
minimum overshoot/undershoot which must be 
in accordance with the British Standard BS5514 
which dictates that the overshoot and undershoot 
must be within 

−
+ 15% of the nominal set-point 

and must settle within 
−

+ 1% of the set-point 

within 4 seconds for up to a 100% load addition.   

In the representative experiment shown in 
Figure 5, both the Viking 25 and type-1 FLC 
were tuned so that they can handle disturbances 
that were equivalent to 20% of the full load 
(which is common disturbance that can face the 
engines at normal sea condition). The data used 
by the T2NFC was obtained from the Viking 25.  

Figure 5(a) shows that the performance of the 
T2NFC is similar to the Viking 25 and type-1 
FLC when introducing the disturbance of 20 % 
load that they were tuned to handle. However as 
the uncertainty associated with the change of 
load increases to 40 % , 80 % and 100% load as 
shown in Figure 5(b), Figure 5(c), Figure 5(d) 
respectively, the performance of both the Viking 
25 and type-1 FLC degrades significantly 
producing large overshoots/undershoots as well 
as long settling times.  
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Figure 5:  Experiments showing the response of 
the T2NFC, the Viking 25 and the type-1 FLC 

to load uncertainties associated with load 
changes of: (a) 20 % (b) 40 % (c) 80 % (d) 100.  

For the Viking 25 and the type-1 FLC, the 
results shown in Figure 5(c) and Figure (d) are 
unacceptable as they do not satisfy the desired 
standards, thus the common practice in such 
situations is to retune the controller which is a 
time consuming process,  

On the other hand, the T2NFC produces a type-2 
FLC that handles effectively the uncertainties 
associated with the change of the load and 
operation condition to give a very good 
performance that has small 
overshoots/undershoots as well as short settling 
times. The performance of the T2NFC satisfies 
the required standards and thus it will require no 
further tuning. Therefore the T2NFC could be 
used effectively to produce accurate and robust 
speed controller for marine diesel engines.  

6     Conclusions 
In this paper, we presented an embedded 
T2NFC for the speed control of marine diesel 
engines. The T2NFC was implemented on an 
industrial electronic embedded controller and 
was evaluated on a real diesel engine testing 
platform. We presented the structure of the 
T2NFC and the procedure it uses to learn 
parameters of the real-time type-2 FLC. We 
have shown that the BP tuning of the T2NFC is 
rather complicated and involves keeping track of 
the active branches of the MFs as well as 
keeping track of L, R and the sorted consequents 
centroid list that were computed and used in the 
forward pass. These requirements were not 
considered in [14], in addition the BP tuning 
equations quoted in [14] were also erroneous.  

The T2NFC was trained by data collected from 
the commercial Viking 25 controller that is 
currently used in real diesel engines. Through 
the experiments that we conducted, we have 
shown the following: 
• As the uncertainties increase the type-1 FLC 
and Viking 25 performance deteriorates to 
produce long settling times and large 
overshoots/undershoots that violates the given 
standards requiring them to undergo a time 
consuming retuning cycle. 
• The T2NFC will give the same performance 
as the Viking 25 and type-1 FLC under no or 
small level of uncertainties. 
• The T2NFC will handle the uncertainties to 
produce a robust and accurate control response 
that can recover quickly from disturbances with 
short settling times and with small 



overshoots/undershoots thus outperforming the 
performance of the type-1 FLC and Viking 25. 
• The T2NFC met the requirements of the 
British Standard BS5514 and did not require any 
further tuning making it an excellent option to 
effectively produce accurate and robust speed 
controllers for marine diesel engines. 

This paper has shown the potential type-2 FLCs 
have for control applications in general where 
they can be learnt and tuned from data supplied 
by the existing controllers. However, the type-2 
FLCs ability to handle uncertainties will enable 
them to give a more accurate and robust control 
performance than the existing controllers.  

We hope that this paper will be a step towards 
the simplification of the type-2 FLC design 
process and hence its further deployment on 
embedded platforms in many more control 
applications. We are currently working on 
reducing the computational complexity of the 
T2NFC to allow for a faster response and hence 
its deployment on FPGA platforms to produce 
the first type-2 commercial control product.   
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