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R&D Partnerships: an exploratory approach to the role of structural variables in 

joint project performance 

 

ABSTRACT. Traditionally the literature on partnership has focused on understanding why firms 

choose to cooperate and with whom, however, our understanding of the impact of the resulting 

network structure on the performance of the project is limited. This study builds on joint R&D 

projects developed in Europe in order to analyse certain structural variables – number and typology of 

partners, and intensity and density of interactions in the network – which may result in a greater 

performance of exploration and exploitation R&D projects. Findings show that these structural 

variables are good predictors of project performance; in particular, the joint performance function in 

exploration projects is positively dependent on the number of partners; however, in exploitation 

projects this function depends positively on the density and intensity of interactions, and negatively on 

the number of partners. Our results complement previous research while adding empirical evidence on 

the nonlinear and contingent character of structural variables and the performance of joint projects. 
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1. Introduction 

Technological collaboration for R&D development is being increasingly adopted between 

organizations to combine resources for common goals [1-3]. Firms join other institutions in 

organising networks, not only at a local but also at a national and international level, in order to 

develop technological projects that may positively influence competitiveness [3-7].  The effect of 

network structure in technological project performance has been a topic of considerable interest and 

study in recent years [5-8]. According to Hagedoorn et al. [4], Pek-Hooi and Roberts [9] there are two 

elements which integrate the network structure of a joint R&D project: The network nodes comprising 

the partners that take part in the project, and the interactions established among partners. 

Characterized by these two main elements, the study of network structures has been approached from 

two distinct points of view: The resource-based perspective where the analysis focuses on the partner 

whose role is to contribute and share resources in the network [10-16]; and the social capital theory, 
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where the key variable is the interaction between partners, analysing those resources inherent in social 

relationships which facilitate the collective action [17-25], [6].    

When studying joint R&D projects, as March [26] points out, exploitation projects use existing 

information to improve efficiency and returns from present strategies, competencies and procedures, 

while exploration entails searching and experimenting to find emerging innovations which will 

produce future profits. Koza and Lewin [27, p. 256] subsequently argued that a partner’s decision to 

enter in a joint project ‘can be distinguished in terms of its motivation, to exploit an existing 

capability or to explore new opportunities’. From a structural point of view, previous studies have 

documented that cohesion, strong ties, and small sizes are the central characteristics of exploitation 

joint R&D projects [27-28], [16]. On the other side, Gilsing et al. [29] have pointed out that the main 

characteristics of exploration joint R&D projects devoted to the search and exploration of 

technological information are their sparseness, weak ties, and large size.  

Beyond the broad consensus of the importance of network structure in managerial performance 

[30-31], there is a debate on several issues regarding structural attributes and the mechanisms through 

which they impact on project performance. Thus, in the case of exploration projects, scholars suggest 

that the large size and weak ties of  networks tend to create small groups (clustering) within the 

network, and that this has a negative impact on the performance of the joint project [29], [6], [32]. 

Regarding exploitation projects, other studies argue that strong cohesion in networks produces 

redundant information and small size increases the conflicts between partners [3].     

In this paper we seek to further the debate on size and cohesion issues using survey data collected 

from a representative sample of joint R&D projects carried out within European Framework 

Programmes. Using both exploration and exploitation projects from these Programmes we address 

three questions: (1) Is there an optimal structure for networks in joint R&D projects for the two types 

of projects considered?; if this is true, (2) what typology and number of partners must be involved in 

exploration and exploitation joint R&D projects to maximise network performance?; and (3) what 

class of interactions must be established in exploration and exploitation R&D projects to maximise 
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network performance? In this article we develop a combined methodology - structural equation 

modelling and artificial neural networks (ANN) - to test causal relationships and approximate the joint 

performance function of exploration and exploitation R&D projects.  

The purpose of our study is to contribute to the extant research on project literature in two ways. 

First, we aim to extend our understanding of the effects and influence of structural variables on the 

performance of project networks. Second, we aim to contribute to project management literature by 

analysing the structural variables which are central in explaining efficient performance in exploitation 

and exploration joint R&D projects.  

In the sections that follow, we present a concise overview of relevant literature on the structure of 

joint R&D projects in order to generate research questions. Subsequently, we present the findings 

obtained from the empirical analysis carried out using a sample of joint R&D projects developed in 

the European biotechnology industry. We conclude with a discussion of our findings, implications, 

limitations, and suggestions for further research.   

   

2. Theoretical background  

2.1. Joint R&D projects: Objectives and Structure 

Joint projects are the union of two or more partners through a cooperative agreement with the 

purpose of sharing capabilities and resources to reach a joint objective [33], [8]. The set of activities 

developed in the joint R&D project create multiple interactions among the partners in the dynamic 

process which lead to the accomplishment of project objectives. Pek-Hooi and Roberts [9] pointed out 

that technological process are those processes which are distributed among all agents involved in the 

network, whilst Scott-Young and Samson [34] indicated that an organisational structure is necessary 

for the development of the joint project. The objective of this structure is to infuse order in a 

relationship where potential conflict may arise, and where opportunities for common gain exist [35], 

[36]. The structure, therefore, is the framework within which the R&D process is developed and the 

partnership is organised. This structure, generally a network structure, is made up of the nodes (the 
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partners), and the interrelated links or ties among them [25]. In both the determination of the partners 

as well as in the ties, the objective is that the resulting design shall be efficient and achieve the 

expected joint performance [24], [36], [31]. Therefore, it can be argued that different combinations of 

partners and ties may result in different levels of performance within networks which share the same 

objectives.  

2.2 Resource-based Perspective: Typology of partners and size of network  

From the resource-based perspective, collaboration to develop a joint R&D project is a way to 

access technological resources or to improve competitive positioning without the need to acquire or 

possess them through traditional paths [11], [15], [16]. The strategic advantage of partnership derives 

from specific assets that firms dedicate to cooperation relationships, and from complementarities 

between their own resources and the resources of their partners. Thus, one of the main aspects of the 

structural design of the network, from the firm viewpoint, is the definition and search for a suitable 

partner profile to achieve the results sought through the cooperation. Questions such as why to 

cooperate and with whom, have been key variables for scholars in those analyses [3],[15]. However, 

less attention has been paid, from the project perspective, to the definition of the project structure and 

its impact on project results. One view is that advanced by Dyer and Nobeoka [27] who identified two 

kinds of networks in the case of Toyota’s suppliers. The first type was made up of a large number of 

partners whose objective was to explore technological information. In this case, the large number of 

partners increased the sources of knowledge. The second comprised a smaller number of partners 

whose objective was to use technological information to generate innovative products, that is, to 

exploit knowledge and information. Their results confirm the hypothesis that each type of project has 

distinctive structural characteristics. From the viewpoint of project results, Gilsing et al. [29] pointed 

out that the objective of exploration projects is to create technological knowledge through a constant 

search for new opportunities. According to these authors, the search for new opportunities implies that 

exploration projects normally include universities and research centres from different countries, as 

well as a high number of participants. Exploitation projects on the other hand, involve companies, 
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universities or consultants with a high heterogeneity of partners, but fewer in number than in the case 

of research exploration projects, and seek to engage both sources of innovation (universities) as well 

as users (firms) [9]. In general, exploitation projects are characterised by their smaller size structure 

and greater diversity of partners than in exploration projects,   

Efficiency in the structure, however, has not been specified in the literature in terms of number of 

partners and their types, and in this sense there are discrepancies. While Emerson [37] suggested that 

having more contacts creates greater alternatives for obtaining valued resources and more ideas, Burt 

[38] noted that size is a mixed blessing. Thus, in the organisational efficiency of joint projects, some 

researchers point out that when the number of partners is high, clustering and non-cohesion result in 

inefficiencies in the operation of exploration projects [38], [28]. In the same sense, in exploitation 

projects, when the number of partners is low, the risks reside in the lack of motivation due to the 

burden of the project for each partner, and in the difficulties in obtaining resources [39],[16], [40], 

[41].  

Regarding the type of partners involved in the structure of the network, researchers have pointed 

out that exploration projects formed only by universities and/or research centres run the risk of 

obtaining less applied or innovative results [9], [42]; however, greater diversity in the type of partners 

involved in the projects may not lead to a shared vision that provides a common understanding of the 

collective objectives and the proper ways to act within the network [43]. Moreover, other problems 

such as lack of communication between partners, the lack of mutual understanding, and other cultural 

failures, may result in inefficiencies [44], [39], [36], [45]. These are classic risks inherent in the 

cooperation between universities and firms which, in general, generate inefficiencies in the project 

performance [45].  

Consequently, to the extent that large networks can be difficult to maintain and may experience 

diminishing performance, managers need to balance their size and type of partners to achieve the 

network’s objectives. From the foregoing, we formulate the following questions:  
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Research Question 1a: In order to maximise the joint performance, what is the optimal size of the 

network in exploration joint R&D projects? 

Research Question 1b: In order to maximise the joint performance, what is the optimal size of the 

network in exploitation joint R&D projects? 

Research Question 2a: In order to maximise the joint performance, what typology of partners will 

be required to participate in exploration projects? 

Research Question 2b: In order to maximise the joint performance, what typology of partners will 

be required to participate in exploitation projects? 

 

2.3. Social Capital Perspective: Interactions in networks  

Interactions among partners involved in the project comprise the second structural element of joint 

R&D projects. Granovetter [46] defined interaction as a combination of the duration of the tie itself, 

emotional intensity, intimacy or mutual confidence, and reciprocal services between the partners. The 

interactions among the partners have been thoroughly discussed in the social capital literature which 

has been concerned with understanding how interaction affects individual ‘exchange’ and 

‘transactional behaviour’ [19]. These works, as Borgatti and Foster [47] pointed out, have resulted in 

two streams of research. In the first, from the focus of individual exchange, the analysis of network 

structure centres on the quality of the constituent ties –their frequency, intensity and multiplexity-, 

and the role of ties as structures of information exchange. Thus, interactions between partners 

constitute an important source of information and resources for participants in the project. In this 

sense, Granovetter [46], Rowley et al. [48], argued that weak ties are conduits through which partners 

can access novel information, while Borgatti and Halgin [25] indicated that strong ties are the 

appropriate channel for transferring tacit knowledge.  

The second stream of research focuses on interactions as a transactional behaviour structure 

stressing that ties develop a shared understanding of the utility of certain behaviours. Uehara [19] 

points out that this is a result of discussing opinions in highly socialised relationships which, in turn, 
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influence the actions of partners. Coleman [18] argued that closure or dense network structure- the 

extent to which actors’ contacts are connected- facilitates the emergence of effective norms and 

maintains the trustworthiness of others, thereby strengthening social capital. In contrast with 

Coleman’s focus on closure or dense networks, Burt [38] argued that a sparse network with few 

redundant ties often provides greater social capital benefits. Granovetter [49] concluded that dense or 

sparse ties affect the quality of relationships between actors.  

From an integrated point of view, Borgatti and Foster [47] emphasized that both approaches are 

elaborations of the same theory, and that an interesting piece of investigation is the exploration of how 

structural differences alone affect the performance of networks. In the same sense Granovetter [46], 

Burt [38], and Rowley et al. [48] stressed that strength/weak ties and dense/sparse networks are 

central in the study of network performance.  

It is generally accepted that interactions have a significant impact on project performance. 

However, this is a complex relationship and it is not clear exactly how interactions influence project 

performance [50-52]. Thus, while Coleman [18] argued that the structure of the network allows the 

partners to access different types of information, a potential drawback to the strength of relations is 

that through repeated interactions, the exchange partners become more alike and develop similar 

stocks of knowledge; Burt [38] pointed out the benefits of access to non-redundant contacts in order 

to obtain novel information. Some authors have documented that a highly cohesive network implies 

that partners may be exposed to too much information, leading to cognitive overload and poorer work 

performance [53], [22], [6]; others have also supported the idea that these increased social interactions 

may not be associated with parallel increases in outcomes [54], positing a not strictly linear 

relationship in which initially lower-intensity contacts are expected to benefit from significant effects 

in a linear form, although increasing relationship strength will lead to diminishing or negative returns. 

As McFadyen and Cannella [55] pointed out, social interactions involve the costs associated with the 

time, energy and attention needed to establish and maintain relationships. This is especially true for 

exploration projects, when the low level of contract definition needs to be compensated by a certain 
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level of cohesion in order to create social norms for a more efficient exchange [56]. Therefore, taking 

the arguments above, we address another two research questions.  

Research Question 3a: In order to maximise the joint performance, what type of interactions will 

be required for exploration joint R&D projects?  

Research Question 3b: In order to maximise the joint performance, what type of interactions will 

be required for exploitation joint R&D projects? 

 

3. Conceptual model 

We consider that joint R&D projects are supported within structural networks. A structural 

network is a set of points, called nodes or vertices, with connections between them, called links or 

ties. In the context of joint R&D projects, each partner is considered to be a node of the network –

which has its own distinctive contribution to the whole network– and the interactions among partners 

are contemplated as the ties that link them to each other. As we have discussed, depending on the 

objectives of the joint R&D project the structural network will be different. Thus, the number and the 

typology of partners as well as the interactions between partners may vary. 

We analysed the number of nodes in the network or the network size (N) and the typology of these 

nodes/ partners. Given the difficulty to individually analyse the different combinations of partners into 

each network, we use the Gini coefficient dispersion degree of partners (Gp) to measure the higher or 

the lower homogeneity/heterogeneity among the partners taking part in the network.  

For interactions materialised by the ties, we analysed two variables that characterize interactions in 

a network: the intensity of the tie, and the density of the network. Intensity of the tie (I) measures the 

frequency of contacts between two agents. Hence, the network may have strong ties if the frequency 

of contacts is high and weak ties if that frequency is low. The underlying hypothesis is that the higher 

the frequency of contacts, the higher the exchange of resources between agents will be. The second 

variable, density of the network (D) refers to the number of contacts or interrelations established 

among the agents in the network. Thus, depending on this variable networks may be dense if there are 
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a high number of contacts among all agents, and sparse otherwise. This variable is a way to examine 

the extent of the network integration and determines the proportion of all possible links that are 

actually present in the network.  

Having established this departure point we drew up the model of joint R&D projects through a 

systemic approach in which a set of input variables are transformed through a transfer function  into 

results or output variables, that is, f : I  O.  

As input variables (I) we considered the technological dimension of the R&D project measuring 

the number of partners (N), the dispersion degree of partners (Gp), the density of network (Di), and 

the intensity of tie (Ii). As output variable (O) we measured the results of the joint project in terms of 

joint performance (δ).  

fr : (N, Gp, Di, Ii)  δ 

where r is the kind of project considered, exploration or exploitation. 

The joint performance (δ) quantifies the tradeoffs among different efficiency attributes (xi) by 

providing a single metric for the multiple dimensions of the efficient project profile. These inputs are 

the levels of achievement on all of the relevant attributes.  

δ = 
n

i

aiui                                                                                                                   

where ai  is the weight of the attribute i; and ui is the value associated with each attribute xi, being 


n

i

 ai = 1.  

Given a joint project with two possible structures, the structure of the project i is more efficient 

than the structure of the project j, when:  

δi (Ni, Gpi, Di, Ii) >  δj (Nj, Gpj, Dj, Ij )                                                                                           

 

 

 



 10 

4. Data and methodology   

To test the above hypotheses, we rely on primary data obtained on the performance of joint R&D 

projects through a mail survey conducted on a sample of partners taking part in projects developed in 

European biotechnology companies whose primary commercial activity fell within the definition of 

biotechnology as given by OECD. According to the European Association for Bio-industries, at the 

end of 2004 there were 2163 biotechnology companies in the eighteen European countries; as 

numerous companies are small organizations, in this sector partnering has gained in prevalence. 

The sample size was selected at random by stratified sampling, proportional to groups of type of 

project (exploration/exploitation), and European country [57]. We have selected the projects formed 

by public and private European companies between 2000 and 2006. Since 2006, the industry 

experienced a marked increase in both European and US-European mergers and acquisitions, so that 

the effect of partner specific experience would be diluted. However, the selected time period is wide 

enough to track the experience of partners in joint R&D projects accurately, because all projects 

considered had finished and the data were consolidated.   

The sample size was set at 500 companies for a confidence interval of 95% and a significance level 

of 5%. Data were collected through a mail survey to the identified companies to obtain information 

concerning the characteristics of their participation in partnerships and the circumstances that had 

surrounded the formation and development of the joint project. Each questionnaire referred to the 

participation in a specific joint project, and a questionnaire being sent out for each identified joint 

project. Although the majority of the identified companies had participated in more than three 

partnerships, we restricted the number of questionnaires to two, each per type of project. The criterion 

used to choose the two partnerships was the importance of the project, measured by the total finance 

of the project.  

Total Design Methodology was used to administer the mail survey [58]. The questionnaire was 

addressed to the company’s CEOs and project managers. A total of 211 completed questionnaires 

were received from the first mailing. A second mailing was sent three months later and an additional 
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89 questionnaires were received. After a telephone follow up process, 71 extra questionnaire replies 

were collected. 129 mailings were returned as undeliverable or uncompleted. We thus obtained a final 

sample of 371 usable responses (163 for project managers of exploration projects and 208 for project 

managers of exploitation projects). In order to test the potential for non-response bias, we compared 

key attributes of respondents to those of the targeted population sample by employing t-test and 

ANOVA analysis between different mailing states. The results of the t-test for size (p = 0.27; p = 

0.33), and country origin (p = 0.29; p = 0.31), revealed no significant differences between respondent 

and non-respondent groups. Moreover, we also compared first-, second-, and third-wave respondents 

by using ANOVA analysis. The results showed that there was no significant difference between the 

three groups in terms of the two measures. 

3.1. Measurement scales 

Input variables measures 

Following Contractor and Monge [59], we analysed the number of nodes in the network, or the 

network size (N), and the heterogeneity of these nodes/ partners. Thus, network size measures the 

number of partners participating in the network, that is, those partners who have a contractual 

relationship with the network [60].  

Heterogeneity is the most direct indicator of the diversity of partners that the network contacts 

within its environment. Following Chiesa and Manzini [61], partner organisations were distinguished 

according to the following types: universities, research centres, and industries. Each partner typology 

was determined by its frequency of participation in the network and measured by a Likert scale from 1 

(low) to 7 (high frequency). Given the difficulty of analysing the different combinations of partners in 

each network individually, we use the Gini coefficient dispersion degree of partners (Gp) to measure 

the degree of homogeneity/heterogeneity among the partners taking part in the network, which ranges 

between 0 (heterogeneity of partners) and 1 (homogeneity of partners).  
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For interactions materialised by the ties, consistent with the literature and a number of previous 

empirical studies [62], [19], [59], [47], we analysed two variables that characterise the degree of 

interactions in a network: the density of the network and the intensity of the tie,  

Density of the network (D) describes the overall level of interaction reported by network members. 

This measure is based on previous works [62], [59] and on Borgatti and Cross’s [63] definition of the 

network density as the ratio of the number of existing ties in the ego network (other than those 

involving the focal partner) divided by the total possible number of ties among its partners if each 

partner were linked to every other partner. Thus, networks are considered dense if all or a great part of 

their nodes are interconnected and sparse if they are not. The scale ranges from 1 (sparse network) to 

7 (dense network).   

Intensity of the tie (I) measures the strength or weakness of the relationship between two partners 

[62-63]. Following Reagans and McEvily [64], we used two variables to measure the tie strength, the 

emotional closeness and communication frequency. We measured these variables by Likert-type 

items: (1) How close are you with the project partners (no relationship, especially distant, distant, less 

than close, close, especially close, permanent)? (2) On average, how often do you talk to the project 

partners (hardly ever, yearly, quarterly, monthly, weekly, daily, permanent)? Thus, values near 7 

imply that maximum strength of the tie is perceived by the partner; and the opposite if the values are 

near to 1.        

Measure of the dependent variable  

The dependent variable, joint performance (δ), measures the probability of successful performance of 

exploration and exploitation joint R&D projects. As described in the works of Krishnan and Martin 

[65] and Olk [66], we used a perception measure whose inputs are the levels of achievement on all of 

the relevant attributes of the project: time, budget, and results. Its output is measured in units of 

“performance”, where less is better in the case of time and budget, and more is better in the case of 

results. Hence, to evaluate this variable, following the works of Krishnan and Martin [65] and Olk 

[66], we used a perception measure the joint performance (δ) whose inputs are the levels of 



 13 

achievement on all of the relevant attributes of the project: time (x1), budget (x2), and results (x3). To 

form this measure, we asked partners in each particular joint R&D project their perceptions of how 

the project was performed. The Likert scale, from 1 to 7, reflected: (1) The extent to which the 

partners were satisfied with the overall results of the project; (2) The partners’ satisfaction with 

respect to the project schedule; and (3) The extent to which the partners were satisfied with the 

financial performance of the joint project. We calculated the joint performance (δ) by multiplying 

each attribute’s value by its weight (assuming ai =1/3); and adding them in a weighted sum.  Thus, 

values near 7 imply that joint performance perceived by the partner is maximum; and the opposite if 

the values are near to 1.        

 

5. Analysis 

We carried out a pre-test using a structural model to determine the effect of each input variable on 

the output variable. Analysis of reliability from each indicator for these constructs has been tested by 

Cronbach alphas, which are above the desired threshold level of 0.7. Thus, we can accept the validity 

of the constructs. Additionally, we tested our measurement model with the results showing a good fit 

for the exploration data (χ
2 

= 70.276; d.f. = 53; p < 0.01; incremental fit index (IFI) = 0.92; Tucker 

Lewis index (TLI) = 0.90; goodness-of-fit index (GFI) = 0.93; comparative fit index (CFI) = 0.98; 

root mean squares residuals (RMR) = 0.05; and root mean square error of approximation (RMSEA) = 

0.08, and for the exploitation data  (χ
2
 =81.107; d.f.= 62; p < 0.01; IFI = 0.91; TLI = 0.90 ; GFI = 

0.91; CFI = 0.95; RMR = 0.08 and RMSEA = 0.11). Table 1 presents the descriptive statistics, 

Pearson correlation and reliability coefficients for all variables used in this study.  

------------Insert Table 1 about here----------- 

The structural model presents the results of our estimation in the following form:  

   δr = β0 +
i

 βiXi,                                                                                                                              (6) 



 14 

where δ is joint performance, r is the type of project considered, exploration or exploitation; Xi 

represents the independent variables, the coefficient β0 is the estimated constant, and βi the regression 

coefficients. To test the validity of the proposed model, we estimated three different model 

specifications (Tables 2 and 3). Models 1 and 1’ contain dependent variables (δ 

exploitation/exploration) as a function of the number of partners (N), and the dispersion degree of 

partners (Gp). Models 2 and 2’ capture the dependent variables (δ exploitation/exploration) as a 

function of the density of network (D), and the intensity of the tie (I). Models 3 and 3’ contain the 

dependent variables (δ exploitation/exploration) as a function of the number of partners (N), the 

dispersion degree of partners (Gp), the density of network (D), and the intensity of the tie (I). Model 

fits are acceptable with significant chi-square values (p < 0.01) for all models. Also, in Tables 2 and 3 

we show the results obtained for the indexes IFI, TLI, GFI, CFI, RMR and RMSEA in the models, 

which are sufficiently close to the generally acceptable levels. Obtaining an acceptable level of fit 

suggests that the proposed model explains or fits the data quite satisfactorily. In order to evaluate a 

path between variables, significant positive relationships were found between input and output 

variables (p < 0.05).  

------------Insert Tables 2 and 3 about here----------- 

4.1. The design of the artificial neural network 

We represented both exploration and exploitation performance functions using the ANN model. 

Following Hornich et al. [67], we chose the Multilayer Perceptron (MLP) as the specific neural 

architecture for this case. The results of the representation allowed the study of optimisation points for 

which each performance function was maximised, and the determination of the input variable impact 

on the joint performance.  

Following the suggestions from Ciurana et al. [68], the correct structure was selected after having 

tested the ANN-MLP configurations with different numbers of hidden layers, different numbers of 

neurons for each level, and different activation functions (see Table 4). It is observed that an increase 
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in the number of layers within an ANN-MLP leads to a decrease in the estimated efficiency and 

accuracy in the two types of projects considered.   

 

-------------Insert Table 4 about here----------- 

-------------Insert Figures 1 and 2 about here----------- 

 

Therefore, the configuration of our ANN-MLP model for exploration and exploitation projects was 

defined for 4-4-1, which means that there are 4, 4, and 1 neurons in the input, hidden and output 

layers respectively, with sigmoid and linear functions as activation functions. 

Hence, the functional form for the joint performance is as follows: 
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where Xj represents the input variables; j the number of input variables; h(.) and g(.) the sigmoid 

and linear activation functions; αk and ßjk the input and hidden network weights, respectively; and k 

the number of hidden layers.  

We tested the ANN-MLP architecture network for 163 input dates in exploration and 208 in 

exploitation projects. The results of our analysis showed that the ANN-MLP network output had a 

correlation coefficient of about 0.851 for exploration and 0.917 for exploitation with the actual 

outputs, which means a good fit of the ANN-MLP network model. 

We have drawn the joint performance functions with a 2D representation. We used NeuroXL from 

Excel to show the relationship between the different input and output variables as displayed by 

Figures 3, 4, 5 and 6 in the case of exploitation/exploitation projects. Joint performance is represented 

as a function of the network size (N), dispersion degree of partners (Gp), density of the network (D), 

and intensity of ties (I).  

 

-------------Insert Figures 3, 4, 5 and 6 about here----------- 
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6. Results 

The effect of input variables on joint performance for both types of projects is reflected in the 

structural model (Tables 2 and 3). The graphical representations in Figures 3, 4, 5 and 6, show the 

variability of joint performance δ with the structural variables size, partner typology, density, and 

intensity, and the impact and the form of this variation.  

In the case of the influence of network size on joint performance, our results show a significant 

impact in both types of projects considered but with a different sign, as shown in structural models 

(see Tables II and III). While the size has a positive character (p < .001) in exploration projects, it 

affects negatively (p < .001) in exploitation projects. The neural network representations show that 

joint performances have a concave form, whereby we can affirm that a maximum or efficiency point 

exists. The efficiency point of the network in the case of exploitation projects is reached when the 

number of partners ranges from 4 to 7 (joint performance, δ ≈ 5) as shown in Figure 3. In the case of 

exploration projects, however, the efficiency point is reached when the number of partners ranges 

from 14 to 20 (joint performance, δ ≈ 3) as shown in Figure 3. The graphical representation of the 

ANN displayed in Figure 3 shows how joint performance in the case of exploitation projects has a 

greater variation when the number of partners varies. Thus, a maximum in joint performance is 

reached when 4 or 5 partners take part in the network, which Hagedoorn [69] has denoted as the 

‘minimum to cooperate’. From that value on, joint performance moderately decreases until the 

number of partners reaches 8 or more, where it then decreases very quickly. In the case of the 

exploration projects, the representations show that joint performance moderately increases until the 

number of partners reaches 20, where it then remains at the maximum value. 

In the case of the dispersion of the partners, structural models show a significant relationship with 

the joint performance. While the dispersion of partners has a positive character (p < .05) in 

exploration projects, this variable negatively affects (p < .01) exploitation projects. If we observe the 

neural network representations (Figure 4) we obtain similar results for the variable represented. These 
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results indicate that a higher homogeneity in the typology of partners has a positive incidence in the 

performance of the exploration projects, while in the case of exploitation projects this result implies 

that the higher homogeneity in the typology of partners has a negative impact on the perceived 

performance of the project. The value which maximises joint performance, as observed in Figure 4 in 

the case of exploration projects, increases until reaching a maximum (joint performance, δ ≈ 2), when 

the typology of partners is  homogeneous (dispersion degree near to 1).  Similarly, Figure 4 shows, in 

the case of exploitation projects, a decreasing function, reaching the maximum (joint performance, δ ≈ 

1.7) for values of the partner dispersion degree near to 0, that is, when partners are highly 

heterogeneous.   

Network density and intensity of ties have a significant impact on joint performance but with a 

different sign as a function of the type of the project, as shown in the structural model (see Tables 2 

and 3). In exploration projects , intensity  (p < .05) and density (p < .05) have a negative character 

which means that the frequency of contacts among partners, the level of resources committed to the 

project and the interconnection between the participating partners are not important. Regarding the 

impact of density and intensity in exploitation projects, the structural model shows that these two 

variables have a positive and significant impact (p < .001). The structural model and the neural 

network representation show similar results. In fact, the neural network representations in both cases 

show that joint performance has a concave form, whereby we can affirm that a maximum or 

efficiency point exists. Thus, the efficiency point of the network in the case of exploitation projects is 

reached when the value of density ranges from 4 to 5 (joint performance, δ ≈ 3.5) as shown in Figure 

5. In the case of exploration projects, however, the efficiency point is reached when the value of 

density is 2 (Joint performance, δ ≈ 1.5) as shown in Figure 5. In the case of intensity, the efficiency 

point of the network in the case of exploitation projects is reached when this value ranges from 3 to 5 

(joint performance, δ ≈ 5) as shown in Figure 6. In the case of exploration projects however, the 

efficiency point is reached when the value of density falls near 2 (joint performance, δ ≈ 2.5) as seen 

in Figure 6. We can conclude from the representation that high levels of intensity in the interactions 
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and dense networks in the configuration are very important variables in exploitation projects; when 

the density of the network and intensity of interactions are low, there is a significant and negative 

decrease in the perceived performance of exploration projects.  

 

7. Discussion and conclusion 

7.1. Results summary 

The empirical results support that there is an optimal structure for networks in joint R&D projects 

for the two types of projects considered. As regards the number of partners, it is observed that the 

joint performance function in exploration and exploitation projects exhibits a marked concavity. 

These two functions have in common that both are increasing, which means that the increase in the 

number of partners makes a positive marginal contribution to the joint performance of the R&D 

project. This outcome is consistent with the results from Grewal et al. [70, p. 1045] which highlighted 

that in projects ‘the complex task can be spread over more developers, resulting in better organization, 

and hence higher productivity’. Moreover, because of the concave function, while new agents keep 

joining the network the increase in the joint performance function is lower (decreasing returns to 

scale) until those new partners generate a negative increase in the function. This result complements 

recent studies on the performance of networks in which the authors found that the incorporation of 

new partners in an existing network produces redundant resources and capacities, which is 

emphasised through decreasing marginal returns and the worsening of the relationship between 

contributions and payoffs [71].  

Observing the differential aspects of performance functions, our results are consistent with prior 

research on exploitation activities [32], [28], which emphasizes that exploitation projects imply an 

improvement of the skills or the obtaining of resources which are characterised by the immediacy of 

their implementation. On the other hand, exploration activities as pointed out by March [26] imply the 

search for new information, with low immediacy and applicability, and in most cases characterised by 

greater uncertainty in terms of both the results as well as time, which makes the perception of their 
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performance in the short term lower than in the case of exploitation projects [28]. Hence, we may 

conclude that the optimum perceived in network performance functions is conditioned by the type of 

activity developed in the project. Thus, joint performance will be higher as projects have a greater 

immediacy in their applicability (exploitation projects) compared with the less applied projects which 

generally offer long term results (exploration projects).  

Regarding the type of partners and the size of networks, our results are consistent with prior 

research on the structural characteristics of joint R&D projects. As noted in the works of Dyer and 

Nobeoka [27], and Gilsing et al. [29] exploration networks, from a structural viewpoint, are formed by 

a high number of relatively homogeneous partners, while the key characteristics of exploitation 

projects are the low number and the heterogeneity of partners. Such features derive from the project’s 

objective, as March [26] argued. Thus exploitation projects involve the use of existing information to 

improve efficiency and returns from present strategies and competencies. Therefore, following Dyer 

and Nobeoka [27], it is necessary in exploitation projects for both users and sources of information to 

take part. Thus, universities, research centres and firms are common partners in these types of projects 

[72]. In addition, Moulin [71] suggested that immediacy in the implementation of results has a direct 

impact on the number of partners taking part in these applied projects. He argued that if the number of 

partners increases, the relationship contribution vs. payoff decreases which has a negative impact on 

the project performance. Also, the largest number of partners brings about an increase in the 

likelihood that opportunistic behaviour will occur [44], [33] and will consequently produce a negative 

effect on project performance. Regarding exploration projects, according to Gilsing et al. [29] their 

objective is the creation of technological knowledge through a constant search for new opportunities, 

therefore the size and the homogeneity of the network have a positive incidence in the seeking and 

processing of information [28].   

Concerning the results of network density and intensity of ties, the concavity of the curve gives 

new empirical evidence on the optimisation of interrelations in joint projects. Thus, our results, in 

accordance with Rowley et al. [48] and Hagedoorn et al. [3], highlight the importance of strong ties 
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and high interaction among partners  in exploitation projects (dense networks), whereas weak ties and 

sparse networks are the characteristics of arrangements in exploration networks. Another aspect is that 

our results complement the conclusions of previous researchers who pointed out the negative aspects 

associated with high cohesion networks [55], [54].  Accordingly, high cohesion may produce high 

conflict levels between partners and it diminishes the potential to explore new alternatives.  Similarly, 

our results add empirical evidence that the weak interaction between partners may involve governance 

problems and clustering [29].  

 

7.2. Theoretical implications 

Our empirical analysis improves our understanding of joint R&D projects in three ways. First, it 

extends the project management literature, showing empirical evidence on the performance of 

exploration and exploitation joint R&D projects. Our results confirm that the typology of partners, 

network size,  and cohesion have great impact on project results and on the efficiency perceived by 

partners, as well as on the contingent character of the structure with the type of R&D project. 

Second, it extends the resource-based perspective to analyse the impact of structural variables on 

the efficiency of joint R&D projects. Thus, the resource-based perspective suggests that cooperation 

agreements are a popular way for most firms to obtain critical resources which arise not only from 

their own resources but also from the possibility of accessing these resources through cooperation. 

Eisenhardt and Schoonhoven [11] identify the heterogeneity of resources, where not all firms possess 

the same amount or kinds of resources, as a precondition for competitive advantage. Therefore, our 

results are consistent with the logic of the resource-based perspective and complement previous 

research, highlighting two sources of heterogeneity: one which derives from the different typology of 

partners (as in the case of exploitation projects) and another which stems from the diversity of 

information resulting from the higher number of partners (as in the case of exploration projects).   

Third, our research extends social capital theory to analyse the impact of structural variables on the 

performance of joint R&D projects. Social exchange theory emphasizes that interactions between 
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partners provide social capital through the partnership which has an impact on the performance of 

such projects. Thus, Denison et al. [50] suggested the complex nature of the relationship between 

social capital and the efficiency of joint projects, and more recently other researchers have explained 

their nonlinear inverted U-shaped relationship [55], [54]. Therefore, our results are consistent with the 

logic of social exchange theory, and complement previous research adding new empirical evidence on 

the nonlinear and contingent nature existing between interaction and project performance, allowing 

the consideration of the optimisation of interactions in the network.   

7.3. Managerial implications 

There are several practical conclusions we can reach with this paper. For managers, our study 

offers findings that should make partners more informed of networking process. Project managers 

need to suitably design the partnership in terms of number and type of partners and interactions, 

taking into account the technological objectives of the project. In this sense, the opportunities 

provided by networks are also positional, derived from the density and intensity of ties with partners 

in the project. We believe our analysis identifies interesting aspects for practitioners seeking to 

maximize the upside of joint R&D projects' membership. Thus, the reduced number of heterogeneous 

partners in exploitation projects cannot be inferred to exploration projects. In a similar way, the 

importance of the network density and the intensity of contacts in exploitation projects cannot be 

generalised to exploration projects, in which a moderate interaction between partners is a key aspect 

in the achievement of a better performance. Finally, the analysis developed here has implications for 

policymakers. In general, knowledge of the conditions under which networks operate allows 

governments to better prepare and support domestic enterprises and institutions when they take part in 

joint R & D projects. From a policy point of view, if joint R&D projects of domestic firms and 

institutions play crucial roles in innovation and competitiveness, governments need to actively nurture 

these partnerships. The results of our analysis support the view that relationships among partners in 

joint R&D projects are characterized by their heterogeneity. To generalize about these relationships, 

and develop policies in support of collaboration, is important to take into account the differences for 
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both set of projects; in general, current policies are mainly directed to creating incentives for firms 

and institutions to participate in international joint R&D projects, with no acknowledgement that 

patterns of collaboration will affect project performance. This paper provides strong evidence that 

structural variables are very important in explaining project performance. 

7.4. Limitations and future research 

This study has some limitations that need to be addressed in future research. First, our study only 

investigates a limited number of structural variables of joint R&D projects. As proposed in social 

network research, there are other variables that may affect project performance from the point of view 

of partners at both a network and dyadic level, such as clustering, robustness, centrality or closeness. 

Further research should be conducted to test the validity of these variables and their impact on the 

explanation of joint project performance.  

Second, our results provide evidence on the performance of both exploration and exploitation joint 

R&D projects, but they are limited to only one sector, biotechnology.  Future research efforts could 

extend similar inquiries to other contexts of projects, examining the conditions under which 

interactions between these structural variables may result in superior performance.  

Third, this study investigates only the structural configuration as an explanation of the mechanism 

of joint performance, leaving some other aspects unexplored, i.e. the social structures that shape the 

technological outcomes and network behaviour. Future research could continue the studies of these 

issues offering new insights into how additional variables, such as trust, confidence and relational 

norms, affect the performance of joint projects.  

Fourth, the cross-sectional nature of the information gathered in this study constrains the analysis 

of temporal effects. Longitudinal data would have been useful to determine whether the effect of size, 

diversity and interactions in the network was a short-term effect or if constitute an enduring process 

over time [73]. However, it has been also argued that the potential reliability shortcomings of 

longitudinal data may cause flawed results [74], mainly due to the unlikely sustained availability and 

cooperation required of key informants [75].      
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Despite these limitations, the analysis suggested in this paper has identified the synergies between 

size, partner type, network density and intensity of ties with the focus on joint R&D projects. Our 

study has investigated the interplay of those variables depending on the exploration vs. exploitation 

nature of joint R&D projects, which has enhanced our understanding of structural aspects in the 

performance of this type of partnership, adding novel information on the operation of such projects.  
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 Table 1. 

Descriptive statistics, mean, standard deviation, Cronbach’s alpha and bivariate correlation for all 

pairs of variables 

Variables Mean S.D. α 1 2 3 4 5 

Joint exploration projects (N =163)         

1. Joint performance 2.7 0.50  0.739 1.000 0.320 0.118 -0.055 -0.174 

2. Network size 9.8 2.02    -  1.000 0.025 -0.009 0.089 

3. Partners’ dispersion degree  0.6 0.18    -   1.000 0.053 0.096 

4. Network density 3.2 0.96   -    1.000 0.281 

5. Tie intensity 2.1 1.01 0.877     1.000 

Joint exploitation projects (N =208)         

1. Joint performance 3.7 1.56 0.802 1.000 -0.227 -0.185 0.291 0.324 

2. Network size 4.9 1.04 -  1.000 0.010 -0.034 -0.097 

3. Partners’ dispersion degree  0.2 0.15 -   1.000 0.055 0.032 

4. Network density 4.1 0.33 -    1.000 0.348 

5. Tie intensity 4.7 0.61 0.854     1.000 

 

Table 2.  

     Structural model for exploration projects 

 
Variables Exploration Projects 

M1 M2 M3 
Standarized  

effect 

t-value Standarized  

effect 

t-value Standarized 

effect 

t-value 

Size of network 0.774*** 6.186 - - 0.725*** 6.509 

Degree of partners dispersion 0.119* 2.219 - - 0.137* 2.104 

Intensity of ties - - -0.192* 2.193 -0.157* 2.118 

Network Density  - - -0.287* -2.609 -0.201* -2.391 

M1: χ2 =92.011; d.f.=69; p<0.01;  IFI=0.91; TLI=0.91; GFI=0.92; CFI=0.97; RMR=0.05 and RMSEA=0.05 

M2: χ2 =93.339; d.f.= 75; p<0.01; ; IFI=0.90; TLI=0.88; GFI=0.90; CFI=0.95; RMR=0.05 and RMSEA=0.06 

M3: χ2 =107.502; d.f.=81; p<0.01; IFI=0.91; TLI=0.91;GFI=0.90; CFI=0.97; RMR=0.05 and RMSEA=0.04 

*p<.05; **p<.01; ***p<.001 

  

 

Table 3.  

Structural model for exploitation projects 

 
Variables Exploitation Projects 

M1’ M2’ M3’ 
Standarized  

effect 

t-value Standarized  

effect 

t-value Standarized 

effect 

t-value 

Size of network -0.402*** -5.995 - - -0.397*** -5.020 

Degree of partners dispersion -0.127** -3.672 - - -0.105* -2.911 

Intensity of ties - - 0.714*** 6.721 0.702*** 6.105 

Network Density  - - 0.609*** 6.138 0.591*** 5.977 

M1: χ2 =118.106; d.f.=84; p<0.01; IFI=0.91; TLI=0.90;  GFI=0.92; CFI=0.93; RMR=0.04 and RMSEA=0.06 

M2: χ2 =115.187; d.f.= 87; p<0.01; ; IFI=0.90; TLI=0.90; GFI=0.92; CFI=0.91; RMR=0.06 and RMSEA=0.05 

M3: χ2 =120.143; d.f.=90; p<0.01; ; IFI=0.93; TLI=0.92;GFI=0.91; CFI=0.93; RMR=0.05 and RMSA=0.06 

                         *p<.05; **p<.01; ***p<.001 
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Table 4. 

Number of layers and number of neurons per hidden layer experimentation 

Experimental 

numbers 

No. of hidden 

layers 

No. of neurons per 

layer 

1-6 1 4,5, 6, 8,10,11 

7-12 2 4,5, 6, 8,10,11 

13-18 3 4,5, 6, 8,10,11 

 Activation functions: sigmoid and linear functions; log-sigmoid and linear functions, 

 sigmoid and sigmoid functions, log-sigmoid and log-sigmoid functions 
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Architecture: ANN- MLP, with sigmoid and linear functions as activation functions. 
Fig. 1. Effect of the number of hidden layers vs. Root Mean Square error in exploitation projects 
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Architecture: ANN-MLP, with sigmoid and linear functions as activation functions. 
Fig. 2. Effect of the number of hidden layers vs. Root Mean Square error in exploration projects 
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Fig. 3. Effect of Network Size on Joint Performance 
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Fig. 4. Effect of Degree of Partners Dispersion on Joint Performance 
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Fig. 5. Effect of Density on Joint Performance 
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Fig. 6. Effect of Intensity on Joint Performance 

 


