
LePUS3 and Class-Z Reference Manual

Technical Report CSM-474, ISSN 1744-8050

Amnon H Eden, Epameinondas Gasparis, Jonathan Nicholson

Department of Computer Science, University of Essex, United Kingdom

Abstract

This document formally defines the elements in the syntax and the semantics of LePUS3 and the Class-Z specification languages. It was designed to satisfy the rigid

requirements of mathematical logic, and it is therefore unsuitable for learning LePUS3 and Class-Z. More suitable for this purpose will be the book "Object-Oriented

Modelling" [Eden under preparation]. A legend offering a key to the language's symbols is also available.

Table of contents

1. Introduction

1.1. The metalanguage

2. Semantics

2.1. Entities

2.2. Relations

2.3. Superimpositions

2.4. Structures

3. LePUS3 and Class-Z

3.1. Terms

3.2. Relation and predicate symbols

3.3. Formulas

3.4. Specifications

4. Truth conditions

4.1. Satisfying closed specifications

4.2. Satisfying open specifications

5. Consequences

6. Acknowledgements

References

Links

� Legend: Key to LePUS3 and Class-Z Symbols [.pdf]

� Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4 [.pdf] [Nicholson et al. 2007]

� Part I: Abstract Semantics for Java 1.4 Programs

� Part II: Sample Models

1. Introduction
lePUS3 and Class-Z are object-oriented Architecture Description Languages, meaning that they are formal specification and modelling languages for

object-oriented design which were tailored to allow tool support in software modelling, specification, verification, visualization, understanding, and

evolution.

LePUS3 and Class-Z are the product of the collaborative effort of the authors, based on revisions to the LanguagE for Patterns Uniform Specification—

LePUS [Eden 2001]. Class-Z and LePUS3 are equivalent: Every specification in LePUS3 is equivalent to one encoded in Class-Z and vice versa, the

difference being that LePUS3 is a visual language (a specification in LePUS3 is called a Chart) while Class-Z is a symbolic language which borrows the

schema notation from the Z specification language [Spivey 1992].

For more information about LePUS3 and Class-Z please visit: www.lepus.org.uk/about.xml.

1.1. The metalanguage

LePUS3 and Class-Z are defined using classical predicate calculus. It is also easy to show that the both LePUS3 and Class-Z are proper subsets of first-

order predicate calculus (see proposition 1). We use the standard language of mathematical logic in defining the semantics of LePUS3 and Class-Z,

including model theory, predicate calculus, and elementary set theory. Among others, we use the following symbols which carry their usual meanings:

root
31 December 2007

The Axioms of Class-Based Programs have also been transcribed to formulas in FOPL, using the quantifiers ∀ (Forall), ∃ (Exists), and the connectives

∧ (And), ∨ (Or), ⇒ (implies) with their usual meanings.

In addition, we define the following notations to be used in our metalanguage:

Definition I:

Given a set T , the power set T is the set of all subsets of T .

For example, the power set of the set { a , b} is a set of four elements as follows: { a , b}= {{ } , { a} , { b} , { a , b} }
Definition II:

Given a binary relationRelation, the transitive closure of Relation , written Relation+
 , consists of those pairs x , y such that either

one of the following holds:

1. x , y ∈ Relation , or

2. there exists an entity z such that x , z ∈ Relation and z , y ∈ Relation+

For example, since class Vector does NOT inherit directly from (extends or implements) class Object, it would be false to require that vector , object ∈ Inherit

However, Vector does inherit INDIRECTLY from Object directly, so we require that vector , object ∈ Inherit+

If you are unfamiliar with mathematical logic or with these symbols we recommend you consult any introductory book on elementary logic and set

theory such as [Huth & Ryan 2000].

2. Semantics
The semantics of LePUS3 and Class-Z consist of an abstract representation of programs in class-based object-oriented programming languages such as

Java, C++, and Smalltalk. The picture our semantics provides, a design model, is called the abstract semantics of the program. This simplified

representation consists of atomic primitives ('entities of dimension 0') and sets thereof (entities of dimension 1), as well as relations between the

primitive entities.

2.1. Entities

Entities represent elements of the abstract semantics of a program: classes, methods, method signatures, and sets of these entities.

Each entity has a dimension. We shall be primarily concerned with entities of dimension 0 or 1. An entity of dimension 0 is an atomic primitive

(representing either a class, a method, or a method signature in the program), and an entity of dimension 1 is a non-empty, finite set of entities of

dimension 0. More generally, a non-empty, finite set of entities of dimension d is an entity of dimension d+ 1. An entity of dimension d> 0 is called a
higher-dimensional entity.

Entity names are written in underlined fixed-size typeface, where lower case names (e.g., object , collection) are reserved for entities of
dimension 0, and capitalized names (e.g., Objects , Collections) are reserved for entities of dimension 1.

Symbol Meaning

iff if and only if

Is defined as

∈ Set membership

Set union

Definition III:

A class of dimension 0 is an atomic primitive in the unary relationClass . A class of dimension 1 is a non-empty, finite set of classes of
dimension 0.

In the abstract semantics of Java, classes of dimension 0 represent classes, interfaces, and primitive types (e.g. int, char, etc.) in the program.

For example, object is a class of dimension 0 which represents the class java.lang.Object in the abstract semantics of Java programs.
For example, int is a class of dimension 0 which represents the primitive type int in the abstract semantics of Java and C++ programs.
For example, collection is a class of dimension 0 which represents the interface java.util.Collection in the abstract semantics of Java
1.4.

For example, the set { object , int , collection} is a class of dimension 1 in the abstract semantics of a Java 1.4 program.
Also, the unary relationClass is itself also a class of dimension 1.

See more classes of dimension 0 in Example 1 in [Nicholson et al. 2007, Part I]

Definition IV:

A class of dimension 1 Hrc is also a hierarchy of dimension 1 iff it satisfies the following conditions:
1. Hrc contains at least two classes of dimension 0
2. There exists root a class of dimension 0 in Hrc such that for any other class cls in Hrc : cls , root ∈ Inherit+

A 'hierarchy' is therefore a set of classes which includes one 'root' class such that all other classes inherit (possibly indirectly) from it.

For example, any set of two or more classes in Java which includes java.lang.Object is a hierarchy.

See more hierarchies in Example 2 in [Nicholson et al. 2007, Part II].

Definition V:

A signature of dimension 0 is an atomic primitive in the unary relationSignature . A signature of dimension 1 is a non-empty, finite
set of signatures of dimension 0.

Signatures are abstractions of method name and argument types.

For example, the abstract semantics of the java.util package shall contain one signature of dimension 0: "size()" which represents the

signature of both methods ArrayList.size() and LinkedList.size().

For example, the abstract semantics of the java.util package shall contain one signature of dimension 0: "add(Object)" which represents the

signature of both methods ArrayList.add(Object) and LinkedList.add(Object).

For example, if size and add are signatures of dimension 0 then { size , add} is a signature of dimension 1.
See more signatures in Java in Example 2 and Example 3 in [Nicholson et al. 2007, Part I].

Unlike methods, signature entities have a dedicated symbols in LePUS3 and Class-Z (e.g., 0-dimensional and 1-dimensional signature constants)

whereas method entities have no dedicate symbols for representing them. Instead, we use superimpositions, the advantage is that of being able to

represent a large set of methods indirectly using a single signature.

Definition VI:

A method of dimension 0 is an atomic primitive in the unary relationMethod . A method of dimension 1 is a non-empty, finite set of
methods of dimension 0.

Method entities abstract the procedural units of execution in class-based programming languages: 'methods' in Java and Smalltalk, functions and

function members in C++. However Method entities have no dedicated symbol in LePUS3 and Class-Z. Instead, method entities are represented using

the superimposition of signature and class symbols, the advantage is that of being able to represent a large set of methods indirectly using a single

signature.

See methods of dimension 0 in Java in Example 2 and Example 3 in [Nicholson et al. 2007, Part I].

2.2. Relations

Relations are simply sets of tuples of entities. We distinguish between unary relations and binary relations as follows:

Definition VII:

A unary relation is a set of entities of dimension 0.

For example, the unary relation Class contains all the classes of dimension 0 in the abstract semantics of a Java 1.4 program, each of which

represents a class, interface, or primitive type. Most commonly, the relation Class will contain at least the entities object and int in the
abstract semantics of any Java program.

See the unary relation Class in the abstract semantics of a Java program in Example 1 and Example 2 in [Nicholson et al. 2007, Part I].

For example, the unary relation Method contains all the methods of dimension 0 in the abstract semantics of a Java or a C++ program, each
of which represents a method (in C++: a function or a function member).

See the unary relation Method in the abstract semantics of a Java program in Example 2 and Example 3 in [Nicholson et al. 2007, Part I].

For example, the unary relation Abstract contains all those classes of dimension 0 and methods of dimension 0 which represent the abstract
methods, abstract classes, and the interfaces in the abstract semantics of a Java program.

See the unary relation Abstract in the abstract semantics of a Java program in Example 4 in [Nicholson et al. 2007, Part I].

Definition VIII:

A binary relation is a set of pairs of entities of dimension 0.

For example, the binary relation Inherit represents the extends, implements, and the subtype relations between Java classes and/or

interfaces. For instance, Inherit={ collection , object , list , collection } since the Java interface Collection is a subtype of
class Object and the interface List implements the interface Collection.

See the binary relation Inherit in the abstract semantics of a Java program in Example 5 in [Nicholson et al. 2007, Part I].

For example, the binary relation Member represents the relation between a class containing a field and the class of the contained field in a
Java program (in C++: between a class containing a data member and the class/type of the contained member.)

See the binary relation Member in the abstract semantics of a Java program in Example 7 in [Nicholson et al. 2007, Part I].

2.3. Superimpositions

In LePUS3 and Class-Z, methods have no dedicated symbol. Instead, of the form superimposition terms of the form sig cls represent methods by
indicating their signature (sig) and and the class in which they are defined (cls). (C++ global functions are represented as methods that are not
members of any class, and multiple-dispatch methods in languages such as CLOS can be members of more than one class.)

Definition IX:

A 0-dimensional superimposition is an expression of the form sig cls , where sig is a signature of dimension 0 and cls is a class of
dimension 0. The binary operator is a partial functional relation, defined as follows:

� If there exists mth a method of dimension 0 such that sig , mth ∈ SingatureOf and mth , cls ∈ Member then sig cls mth

� Otherwise, if there exists exactly one supercls class of dimension 0 such that cls , supercls ∈ Inherit for which sig supercls
is defined and sig supercls∈ Inheritable then sig cls sig supercls

� Otherwise the term sig cls is undefined.
Given Signatures={ s1,… , sn} a signature of dimension 1 and Classes={ c1,… , ck} a class of dimension 1, we also define the
following 1-dimensional superimposition expressions: sig Classes { sig c1,… , sig ck}

 Signatures cls { s1 cls ,… , sn cls}
The method of dimension 1 sig Classes is called a clan.
The method of dimension 1 Signatures cls is called a tribe.

In other words, the superimposition sig cls selects the unique method with signature sig that is either defined explicitly in class cls or inherited
from exactly one other class.

For example, if size represents the signature of the method ArrayList.size() and arrayList represents class ArrayList then the
superimposition size arrayList represents the method ArrayList.size().
For example, if iterator represents the signature of the method AbstractSequentialList.iterator() and linkedList represents class
LinkedList then the superimposition iterator LinkedList represents method AbstractSequentialList.iterator() which class
LinkedList inherits from class AbstractSequentialList.

For more superimpositions see Example 4 in [Nicholson et al. 2007, Part II].

2.4. Structures

Our notion of semantics is based on finite structures in model theory. A finite structure F is simply a pair , such that (also called the

universe of F) is a finite set of primitive entities (in our metalanguage: entities of dimension 0) and is a set of relations. We extend the traditional

notion of a finite structure with the notion of a design model as follows:

Definition X:

A design model is a triple *, , such that:

� * , called the universe of , is a finite set of entities such that * 0 1 where 0 is a finite set of entities of dimension 0 and 1 is

a finite set of entities of dimension 1.

� is a set of relations, including:

� The unary relationsClass , Method , Signature , Abstract , and Inheritable

� The binary relations Inherit , Member , Produce , Call , Create , Forward , Return , Aggregate , and SignatureOf
� is an interpretation function which maps some constant terms to entities in * depending on the type of the term:

For superimposition terms, we define:

(τ1 τ2) (τ1) (τ1)

If defined then (τ) is called the interpretation of τ .

� satisfies the Axioms of Class-Based Programs.

t is a constant term of type If defined, (t) is a

class of dimension 0

class of dimension 1

signature of dimension 0

signature of dimension 1

method of dimension 0

method of dimension 1

hierarchy of dimension 1

Design models supply us with a greatly simplified picture of the program: They abstract the intricate details of the implementation, which are normally

buried deep in the source code, and represent them using of primitive entities ('entities of dimension 0') and relations amongst them. In addition,

design models supply us with sets of entities ('entities of dimension 1'), which cluster together related classes and related methods.

Our definition of design models extends naturally to include entities of any finite dimension.

See sample design models for Java programs see documents "Abstract Semantics for Java 1.4 Programs" [Nicholson et al. 2007, Part I] and

"Sample Models" [Nicholson et al. 2007, Part II].

Definition XI:

The following are the Axioms of Class-Based Programs:

Axiom 1: No two methods with same signature (method name and argument type) are members of same class:

∀ sig∈ Signature cls∈ Class mth1 , mth2∈ Method ●

 mth1, cls ∈ Member∧ sig , mth1 ∈ SignatureOf∧
 mth2, cls ∈ Member∧ sig , mth2 ∈ SignatureOf⇒
 mth1= mth2

Axiom 2: There are no cycles in the inheritance graph:

∀ cls1 , cls2∈ Class ●

 cls1, cls2 ∉ Inherit+∨ cls2, cls1 ∉ Inherit+

Axiom 3: Every method has exactly one signature:

∀ mth∈ Method ∃! sig∈ Signature ● sig , mth ∈ SignatureOf

Axiom 4: Some dependencies exist between relations as follows:

∀ mth∈ Method cls∈ Class ● mth , cls ∈ Produce⇒ mth , cls ∈ Create∧ mth , cls ∈ Return

∀ mth1 , mth2∈ Method ●

 mth1, mth2 ∈ Forward⇒ mth1, mth2 ∈ Call

∀ cls1 , cls2∈ Class ●

 cls1, cls2 ∈ Aggregate⇒ cls1, cls2 ∈ Member

The Axioms of Class-Based Programs require that the design model—the abstract representation of a program—does not violate some inherent principles

of object-oriented programming.

3. LePUS3 and Class-Z
This section is concerned with the actual specification languages. Specifications are spelled out using terms, which stand for entities, and formulas,

which impose constraints on entities.

3.1. Terms

Terms stand for entities. Each term is either a constant or a variable term: Constant terms represent specific entities where, as a general rule, the

constant class/signature/hierarchy x is assigned to the class/signature/hierarchy entity x , and variable terms range over entities. Each term has a
type and (term) dimension as specified in the following is a list of symbols for the terms in LePUS3 and Class-Z:

Type Symbol in LePUS3 Symbol in Class-Z Symbol namecls 0-dimensional class constant

cls 0-dimensional class variable Classes 1-dimensional class constant

Classes 1-dimensional class variable sig 0-dimensional signature constant

sig 0-dimensional signature variable Signatures 1-dimensional signature constant

Signatures 1-dimensional signature variable Hrc 1-dimensional hierarchy constant

Hrc 1-dimensional hierarchy variable sig cls 0-dimensional method constant term

sig cls 0-dimensional method variable terms Signatures cls
1-dimensional superimposition (method) constant terms sig Classes

The type is a subtype of ; in other words, every term of type is also a term of type . Note

that superimpositions can also mix variables with constants, in which case they yield a method variable of the respective dimension and type.

For sample terms and their semantics see the examples in §1: Terms in [Nicholson et al. 2007, Part II].

3.2. Relation and predicate symbols

For each relationRelation we assign the relation symbol Relation . The symbol Relation+
 is assigned to the transitive closure of binary relation

Relation . The following relation and predicate symbols are admitted:

3.3. Formulas

Well-formed formulas, or in short formulas, employ predicate symbols, relation symbols, and terms to specify constraints on the entities and relations

represented by these symbols.

Definition XII:

Let UnaryRelation be a unary relation symbol, BinaryRelation a binary (possibly transitive) relation symbol, t1 and t2 terms of dimension 0.
Then the following are ground formulas:

sig Hrc
Signatures cls

1-dimensional superimposition (method) variable terms
sig Classessig Hrc

Symbol in LePUS3 Symbol in Class-Z symbol name

UnaryRelation Unary relation symbols

BinaryRelation Binary relation symbols

BinaryRelation+ Transitive binary relation symbol

ALL ALL predicate symbol

TOTAL TOTAL predicate symbol

ISOMORPHIC ISOMORPHIC predicate symbol

Ground formulas in Class-Z Ground formulas in LePUS3

UnaryRelation(t1) A unary relation symbol placed over the term t1

BinaryRelation(t1,t2) A binary relation symbol connecting the term t1 to the term t1

Let τ1 and τ2 be terms, T1 and T2 terms of dimension 1. Then the following are called predicate formulas:

Note that in LePUS3 we do not distinguish between the ground formula BinaryRelation(t1,t2) and the predicate formula
TOTAL(BinaryRelation , t1,t2) . Since both formulas are satisfied under the same conditions, there is no ambiguity here.

For sample Class-Z formulas and their semantics see the examples in §2: Ground Formulas and §3: Predicate Formulas in [Nicholson et al.

2007, Part II].

3.4. Specifications

A specification is either a LePUS3 chart or a Class-Z schema.

Definition XIII:

A LePUS3 Chart is a set of terms and well-formed formulas in LePUS3.

You can find many sample charts in lepus.org.uk/examples.xml and in lepus.org.uk/ref/legend.

Definition XIV:

A Class-Z Schema is an expression of the following form:

where each

� declaration is a comma-separated list of constants and variables
� TYPE is a type symbol

� formula is a well-formed formula in Class-Z

You can find many sample schemas in lepus.org.uk/examples.xml and in lepus.org.uk/ref/legend.

We also distinguish between two kinds of specifications: those that contain variables and those that do not.

Definition XV:

A specification which contains no variables is called a closed specification, otherwise it is called an open specification.

For example, a program is only modelled using closed specifications consisting of 1- and 0-dimensional class, hierarchy, and signature

constants.

For example, the specifications of any design pattern, in particular the specifications of all the 'Gang of Four' design patterns are open. (See for

example the "'Gang of Four' Companion" [Eden et al. 2007].)

Predicate formulas in Class-Z Predicate formulas in LePUS3

ALL(UnaryRelation ,T1) An ALL predicate symbol marked with UnaryRelation placed over T1

TOTAL(BinaryRelation , τ1,τ2) A TOTAL predicate symbol marked with BinaryRelation connecting τ1 to τ2

ISOMORPHIC(BinaryRelation ,T1,T2) An ISOMORPHIC predicate symbol marked with BinaryRelation connecting T1 to T2

SchemaName

declaration : TYPE

declaration : TYPE

…

formula

formula

…

4. Truth conditions

Truth conditions describe the circumstances in which a specificationΨ is satisfied by a design model (also ' models Ψ '). We follow the standard

Tarski truth condition style, which if satisfied we write

Ψ

The satisfaction of a specification is first defined for specifications that do not contain variables (closed specifications.) The satisfaction of specifications

with variables (open specifications) is defined based on that.

The following notational conventions are used in the definitions below: UnaryRelation is a unary relation symbol; BinaryRelation is a binary

relation (possibly transitive) symbol; t , t1 and t2 are 0-dimensional constant terms; T , T1 and T2 are 1-dimensional constant terms.

4.1. Satisfying closed specifications

An closed specificationΨ is satisfied by a design model , written Ψ , iff all the terms in Ψ have an interpretation in and all the formulas in

Ψ are satisfied by . The specific conditions depend on the formulas as laid as follows. Detailed verification examples and counter-examples are given

the document: "Sample Models" [Nicholson et al. 2007].

Definition XVI:

A ground formula is satisfied by design model = *, , under the following conditions:

� UnaryRelation(t) iff (t) ∈ UnaryRelation

� BinaryRelation(t1,t2) if one of the following conditions hold:

� (t1) , (t2) ∈ BinaryRelation , or

� Subtyping: There exists some class of dimension 0 subcls in * such that (t1) , subcls ∈ BinaryRelation and subcls , (t2) ∈ Inherit+

For example, the formula Member(a,b) is satisfied not only when a member of class b is defined inside class a but also by a program which
defines a member of class c which inherits from class b inside class a .
For example, the ground formula Inherit+(a,b) is semantically equivalent to the ground formula Inherit(a,b) .
For sample Class-Z ground formulas and their semantics see the examples in §2: Ground Formulas in [Nicholson et al. 2007, Part II].

For subtyping, see Example 7:B in [Nicholson et al. 2007, Part I].

Predicates offer us means for imposing constraints on the relations that may exist between entities. The conditions for satisfying each predicate

formula are defined below using the conditions for satisfying ground formulas.

The truth conditions for predicate formulas are defined below for 1-dimensional term arguments. But 0-dimensional term arguments for predicate

formulas are also allowed, where each 0-dimensional term argument t is treated as representing the singleton set { (t) } . For example:

TOTAL(BinaryRelation , t,T)

iff

TOTAL(BinaryRelation , { t} ,T)

where ({ t})= { (t) } .

Definition XVII:

An ALL predicate formula of the form ALL(UnaryRelation ,T) is satisfied by design model = *, , iff for each e entity in (T) :
UnaryRelation(e) .
For example, the predicate formula ALL(Abstract , Operations collection) requires that all the methods in class Collection with a
signature represented by the elements of Operations are abstract.
See also Example 15, Example 16, and Example 17 in [Nicholson et al. 2007, Part II].

Definition XVIII:

A TOTAL predicate formula of the form TOTAL(BinaryRelation ,T1,T2) is satisfied by design model = *, , iff for each e1

entity in (T1) that is not an abstract method there exists some e2 entity in (T2) such that BinaryRelation(e1,e2) .

The formula TOTAL(BinaryRelation , T1,T2) thus indicates that the relation BinaryRelation is a total functional relation from the set of
entities represented by the first term T1 (with the exception of abstract methods) to the set of entities represented by the second term T2

For example, the formula TOTAL(Member , { cls1, cls2} ,object) requires that class cls1 and class cls2 have each a member of type
Object (or of some class that inherits from it.)

See also Example 18, Example 19, and Example 20 in [Nicholson et al. 2007, Part II].

Definition XIX:

An ISOMORPHIC predicate formula of the form ISOMORPHIC(BinaryRelation ,T1,T2) is satisfied by design model = *, ,

iff there exists a pair e1, e2 where e1∈ (T1) and e2∈ (T2) such that:

� BinaryRelation(e1,e2) unless both e1 and e2 are abstract; and

� ISOMORPHIC(BinaryRelation ,T1- e1,T2- e2) unless both T1- e1 and T2- e2 are empty.

where (T - e)= (T) - (e)
The formula ISOMORPHIC(BinaryRelation , T1,T2) thus indicates that there exists a subset of the relation BinaryRelation whic is a
bijective functional (one-to-one and onto) relation from the set of entities represented by the term T1 (excluding abstract entities) to the set of entities

represented by the term T2 (possibly excluding the abstract counterparts to the abstract entities in T2) .

For example, the formula ISOMORPHIC(Member , { a1, a2} ,{ b1, b2}) , if all classes are non-abstract, requires that either that class A1
has a member of class B1 (or of its subtypes) and class A2 has a member of class B2 (or of its subtypes), or that class A1 has a member of class

B2 (or of its subtypes) and class A2 has a member of class B1 (or of its subtypes).

See also Example 21, Example 22, Example 23, Example 24, and Example 25 in [Nicholson et al. 2007, Part II].

4.2. Satisfying open specifications

The truth conditions for open specifications require the notion of an assignment.

Definition XX:

An assignmentg from variables v1… vn to constants c1… ck is a function g : { v1,… , vn} → { c1,… , ck}

A well-formed assignment associates each variable with a constant of same type and dimension. Assignments are used so as to associate variables in

generic specifications, such as design patterns, to constants representing specific elements of concrete programs.

For example, an assignment JavaIterator from the Iterator design pattern [Eden et al. 2007] to the abstract semantics of java.util may
read:

JavaIterator(Aggregates) = { collection , linkedList , hashSet}

We say that the open specification Φ [v1,… , vn] , where v1… vn are all the (distinct) variables in Φ , is satisfied by a design

model = *, , under the assignment g : { v1,… , vn} → { c1,… , ck} , written

gΦ [v1,… , vn]

iff

Φ [g(v 1)/v 1 ,… , g(v n)/v n]

where Φ [g(v 1)/v 1 ,… , g(v n)/v n] is that closed specification which results from the consistent replacement of variable v1 with the constant

g(v1) , ... and the consistent replacement of variable vn with the constant g(vn) in the open specification Φ .

For example, let IteratorPattern [Aggregates , Iterators , next , newItr , element] be the specification of the the Iterator design
pattern [Eden et al. 2007], design model JavaUtil is the abstract semantics of the java.util package, and JavaIterator be the

assignment from {Aggregates , Iterators , next , newItr , element} to the universe of JavaUtil . Then we write

JavaUtil JavaIteratorIteratorPattern

to indicate that java.util satisfies (also 'models' or 'implements') the Iterator design pattern.

5. Consequences
Proposition 1: LePUS3 and Class-Z are proper subsets of FOPL.

Proposition 2: Inherit+
 , the transitive closure of the Inherit relation, is a strict order on Class

Proposition 3: SingatureOf is a functional relation.

6. Acknowledgements
Many thanks go to Ray Turner for his continuous help.

References
� Amnon H. Eden. “Formal Specification of Object-Oriented Design.” Proc. Int'l Conf. Multidisciplinary Design in Engineering CSME-MDE 2001 (21–

22 Nov. 2001), Montreal, Canada. [.pdf]

� Amnon H. Eden. Object-Oriented Modelling. Under preparation.

� Amnon H. Eden, Jonathan Nicholson, Epameinondas Gasparis. “The LePUS3 and Class-Z companion to the 'Gang of Four' design patterns.”

Technical report CSM-472, ISSN 1744-8050 (2007), Department of Computer Science, University of Essex. [.pdf]

� Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Reading:

Addison-Wesley, 1995.

� Michael R.A. Huth, Mark Ryan. Logic in Computer Science. Cambridge: Cambridge University Press, 2000.

� Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis. "Verification of LePUS3/Class-Z Specifications: Sample models and Abstract

Semantics for Java 1.4 (Part I; Part II)." Department of Computer Science, University of Essex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007).

[.pdf]

JavaIterator(Iterators) = { iterator , linkedList.ListItr , hashMap.KeyIterator}
JavaIterator(next) = next
JavaIterator(newItr) = iterator()
JavaIterator(element) = object

� J. Michael Spivey. The Z Notation: A Reference Manual. Hertfordshire: Prentice-Hall, 1992.

