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Abstract. LePUS3 is a specification and modelling language designed to capture the building 
blocks of O-O design at different levels of abstraction. We identify the set of LePUS3 specifica-
tions that agree with (are satisfied by) an O-O program (represented by a LePUS3 design model) 
as the search space for a host of design mining problems such as: reverse engineering, design re-
covery, design pattern detection, design pattern discovery. We show that this search space is a 
mathematical lattice (with relation to a particular program) and we demonstrate how it can be 
traversed using a set of abstraction and concretization operators. 
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Conventions:  

 denotes deducibility in classical logic. 
 denotes satisfiability as defined in [Eden et. al 2007]. 

Given set S, ⎢S⎢ stands for the size of S. 
LePUS3 constant terms: 

• Lower case fixed-width characters such as x are reserved for 0-dimensional constant 
terms (see also Definition 1) 

• Capitalized fixed-width characters such as Y are reserved for 1-dimensional constant 
terms (see also Definition 1) 

• xd  stands for a constant term of dimension d 
Relation refers to a relation, and Relation refers to a relation symbol. 
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1 Preliminary definitions 

In this section we provide or adopt from [Eden et. al 2007], [Eden et. al 2007b] all the 
required definitions. 
 
Definition 1: A design model for LePUS3 is a finite model-theoretic structure M=〈U*,R,I〉 

such that: 
• U*, called the universe of M , is a finite set of entities such that U* U0 ∪ U1 where: 

• U0 is a finite set of primitive entities that we call entities of dimension 0 

• U1 P(U0). An entity in U1 is called an entity of dimension 1 

• R is a set of relations, including: 

• the unary relations Class, Method, Signature, Inheritable and Abstract 

• the binary relations Inherit, Member, Produce, Call, Forward, Create, 

Return, Aggregate and SignatureOf 
• I is an interpretation1 function as follows: 

• if c is a constant term then I(c) is an entity in U* 

• if c and s are constant terms, and I(s)⊗I(c) is defined, then I(s⊗c)= 

I(s)⊗I(c) 

if t is in the domain of I then I(t) is the interpretation of t 

• M  fixes the interpretation of higher dimensional (non 0-dimensional) constants 
 
Definition 2: A LePUS3 ground formula is a formula in one of the following: 

• a declaration in the form t : CLASS (or SIGNATURE) which is shorthand for 

Class(t) (or Signature(t)) 

• a formula in the form UnaryRelation(t) where t is a 0-dimensional term 

• a formula in the form BinaryRelation(t1,t2) where t1, t2 are 0-dimensional terms 
For example, the schema presented in Table 1 contains 5 ground formulas. 
 
Definition 3: A LePUS3 predicate formula is one of the following: 

• a formula in the form ALL(UnaryRelation,T) where ALL is a predicate and T higher 
dimensional term 

                                                 
 
1 To make sure that we ignore cases where different terms have the same interpretation we shall consider in this 

document I to be a bijective function. 
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• a formula in the form P(BinaryRelation,T1,T2) where P is the TOTAL or 

ISOMORPHIC predicate and T1, T2 are higher dimensional terms 
For example, the schema presented in Table 1 contains 1 predicate formula. 
 

Table 1 – A Servlet example schema 
 

  
 Servlet  

aServlet,anotherServlet, HTTPServlet : CLASS 

JavaCollections : P(CLASS) 

Inherit(aServlet, HTTPServlet) 

Inherit(anotherServlet, HTTPServlet) 

TOTAL(Member, aServlet, JavaCollections) 

 
Definition 4: A LePUS3 well-formed formula (wff) is one of the following: 

• a declaration in the form T : P(CLASS) (or P(SIGNATURE)),  which is a short-

hand for ALL(Class,T)  (or ALL(Signature,T)) 
• a ground formula 
• a predicate formula 

For example, the schema presented in Table 1 contains 7 wffs. 
 
Definition 5: A LePUS3 specification is a finite set of LePUS3 wffs. 
 
Definition 6: A ground formula is satisfied by design model M  under the following condi-
tions: 

• M  UnaryRelation(t) if and only if I(t ) ∈ UnaryRelation 

• M  BinaryRelation(t1,t2) if and only if one of the following conditions hold: 

o 〈I(t1),I(t2)〉 ∈ BinaryRelation 

o Subtyping: There exists some class of dimension 0 subcls in U* such that 

〈I(t1),subcls〉 ∈ BinaryRelation and 〈subcls,I(t2)〉 ∈ Inherit+ 
 
Definition 7: An ALL predicate formula of the form ALL(UnaryRelation,T) is satisfied by 

design model M  if and only if for each entity e in I(T1) : M   UnaryRelation(e) 
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Definition 8: A TOTAL predicate formula of the form TOTAL(BinaryRelation,T1,T2) is sat-

isfied by design model M  if and only if for each entity e1 in I(T1) that is not an abstract 

method, there exists some e2 entity in I(T2) such that  M  BinaryRelation(e1,e2) 
 
Definition 9: An ISOMORPHIC predicate formula in the form ISOMORPHIC 

(BinaryRelation,T1,T2) is satisfied by design model M  if and only if there exists pair 〈e1,e2〉 

where e1 ∈ I(T1) and e2 ∈ I(T2) such that: 

• M  BinaryRelation(e1,e2) unless e1, e2 are abstract and 

• M  ISOMORPHIC(BinaryRelation,T1−e1,T2−e2) unless both T1−e1 and T2−e2 are 
empty 

where I(T−e)=I(T)−I(e) 

2 Search Space 

In this section we introduce LePUS3 bottom and top specifications with relation to a 
design model M  (that satisfies them). We establish the conditions under which a specifica-
tion is in normal form and show that the set of specifications and set of specifications in nor-
mal form (with relation to a design model M  that satisfies them) are lattice stuctures. 
 
Definition 10:  Given specifications Φ, Ψ and design model M  we write Φ M  Ψ if and only 
if: 

• Φ  Ψ given M  
• M   Φ implies M   Ψ 

 
For example given the schema in Table 1, there is no way to prove Servlet  Servlet2 using 
some syntactic proof theory and in the general case it would not be satisfied by any model for 
LePUS3. However, given a particular design model M  that satisfies both Servlet and 
Servlet2 we can prove that Servlet M  Servlet2 if we consider that: 

Inherit(aServlet, HTTPServlet)∧Inherit(anotherServlet, HTTPServlet) M 

Hiearachy(Servlets) 
 
As from that specific design model M  we know that:  

I(Servlets)={I(aServlet), I( anotherServlet),I( HTTPServlet)} 
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Table 2 – Another Servlet example schema 
 

  
 Servlet2  

Servlets : HIERARCY 

JavaCollections : P(CLASS) 

 

 
Definition 11:  Given specifications Φ, Ψ and design model M  we say that Φ is equivalent to 
Ψ written as Φ ≡M  Ψ if and only if Φ M  Ψ and Ψ M  Φ. 
 
Proposition 1: For any design model M , M  is a partial order relation as M  is: 

• Reflexive, that is Ψ M  Ψ 
• Anti-symmetric, that is if Ψ M  Φ and Φ M  Ψ then Ψ ≡M  Φ 
• Transitive, that is if Ψ M  Φ and Φ M  Ω then Ψ M  Ω 

 
Definition 12: Spec(M) is the set of all LePUS3 specifications that M  satisfies. 
 
Corollary 1: Spec(M) is a partially ordered set with relation to M . 
 
Corollary 2: Given specifications Φ, Ψ if Φ M  Ψ  then Φ, Ψ are in Spec(M). 
 
Definition 13: A specification Φ is in normal form if and only if: 

• Φ contains only ground formulas 

• There exist no distinct ground formulas ψ, φ in Φ such that  ψ  φ 

2.1 Bottom and Top LePUS3 Specifications 

Definition 14: A bottom specification ⊥M  with relation to a design model M  is a specifica-
tion such that: 

• ⊥M  is in normal form 

• for any specification Φ, ⊥M  M  Φ 
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Definition 15: Let us call MaxM  a specification with relation to design model M  that is cre-

ated  by considering all tuples t in all relations in R such that: 

∀t ∈
∈
∪

R

R
  R  

 

1) If t ∈ Class (t ∈ Signature) then there exists exactly one 0-dimensional constant term t of 

type CLASS  (SIGNATURE) in MaxM  such that I(t) is t 

2) If  t ∈ Method then there exists exactly one 0-dimensional constant c of type CLASS and 

a 0-dimension constant s of type SIGNATURE in MaxM  such that (t,I(s)) ∈ SignatureOf, 

(t,I(c)) ∈ Member and s⊗c is a superimposition expression in at least one wff in MaxM  

3) If t ∈ Abstract then there exists a 0-dimensional constant term t in MaxM  such I(t) is t 

and Abstract(t) is a wff in MaxM  

4) If t ∈ R, and R is one of the following: Member, Inherit, Create, Call, Produce, Return, 

Forward then t is a pair in the form (t1,t2) such that there exist 0-dimensional constant terms 

t1, t2 in MaxM , I(t1) is t1, I(t2) is t2 and R(t1,t2) is a wff in MaxM  
 
Proposition 2: For any design model M , MaxM  is a bottom specification (⊥M). 
 
Proof 
From Definition 15 we know that MaxM  contains all ground formulas that are satisfied by 
design model M . As it contains only ground formulas, it is in normal form (Definition 13). 
And as it contains all possible ground formulas that M  satisfies (Definition 6) it is a bottom 
specification. 

■ 
 
Proposition 3: For any design model M , there is one bottom specification (⊥M). 
 
Proof 
Since LePUS3 specification are sets of formulas, there is only one bottom specification that 
contains all and only ground formulas that M  satisfies (Definition 6). 

■ 
 
 
Corollary 3: For any design model M  and respective bottom specification ⊥M , M  ⊥M 

(and ⊥M  is in Spec(M)). 
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Definition 16: A top specification M  with relation to a design model M  is a specification 
such that: 

• M  is in normal form 
• for any specification Φ, Φ M  M  

 
Definition 17: Let us call Min the specification which is the empty set: Min={}. 
 
Corollary 4: For any design model M, Min is a top specification ( M). 
 
Corollary 5: For any design model M , there is one bottom specification M . 
 
Corollary 6: For any design model M  M  (and M  is in Spec(M)). 

2.2 Normal Forms of LePUS3 Specifications 

Given a specification in normal form, we examine its properties and establish when a 
specification is the normal form of another (Definition 18). 
 
Corollary 7: For any specifications Φ, Φ’ such that Φ’ ⊆ Φ, if Φ is in normal form then Φ’ is in 
normal form. 
 
Proposition 4: Given specifications Φ, ⊥M  and design model M  such that M   Φ, Φ is in 

normal form if and only if Φ ⊆ ⊥M . 
 
Proof 
If Φ is in normal form then Φ ⊆ ⊥M . 

As M   Φ, we know that there exists a specification ⊥M  (Definition 14) such that one of the 
following is true: 

• Φ=⊥M  as⊥M  is in normal form (Definition 14) 

• Φ≠⊥M . We know that ⊥M  contains all ground formulas that M  satisfies (Proposition 

2). As ⊥M  is in normal form, for all ground formulas ψ in ⊥M  there does not exist 

ground formula φ in ⊥M  such that  ψ  φ (Definition 13).  But also M   Φ, thus M  
satisfies every ground formula in Φ (Definition 6), which means that every ground 

formula in Φ is also in ⊥M . That is Φ ⊂ ⊥M  
 
If Φ ⊆ ⊥M then Ψ is in normal form. 

It follows from (Corollary 7) that Φ is in normal form as ⊥M  is in normal form (Proposition 
2). 

■ 
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Proposition 5: Given specifications Φ, Ψ in normal form and design model M  that satisfies 
Φ, Ψ then Ψ ⊆ Φ if and only if Φ M  Ψ. 
 
Proof 
If  Ψ ⊆ Φ then Φ M  Ψ. 

Let Φ={φ1...φn} and Ψ={φx...φy} with 1≤x≤y≤n. 
We know that M  Φ which means that M  satisfies every formula in it.  

Starting from the premise φ1∧...∧φn which is satisfied by M  and applying and-elimination 
we get: 
φ1∧...∧φn  

∧en 

       φ1∧...∧φn-1 

              ∧en-1 

... 

φx∧...∧φy which is Ψ 

 
If  Φ M  Ψ then Ψ ⊆ Φ. 

Since M  Φ, there exists a bottom specification ⊥M  such that Φ ⊆ ⊥M  and Ψ ⊆ ⊥M. 

(Proposition 4). From Definition 13 we know that for all ground formulas ψ in ⊥M  there does 

not exist specification φ such that  ψ  φ.  Thus if Φ M  Ψ it means that every wff in Ψ is also 
in Φ. 

■ 
Corollary 8: There are no specifications Φ, Φ’ in normal form and design model M  such that 
Φ’ ⊂ Φ and Φ’ M  Φ. 
 
Definition 18: Let Ψ, Φ be specifications and M  a design model such that M  Φ. We will 
say that Φ is the normal form of Ψ with relation to design model M  if and only if: 

• Φ is in normal form 
• Φ M  Ψ 
• There is no Φ' in normal form, such that Φ M Φ' M  Ψ 
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Proposition 6: Given specifications Φ, Ψ, their respective normal forms Φ', Ψ' and design 
model M , if Φ M  Ψ then Φ' M  Ψ'. 
 
Proof 
From our premise we know that Φ M  Ψ (1) and from Definition 18 we know that Φ' M Φ 

(2) and Ψ' M Ψ (3). Since Φ' and Ψ' are sets of ground formulas (Definition 13), one of the 
following is true: 

• Φ' ∩ Ψ'={}. In this case, from (1), (2) we can conclude: Φ' MΦ M  Ψ which means 
that Φ' M  Ψ. Since Φ' and Ψ' are in normal form, given Definition 13, they should 
have at least one ground formula in common which is not true as it violates our as-
sumption 

• Φ' ∩ Ψ'≠{}. In this case one of the following is true about Φ', Ψ' : 

o Φ' = Ψ'.  In this case Φ' M  Ψ' as relation M  is reflexive (Proposition 1) 

o Φ' ⊂ Ψ'. From Proposition 5 we know that Ψ' M  Φ'. From (2) we can conclude 

Ψ' M  Φ' M Φ and from (1): Ψ' M  Φ' M Φ M  Ψ. From Definition 18, we can 
conclude that Φ' would be the normal form of Ψ which is not true 

o Ψ' ⊂ Φ' 
We conclude that Ψ' ⊆ Φ' which given Proposition 5 means that Φ' M Ψ'. 

■ 

 
Corollary 9: Given specifications Φ, Ψ, their respective normal forms Φ', Ψ' and design model 

M , if Φ M  Ψ then Ψ' ⊆ Φ'. 

2.3 Lattice Structures 

Given the set of specification in normal form (Definition 19) (with relation to a design 
model M) and the set of specifications (with relation to a design model M), we show that 
each set is a mathematical lattice. For this reason we provide definitions of upper (lower) 
bound, supremum (infimum) and lattice that are based on the definitions found in [Burris & 
Sankappanavar 1981] and [Manzano 1999]. 
 
Definition 19: Norm(M) is the set of all LePUS3 specifications in normal form that M  satis-
fies. 
 
Corollary 10: Norm (M) is a partially ordered set with relation to M . 
 
Corollary 11: Norm (M) is a subset of Spec(M). 
 
Corollary 12: ⊥M is in Norm(M). 
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Corollary 13: M is in Norm(M). 

Definition 20: Let A, B be sets such that A ⊆ B and  a partial order relation on B. An ele-

ment b in B is an upper bound for A if for all a in A a  b. An element b in B is a lower 

bound for A if for all a in A b  a. 

 
Definition 21: Let A, B be sets such that A ⊆ B and  a partial order relation on B. An ele-

ment b in B, is the least upper bound of A if  b is an upper bound of A and for all x that are 

upper bounds of A b  x. If such b exists it is called the supremum of A or Sup(A). An ele-

ment b in B is the greatest lower bound of A if b is a lower bound of A and for all x that are 

lower bounds of A x  b. If such b exists it is called the infimum of A or Inf(A). 

 
Definition 22: A partially ordered set L is a lattice if for all x, y in L both Sup({x,y}) and 

Inf({x,y}) exist (in L). 
 
Proposition 7: 〈Norm(M), M〉 is a lattice. 
 
Proof 
For all specifications Ψ, Φ in Norm(M), {Ψ, Φ} is a subset of Norm(M). We know that 

Norm(M) is a partially ordered set (Corollary 10). Let us assume that Inf({Ψ,Φ})=Γ exists 

and is in Norm(M). 
 
If Γ is a lower bound (Definition 20) then: Γ M  Ψ (1) and Γ M  Φ (2) for all Ψ, Φ.  
Since Ψ, Φ and Γ are in normal form: 

From Proposition 5 and (1) we know that: Ψ ⊆ Γ (3) 

From Proposition 5 and (2) we know that: Φ ⊆ Γ (4) 

In order for Γ to be the greatest lower bound (Definition 21) given (3), (4) it needs to be 
Γ=Φ ∪ Ψ.  
 
But Φ ∪ Ψ is in normal form (Definition 13), as Φ, Ψ are and Φ ∪ Ψ is a subset of ⊥M 

(Proposition 4). Since there is exactly one subset of ⊥M  that contains all and only ground for-

mulas in Φ∪Ψ then Γ exists and is in Norm(M). 
 
Symmetrically we can show that for any two specifications in Norm(M), Sup(Norm(M)) 
is M . 

■ 
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Proposition 8: 〈Spec(M), M〉 is a lattice. 
 
Proof 
For all specifications Ψ, Φ in Spec(M), {Ψ, Φ} is a subset of Spec(M). Spec(M) is a par-

tially ordered set (Corollary 10). Let us assume that Inf({Ψ,Φ})=Γ exists and is in Spec(M). 
 
If Γ is a lower bound (Definition 20) then Γ M  Ψ (1) and Γ M  Φ (2). 

Given Corollary 2, if such Γ exists it will be in Spec(M).  
If Γ is the least upper bound (Definition 21) there should not exist another upper bound Δ 
such that Γ M  Δ M  Ψ (3) and Γ M  Δ M  Φ (4). 
 
Let Γ', Δ', Φ', Ψ' be the normal forms of Γ, Δ, Φ, Ψ respectively.  
Given Definition 18 if Γ exists, then there also exists specification Γ' in normal form such 
that Γ' M  Γ. 
 
If both Γ' and Δ' exist: 
From Proposition 6 and (3) we know that Γ' M  Δ' M  Ψ' (5) 

From Proposition 6 and (4) we know that Γ' M  Δ' M  Φ' (6) 

From Corollary 9 and (5) we know that Ψ' ⊆ Δ' ⊆ Γ' (7)  

From Corollary 9 and (6) we know that Φ' ⊆ Δ' ⊆ Γ' (8) 

Therefore, to prove that Γ is Inf({Ψ,Φ}) it is enough to show that Γ' exists and Δ' does not 
(unless Γ' = Δ'). 
 
From Proposition 6 and (1) we know that: Γ' M  Ψ' (9) 

From Proposition 6 and (2) we know that: Γ' M  Φ' (10) 

From Corollary 9 and (9) we know that: Ψ' ⊆ Γ' (11) 

From Corollary 9 and (10) we know that: Φ' ⊆ Γ' (12) 

From (11), (12) we conclude that Γ' should be: Γ'=Φ' ∪ Ψ' so that there does not exist Δ' such 

that (7), (8) are true. 
 
But there is exactly one subset of ⊥M  that contains all and only ground formulas in Φ' ∪ Ψ', 

therefore Γ' exists and is in Spec(M) and so does Γ. 
  
 
Symmetrically we can show that any two specifications in Norm(M), Sup(Norm(M)) 
is M . 

■ 
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3 Operators 

Given a design model M  and the set of specifications Spec(M) that M  satisfies, 
which is a lattice structure, we show how it is possible to traverse it by making steps 
(Definition 25) from one specification (node in the lattice) to another. Each step is performed 
by the application of an operator (Definition 26). Operators are divided into two sets: the ab-
straction and the concretization operators and are outlined in Table 3. 
 
Definition 23: Let SPEC be the set of all LePUS3 specifications.  
 
Definition 24: Verbosity of a specification Ψ written as Verbosity(Ψ) is a function  

Verbosity : SPEC  → N 

such that values in its range calculate as the sum of the number of constant terms in Ψ and the 
number of wffs in Ψ. 
 
Definition 25: Given M , we say that the transition from specification Ψ to Φ is an abstrac-
tion step, if the following conditions hold: 

• M   Ψ 

• Ψ M  Φ 

• Verbosity(Ψ)≥Verbosity(Φ) 
Remark: The transition from Φ to Ψ would be a concretization step. 
 
Corollary 14: The transition from  Ψ to Φ is an abstraction step if and only if the normal 

forms Ψ' ⊆ Φ'. 
Table 3a – Abstraction operators Table 3b – Concretization operators 

Aggregation Enumeration
Union Partition

Hierarchy to Set Set to Hierarchy
Collapse to Hierarchy Hierarchy Expansion

Hierarchies Union Partition to Hierarchies
To Top M To Bottom ⊥M 

Elimination Introduction
 
Definition 26: An operator O({t1…tn},Ψ) takes a set of constant terms {t1…tn} and speci-

fication Ψ, and produces ({t1'…tm'},Φ) that is: a set of constant terms {t1'…tm'} and specifi-

cation Φ, such that the following conditions hold: 

• All t1,…tn, are in Ψ 

• All t1',…tn' are in Φ 
All conditions in  

• Definition 25 hold. 
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The set of operators is symmetric. If O  is an abstraction operator that makes a transi-
tion from Ψ to Φ then there exists a concretization operator O ' that makes a transition from Φ 
to Ψ and vice versa. 

3.1 Concretization Operators 

3.1.1 Enumeration 

({T}, Ψ) → ({t1…tn}, Φ)  
Pre-conditions:  

• T is a term of type CLASS or SIGNATURE 

Post-conditions:  
• Terms t1…tn are all of the same type as T in Φ 

• I(T)={I(t1)…I(tn)} 
 

3.1.2 Partition 

({T}, Ψ) → ({Τ1…Τn}, Φ) 
Pre-conditions:  

• T is a term of type CLASS  or SIGNATURE 
• ⎢I(T)⎢≥2 

 
Post-conditions: 

• Terms T1… Tn all of the same type as T in Φ 

• I(T)=I(T1)∪…∪I(Tn) 

• For at least n−1 terms Ti, 1≤i≤n introduced there exists at least one formula of the 
following forms with that term that is satisfied by M: 

o TOTAL(BinaryRelation,xd,Ti) 

o ISOMORPHIC(BinaryRelation,xd,Ti) 

o TOTAL(BinaryRelation,Ti,x
d)  

o ISOMORPHIC(BinaryRelation,Ti,x
d)  

o ALL(BinaryRelation,Ti) 

o Method(xd⊗Ti) 

where xd is some term in Φ 
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3.1.3 Set to Hierarchy 

({C}, Ψ) → ({H}, Φ) 
Pre-conditions: 

• C is a term of type CLASS in Ψ 

• Hierarchy(C) is satisfied by M 
Post-conditions:  

• H is a term of type HIERARCHY in Φ 
 

3.1.4 Hierarchy Expansion 

({H}, Ψ) → ({Cd,r}, Φ)    
Such that :  if ⎢I(H)⎢>2 then d=1  

 if ⎢I(H)⎢=2 then d=0  
Pre-conditions: 

• H is a term of type HIERARCHY in Ψ 

Post-conditions:  

• C
d is a term of type CLASS in Φ 

• I(H)={I(r)} ∪ I(Cd) 

• TOTAL(Inherit,Cd,r) in Φ is satisfied by M 
 

3.1.5 Partition to Hierarchies 

({C}, Ψ) → ({H1… Hn}, Φ) 
Pre-conditions: 

• C is a term of type CLASS in Ψ 
Post-conditions:  

• All terms hi 1≤i≤n introduced are of type HIERARCHY in Φ 

• I(C)=I(H1)∪…∪I(Hn) 
 

3.1.6 To bottom 

({}, Ψ) → ({}, ⊥M)  
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3.1.7 Introduction 

({}, Ψ) → ({t1
d…tn

d}, Φ)  
Such that :  0≤d≤1  

 

Post-conditions:  
• t1

d…tn
d are terms of any type in Φ 

3.2 Abstraction operators 

3.2.1 Aggregation 

({t1…tn}, Ψ) → ({T}, Φ) 
Pre-conditions:  

• Terms t1…tn are all of type CLASS or SIGNATURE in Ψ 

Post-conditions:  
• T is a term of the same type as t1…tn 

• I(T)={I(t1)…I(tn)} 
 

3.2.2 Union 

({Τ1…Τn}, Ψ) → (T, Φ) 
Pre-conditions:  

• Terms T1… Tn are all of type CLASS or SIGNATURE in Ψ 

• n≥2 
Post-conditions: 

• T is a term of the same type as Τ1…Τn 
• I(T)=I(T1)∪…∪I(Tn) 
• There exists at least one formula with T of the flowing forms that is satisfied by M: 

o TOTAL(BinaryRelation,xd,T) 

o ISOMORPHIC(BinaryRelation,xd,T) 

o TOTAL( BinaryRelation,T,xd )  

o ISOMORPHIC(BinaryRelation,T,xd)  

o ALL(BinaryRelation,T) 

o Method(xd⊗T) 

where xd is some term in Φ 
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3.2.3 Hierarchy to Set 

({H}, Ψ) → ({C}, Φ) 
 
Pre-conditions: 

• H is a term of type HIERARCHY in Ψ 
Post-conditions:  

• C is a term of type CLASS in Φ 

 

3.2.4 Collapse to Hierarchy 

({Cd, r}, Ψ) → (H, Φ)  
Such that :  0≤d≤1  

 
Pre-conditions: 

• Cd is a term of type CLASS in Ψ 

• TOTAL(Inherit,Cd,r) in Ψ is satisfied by M 
Post-conditions:  

• H is a term of type HIERARCHY in Φ 

• I(H)={I(r)} ∪ I(Cd) 
 

3.2.5 Hierarchies Union 

({H1… Hn}, Ψ) → (C, Φ) 
Pre-conditions: 

• All terms hi, 1≤i≤n introduced are of type HIERARCHY in Ψ 

Post-conditions:  
• C is a term of type CLASS in Φ 
• I(C)=I(H1)∪…∪I(Hn) 

 

3.2.6 To Top 

({}, Ψ) → ({}, M)  
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3.2.7 Elimination 

({t1
d…tn

d}, Ψ) → ({ }, Φ)  
Such that :  0≤d≤1  

 

Pre-conditions:  
• t1

d…tn
d are terms of any type in Ψ 
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