Abstract Semantics for Java 1.4 Programs

Part I of: Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics
for Java 1.4

Technical Report CSM-471, ISSN 1744-8050

Jonathan Nicholson;, Amnon H Eden, Epameinondas Gasparis
Department of Computer Science, University of Essex, United Kingdom

31 December 2007
See also: iPart II, Verification of LePUS3/Class-Z Specifications:

Abstract

to the definitions given in the LePUS3 and Class-Z Reference manual: [Eden et al. 2007:].

To remind the reader, a finite structure is a simplified (‘abstracted') picture of the program, which 'flattens' the knotty structure and syntax of the source code into a set of primitive entities (also called ‘entities of dimension 0) and

relations. Essentially, each finite structure can be viewed as a relational database, or a set of tables which contain tuples of entities (‘'records'). Below we list a few sample Java programs and the finite structure that represents them.

See also:

o 1ePUS3 and Class-Z Reference manual (Eden et al. 2007
o Definition VII: Unary relation

© Definition VI inary relation:
e Part II, Verification of LePUS3/Class-Z Specifications: [Nicholson et al. 2007

Table of contents

Ciasses

Methods and signatures

Abstract Relation

Inherit Relation

Inheritable Relation

Member and Aggregate Relations
Call and Forward Relations:
Cfeéte Re\‘at\’qn

GHENIG G R TN

Return Relation
: e Relati
References:

1. Classes

In the abstract semantics of the Java programming language, each entity in the unary relation Class (also called ‘Ea class of dimension 0!) stands for one of the static types mentioned in the program which, in
Java, includes classes (java.lang.Object), interfaces (java.util.Collection), primitive types (int), and array types (int[]). Following are some examples that should demonstrate the correlation between

types in Java programs and the entities which represent them.

Example 1:

Program Partial finite structure
{y, = Class

public class A { '

int integer; <M>

int[] array = new int([5]; .

class inner { <M>

class nestedInner { ... } (A inner)

¥ A s

} (A. inner. nestedlnner),
public interface B { ... } (B) }

{...} = Method

{...} = Signature

root
31 December 2007

2. Methods and signatures

Each entity in the unary relation: Method (also called “a method of dimension 0') stands for exactly one method in a Java Program.

Q') stands for the signature (name and argument types) of one or more of the methods in a Java Program.

Each entity in the .ur)éry i'ela:tio

The pair {sig,mth} in the binary relation: SignatureOf indicates that the method mth has the signature sig . Since every method in a Java program has exactly one signature, each method is associated with

exactly one signature.

The compiler adds the empty constructor if one has not been provided.

Example 2:
Program Complete finite structure
{Cls} = Class
public class Cls {
public void mth() { ... }
} —
{(F]S4mth Y, = Method

(Cls.Cls0)}

{{mth(), = Signature
(Cls0)}

{(mth() ,Cls.mth()), = SignatureOf
(ClsQ),Cls.ClsO)}

{(Cls,Cls.mth (), = Member
(Cls,Cls. ClsO) }

{(Cls.mthQ)} =

Example 3:

Program Partial finite structure
{...} = Class
public class A {
public void t() { ... }
public void z() { ... } —
, {(anQ), = Method
public interface B { (a10),
public void s(); (AzQ07,
¥
(B.BO Y,
public class C
extends A implements B { <M)v
public void s() { ... }
public void s(int i) { ... } <wl)’
public void t() { ... } (C.s07,
¥
(C.s(int)),
(C.t0)}

{(a0), = Signature
(BO)Y,
(coy,
(109,
(20,
(09,
(s(in0)}

{(AQ,AAQ), = SignatureOf
(£0,A10),
(20,4.20),
(BO ,B.BQY,
(s0,B.50),
(CO,e.c0),
(50,0507,
(s(int) ,C.s(nt)),
(10,0.10)}

{<a,a0Q), = Member
(AA Q)
(AA2Q),
(B,B.BQ Y,
(B,B.sQ7,
(c,c.cQy,
(€,C.s07,
{(C,C.s(int)),
(c,c.t0)}

3. Abstract Relation

The contents of the unary (Definition VII) Abstract relation are Class (Definition IIT) and Method (Definition VI) entities. If an entity exists in this relation then the related section of program is abstract, for
example an Interface is always abstract.

Example 4:
Program Partial finite structure
= Class
public abstract class A {
public abstract void s();
public void t() { ... } {...} = Method
¥ e I
public interface B {
public void s(); = Signature
}

{y, = Abstract

(AsQ),
(B),
{B.s)}

4. Inherit Relation

The binary (Definition VIIL) Inherit relation represents inheritance, in terms of Java'™ this means the keywords extend and implements, as well as the subtyping relation. In Java™ there is no inheritance

between methods, and ail classes which do not explicitly extend or implement from anything are taken to extend class java.lang.Object.

Example 5:
Program Partial finite structure

= Class
public class A extends B

implements C { ... }
public class B { ... } {"'} = Method
public interface C

extends D { ... } = Signature
public interface D { ... }

{{a,B), = Inherit

(A,C),
(B, java, lang. Ob ject) s
(C,D),

(D, java. lang. Object) }

5. Inheritable Relation

The contents of the unary (Definition VII) Inheritable relation are method entities (Definition VI) which were decorated with the public or protected access modifiers. Methods declared within final classes are not

"inheritable" as the class its self cannot be inherited from.

Constructors are never Inheritable.

Example 6:
Program

Partial finite structure

public class A {
public void x() { ... }
protected void y() {
private void z() {

}

public final class B {

public void x() { ... }
protected void y() { ... }
private void z() { ... }

}

= Class

{{Ax07,
(AvQ)}

= Inheritable

6. Member and Aggregate Relations

The binary (Defir’]ition’ ViII) Member relation represents the ownership one class has of its methods and fields. The domain is always the "owner", and the range is either the method or type of the field in
question.

The binary (Defir’]ition’ ViII) Aggrega,/,e relation shows that a class has a collection/array of a specified type. The domain is always the "owner", and the range is the basic type stored in the collection/array. An
Ag_(p'cgatc relation is added for any array, or for any field which inherits from java.util.Collection.

Example 7:

Program Partial finite structure

public class C {
Object ol;

Object 02;

String[] stringArray;
int[][] intArray;
Set objectSet;

} {...} = Signature

{...} = Method

{ (C, java. lang. Object), = Member
{C,String[1},
{C,int),

{C,java.util.Set)}

{(Q, java. lang. String), = Aggregate
(C,int),

{C, java. lang. Object) }

{ {java.util.Set, java.util.Collection) } = Inherit

7. Call and Forward Relations

The binary (Defir’]ition’ ViII) Call and Forward relations are very similar in that both indicate to a method call within the program. An invokation of a method with the same signature as the domain, using the

same objects as defined by the domains arguments, is known as a forwarding method call.

Example 8:
Program

Partial finite structure

public class A {
public void s() {

s(); // Forward
t(1); // call

}

public void t(int i) {
t(i); // Forward
t(1); // call

¥

}

public class B extends A {
public void t() {

s(); // call

t(1); // call

¥

public void t(int i) { ... }
¥

= Class
{...} = Method
= Signature
{(!\43 JAt(nt), = Ci[lll
(A tGnt) A t(int)),
(B.t0,AsQ),
(B.tO,B.t(int))}
= Forward

{{As0,A500,
(A t(nt) A t@nt))}

8. Create Relation

The binary (Defir’]ition’ ViII) Crreate relation most commonly represents the keyword new for class instantiation, however it also represents the initialisation of a primitive type. It is worth noting that a fields
initialisation is actually performed within each the constructor(s) as in the following example.

Example 9:
Program Partial finite structure

= Class

public class C {
public Object o = new Object();

public void s() { {...} = Method

int i = 0;
new Object();

Object s = new String(); = Signature
put (new Integer(1));

int[][] array = new int[5][5];

}

public Object put(Integer i) {(c.cQ, java. lang. Object), = Creale

[T (C.s0,int),
(C.sQ, java. lang. Object),

(C.sQ, java. lang. String),
{C.s0), java. lang. Integer),
{C.sQ,int '}

9. Return Relation

The binary (Defir’]ition’ ViII) Relurn represents return statements in the program. Statements such as "return;" break from further execution of the method, but does not return a value. Therefore these

statements are ignored.

Example 10:
Program Partial finite structure

= Class

public class C {

Object o = new Object();
String s = new String(""); _
int i = 5; ' {...} = Method

public Object sl() {
if (true)
return o;
if (true)
return s;
return null;
;ublic int s2() { {C.s1Q, java. lang. String) ,

return i; (C.s20 ,int)}

= Signature

{{C.s1Q, java. lang. Object), = Return

¥
¥

10. Produce Relation

The binary (Defir’]ition’ ViII) Produce relation identifies methods which "creates" and "returns" an object during execution of the method.

Example 11:

Program Partial finite structure
{...} = Class

public class C {

public Object s1() {

i _ ",
strlng s str"; = Method
if (true)
return new Object ();

return s;

} = dignature
public int s2() {

return 5;

) {{C.510, java. lang. Object), = Produce
} . Qs

{C.s1Q, java. lang. String),

(€520 ,int)}

References

Amnon H. Eden, Jonathan Nicholson, Epameinondas Gasparis. “The LePUS3 and Class-Z Reference manual.” Technical report CSM-474, ISSN 1744-8050 (2007), Department of Computer Science, University
of Essex. [.bdf]

Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis. "Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4 (Part I; Part II))." Department of Computer
Science, University of Essex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007). [.pdf]

James Gosling, Bill Joy, Guy Steele, Gilad Bracha. "The Java language specification", second edition, Prentice Hall (2000). [3o:r||\'neij

Sample Models

Part II of: Verification of LePUS3/Class-Z Specifications: Sample models and Abstract
Semantics for Java 1.4
Technical Report CSM-471, ISSN 1744-8050

Jonathan Nicholson;, Amnon H Eden, Epameinondas Gasparis
Department of Computer Science, University of Essex, United Kingdom

See also: ‘Part I, Verification of LePUS3/Class-Z Specifications:

Abstract

This documents demonstrates how Class-Z specifications are verified using case studies. The class of design models which satisfy each sample specification is demonstrated via one or more such design models, possibly also using one or

more counter examples. As there is a far greater set of design models that do not satisfy a given specification, this document is limited to a selection of design models where verification succeeds (or fails, as specified for each).

Throughout this document we assume that entity C LS is the interpretation of the constant cls, that is: Z(cls) =cls

Table of contents

1. Terms

11 Clas$3

1.2, Hierar;cﬁy

1.3. Signature:
2. Ground formulas
éthod kelat\'dn :Symb{:l
2.2. Abstract Relation Symbol
2.3. Inherit Relation Symbol:

2.5. Aggregate Relation Symbol:

2.6. Call Relation Symbol
2.7. Forward Relation S)}mtio‘l

2.9, Return Relation Symbq‘i
2.10. Produce Relation Symbol
3. Predicate formulas
3.1. All Predicate Symbol
3.2, Total Predicate §y‘r"‘n‘56i
3.3. Isomorphic Predicate Symbol:

References

1. Terms

See the LePUS3 and Class-Z reference manuals section on Terms [Eden et al, 2007] for more information.

1.1. Class

See Definition IIT [Eden et al, 2007].

Example 1:
Schema Design models
Satisfied by Example 1: A
v —
CLASS {{aClass) {els,), {cls,), {elsy)} =
aClass : 4SS
Cls : PCLASS
Cls = {cls,,cls,, cls,}

1.2. Hierarchy

See Definition IV: [Eden et al. 2007].

Example 2:

Schema
Satisfied by
v
|:: HIERARCHY
Satisfied by
Satisfied by

Example 2 : A

Design models

{(root),(cls,),(els,)} = Class

=

{raot, cls, cls, }

{{cls,,raot), {cls,,raot) } Inherit

Example 2 : B

{(roat), (middle),{bottom)} = Class

=
|

= {root,middle, bottom}

{{battom,middle),{middle,roat)} = Inherit

Example 2 : C

= Class

{<a(‘,1ass),<root),<(‘1s‘),<<ﬂisz)}

=

{raot, cls,, cls, }

{<(‘17s‘,a(‘,1ass),((‘lsz,a(‘,lass),(a(‘,]ass,mot)} M

1.3. Signature
For simplicity the () characters are omitted from both methods and signatures (in both the schemas and design models) when there are no arguments present.

See Definition V: [Eden et al, 2007]].

Example 3:
Schema Design models
Satisfied by Example 3: A

v

{(aSignature),(sig(Object)), {sig(Integer)), {sig)} = Signature
aSignature : SIGNATURE

Sig : PSIGNATURE

Sig = {sig(0Object),sig(Integer) ,ﬁ}

2. Ground formulas

See the LePUS3 and Class-Z reference manuals section on the isatisfaction of ground formulas: [Eden et al. 2007:] for more information.

2.1. Method Relation Symbol

See Definition IX (Superimpositions) [Eden et al. 2007

Example 4:
Schema

Satisfied by

— ¥

cls : CLASS

sig : SIGNATURE

Method(sig®cls)

Satisfied by

Not satisfied
by

Design models
Example 4: A

{(cls)} = Class
{(nth)} = Method
{(sig)} = Signature
{(sig,mth)} = OSignatureOf
{(cls,nth)} = Member
Example 4 : B
{(cls), {superClass)} = Class
{(nth)} = Method
{(sig)} = signature

{(sig,mth)} =

SignatureOf

{{cls,superClass)} =

{(superClass,mth)} = Member
{(uth)} = Inheritable

Example 4 : C (Counter example)
A close inspection of This case reveals that the method rnﬂ’l‘ is overridden by a non-inheritable method rnﬂ’la. This is a case

In Java this is impossible as the visibility of a method cannot be reduced.

of method hiding.

{(ﬁ),(subor(‘,]ass‘),(subor(‘,lass)} = Class
{(mth,),{mth,)} = Method
{(sig)} = Signature

{(sig,nth,), {sig,mth,) }

SignatureOf

{ {cls, superClass,) , { superClass,, superClass,) } =

{ {superClass,,mth,), (superClass,,mth,) } = Member
{(mth,)} = Inheritable
= Inherit

2.2, Abstract Relation Symbol

Example 5:
Schema Design models
Satisfied by Example 5: A

— v
cls : CLASS

{{cds)} = Class

sig : SIGNATURE
Abstract(cls) {(mth)} = Method
Abstract(sig@cls)

{(sig)} = Signature

{{sig,mh)} = SignaturcOf

{(cls,mth)} = Member

{(cls), (mth)} = Abstract

2.3. Inherit Relation Symbol

Example 6:
Schema
Satisfied by
— v
subClass , superClass : CLASS
Inherit(subClass,superClass)
Satisfied by

Design models

Example 6 : A

{ (subClass,aClass),{aClass,superClass)} =

{ { subClass) s (superClass) } = %
{ {suhClass, superClass) } = Inherit
Example 6 : B
{ { subCla),<sunerClass),<aClass)} = Class
Inherit

2.4. Member Relation Symbol

Example 7:
Schema

— v

container, field : CLASS

Member(container, field)

Satisfied by

Satisfied by

Satisfied by

Design models
Example 7 : A

{(t‘ontainm‘),(fic]d)} =

Class

{(containor,fic]d)} =

Member

Example 7 : B

subclass of) field

this is an example for ‘subtyping in LePUS3: the formula Member(container,field) is satisfied here by class subcls which inherits (is a

{ ({ container ,subClass) } =

{(container),{field), (subClass)} = Class
{(subClass,field)} = Inherit
= Member

Example 7 : C
As Aggregate~ Member, see Example 8 : A and Example 8 : B.

2.5. Aggregate Relation Symbol

Example 8:
Schema Design models

Satisfied by Example 8 : A

— ¥
{((‘0ntaincr),<c]cmcnt)} = Class

container, element : CLASS

Aggregate(container,element)

{ {container,element) } = Aggregate

Satisfied by Example 8 : B . .
this is an example for ‘subtyping in LePUS3: the formula A ggregate(container,element) is satisfied here by class subcls which inherits

(is a subclass of) element

{(container),{element), {subClass)} = Class

{ {suhClass, element) } = Inherit

{{element,subClass)} = Aggregate

2.6. Call Relation Symbol

Example 9:
Schema

Satisfied by

— v

orig, dest : CLASS

sig : SIGNATURE

Call(sig@orig,sig@dcst)
Satisfied by

Example 9: A

Design models

{(orig),(dest)} = Class
{{caller),(called)} = Method
{(sig)} = Signature
{(sig,caller)} {{sig,called)} = SignatureOf
{(orig,caller)} { (dest,called)} = Member
= Call

{(t‘a]]m‘,aaﬂcd)}

Example 9: B . .
As Forwardr Call, see Example 11 : A.

Example 10:
Schema

— ¥

orig, dest : CLASS

sig : SIGNATURE

Call(sig®orig,dest)

Satisfied by

Example 10 : A

Design models

{(orig),(dest)} = Class
{{caller),{called)} = Method
{(sig),{anotherSig)} = Signature

{(sig,caller)}{ {anotherSig,called) }

SignatureOf

{ (arig,caller)} { (dest,called) }

Member

{ (caller,called) }

Call

2.7. Forward Relation Symbol

Example 11:
Schema

— ¥

orig, dest : CLASS
sig : SIGNATURE

Forward(sig@orig,sig®dest)

Satisfied by

Example 11 : A

Design models

{(orig),(dest)} = Class
{{caller),(called)} = Method
{(sig)} = Signature
{(sig,caller)} {{sig,called)} = SignatureOf
{(orig,caller)} { (dest,called)} = Member
= Forward

{((‘a]]m‘,caﬂcd)}

2.8. Create Relation Symbol

Example 12:
Schema

— ¥

cls : CLASS
sig : SIGNATURE

Create(sig®@created,created)

Satisfied by

Satisfied by

Satisfied by

Example 12 : A

Design models

{(created) } Class
{(mth)} = Method
{(sig)} = Signature
{(sig,mth)} = SignaturcOf
{{created,mth) } Member
{{mth,created)} = Create
Example 12 : B
{ (subClass), {created) } Class
{(mth)} Method
{(sig)} = Signature

{{sig,nth)}

SignatureOf

{(created,mth) } Member
{ {subClass, created) } Inherit

{{mth, subClass) }

Example 12: C

As Producel~ Create, see Example 14 : A and Example 14 : B.

2.9. Return Relation Symbol

Example 13:
Schema

— v

returned : CLASS
sig : SIGNATURE

Return(sig®returned,returned)

Satisfied by

Satisfied by

Satisfied by

Design models
Example 13 : A

{ {returned) }

Class

{(nth)}

Method

{(sig)}

Signature

{ (sig,mth) }

SignatureOf

{ { returned ,m) }

Member

{ (m, returned) }

Return

Example 13 : B

{{returned), {subClass) }

Class

{ {mth) }

Method

{(sig)}

Signature

{ (sig,nth)}

SignatureOf

{ {returned,mth) }

Member

{ (subClass, returned) }

Inherit

{{mth, subClass) }

Return

Example 13: C
As Producel~ Return, see Example 14 : A and Example 14 : B.

2.10. Produce Relation Symbol

Example 14:
Schema

— ¥

produced : CLASS
sig : SIGNATURE

Produce(sig@produced,produced)

Satisfied by

Satisfied by

Design models

Example 14 : A
{ {produced) } Class
{ (factory) } Method
{(sig)} = Signature
{{sig, factory) } SignatureOf
{ {produced, factaory) } Member
{{factory,produced) } Produce
Example 14 : B
{ (produced) , (subClass)} = Class

{ (factorv) }

{(sig)}

Signature

{ (sig, factorv) }

SignatureOf

{ {produced, factory) }

Member

{ (subClass, produced) }

Inherit

{{factory,subClass) }

Produce

3. Predicate formulas

See the LePUS3 and Class-Z reference manuals section on the isatisfaction of predicate formulas: (Definitions XVIF, IXVIIL and XIXi) [Edén et él. ?0073] for more information.

3.1. All Predicate Symbol

See Definition XVII [[Eden et al. 2007:].

Example 15:

Schema Design models

Satisfied by Example 15: A
Example 5 : A

— v

cls : CLASS
sig : SIGNATURE

ALL(Abstract, { sig®cls })

Example 16:
Schema

— v
cls : PCLASS

ALL(Abstract, cls)

Satisfied by

Not satisfied
by

Example 16 : A

Design models

{{els,), (els,), Celsg) }

Class

cls

{els;,clsy, elss}

{{els,), (els,), Celsy) }

Abstract

Example 16 : B (Counter example)
One of the entities in cls is not abstract

{{els,), {els,), Celsy) }

Class

cls

{cls, cls,,clsg}

{(elsy), (els,) }

Abstract

Example 17:
Schema

— ¥

cls : PCLASS
sig : SIGNATURE

ALL(Method, sig@cls)

Satisfied by

Satisfied by

Not satisfied
by

Example 17 : A

Design models

{{els,), (els,), Celsg) }

cls

{{mth,), {mth,), (mthy)} Method
{(sig)} = Signature
{ (sig,nth,), (sig,nth,), (sig,nihy)} = SignatureOf
{{cls,,mth,), (cls,,mth,), (cls,, mthy)} Member
Example 17 : B
Class

{(mthy)}

{(sig)}

Signature

{(sig,mth;)}

SignatureOf

Inherit

Inheritable

Member

Example 17 : C (Counter example)

cls,, or its superclass, does not define a method with signature sig

{(mth,}, (mth,) }

{(sig)}

Signature

{{sig,mth,), (sig,nth,)}

SignatureOf

Member

3.2. Total Predicate Symbol

See Definition XVIII [Eden et al. 20071].

Example 18:
Schema Design models

Satisfied by Example 18 : A
Example 9 : A and Example 9 : B!

— ¥
clsy,cls, : CLASS

sig : SIGNATURE

ToTAL(Call, { sig@(‘]m},{sig@o]sz

Example 19:
Schema

— v

A,B : PCLASS

TOTAL(Inherit,A,B)

Satisfied by

Not satisfied
by

Design models
Example 19 : A

{{a),{ay), (by), (by), (be)}

Class

=

{ay,a,}

==

{bIVbZVbS}

{{a,), (b}

Abstract

{ <§|)§2>7(§2)h1>7(§2)h2>}

Inherit

Example 19 : B (Counter example)
There is no tuple in the required relation between one of the members of the domain and a member of the range.

{4a,), a0, {b,), {by), {byd}

Class

=

{ay,a,}

==

{by,by, by}

{(a,,by),(ay,hy), (ay,bed }

Inherit

Example 20:
Schema

— v
cls : PCLASS
sig : SIGNATURE

ToTAL(Call, sig®ecls,sig®el s)

Satisfied by

Satisfied by

Satisfied by

Design models
Example 20 : A

{{els,), (els,), Celsg) }

cls

{{mth,},{mth,),(mih,)} = Method
{(sig)} = Signature
{(sig,mth,) (sig,nth,), (sig,mthy)} = SignaturcOf
{{cls,,mth,), (cls,,mth,), (cls,,mthy) } = Member
{ (mth,,mth,}, {mth,,mthy), {mthy,mth,)} = Call
Example 20 : B
= Class

{(mth,}, {mth,), (mthy)} = Method
{(sig)} = Signature
{(sig,mth,), {sig,mth,), (sig,mthy)} = SignaturcO
{(cls,,mth,), (cls,,mth,), {cls,,mthy) } = Member
{(mth,), (mth,)} = Abstract
= Call

Example 20: C

Every class in c1s defines a method with the correct signature, which are all abstract mathematically satisfying the given relation.

{{els,), (els,), Celsy) }

Class

cls

{{nth,), (nth,) , (mth,}} = Method
{(sig)} = Signature

{ (sig,mth), {sig,mth,}, (sig,mthy)}

SignatureOf

Member

{{nth,), {nth,) mthy}}

Abstract

3.3. Isomorphic Predicate Symbol

See Definition XIX: [Eden et al. 2007].

Example 21:
Schema Design models
Satisfied by Example 21 : A

7 {{cls,), (els,)} = Class
clsy,cls, : CLASS

ISOMORPHIC(Member. { cls.} {cls,}

{{cls,,els,b} = Member

{} = Abstract

Example 22:
Schema

— 7
clsy,cls, : CLASS

sig : SIGNATURE

IsoMoRPHIC(Call, { sig®ecls, },{ sig

Satisfied by

Satisfied by

Example 22 : A

Design models

{(cls), (els,) }

Class

{(nth,}, {mth,)}

Method

{(sig)}

Signature

{(sig), {mth,)}{ (sig), {mth,)}

SignatureOf

{els)), (mth)) } { els,), {mth,) } = Member
{} Abstract
{{(mth,,mth,)} = Call
Example 22 : B
{{cls,), (els,)} = Class
Method

{ (mth,}, (mth,) }

{(sig)}

Signature

{(sie), mth,)} { {sie), (mthy)}

SignatureOf

{{cls,), (mth,) } { {cls,), (mth,) }

Member

{{nth,)}

Abstract

{ (mth,,mthy) }

Call

Example 23:
Schema

— 7
Cls : PCLASS
sig : SIGNATURE

IS0MORPHIC(Call, si 2®Cls,si1g®C1 s)

Satisfied by

Satisfied by

Not satisfied
by

Example 23 : A

Design models

{{els,), (els,), Celsg) }

s

{{mth,},{mth,),(mih,)} = Method
{(sig)} = Signature
{(sig,mth,) (sig,nth,), (sig,mthy)} = SignaturcOf
{{cls,,mth,), (cls,,mth,), (cls,,mthy) } = Member
{ (mth,,mth,}, {mth,,mth,), {mthy,mthy)} = Call
Example 23 : B
= Class

{(uth,), (mth,), Cmthy) } = Method
{(sig)} = Signature
{(sig,mth),{sig,mth,), (sig,mthy)} = SignatureO
{(els,,mth), {cls,,mthy), {cls,,mthy)} = Member
{(mth,)} = Abstract
= Call

Example 23 : C (Counter example)

ISOMORPHIC predicate.

There exists a method in the range that is not called by a member of the domain, and visa versa. This violates the definition of the

{(els,), (els,), Celsy) }

Class

{$1701S27“]—S3}

Method

{(sig)}

Signature

{(sig,mth,),{sig,mth,}, (sig,mthy) }

SignatureOf

Member

Call

Example 24:
Schema

— v
Factories : PCLASS
sig : SIGNATURE

ISOMORPHIC(Create, sig®Factaries,]

Satisfied by

Satisfied by

Satisfied by

Example 24 : A

Design models

{{els,), (els,), Celsg) }

Factories

{{(subClass),{cls,?, (cls,), (clsy) }

{{mth,},{mth,),(mih,)} = Method
{(sig)} = Signature
{(sig,nth,),{sig,nth,), {sig,mth,)} = SignaturcOf
{{cls,,mth,), (cls,,mth,), (cls,,mthy) } = Member
{(mth,,cls,), (mthy,cls,), (mthy,cls,)} = Create
Example 24 : B
= Class

Factories

{(suh(‘,lass),(als‘),(01S2)7<(‘1s3)}

{{mth,), (mth,), (mth,)} = Method
{(sig)} = Signature
{(sig,mth,), {sie,mth,), (sig,mthy)} = SignatureQ
{(els, mth,), {cls,,mthy), {clsy,mthy)} = Member
{(subClass,cls,)} = Inherit
{(mth,, subClass), (mth,, cls,), (mthy,cls,)} = Create
Example 24 : C
= C(Class

Factories

{$1701S27“]—S3}

{(uth,), {uth,) , {mthy) }

Method

{(sig)}

Signature

{(sig,mth,),{sig,mth,}, (sig,mthy) }

SignatureOf

{(cls,,mth;), {cls, mthy), Celsg,mthy) } = Member
{(subClass,cls,)} = Inherit

{(els,)} = Abstract

= Create

{ {mth,,subClass), (mth,,cls,),

e
E
=
&
‘o
2
&
—

Example 25:

Schema
Satisfied by
— ¥
A,B : PCLASS
ISOMORPHIC(Inherit , A,B)
Satisfied by

Design models

Example 25 : A
{{a,),¢a,), (b}, (b,)} = Class
A {ay,2,}
b= {bb}
{(a,,b,),(a,,b,)} = Inherit
Example 25 : B
{{a,),¢a),{b,) (b} = Class
A {ay,2,}
B = {b;,b,}
Inherit

{ (§|,h|>,(§2,b2>,(h|,b2>}

References

e Amnon H. Eden, Jonathan Nicholson, Epameinondas Gasparis. “The LePUS3 and Class-Z Reference manual.” Technical report CSM-474, ISSN 1744-8050 (2007), Department of Computer Science, University
of Essex. [.bdf]

o Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis. "Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4 (Part I; Part IL)." Department of Computer
Science, University of Essex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007). [.pdf]

	1
	2

