Abstract Semantics for Java 1.4 Programs

Part I of: Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4

Technical Report CSM-471, ISSN 1744-8050

Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis Department of Computer Science, University of Essex, United Kingdom 31 December 2007 See also: Part II, Verification of LePUS3/Class-Z Specifications

Abstract

This document is a compendium of examples that describe the entities and relations that represent the <u>abstract semantics</u> (finite structures) of programs in the JavaTM programming language. It is designed to provide further explanation to the definitions given in the LePUS3 and Class-Z Reference manual (Eden et al. 2007).

To remind the reader, a finite structure is a simplified ('abstracted') picture of the program, which 'flattens' the knotty structure and syntax of the source code into a set of primitive entities (also called entities of dimension 0) and relations. Essentially, each finite structure can be viewed as a relational database, or a set of tables which contain tuples of entities ('records'). Below we list a few sample Java programs and the finite structure that represents them

Coo alco

- LePUS3 and Class-Z Reference manual [Eden et al. 2007]
 - O Definition VII: Unary relation
 - O Definition VIII: Binary relation
- Part II, Verification of LePUS3/Class-Z Specifications [Nicholson et al. 2007]

Table of contents

- 1. Classes
- 2. Methods and signatures
- 3. Abstract Relation
- 4. Inherit Relation
- 5. Inheritable Relation
- 6. Member and Aggregate Relations
- 7. Call and Forward Relations
- 8. Create Relation
- 9. Return Relation
- 10. Produce Relation
- References

1. Classes

In the abstract semantics of the Java programming language, each entity in the <u>unary relation Class</u> (also called <u>la class of dimension 0</u>) stands for one of the static types mentioned in the program which, in Java, includes classes (java.lang.object), interfaces (java.util.Collection), primitive types (int), and array types (int)). Following are some examples that should demonstrate the correlation between types in Java programs and the entities which represent them.

2. Methods and signatures

Each entity in the unary relation <u>Method</u> (also called 'a method of dimension 0') stands for exactly one method in a Java Program.

Each entity in the unary relation Signature (also called 'a signature of dimension 0) stands for the signature (name and argument types) of one or more of the methods in a Java Program.

The pair $\langle \underline{sig}, \underline{mth} \rangle$ in the binary relation $\underline{SignatureOf}$ indicates that the method \underline{mth} has the signature \underline{sig} . Since every method in a Java program has exactly one signature, each method is associated with evactly one signature.

The relation \underline{Member} (see below) associates methods with classes, and the relation $\underline{Inheritable}$ (see below) indicates that a method is accessible from subclasses.

The compiler adds the empty constructor if one has not been provided.

Example 2: Program	Complete finite structure
public class Cls {	$\{\underline{\operatorname{Cls}}\} = \underline{\operatorname{Class}}$
<pre>public void mth() { } }</pre>	$ \left\{ \left\langle \underline{Cls.mth} \left(\underline{l} \right) \right\rangle, = \underline{\mathit{Method}} \right. \\ \left\langle \underline{Cls.Cls} \left(\underline{l} \right) \right\rangle \right\} $
	$ \{\langle \mathtt{mth}(), \mathtt{Cls.mth}() \rangle, = \underline{SignatureOf} \\ \langle \mathtt{Cls}(), \mathtt{Cls.Cls}() \rangle \} $
	$\{\langle \underline{\operatorname{Cls.mth}()} \rangle\} = \underline{Inheritable}$

```
Example 3:
                                                                                                          Program
                                                                                                                                                                                                                                                                                                                                    Partial finite structure
                                                                                                                                                                                                                                                                                                                                                                                                       \{ \dots \} = \underline{\mathit{Class}}
       public class A {
  public void t() { ... }
  public void z() { ... }
                                                                                                                                                                                                                                                                                                                                                                                            \{\langle \underline{A.A()} \rangle, = \underline{Method}
                                                                                                                                                                                                                                                                                                                                                                                               ⟨<u>A. t()</u>⟩,
       public interface B {
  public void s();
}
                                                                                                                                                                                                                                                                                                                                                                                                ⟨<u>A. z ()</u> ⟩,
                                                                                                                                                                                                                                                                                                                                                                                                \langle \underline{B}, \underline{B}() \rangle,
       public class C
   extends A implements B {
  public void s() { ... }
  public void s(int i) { ... }
  public void t() { ... }
                                                                                                                                                                                                                                                                                                                                                                                               ⟨<u>B.s()</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                               ⟨<u>c.c()</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                               ⟨<u>C.s()</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                       ⟨<u>C.s(int)</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                              ⟨<u>C. t ()</u> ⟩}
                                                                                                                                                                                                                                                                                                                                                                                                 \{\langle \underline{A()} \rangle, = \underline{Signature}
                                                                                                                                                                                                                                                                                                                                                                                                     \langle \underline{B()} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                                      ⟨<u>co</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                                     \langle \underline{t} \underline{0} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                                     \langle \underline{z} \underline{0} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                                     \langle \underline{s} \underline{()} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                            \langle \underline{s(int)} \rangle \}
                                                                                                                                                                                                                                                                                                                                                                               \{\langle \underline{A()}, \underline{A.A()} \rangle, = \underline{SignatureOf}
                                                                                                                                                                                                                                                                                                                                                                                  \langle \underline{t}(), \underline{A}, \underline{t}() \rangle,
                                                                                                                                                                                                                                                                                                                                                                                    \langle \underline{z}(), \underline{A}, \underline{z}() \rangle,
                                                                                                                                                                                                                                                                                                                                                                                    \langle \underline{B()}, \underline{B(B()} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                    \langle \underline{s\,()}\,,\underline{B.\,s\,()}\,\rangle,
                                                                                                                                                                                                                                                                                                                                                                                    \langle \underline{c}(), \underline{c}, \underline{c}() \rangle,
                                                                                                                                                                                                                                                                                                                                                                                    \langle \underline{s\,()}\,,\underline{C.\,s\,()}\,\rangle,
                                                                                                                                                                                                                                                                                                                                                                   \langle \underline{s(int)}, \underline{C.s(int)} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                 ⟨<u>t()</u>,<u>C.t()</u>⟩}
                                                                                                                                                                                                                                                                                                                                                                                     \{\,\langle\,\underline{\mathrm{A}}\,,\,\underline{\mathrm{A.\,A\,()}}\,\,\rangle\,,\ =\ \underline{\mathit{Member}}
                                                                                                                                                                                                                                                                                                                                                                                        ⟨<u>A</u>,<u>A.t()</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                       ⟨<u>A</u>,<u>A.z()</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                       \langle B, B, B \rangle,
                                                                                                                                                                                                                                                                                                                                                                                       \langle B, B.s() \rangle,
                                                                                                                                                                                                                                                                                                                                                                                       ⟨<u>c,c.c0</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                        \langle \underline{c}, \underline{c.s()} \rangle,
                                                                                                                                                                                                                                                                                                                                                                                ⟨<u>C</u>,<u>C.s(int)</u>⟩,
                                                                                                                                                                                                                                                                                                                                                                                        \langle \underline{c}, \underline{c}, \underline{t} (\underline{)} \rangle \}
```

3. Abstract Relation

The contents of the unary $(\underline{Definition\ VII})\ \underline{Abstract}$ relation are $\underline{Class}\ (\underline{Definition\ III})$ and $\underline{Method}\ (\underline{Definition\ VI})$ entities. If an entity exists in this relation then the related section of program is abstract, for example an Interface is always abstract.

Example 4: Program	Partial finite structure
public abstract class A {	$\{\dots\} = \underline{Class}$
<pre>public abstract void s(); public void t() { } }</pre>	$\{\dots\} = \underline{\textit{Method}}$
<pre>public interface B { public void s(); }</pre>	$\{\dots\} = \underline{Signature}$
	$\{\langle \Delta \rangle, = \underline{Abstract} \\ \langle \Delta . \underline{s} (1) \rangle,$
	$\langle B \rangle$,
	⟨B, s () ⟩}

4. Inherit Relation

The binary ($\overline{\text{Definition VIII}}$) Inherit relation represents inheritance, in terms of Java^{im} this means the keywords extend and implements, as well as the subtyping relation. In Java^{im} there is no inheritance between methods, and all classes which do not explicitly extend or implement from anything are taken to extend class <code>java.lang.Object</code>.

Ex	ample 5: Program	Partial finite structure
	public class A extends B	$\{\dots\} = \underline{Class}$
	<pre>implements C { } public class B { }</pre>	$\{\dots\} = \underline{\textit{Method}}$
	<pre>public interface C extends D { }</pre>	$\{\dots\} = \underline{Signature}$
	<pre>public interface D { }</pre>	$\{\langle A, E \rangle, = \underline{\textit{Inherit}}$
		$\langle A, C \rangle$, $\langle B, java, lang, Object \rangle$,
		$\langle \underline{c}, \underline{a}, \underline{a}, \underline{c}, \underline{c} \rangle$,
		⟨D, java.lang.Object⟩}

5. Inheritable Relation

The contents of the unary $(\underline{Definition\ VII})\ \underline{Inheritable}$ relation are \underline{method} entities $(\underline{Definition\ VI})$ which were decorated with the public or protected access modifiers. Methods declared within final classes are not "inheritable" as the class its self-cannot be inherited from.

Constructors are never $\underline{Inheritable}$.

Example 6: Program	Partial finite structure	
public class A {	$\{\ldots\} = \underline{Class}$	
<pre>public void x() { } protected void y() { } private void z() { } }</pre>	$\{\dots\} = \underline{\textit{Method}}$	
<pre>public final class B { public void x() { }</pre>	$\{\dots\} = \underline{Signature}$	
<pre>protected void y() { } private void z() { } }</pre>	$ \{\langle \underline{\Lambda}, \underline{X}(\underline{t}) \rangle, = \underline{Inheritable} $ $ \langle \underline{\Lambda}, \underline{Y}(\underline{t}) \rangle \} $	

6. Member and Aggregate Relations

The binary ($\underline{\text{Definition VIII}}$) \underline{Member} relation represents the ownership one class has of its methods and fields. The domain is always the "owner", and the range is either the method or type of the field in question.

The binary ($\overline{\text{Definition VIII}}$) $\underline{Aggregate}$ relation shows that a class has a collection/array of a specified type. The domain is always the "owner", and the range is the basic type stored in the collection/array. An $\underline{Aggregate}$ relation is added for any array, or for any field which inherits from java.util.collection.

Example 7: Program	Partial finite structure
public class C {	$\{\ldots\} = \underline{Class}$
Object ol; Object ol; String[] stringArray; int[][] intArray;	$\{\ldots\} = \underline{\textit{Method}}$
Set objectSet; }	$\{\ldots\} = \underline{Signatw}$
	$\{\langle \underline{\zeta}, \underline{java. lang. 0bject} \rangle, = \underline{\mathit{Member}}$
	⟨C, String[]⟩,
	⟨c, int[][]⟩,
	⟨C, iava.util.Set⟩}
	{⟨C, java lang String⟩, = Aggrega
	$\langle c, int \rangle$,
	ζς, java. lang. Object)}
	{⟨iava.util.Set, iava.util.Collection⟩} = Inherit
	···

7. Call and Forward Relations

The binary (Definition VIII) <u>Call</u> and <u>Forward</u> relations are very similar in that both indicate to a method call within the program. An invokation of a method with the same signature as the domain, using the same objects as defined by the domains arguments, is known as a forwarding method call.

8. Create Relation

The binary ($\underline{\text{Definition VIII}}$) \underline{Create} relation most commonly represents the keyword \underline{new} for class instantiation, however it also represents the initialisation of a primitive type. It is worth noting that a fields initialisation is actually performed within each the constructor(s) as in the following example.

9. Return Relation

The binary (Definition VIII) <u>Return</u> represents return statements in the program. Statements such as "return;" break from further execution of the method, but does not return a value. Therefore these statements are innored.

10. Produce Relation

The binary ($\overline{\text{Definition VIII}}$) $\underline{Produce}$ relation identifies methods which "creates" and "returns" an object during execution of the method.

References

- Amnon H. Eden, Jonathan Nicholson, Epameinondas Gasparis. *The LePUS3 and Class-Z Reference manual.* Technical report CSM-474, ISSN 1744-8050 (2007), Department of Computer Science, University
- Amnor H. Edeti, Joriana Microsoft, Epart III). Department of Computer Science, University of Essex. [pdf]
 Jonathan Nicholson, Amnor H Eden, Epameinondas Gasparis. "Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4 (Part II)." Department of Computer Science, University of Essex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007). [pdf]
 James Gosling, Bill Joy, Guy Steele, Gilad Bracha. "The Java language specification", second edition, Prentice Hall (2000). [online]

Sample Models

Part II of: Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4

Technical Report CSM-471, ISSN 1744-8050

Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis Department of Computer Science, University of Essex, United Kingdom

See also: Part I, Verification of LePUS3/Class-Z Specifications

Abstract

This documents demonstrates how Class-Z specifications are verified using case studies. The class of design models which satisfy each sample specification is demonstrated via one or more such design models, possibly also using one or more counter examples. As there is a far greater set of design models that do not satisfy a given specification, this document is limited to a selection of design models where verification succeeds (or fails, as specified for each).

Throughout this document we assume that entity $\underline{c1s}$ is the interpretation of the constant c1s, that is: $\mathcal{I}(c1s) \equiv \underline{c1s}$

Table of contents

1. Terms 1.1. Class 1.2. Hierarchy 1.3. Signature 2. Ground formulas 2.1. Method Relation Symbol 2.2. Abstract Relation Symbol 2.3. Inherit Relation Symbol 2.4. Member Relation Symbo 2.5. Aggregate Relation Symbol 2.6. Call Relation Symbol 2.7. Forward Relation Symbol 2.8. Create Relation Symbol 2.9. Return Relation Symbol 2.10. Produce Relation Symbol 3. Predicate formulas 3.1. All Predicate Symbol
3.2. Total Predicate Symbol

3.3. Isomorphic Predicate Symbol

1. Terms

References

See the LePUS3 and Class-Z reference manuals section on Terms [Eden et al. 2007] for more information.

1.1. Class

See Definition III [Eden et al. 2007].

Example 1: Schema	Satisfied by	Design models Example 1 : A
Ψ aClass: CLASS Cls: PCLASS		$\{\langle \underline{aClass} \rangle, \langle \underline{cls}_1 \rangle, \langle \underline{cls}_2 \rangle, \langle \underline{cls}_3 \rangle\} = \underline{Class}$
US: PULADO		$Cls = \{ \underline{cls}_1, \underline{cls}_2, \underline{cls}_3 \}$

1.2. Hierarchy

See Definition IV [Eden et al. 2007].

Example 2: Schema	Satisfied by	Design models Example 2 : A
Ψ H: HIERARCHY		$\{\langle \underline{\text{root}} \rangle, \langle \underline{\text{cls}}_1 \rangle, \langle \underline{\text{cls}}_2 \rangle\} = \underline{Class}$
		$\mathbb{H} = \{ \frac{\text{root}}{\text{cls}_1}, \frac{\text{cls}_2}{\text{cls}_2} \}$
		$\{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{root}} \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{root}} \rangle\} = \underline{\operatorname{Inherit}}$
	Satisfied by	Example 2 : B
		$\{\langle \text{root} \rangle, \langle \text{middle} \rangle, \langle \text{hottom} \rangle\} = Class$
		H = {root, middle, bottom}
		{⟨bottom,middle⟩,⟨middle,root⟩⟩ = Inherit
	Satisfied by	Example 2 : C
		$\{\langle \underline{aClass} \rangle, \langle \underline{root} \rangle, \langle \underline{cls}_1 \rangle, \langle \underline{cls}_2 \rangle\} = \underline{Class}$
		$\mathbb{H} = \{ \frac{\text{root}}{\text{cls}_1}, \frac{\text{cls}_2}{\text{cls}_2} \}$
		$\{\langle \text{cls}_1, \text{aClass} \rangle, \langle \text{cls}_2, \text{aClass} \rangle, \langle \text{aClass}, \text{root} \rangle\} = \underline{Inherit}$

1.3. Signature

For simplicity the () characters are omitted from both methods and signatures (in both the schemas and design models) when there are no arguments present.

See Definition V [Eden et al. 2007].

Example 3: Schema	Satisfied by	Design models Example 3 : A
ψ aSignature: SIGNATURE Sig: PSIGNATURE	Sausileu by	

2. Ground formulas

See the LePUS3 and Class-Z reference manuals section on the satisfaction of ground formulas [Eden et al. 2007] for more information.

2.1. Method Relation Symbol

See Definition IX (Superimpositions) [Eden et al. 2007]

Example 4: Schema	Satisfied by	Design models Example 4 : A		
ψ cls: CLASS	-	{(cls)}	=	Class
sig: SIGNATURE Method(sig@cls)	-	{(mth)}	=	Method
		$\{\langle \underline{sig} \rangle\}$	=	Signature
		{\sig,mth\}	=	$\underline{SignatureOf}$
		{ (cls, mth)}	=	\underline{Member}
	C-N-E-d b	Francis 4 - P	—	
	Satisfied by	Example 4: B { \(\cdot \), \(\superClass \) \}	=	Class
		{ \(mth\)}	=	Method
		{\sig\}	=	$\underline{signature}$
		{ \sig, mth \}	=	$\underline{SignatureOf}$
		{ \langle superClass , mth \rangle }	=	\underline{Member}
		{ <mth>}</mth>	=	<u>Inheritable</u>
		{(cls, superClass)}	=	<u>Inherit</u>
	Not satisfied by	Example 4 : C (Counter example) A close inspection of This case reveals that the method $\underline{\mathfrak{mth}}_1$ is overridden by a non-inheritable method $\underline{\mathfrak{mth}}_2$. This is a call In Java this is impossible as the visibility of a method cannot be reduced.	ise c	of method hiding.
		$\{\langle cls \rangle, \langle superClass_1 \rangle, \langle superClass_2 \rangle\}$	=	Class
		$\{\langle mih_1 \rangle, \langle mih_2 \rangle\}$	=	\underline{Method}
		{\sig\}	=	<u>Signature</u>
		$\{\langle sig, mth_1 \rangle, \langle sig, mth_2 \rangle\}$	=	$\underline{SignatureOf}$
		$\{\langle \underline{superClass}_1, \underline{mth}_1 \rangle, \langle \underline{superClass}_2, \underline{mth}_2 \rangle\}$	=	\underline{Member}
		{ \mih, \}	=	<u>Inheritable</u>
		{\cls,superClass2},\superClass2,superClass1}}	=	<u>Inherit</u>
i e e e e e e e e e e e e e e e e e e e				

2.2. Abstract Relation Symbol

Example 5: Schema	Satisfied b	Design models Example 5 : A	
cls: CLASS		$\{\langle \underline{\text{cls}} \rangle\} = \underline{Class}$	
$Abstract(cls)$ $Abstract(sig \otimes cls)$		$\left\{\left\langle \underline{\mathtt{mth}}\right\rangle \right\} \;=\; \underline{\mathit{Method}}$	
		$\{\langle \underline{sig} \rangle\} = \underline{Signatur}$	<u>re</u>
		$\{\langle \underline{sig}, \underline{mth} \rangle\} = \underline{Signatur}$	<u>reOf</u>
		$\{\langle \underline{\operatorname{cls}}, \underline{\operatorname{mth}} \rangle\} = \underline{Member}$	-
		$\{\langle \underline{cls} \rangle, \langle \underline{mth} \rangle\} = \underline{Abstract}$	<u>t</u>
sig:SIGNATURE Abstract(cls) Abstract(sig⊗cls)		$ \left\{ \left\langle \underline{\operatorname{sig}} \right\rangle \right\} \ = \ \underline{Signatur} $ $ \left\{ \left\langle \underline{\operatorname{sig}}, \underline{\operatorname{mth}} \right\rangle \right\} \ = \ \underline{Member} $ $ \left\{ \left\langle \underline{\operatorname{cls}}, \underline{\operatorname{mth}} \right\rangle \right\} \ = \ \underline{Member} $	re re

2.3. Inherit Relation Symbol

Example 6: Schema	Satisfied by	Design models Example 6 : A
w subClass, superClass: CLASS Inherit(subClass, superClass)		$\{\langle \underline{\text{subClass}} \rangle, \langle \underline{\text{superClass}} \rangle\} = \underline{\text{Class}}$
	-	$\{\langle ext{subClass}, ext{superClass} \rangle\} = Inherit$
	Satisfied by	Example 6 : B
		$\{\langle \underline{\text{subClass}} \rangle, \langle \underline{\text{superClass}} \rangle, \langle \underline{\text{aClass}} \rangle\} = \underline{Class}$
		$\{\langle subClass, aClass \rangle, \langle aClass, superClass \rangle\} = Inherit$

2.4. Member Relation Symbol

Example 7: Schema	Satisfied by	Design models Example 7 : A
ψ container, field: CLASS		$\{\langle container \rangle, \langle field \rangle\} = Class$
Member(container, field)		{\langle container, field \rangle} = Member
	Satisfied by	Example 7: B this is an example for $\underline{\text{subtyping}}$ in LePUS3: the formula $\underline{Member}(\text{container}, \text{field})$ is satisfied here by class subcls which inherits (is a subclass of) $\underline{\text{field}}$
		$\{\langle container \rangle, \langle field \rangle, \langle subClass \rangle\} = Class$
		$\{\langle subClass, field \rangle\} = Inherit$
		{\langle container, subClass}} = Member
	Satisfied by	Example 7 : C As $\underline{Aggregate} \vdash \underline{Member}$, see Example 8 : A and Example 8 : B.

2.5. Aggregate Relation Symbol

Example 8: Schema	Satisfied by	Design models Example 8 : A
ψcontainer, element : CLASS		$\{\langle \underline{\text{container}} \rangle, \langle \underline{\text{element}} \rangle\} = \underline{\textit{Class}}$
$Aggregate (ext{container,element})$		$\{\langle container, clement \rangle\} = Aggregate$
	Satisfied by	Example 8:B this is an example for $\underline{\underline{\underline{\underline{subtypinq}}}}$ in LePUS3: the formula $Aggregate(\underline{\underline{container,element}})$ is satisfied here by class $\underline{\underline{subcls}}$ which inherits (is a subclass of) $\underline{\underline{element}}$
		$\{\langle container \rangle, \langle clement \rangle, \langle subClass \rangle\} = Class$
		$\{\langle subClass, \underline{clement} \rangle\} = \underline{Inherit}$
		$\{\langle element, subClass \rangle\} = Aggregate$

2.6. Call Relation Symbol

Example 9: Schema	Satisfied by	Design models Example 9 : A	
ψ orig, dest: CLASS sig: SIGNATURE Call(sig⊗orig, sig⊗dest)		$\{\langle \text{orig} \rangle, \langle \text{dest} \rangle\}$	= <u>Class</u>
		{⟨caller⟩,⟨called⟩}	= <u>Method</u>
		{\sig\}	= <u>Signature</u>
		{\sig,caller}}{\sig,caller}}{\sig,caller}}	= <u>SignatureOf</u>
		{ \langle orig, caller \rangle \} { \langle dest, called \rangle \}	= <u>Member</u>
		{\caller,called\}	= <u>Call</u>
	Satisfied by	Example 9 : B As $\underline{Forward} \vdash \underline{Call}$, see Example 11 : A.	

Example 10:	Schema	Satisfied by	Design models Example 10 : A	
Ψ	.ASS		$\{\langle \text{orig} \rangle, \langle \text{dest} \rangle\}$	= <u>Class</u>
sig: SIGNATURE Call(sig⊗orig,dest)			{\caller\called\}	= <u>Method</u>
			{⟨sig⟩,⟨anotherSig⟩}	= <u>Signature</u>
			{\sig,caller\}{\langle another Sig,called\}	= <u>SignatureOf</u>
			{\langle orig, caller \rangle} \{\langle dest, called \rangle}	= <u>Member</u>
			{\langle_called\rangle}	= <u>Call</u>

2.7. Forward Relation Symbol

Example 11: Schema	Satisfied by	Design models Example 11 : A	
Ψ orig, dest: CLASS		$\{\langle \text{orig} \rangle, \langle \text{dest} \rangle\}$	= <u>Class</u>
sig:SIGNATURE Forward(sig⊗orig,sig⊗dest)		{\langle_called\rangle}	= <u>Method</u>
		{\sig\}	= <u>Signature</u>
		$\{\langle \underline{sig}, \underline{caller} \rangle\} \{\langle \underline{sig}, \underline{called} \rangle\}$	= <u>SignatureOf</u>
		$\{\langle \text{orig}, \text{caller} \rangle\} \{\langle \text{dest}, \text{called} \rangle\}$	= <u>Member</u>
		{\langle called \rangle}	= Forward

2.8. Create Relation Symbol

Example 12: Schema	Satisfied by	Design models Example 12 : A	
ψ cls: CLASS		$\{\langle \underline{\text{created}} \rangle\} =$	Class
sig:SIGNATURE Create(sig⊗created,created)		$\{\langle mth \rangle\} =$	<u>Method</u>
		$\{\langle \underline{sig} \rangle\} =$	<u>Signature</u>
		$\{\langle \underline{sig},\underline{mth}\rangle\}$ =	$\underline{SignatureOf}$
		{\langle created, mth \rangle} =	<u>Member</u>
		{\langle mth, created \rangle} =	<u>Create</u>
	Satisfied by	Example 12 : B	
		$\{\langle subClass \rangle, \langle created \rangle\} =$	\underline{Class}
		{(mth)} =	<u>Method</u>
		$\{\langle_{\underline{\operatorname{Sig}}}\rangle\}=$	<u>Signature</u>
		$\{\langle \underline{sig},\underline{mth}\rangle\}$ =	<u>SignatureOf</u>
		{(created,mth)} =	<u>Member</u>
		{ \langle subClass, created \rangle } =	Inherit
		{ \langle mth, subClass \rangle} =	Create
	Satisfied by	Example 12 : C As Produce⊢ Create, see Example 14 : A and Example 14 : B.	

2.9. Return Relation Symbol

Example 13: Schema	Satisfied by	Design models Example 13 : A											
ψ returned: CLASS sig: SIGNATURE	,	$\{\langle \text{returned} \rangle\} = 0$	Class										
Return(sig⊗returned,returned)		$\{\langle mth \rangle\} = \frac{1}{2}$	Method										
		$\{\langle \underline{\text{sig}} \rangle\} = \underline{\zeta}$	<u>Signature</u>										
		$\{\langle \underline{sig}, \underline{mth} \rangle\} = \underline{s}$	Signature Of										
		{\langle returned, mth \rangle } = \frac{1}{2}	\underline{Member}										
		{\langle mth, returned \rangle} = \frac{1}{2}	Return										
	Satisfied by	Example 13 : B											
		$\{\langle returned \rangle, \langle subClass \rangle\} = 0$	\underline{Class}										
						$\{\langle mth \rangle\} = \frac{1}{2}$	\underline{Method}						
						$\{\langle \underline{\text{sig}} \rangle\} = \underline{\zeta}$	Signature						
												$\{\langle \underline{sig}, \underline{mth} \rangle\} = \underline{s}$	SignatureOf
										{\langle returned, mth \rangle} = \frac{1}{2}	Member		
		{\langle subClass, returned \rangle} = \frac{1}{2}	Inherit										
		{\langle mth, subClass\rangle} = \frac{1}{2}	Return										
	Satisfied by	Example 13 : C As $Produce \vdash Return$, see Example 14 : A and Example 14 : B.											

2.10. Produce Relation Symbol

Example 14: Schema	Satisfied by	Design models Example 14 : A															
produced : CLASS sig : SIGNATURE	-	{\produced\}	= <u>Class</u>														
Produce(sig⊗produced,produced)	-	{\langle factory\rangle}	= <u>Method</u>														
		{\sig\}	= <u>Signature</u>														
		{\sig, factory\}	= SignatureOf														
		{\produced, factory}}	= <u>Member</u>														
		{⟨factorv,produced⟩}	= <u>Produce</u>														
	Satisfied by	Example 14 : B															
			{\produced\(subClass\)}	= <u>Class</u>													
		$\{\langle ext{factory} \rangle\}$	= <u>Method</u>														
												{\sig\}	= <u>Signature</u>				
										{\produced,factory\}	= <u>Member</u>						
		{ \langle subClass, produced \rangle }	= <u>Inherit</u>														
		{\langle factory, subClass\rangle}	= <u>Produce</u>														

3. Predicate formulas

See the LePUS3 and Class-Z reference manuals section on the satisfaction of predicate formulas (Definitions XVIII, XVIIII and XIX) [Eden et al. 2007] for more information.

3.1. All Predicate Symbol

See Definition XVII [Eden et al. 2007].

Example 15:			Design models
ψ cls: CLASS sig: SIGNATURE ALL(Abstract, { sig⊗cls})	Satisfied by	Example 15 : A Example 5 : A	

Example 16: Schema	Satisfied by	Design models Example 16 : A
υ cls: PCLASS		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} = \underline{\operatorname{Class}}$
ALL(Abstract, cls)		$\underline{\operatorname{cls}} = \{\underline{\operatorname{cls}}_1, \underline{\operatorname{cls}}_2, \underline{\operatorname{cls}}_3\}$
		$\{\langle \underline{cls}_1 \rangle, \langle \underline{cls}_2 \rangle, \langle \underline{cls}_3 \rangle\} = \underline{Abstract}$
	Not satisfied by	Example 16 : B (Counter example) One of the entities in cls is not abstract
		$\{\langle \underline{\text{cls}}_1 \rangle, \langle \underline{\text{cls}}_2 \rangle, \langle \underline{\text{cls}}_3 \rangle\} = \underline{\textit{Class}}$
		$cls = \{cls_1, cls_2, cls_3\}$
		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle\} = \underline{Abstract}$

Example 17: Schema		Design models	
	Satisfied by	Example 17 : A	
ψ cls: PCLASS sig: SIGNATURE		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} =$	Class
ALL(Method, sig⊗cls)		cls =	$\{ \underline{\operatorname{cls}}_1, \underline{\operatorname{cls}}_2, \underline{\operatorname{cls}}_3 \}$
		$\{\langle \underline{\mathrm{mth}}_1 \rangle, \langle \underline{\mathrm{mth}}_2 \rangle, \langle \underline{\mathrm{mth}}_3 \rangle\} \ = \ $	<u>Method</u>
		$\{\langle \underline{\text{sig}} \rangle\} =$	<u>Signature</u>
		$ \left\{ \langle \underline{sig}, \underline{mth}_1 \rangle, \langle \underline{sig}, \underline{mth}_2 \rangle, \langle \underline{sig}, \underline{mth}_3 \rangle \right\} = $	<u>SignatureOf</u>
		$ \left\{ \langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle \right\} \ = \\$	\underline{Member}
9	Satisfied by	Example 17 : B	
		$\{\langle \operatorname{cls}_1 \rangle, \langle \operatorname{cls}_2 \rangle, \langle \operatorname{cls}_3 \rangle\} =$	Class
		cls =	$\{\operatorname{cls}_1,\operatorname{cls}_2,\operatorname{cls}_3\}$
		{\mith_1\} =	Method
		$\{\langle \underline{\text{sig}} \rangle\} =$	<u>Signature</u>
		$\left\{\left\langle \underline{sig},\underline{mth}_{1}\right\rangle \right\}$	<u>SignatureOf</u>
		$\left\{ \left\langle \frac{\operatorname{cls}_{2}}{\operatorname{cls}_{1}}\right\rangle ,\left\langle \frac{\operatorname{cls}_{3}}{\operatorname{cls}_{1}}\right\rangle \right\} \ =$	<u>Inherit</u>
		$\{\langle \underline{mih}, \rangle\} =$	<u>Inheritable</u>
		$\{\langle \underline{cls}, \underline{mth}, \rangle\} =$	<u>Member</u>
r	Not satisfied by	Example 17 : C (Counter example) $\underline{\text{cls}}_{3}$, or its superclass, does not define a method with signature $\underline{\text{sig}}$	
		$\{\langle \operatorname{cls}_1 \rangle, \langle \operatorname{cls}_2 \rangle, \langle \operatorname{cls}_3 \rangle\} \ =$	Class
		cls =	$\{cls_1, cls_2, cls_3\}$
		$\{\langle mth_1 \rangle, \langle mth_2 \rangle\} =$	Method
		{(sig)} =	<u>Signature</u>
		$\left\{\left\langle \text{sig}, \text{mth}_{1}\right\rangle, \left\langle \text{sig}, \text{mth}_{2}\right\rangle\right\} =$	<u>SignatureOf</u>
		$\left\{\left\langle \frac{1}{cls_{1}},\frac{1}{mth_{1}}\right\rangle ,\left\langle \frac{1}{cls_{2}},\frac{1}{mth_{2}}\right\rangle \right\} = 0$	<u>Member</u>

3.2. Total Predicate Symbol

See Definition XVIII [Eden et al. 2007].

Example 18: Schema	Satisfied by	Example 18 : A Example 9 : A and Example 9 : B	Design models	
$\begin{array}{c} \psi \\ \text{cls}_1, \text{cls}_2 : \textbf{CLASS} \\ \text{sig} : \textbf{SIGNATURE} \\ \\ \textit{TOTAL}(Call, \{\text{sig} \otimes \text{cls}_1\}, \{\text{sig} \otimes \text{cls}_2\}, \{\text{sig} \otimes$		Example 9: A and Example 9: B		

Example 19: Schema	Satisfied by	Design models Example 19 : A
Ψ ————————————————————————————————————	,	$\{\langle \underline{a}_1 \rangle, \langle \underline{a}_2 \rangle, \langle \underline{b}_1 \rangle, \langle \underline{b}_2 \rangle, \langle \underline{b}_3 \rangle\} \ = \ \underline{\mathit{Class}}$
Total(Inherit, A, B)		$\Lambda = \{\underline{a}_1, \underline{a}_2\}$
		$\mathbb{E} = \{\underline{\mathbf{b}}_1,\underline{\mathbf{b}}_2,\underline{\mathbf{b}}_3\}$
		$\{\langle \underline{a}_1 \rangle, \langle \underline{b}_2 \rangle\} = \underline{Abstract}$
		$\{\langle \mathbf{a}_1, \mathbf{a}_2 \rangle, \langle \mathbf{a}_2, \mathbf{b}_1 \rangle, \langle \mathbf{a}_2, \mathbf{b}_2 \rangle\} = \underline{\mathit{Inherit}}$
	Not satisfied by	Example 19: B (Counter example) There is no tuple in the required relation between one of the members of the domain and a member of the range.
		$\{\langle \underline{a}_1 \rangle, \langle \underline{a}_2 \rangle, \langle \underline{b}_1 \rangle, \langle \underline{b}_2 \rangle, \langle \underline{b}_3 \rangle\} = \underline{Class}$
		$\mathbb{A} = \{\underline{a}_1, \underline{a}_2\}$
		$\mathbb{E} \ = \ \{ \mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3} \}$
		$\{\langle \underline{a}_1, \underline{b}_1 \rangle, \langle \underline{a}_1, \underline{b}_2 \rangle, \langle \underline{a}_1, \underline{b}_3 \rangle\} = \underline{Inherit}$

Example 20:		Design models	
Schema	Satisfied by	Example 20 : A	
ψ cls: PCLASS	-	$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} =$	= <u>Class</u>
sig:SIGNATURE TOTAL(Call, sig⊗cls, sig⊗cls)	• •	<u>cls</u> =	$\{ \operatorname{cls}_1, \operatorname{cls}_2, \operatorname{cls}_3 \}$
		$\left\{ \langle \underline{\mathbf{mth}}_{1} \rangle, \langle \underline{\mathbf{mth}}_{2} \rangle, \langle \underline{\mathbf{mth}}_{3} \rangle \right\} =$	<u>Method</u>
		{\sig\} =	= <u>Signature</u>
		$ \{ \langle \underline{sig}, \underline{mth}, \rangle, \langle \underline{sig}, \underline{mth}_2 \rangle, \langle \underline{sig}, \underline{mth}_3 \rangle \} = $	SignatureOf
		$ \{ \langle \underline{\text{cls}}_1, \underline{\text{mth}}_1 \rangle, \langle \underline{\text{cls}}_2, \underline{\text{mth}}_2 \rangle, \langle \underline{\text{cls}}_3, \underline{\text{mth}}_3 \rangle \} = $	= <u>Member</u>
		$ \{ \langle \underline{\mathrm{mth}}_1, \underline{\mathrm{mth}}_1 \rangle, \langle \underline{\mathrm{mth}}_2, \underline{\mathrm{mth}}_3 \rangle, \langle \underline{\mathrm{mth}}_3, \underline{\mathrm{mth}}_1 \rangle \} = $	- <u>Call</u>
	Satisfied by	Example 20 : B	
		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} =$	= <u>Class</u>
		cls =	$\{\operatorname{cls}_1,\operatorname{cls}_2,\operatorname{cls}_3\}$
		$ \left\{ \langle \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3 \rangle \right\} = $	<u>Method</u>
		{\sig\} =	= Signature
		$ \{\langle \underline{sig},\underline{mth}_1\rangle,\langle \underline{sig},\underline{mth}_2\rangle,\langle \underline{sig},\underline{mth}_3\rangle\} = $	= <u>SignatureOf</u>
		$ \{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle\} =$	<u>Member</u>
		$\{\langle \underline{\mathrm{mth}}_2 \rangle, \langle \underline{\mathrm{mth}}_3 \rangle\} =$	<u>Abstract</u>
		$ \left\{ \langle \underline{\mathbf{mth}}_1, \underline{\mathbf{mth}}_2 \rangle, \langle \underline{\mathbf{mth}}_1, \underline{\mathbf{mth}}_3 \rangle \right\} = $	= <u>Call</u>
	Satisfied by	Example 20 : C Every class in <u>cls</u> defines a method with the correct signature, which are all abstract mathematically satisfying the c	given relation.
		$\{\langle \underline{cls}_1 \rangle, \langle \underline{cls}_2 \rangle, \langle \underline{cls}_3 \rangle\} =$	
		cls =	$= \{\underline{\operatorname{cls}}_1, \underline{\operatorname{cls}}_2, \underline{\operatorname{cls}}_3\}$
		$ \left\{ \langle \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3 \rangle \right\} = $	<u>Method</u>
		{\sig\} =	= <u>Signature</u>
		$\{\langle \underline{sig},\underline{mth}_1\rangle,\langle \underline{sig},\underline{mth}_2\rangle,\langle \underline{sig},\underline{mth}_3\rangle\} =$	SignatureOf
		$ \{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle\} = $	<u>Member</u>
		$\{\langle \underline{\mathbf{mth}}_1 \rangle, \langle \underline{\mathbf{mth}}_2 \rangle, \langle \underline{\mathbf{mth}}_3 \rangle\} =$	= <u>Abstract</u>

3.3. Isomorphic Predicate Symbol

See Definition XIX [Eden et al. 2007].

Example 21: Schema	Satisfied by	Design models Example 21 : A	
ψ		{ ($\frac{\text{cls}_1}{\langle , \langle \text{cls}_2 \rangle \rangle} = \frac{\text{Class}}{\langle \text{cls}_1 \rangle \langle \text{cls}_2 \rangle \rangle}$
ISOMORPHIC(Member, { cls, }, { cls ₂ }			$\{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{cls}}_2 \rangle\} = \underline{Member}$
			$\{\} = \underline{Abstract}$

Example 22: Schema	Satisfied by	Design models Example 22 : A	
cls ₁ , cls ₂ : CLASS sig: SIGNATURE ISOMORPHIC(Call, { sig\in cls ₁ }, { sig\in cls ₁ }, { sig\in cls ₁ }, { sig\in cls ₁ }		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle\} =$: <u>Class</u>
		$\{\langle mth_1 \rangle, \langle mth_2 \rangle\} =$: <u>Method</u>
		{\sig\} =	: <u>Signature</u>
		$\{\langle \underline{\text{sig}} \rangle, \langle \underline{\text{mth}}_1 \rangle\} \{\langle \underline{\text{sig}} \rangle, \langle \underline{\text{mth}}_2 \rangle\} =$: SignatureOf
			: <u>Member</u>
		{} =	<u>Abstract</u>
		$\left\{\left\langle \mathtt{mth}_{1},\mathtt{mth}_{2}\right\rangle \right\} =$: <u>Call</u>
	Satisfied by	Example 22 : B	
		$\{\langle \underline{cls}_1 \rangle, \langle \underline{cls}_2 \rangle\} =$: <u>Class</u>
		$\{\langle mth_1 \rangle, \langle mth_2 \rangle\} =$: <u>Method</u>
		$\{\langle \underline{sig} \rangle\} =$: <u>Signature</u>
		$\{\langle \underline{\text{sig}}\rangle, \langle \text{mth}_1 \rangle\} \{\langle \underline{\text{sig}}\rangle, \langle \text{mth}_2 \rangle\} =$: SignatureOf
			: <u>Member</u>
		$\{\langle mth_2 \rangle\}$ =	<u>Abstract</u>
		$\left\{\left\langle \mathrm{mth}_{1},\mathrm{mth}_{2}\right\rangle \right\} =$: <u>Call</u>

Example 23: Schema		Design models
_ Ψ	Satisfied by	Example 23 : A
Cls: PCLASS		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} = \underline{\operatorname{Class}}$
$\begin{array}{l} \text{sig}: \textbf{SIGNATURE} \\ \\ \textit{ISOMORPHIC}(Call, \text{sig} \otimes \texttt{Cls, sig} \otimes \texttt{Cls}) \end{array}$		$\frac{\mathtt{Cls}}{\mathtt{Cls}} = \{\underline{\mathtt{cls}}_1,\underline{\mathtt{cls}}_2,\underline{\mathtt{cls}}_3\}$
		$\{\langle \underline{\mathrm{mth}}_1 \rangle, \langle \underline{\mathrm{mth}}_2 \rangle, \langle \underline{\mathrm{mth}}_3 \rangle\} = \underline{Method}$
		$\{\langle \underline{\text{sig}} \rangle\} = \underline{Signature}$
		$\{\langle \underline{sig},\underline{mth}_1\rangle,\langle \underline{sig},\underline{mth}_2\rangle,\langle \underline{sig},\underline{mth}_3\rangle\} = \underline{SignatureOf}$
		$ \{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle\} \ = \ \underline{Member} $
		$ \{\langle \mathtt{mth}_1, \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2, \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3, \mathtt{mth}_3 \rangle\} \ = \ \underline{\mathit{Call}} $
	Satisfied by	Example 23 : B
		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} \ = \ \underline{\mathit{Class}}$
	Not satisfied by	$\underline{Cls} = \{\underline{cls_1},\underline{cls_2},\underline{cls_3}\}$
		$\{\langle \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3 \rangle\} \ = \ \underline{\mathit{Method}}$
		$\{\langle \underline{\text{sig}} \rangle\} = \underline{Signature}$
		$\left\{ \langle \underline{\operatorname{sig}}, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{sig}}, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{sig}}, \underline{\operatorname{mth}}_3 \rangle \right\} \ = \ \underline{\mathit{SignatureOf}}$
		$ \{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle\} \ = \ \underline{\mathit{Member}} $
		$\left\{\left\langle \underline{\mathbf{mth}}_{2}\right\rangle \right\} = \underline{Abstract}$
		$\{\langle \underline{mth}_1, \underline{mth}_1 \rangle, \langle \underline{mth}_3, \underline{mth}_3 \rangle\} \ = \ \underline{\mathit{Call}}$
		Example 23 : C (Counter example) There exists a method in the range that is not called by a member of the domain, and visa versa. This violates the definition of the ISOMORPHIC predicate.
		$\left\{ \langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle \right\} \; = \; \underline{\mathit{Class}}$
		$\frac{Cls}{S} = \{ \underline{cls}_1, \underline{cls}_2, \underline{cls}_3 \}$
		$ \left\{ \langle \mathtt{mih}_1 \rangle, \langle \mathtt{mih}_2 \rangle, \langle \mathtt{mih}_3 \rangle \right\} \ = \ \underline{\mathit{Method}} $
		$\{\langle \underline{sig} \rangle\} = \underline{Signature}$
		$\left\{ \langle \underline{sig},\underline{mth}_1 \rangle, \langle \underline{sig},\underline{mth}_2 \rangle, \langle \underline{sig},\underline{mth}_3 \rangle \right\} \ = \ \underline{SignatureOf}$
		$\{\langle \text{cls}_1, \text{mth}_1 \rangle, \langle \text{cls}_2, \text{mth}_2 \rangle, \langle \text{cls}_3, \text{mth}_3 \rangle\} = \underline{Member}$
		$\left\{\left\langle \mathtt{mth}_{1},\mathtt{mth}_{1}\right\rangle ,\left\langle \mathtt{mth}_{3},\mathtt{mth}_{3}\right\rangle \right\} \;=\; \underline{\mathit{Call}}$

Example 24:		Design models	
- Ψ	Satisfied by	Example 24 : A	Cl
Factories: PCLASS sig: SIGNATURE		$\{\langle \underline{\operatorname{cls}}_1 \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} =$	Class
ISOMORPHIC (Create, sig⊗Factories, l		Factories =	$\{\underline{\operatorname{cls}}_1,\underline{\operatorname{cls}}_2,\underline{\operatorname{cls}}_3\}$
		$\{\langle mth_1 \rangle, \langle mth_2 \rangle, \langle mth_3 \rangle\} =$	Method
		{\sig>} =	: <u>Signature</u>
		$\{\langle\underline{\operatorname{sig}},\underline{\operatorname{mth}}_1\rangle,\langle\underline{\operatorname{sig}},\underline{\operatorname{mth}}_2\rangle,\langle\underline{\operatorname{sig}},\underline{\operatorname{mth}}_3\rangle\} =$: SignatureOf
		$ \left\{ \left\langle \underline{\operatorname{cls}}_{1}, \underline{\operatorname{mth}}_{1} \right\rangle, \left\langle \underline{\operatorname{cls}}_{2}, \underline{\operatorname{mth}}_{2} \right\rangle, \left\langle \underline{\operatorname{cls}}_{3}, \underline{\operatorname{mth}}_{3} \right\rangle \right\} = $	<u>Member</u>
		$ \{ \langle \underline{mth}_1, \underline{cls}_1 \rangle, \langle \underline{mth}_2, \underline{cls}_2 \rangle, \langle \underline{mth}_3, \underline{cls}_3 \rangle \} = $: <u>Create</u>
	Satisfied by	Example 24 : B	
		$ \{\langle \underline{\text{subClass}} \rangle, \langle \underline{\text{cls}}_1 \rangle, \langle \underline{\text{cls}}_2 \rangle, \langle \underline{\text{cls}}_3 \rangle\} = $: <u>Class</u>
		Factories =	{ cls ₁ , cls ₂ , cls ₃ }
		$ \left\{ \langle \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3 \rangle \right\} =$	<u>Method</u>
		{ \(\sig \) } =	<u>Signature</u>
		$ \{\langle \underline{sig}, \underline{mth}_1 \rangle, \langle \underline{sig}, \underline{mth}_2 \rangle, \langle \underline{sig}, \underline{mth}_3 \rangle\} = $: <u>SignatureOf</u>
		$\{\langle \underline{\operatorname{cls}}_1, \underline{\operatorname{mth}}_1 \rangle, \langle \underline{\operatorname{cls}}_2, \underline{\operatorname{mth}}_2 \rangle, \langle \underline{\operatorname{cls}}_3, \underline{\operatorname{mth}}_3 \rangle\} =$: <u>Member</u>
		$\{\langle \underline{\text{subClass}}, \underline{\text{cls}}, \rangle\} =$: Inherit
		$ \left\{ \langle \mathtt{mth}_1, \underline{\mathtt{subClass}} \rangle, \langle \mathtt{mth}_2, \underline{\mathtt{cls}}_2 \rangle, \langle \mathtt{mth}_3, \underline{\mathtt{cls}}_3 \rangle \right\} = $: <u>Create</u>
	Satisfied by	Example 24 : C	
		$ \{\langle \underline{\operatorname{subClass}} \rangle, \langle \underline{\operatorname{cls}}_2 \rangle, \langle \underline{\operatorname{cls}}_3 \rangle\} = $: <u>Class</u>
		Factories =	{ cls ₁ , cls ₂ , cls ₃ }
		$\{\langle \mathtt{mth}_1 \rangle, \langle \mathtt{mth}_2 \rangle, \langle \mathtt{mth}_3 \rangle\} =$	<u>Method</u>
		$\{\langle \underline{sig} \rangle\} =$: <u>Signature</u>
		$ \left\{ \langle \underline{sig}, \underline{mth}_1 \rangle, \langle \underline{sig}, \underline{mth}_2 \rangle, \langle \underline{sig}, \underline{mth}_3 \rangle \right\} = $: <u>SignatureOf</u>
		$ \left\{ \left\langle \text{cls}_{1}, \text{mth}_{1} \right\rangle, \left\langle \text{cls}_{2}, \text{mth}_{2} \right\rangle, \left\langle \text{cls}_{3}, \text{mth}_{3} \right\rangle \right\} = $	<u>Member</u>
		{ \langle subClass, cls_1 \rangle} =	: <u>Inherit</u>
		{ (<u>cls</u> ,) } =	: <u>Abstract</u>
		$ \left\{ \langle \underline{mth}_1, \underline{subClass} \rangle, \langle \underline{mth}_2, \underline{cls}_2 \rangle, \langle \underline{mth}_3, \underline{cls}_3 \rangle \right\} \ = \ $: <u>Create</u>

Example 25: Schema	Satisfied by	Design models Example 25 : A
A,B: PCLASS ISOMORPHIC(Inherit, A,B)		$\{\langle \underline{a}_1 \rangle, \langle \underline{a}_2 \rangle, \langle \underline{b}_1 \rangle, \langle \underline{b}_2 \rangle\} = \underline{Class}$
		$\Lambda \ = \ \{\underline{a}_1,\underline{a}_2\}$
		$\mathbf{E} = \{\underline{\mathbf{b}}_1,\underline{\mathbf{b}}_2\}$
		$\{\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle\} = \underline{Inherit}$
	Satisfied by	Example 25 : B
		$\{\langle a_1 \rangle, \langle a_2 \rangle, \langle b_1 \rangle, \langle b_2 \rangle\} = \underline{\mathit{Class}}$
		$\Lambda = \{a_1, a_2\}$
		$\mathtt{B} \ = \ \{ \mathtt{b}_{1}, \mathtt{b}_{2} \}$
		$\{\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle, \langle b_1, b_2 \rangle\} = \underline{\mathit{Inherit}}$

References

- Amnon H. Eden, Jonathan Nicholson, Epameinondas Gasparis. *The LePUS3 and Class-Z Reference manual.* Technical report CSM-474, ISSN 1744-8050 (2007), Department of Computer Science, University
- of Essex. [pdf]

 Jonathan Nicholson, Amnon H Eden, Epameinondas Gasparis. "Verification of LePUS3/Class-Z Specifications: Sample models and Abstract Semantics for Java 1.4 (Part II; Part III)." Department of Computer Science, University of Essex, Tech. Rep. CSM-471, ISSN 1744-8050 (2007). [pdf]