
On the Limiting Distribution of Program Sizes in Tree-based

Genetic Programming

R. Poli

Department of Computer Science

University of Essex, UK

W. B. Langdon

Department of Computer Science

University of Essex, UK

Stephen Dignum

Department of Computer Science

University of Essex, UK

Department of Computer Science

University of Essex

Technical Report CSM-464

ISSN: 1744-8050
December 2006

Abstract

We provide strong theoretical and experimental evidence that standard sub-tree crossover
with uniform selection of crossover points pushes a population of a-ary GP trees towards a
distribution of tree sizes of the form:

Pr{n} = (1 − apa)

an + 1

n

!

(1 − pa)(a−1)n+1
p

n

a

where n is the number of internal nodes in a tree and pa is a constant. This result generalises
the result previously reported in [7, 10, 8, 9] for the case a = 1.

1 Introduction

For most problems the ratio between the size of the search spaces and the number of acceptable
solutions grows exponentially with the size of the problem. So, even with today’s powerful com-
puters, for many problems one can hope to find solutions with a particular search algorithm only
if the algorithms is biased in such a way to sample preferentially the areas of the search space
where solutions are denser. This situation is often informally referred to as an algorithm being

well-matched to a problem.
Naturally, having a full characterisation of the search biases of a search algorithm is a precon-

dition to understand whether or not the algorithm is well-matched to a problem. (The second
precondition is the availability of a characterisation of the problem, e.g., information on the dis-
tribution of solutions in the search space.)

In evolutionary algorithms this requires understanding the biases of the genetic operators.
These biases are fairly well understood for mutation and crossover in the case of fixed-length rep-
resentations (e.g., binary GAs) and for selection (which is representation independent). However,
the situation is much sketchier for variable-length representations. In particular, except for the
limiting case of linear-trees (built only using arity-1 primitives and terminals), we still know very
little about the search biases of standard GP crossover.

In this paper we provide an exact characterisation of the limiting distribution of tree sizes
towards which sub-tree crossover, when acting on its own, pushes the population. As we will see,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74370109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obtaining this type of result is complex, and so we will limit our attention to the case where the
primitive set includes only terminals and primitives of one other arity. That is, we consider linear,
binary, ternary, etc. trees.

The paper is organised as follows. In Section 2 we summarise results from branching processes
theory. In Section 3 we develop a formulation for the fixed-point distribution of tree sizes under
repeated crossover. In Section 4 we derive an equation that describes how the distribution of tree
sizes changes generation after generation under the effects of crossover. The distribution proposed
in Section 3 is one of the two ingredients of such an equation, when evaluated at its fixed-point.
In Section 5 we develop an explicit formulation for the second ingredient: the distribution of
subtree sizes. In principle these ingredients would allow one to check mathematically whether the
proposed size distribution is indeed a fixed point for crossover-based evolution. Proving this result
is, however, beyond our mathematical capabilities. Therefore, to corroborate our conjecture we
present strong empirical evidence and numerical integrations of the tree-size distribution evolution
equation in Section 6. We make some final remarks in Section 7.

2 Mathematical Preliminaries

2.1 Branching Processes and Lagrange Distribution

In probability theory, a discrete-time branching process (or Galton-Watson process) [11] is a
Markov process that models a population in which each individual in a generation produces some
random number of descendants, and where the probability of generating a successors, p(a), is
fixed. This leads to a (family) tree.

Branching processes have at least one application in GP: if no limit is imposed on tree size or
depth, the tree shapes produced by the “grow” method, often used to initialise GP populations and
to perform sub-tree mutation, obey a branching process. In this case a is the arity of primitives
and pa is the probability of using primitives of arity a when choosing nodes in the “grow” method.

The distribution of tree sizes for a branching process follows a Lagrange distribution [1, 2].
More precisely, the probability of the process leading to a total of ` individuals being generated is

Pr{L = `} =

{

0 if ` = 0,
1
`
C(t`−1)

{

(g(t))`
}

for ` = 1, 2, 3, · · · ,
(1)

where g(t) =
∑

a pa ta is the probability generating function of the distribution pa and C(tm)
denotes “the coefficient of tm in”.

If one considers a process where only nodes of arity a and 0 are allowed (i.e., p0 + pa = 1),
then g(t) = p0 + pata. So, for ` > 0 we have

C(t`−1)
{

(g(t))`
}

= C(t`−1)
{

(p0 + pata)
`
}

= C(t`−1)

{

∑̀

k=0

(

`

k

)

p`−k
0 pk

a t ak

}

Since C(t`−1) will pick out the coefficient of the power of t for which `− 1 = ak, i.e., k = `−1
a

, we
then have

Pr{L = `} =

{

1
`

(

`
`−1

a

)

(1 − pa)`− `−1

a p
`−1

a

a if ` − 1 is a multiple of a,

0 otherwise.
(2)

Note that, since only arity 0 and arity a primitives are allowed, a tree with ` − 1 nodes has
n = `−1

a
internal nodes and ` = an + 1. So, we can rewrite the previous equation in terms of

internal nodes as
Pr{N = n} = CT (a, n) (1 − pa)(a−1)n+1 pn

a , (3)

where

CT (a, n) =
1

an + 1

(

an + 1

n

)

(4)

2

is a generalised Catalan number [3]. The Catalan number is the number of different trees with n
internal nodes of arity a (and, of course, (a − 1)n + 1 leaves). This can be interpreted as saying
that in a branching process all trees of a particular size have a probability of being created which
depends only on how many nodes/primitives of each kind the tree contains. It also means that
the different parts of the trees created by a branching process are uncorrelated.

2.2 Moments of the Tree-Size Distribution in a Branching Process

It is possible to compute the moments of Lagrange distributions starting from the the cumulants
gi of the probability density functions generated by power series in t of g(t) [2, 1]. The mean
progeny produced by a branching process is:

E[L] =
1

1 − g1
(5)

and the variance is
V ar[L] =

g2

(1 − g1)3
, (6)

where g1 = E[A] and g2 = V ar[A], A being a stochastic variable representing a node’s arity. Since
trees contain only arity 0 and arity a nodes, we can easily compute these two cumulants:

g1 =
∑

k

kpk = apa (7)

g2 = E[A2] − (E[A])2 = a2pa − (apa)2 = a2pa(1 − pa) (8)

So, the mean tree size in our branching process is

E[L] =
1

1 − apa

(9)

and the variance is

V ar[L] =
a2pa(1 − pa)

(1 − apa)3
. (10)

From these two, we then obtain the second non-central moment

E[L2] = V ar[L] + (E[L])2 =
(a − 1)apa − a2p2

a + 1

(1 − apa)3
(11)

Note that (9) matches the formula for the means size of programs built by the “grow” method
reported in [6] and that (9) is a special case of it.

3 The Distribution of Tree Sizes under Crossover

In the absence of selection, if a population of GP trees undergoes repeated crossovers, the popu-
lation tends to a limiting distribution of sizes and shapes. This is the result of the specific bias of
subtree crossover.1 Effectively after a while, every node in every individual in the population will
have been placed at its particular position as a result of one or multiple crossover events. So, any
correlations present in the shapes in the initial generation will have been broken by crossover.

As we saw in the previous section, complete decorrelation in the different parts of a tree is
a characteristic of branching processes. Within the class of trees of a given size, each shape is
equally likely. So, we postulate that the limiting distribution of tree sizes under repeated crossover
will be one where this happens. That is, we assume that at the fixed-point, the shape distribution
is

Pr{Shape with n nodes of arity a} = w(n, a) (1 − pa)(a−1)n+1 pn
a (12)

1Naturally, stochastic effects such as drift mean that in any finite population there is still random variation.

However, in large populations these effects can be neglected.

3

where w(n, a) is an appropriate sequence of weights to be determined and pa is a parameter, also
to be determined. So, the probability of picking a tree with n internal nodes from the population
is

Pr{n} = CT (a, n) w(n, a) (1 − pa)(a−1)n+1 pn
a (13)

What constraints do we have on the parameters w(n, a) and pa? Firstly, they must be such
that the distribution of shapes is indeed a probability distribution. In particular we require

∑

n≥0

Pr{n} = 1. (14)

Secondly, it is well-known that on average subtree crossover does not alter the mean size of program
trees in a population [9]. So, we also require that

∑

n≥0

(an + 1) Pr{n} = µ0, (15)

where µ0 is the average size of the individuals in the population at generation 0. Thirdly, we
require (13) to be a generalisation of the results reported in [7, 10, 8, 9] for arity 1 functions,
which we here rewrite as

Pr{`} = `r`−1(1 − r)2, (16)

where
r = (µ0 − 1)/(µ0 + 1). (17)

We can do this by setting a = 1 in (13) and ` = n + 1 and so Pr{`} in (16) is the same quantity
as Pr{n} in (13). Equating the results we obtain

w(n, 1) (1 − p1) pn
1 = (n + 1)(1 − r)2rn (18)

since CT (1, n) = 1. The most natural match between r.h.s. and l.h.s. of (18) appears to be one
where p1 = r and w(n, 1) = (n + 1)(1 − p1).

This last constraint completely rules out that w(a, n) be constant, indicating that the length
distribution under subtree crossover cannot be purely the result of a branching process (i.e., it is
not Lagrangian). Instead, it suggests that Pr{`} is the product between the frequency provided
by a branching process and the length ` of programs. So, we postulate that in general

w(a, n) = (an + 1)f(pa) (19)

where f(pa) is a function of pa to be determined.
With this assumption, we impose (14), i.e., that probabilities sum to 1, obtaining:

f(pa) =
1

∑

n≥0(an + 1)CT (a, n) (1 − pa)(a−1)n+1 pn
a

. (20)

The denominator of this equation is (by definition) E[aN + 1] =
∑

n(an + 1) Pr{N = n}, where
Pr{N = n} is given in (3). So, it is the expected length of the trees generated by a branching
process where arity a nodes are used with probability pa and arity 0 nodes used with probability
1 − pa. So, from (9) we have

f(pa) = (1 − apa), (21)

and so w(a, n) = (an+1)(1−apa). As a result, we can now explicitly write the tree-size distribution

at the crossover fixed-point:

Pr{n} = (1 − apa)

(

an + 1

n

)

(1 − pa)(a−1)n+1 pn
a (22)

where we used the explicit expression of CT (a, n) in (4). This is the fixed-point tree-size distri-
bution we were looking for. This distribution belongs to a family of distributions called Lagrange

4

distributions of the second kind [5, 4], which, until now, have never been related to branching
processes and trees.

We can now impose constraint (15), i.e., equality of means, to infer the value of pa:

µ0 =
∑

n≥0

(an + 1) Pr{n}

=
∑

n≥0

(1 − apa)(an + 1)2CT (a, n) (1 − pa)(a−1)n+1 pn
a

= (1 − apa)
∑

n≥0

(an + 1)2 Pr{N = n}

= (1 − apa)E[L2] (by definition),

and so, from (11),

µ0 =
(a − 1)apa − a2p2

a + 1

(1 − apa)2
. (23)

By solving this equation for pa we obtain

pa =
2µ0 + (a − 1) −

√

((1 − a) − 2µ0)
2
+ 4(1 − µ2

0)

2a(1 + µ0)
(24)

which, encouragingly, for a = 1 collapses to the familiar pa = µ0−1
µ0+1 (see (17)).

4 Evolution of the Tree-size Distribution

Let us term supertree the part of a tree remaining after the removal of a subtree rooted at a
particular crossover point. The size, L, of a tree after crossover is a stochastic variable obtained
by adding the size X of a supertree randomly drawn from the population with the size Y of
a subtree also randomly drawn from the population. I.e., L = X + Y . It follows that the
probability distribution of L is the convolution of the subtree size distribution with the supertree
size distribution. That is:

Pr{L = `} =
∑̀

i=0

Pr{X = i}Pr{Y = ` − i} (25)

For the case where internal nodes of arity a only are allowed, effectively a supertree always contains
ja nodes and a subtree always contains ka + 1 nodes, where j and k are suitable non-negative
integers. Therefore, (25) can be rewritten in terms of internal nodes. So, if N is the number of
internal nodes of the tree, NX the internal nodes in the supertree and NY the internal nodes in
the subtree

Pr{N = n} =

n
∑

i=0

Pr{NX = i}Pr{NY = n − i} (26)

Naturally we have can interpret Pr{NX = i} as a marginal and, so,

Pr{NX = i} =
∑

k

Pr{NX = i, N = k} =
∑

k

Pr{NX = i|N = k}Pr{N = k} (27)

where Pr{NX = i|N = k} is the probability of extracting supertrees of size i from individ-
uals of size k and Pr{N = k} is the distribution of tree sizes in the population. Of course,
Pr{NX = i|N = k} = 0 for k < i, and so

Pr{NX = i} =
∑

k≥i

Pr{NX = i|N = k}Pr{N = k} (28)

5

We can similarly decompose Pr{NY = n − i} obtaining

Pr{NY = n − i} =
∑

k≥n−i

Pr{NY = n − i|N = k}Pr{N = k} (29)

Naturally, standard GP crossover is symmetric, and, therefore, the probability of extracting a
supertree of size i from a tree of size k is identical to the probability of extracting a subtree of size
k − i from a tree of size k, i.e., Pr{NX = i|N = k} = Pr{NY = k − i|N = k}. So, we have

Pr{NX = i} =
∑

k≥i

Pr{NY = k − i|N = k}Pr{N = k}. (30)

By substituting (29) and (30) in (31) we finally obtain our size-distribution evolution equation:

Pr{n}new =

n
∑

i=0

∑

k1≥i

p(k1 − i, k1) Pr{k1}
∑

k2≥n−i

p(n − i, k2) Pr{k2} (31)

where we used the shorthand notation p(a, b) = Pr{NY = a|N = b} and Pr{a} = Pr{N = a}.
If the size distribution we propose in (22) is indeed the limiting distribution of sizes obtained

by crossover in the absence of selection, then when one replaces Pr{ki} with (22) in the r.h.s. of
the previous equation, upon simplification one should obtain (22) again. This requires, however,
the specification of the distribution of subtree sizes p(a, b). In the next section we will obtain this
distribution for the case where the limiting distribution of shapes follow the second assumption
we used to derive (22), i.e., that within each class of tree sizes, all possible tree shapes are equally
likely.

5 Subtree Distribution at the Crossover Fixed-point

Let s(n, k) be the expected number of subtrees with k internal nodes in trees with n internal
nodes (where we draw trees of a particular size with uniform probability). Naturally, s(n, n) = 1.
Also, under the assumption that only a-ary nodes and leaves can be used in the tree, we also have
s(n, 0) = (a − 1)n + 1.

Let us consider all trees of size n > 0. These must all have a a-ary root node (a > 0). Let ni

be the size of child i of the root (naturally,
∑

i ni = n − 1). Then we can divide up the space of
trees of size n into groups based on the values of ni. In each group there are

∏

i CT (a, ni) trees
and, so, the probability of randomly drawing a tree belonging to a specific group when sampling

trees of length n is given by
Q

i
CT (a,ni)

CT (a,n) . So, for example, the first group is characterised by

n1 = 0, n2 = 0, · · · , na = n − 1 and contains (CT (a, 0))a−1 CT (a, n − 1) = CT (a, n − 1) trees.
So, the probability of randomly obtaining a member of this group is CT (a, n − 1) /CT (a, n) =

an+1
a(n−1)+1

(

a(n−1)+1
n−1

)

/
(

an+1
n

)

.

Let si(ni, k) be the expected number of subtrees of size k for child i of the root. We assume
that we know these quantities and we want to compute s(n, k) on the basis of the si(ni, k). Clearly,
for most values of k and ni, s(n, k) is simply going to be the sum of the si(ni, k)’s, i.e., the number
of trees of a given size in our tree is just the sum of the trees of that same size in all the children of
the root note. There are, however, special cases where we need to be more careful. In particular,
if k > ni, then si(ni, k) = 0 and, therefore, si(ni, n) = 0. However, s(n, n) = 1. So, there is one
exception to the summation rule.

Below we will formalise the rule. However, before we do that, let us consider the effect of
our assumption that within each length class all possible tree shapes happen with equal chance.
This assumption leads to the fact that both trees and subtrees must follow the same subtree
distribution, i.e., we have that si(ni, k) = s(ni, k). Also, in order to compute s(n, k) we need to
sum over all possible ways in which we can draw the ni’s ensuring that the correct probability for

6

each is considered. All this is accounted for in the following recursion:

s(n, k) =























0 if n < k,

1 if n = k,
∑

P

ni=n−1

(∏

i CT (a, ni)

CT (a, n)

)

(

∑

i

s(ni, k)

)

otherwise.

(32)

So, the probability of drawing a tree with k internal nodes out of the class of trees of n nodes is
given by

p(n, k) =
s(n, k)

∑

k s(n, k)
=

s(n, k)

an + 1
(33)

since, rather obviously,
∑

k s(n, k) is the total number of nodes in a tree with n internal nodes of
arity a. As a result we can write

p(n, k) =
δ(k = n)

an + 1
+ δ(k < n)

∑

P

ni=n−1

(∏

i CT (a, ni)

CT (a, n)

)

∑

i

(

ani + 1

an + 1

)

p(ni, k) (34)

where δ(x) = 1 if x is true, 0 otherwise.

6 Conjecture or Theorem?

In principle we now have all the ingredients to prove that (22) and the related distribution (34)
are the fixedpoint for the tree-size-distribution evolution equation (31). However, the recursive
nature of (34) and the complexities of simplifying sums of products of Catalan numbers make
proving the result extraordinarily difficult (except for the case a = 1, since this leads directly to
the result already proven in [7, 10, 8, 9]).

To corroborate our result, we have therefore followed two alternative approaches. Firstly, we
have collected empirical data on the size distributions obtained with different initialisations and
for primitives of different arities in populations under the effect of crossover only. Secondly, we
have performed a numerical integration of the r.h.s. of (31) at the assumed fixed point (for different
values of a and µ0) to verify if the resulting values for the l.h.s. matched the theoretical prediction.
We describe the results of our tests in Sections 6.1 and 6.2.

6.1 Empirical Validation

We performed runs of a GP system in Java, with populations of 100,000 individuals, run for
500 generations. We used such large population sizes to reduce stochastic effects such as drift of
the mean program size and to ensure that enough programs in each length-class were available.
Similarly we performed a large number of generations to ensure that the initial conditions (see
below) were completely washed out.

Only terminals and primitives of arity a (for a = 1, 2, 3, 4, 5) were allowed. Initialisation was
performed using the “full” method. With this method, initial trees included µ0 = d+1 primitives

for a = 1 and µ0 = 1−ad+1

1−a
primitives for a > 1. Initial depth was 3, 4, or 8 (the root node being

at depth 0).
During our runs we recorded histograms of program sizes, one for each generation, for sizes

between 1 and 1000. Note that, because of the large population sizes and the particular objective
of our runs (i.e., the study of size distributions), there was no need to collect data in multiple
independent runs (as it is customary for other types of empirical studies).

In all cases the match between theoretical predictions and empirical data is striking. Compare,
for example, the theoretical predictions and the empirical results shown in Figures 1–3.

7

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 50 100 150 200 250 300

fre
qu

en
cy

program size

Empirical data (a=2)
Theory

Figure 1: Comparison between empirical and theoretical program size distributions for binary
trees (a = 2) initialised with full method (d = 4, initial mean size µ0 = 31, mean size after 500
generations µ = 27.26044).

8

 1e-04

 0.001

 0.01

 0.1

 50 100 150 200 250 300 350 400 450

fre
qu

en
cy

program size

Empirical data (a=3)
Theory

Figure 2: Comparison between empirical and theoretical program size distributions for ternary
trees (a = 3) initialised with full method (d = 4, initial mean size µ0 = 121, mean size after 500
generations µ = 109.10284).

9

 1e-04

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600

fre
qu

en
cy

program size

Empirical data (a=4)
Theory

Figure 3: Comparison between empirical and theoretical program size distributions for quaternary
trees (a = 4) initialised with full method (d = 4, initial mean size µ0 = 341, mean size after 500
generations µ = 361.73052).

10

 0.001

 0.01

 0.1

 1

 20 40 60 80 100

fre
qu

en
cy

program size

output size distribution
input size distribution

Figure 4: Comparison between the program size distributions conjectured in (22) and output
produced by (31) for binary trees (a = 2) of mean size µ = 27.26044, as in Figure 1.

6.2 Numerical Integration

The exact numerical integration of the r.h.s. of (31) at the assumed fixed point would require
performing infinite sums, which is clearly impossible. So, we chose to limit sums over tree sizes to
limit = 5µ0, effectively assuming that Pr{n} = 0 for n > limit. Naturally, this leads to some
integration errors, but these turned out to be negligible for the purpose of confirming whether or
not the resulting values for the l.h.s. matched the theoretical prediction.

We performed the integration for tree sizes (internal nodes) between 0 and limit inclusive,
and for a variety of a’s and µ0’s. In all cases, the output distribution computed via (31) was
effectively indistinguishable from (22).

As an example of the degree of accuracy in the match between input and output size distribu-
tions, we show in Figure 4 a comparison between our conjectured program size distributions for
binary trees and the output produced by (31). The plots of the distributions overlap almost per-
fectly. Indeed, absolute errors range between −2.8781× 10−5 and −6.7263× 10−7, corresponding
to relative errors between −0.023% and −0.049%.

7 Discussion and Conclusions

We have provided very strong theoretical and empirical evidence that the distribution of tree sizes
towards which crossover pushes a population of unary, binary, ternary, etc. GP trees is a Lagrange
distribution of the second kind. This result generalises results previously reported in [7, 10, 8, 9].

Naturally, there are important consequences of this result. As was done in [7], we can now
compute, for example, the expected resampling probability for programs of different sizes. In
particular, let us imagine that our GP system operating on a flat landscape is at the fixed point
distribution and let F and T be the sizes of the function and terminal sets, respectively. Since,

11

there are FnT (a−1)n+1 different programs with n internal nodes in the search space, it is now
possible to compute the average probability psample(n) that each of these will be sampled by
standard crossover, namely

psample(n) =
(1 − apa)

FnT (a−1)n+1

(

an + 1

n

)

(1 − pa)(a−1)n+1 pn
a . (35)

It is easy to study this function and to conclude that, for a flat landscape, standard GP will
sample a particular short program much more often than it will sample a particular long one. For
example, when µ0 = 27.26044 as in Figures 1 and 4, GP will heavily resample short programs,
e.g., the same program of length 1 is resampled on average every 16 crossovers, every 89 crossovers
for programs of length 3, and every 448 crossover for length 5. However, as program size grows
the sampling probability drops dramatically. For example, the resampling rate for programs of
length 21 is 1 in over 77 million.

In future work we intend to extend the results reported here to the case where primitives of
different arities are used in a run. Also, we will attempt to find a mathematical proof that (22) is
a fixed-point for (31).

References

[1] P. C. Consul and L. R. Shenton. Use of Lagrange Expansion for Generating Discrete Gen-
eralized Probability Distributions. SIAM Journal on Applied Mathematics, 23(2):239–248,
1972.

[2] I. J. Good. The Lagrange Distributions and Branching Processes. SIAM Journal on Applied

Mathematics, 28(2):270–275, 1975.

[3] P. Hilton and J. Pederson. Catalan numbers, their generalization, and their uses. Mathemat-

ical Intelligencer, 13:64–75, 1991.

[4] K. Janardan. Weighted Lagrange Distributions and Their Characterizations. SIAM Journal

on Applied Mathematics, 47(2):411–415, 1987.

[5] K. Janardan and B. Rao. Lagrange Distributions of the Second Kind and Weighted Distri-
butions. SIAM Journal on Applied Mathematics, 43(2):302–313, 1983.

[6] S. Luke. Two fast tree-creation algorithms for genetic programming. IEEE Transactions on

Evolutionary Computation, 4(3):274–283, Sept. 2000.

[7] R. Poli and N. F. McPhee. Exact schema theorems for GP with one-point and standard
crossover operating on linear structures and their application to the study of the evolution of
size. In J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B.
Langdon, editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS,
pages 126–142, Lake Como, Italy, 18-20 Apr. 2001. Springer-Verlag.

[8] R. Poli and N. F. McPhee. General schema theory for genetic programming with subtree-
swapping crossover: Part I. Evolutionary Computation, 11(1):53–66, Mar. 2003.

[9] R. Poli and N. F. McPhee. General schema theory for genetic programming with subtree-
swapping crossover: Part II. Evolutionary Computation, 11(2):169–206, June 2003.

[10] J. E. Rowe and N. F. McPhee. The effects of crossover and mutation operators on variable
length linear structures. Technical Report CSRP-01-7, University of Birmingham, School of
Computer Science, Jan. 2001.

[11] H. W. Watson and F. Galton. On the Probability of the Extinction of Families. The Journal

of the Anthropological Institute of Great Britain and Ireland, 4:138–144, 1875.

12

