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Abstract. Abstract crossover and abstract mutation are representation-independent operators that 
are well-defined once a notion of distance over the solution space is defined. They were obtained 
as generalization of genetic operators for binary strings and real vectors. In this paper we explore 
how the abstract geometric framework applies to the permutation representation. This 
representation is challenging for various reasons: because of the inherent difference between 
permutations and the representations that inspired the abstraction; because the whole notion of 
geometry over permutation spaces radically departs from traditional geometries and it is almost 
unexplored mathematical territory; because the many notions of distance available and their subtle 
interconnections make it hard to see the right distance to use, if any; because the various available 
interpretations of permutations make ambiguous what a permutation represents, hence, how to treat 
it; because of the existence of various permutation-like representations that are incorrectly 
confused with permutations; and finally because of the existence of many mutation and 
recombination operators and their many variations for the same representation. This article shows 
that the application of our geometric framework naturally clarifies and unifies an important domain, 
the permutation representation and the related operators, in which there was little or no hope to 
find order. In addition the abstract geometric framework is used to improve the design of crossover 
operators for well-known problems naturally connected with the permutation representation. 

 

1. Introduction 
 
In previous work (Moraglio & Poli, 2004) we introduced a representation-
independent geometric generalization of genetic operators for binary string 
representation and real vector representation. The geometric definitions of mutation 
and crossover introduced are based on the distance associated with the search space, 
seen as a metric space, and on the simple geometric notions of ball and line segment. 
This way of connecting genetic operators and fitness landscape is opposite of the 
standard approach where the fitness landscape is a function of the genetic operators, 
hence leading to the one operator-one landscape paradigm (Jones, 1995). Seeing 
genetic operators as functions of the search space produces a great deal of 
simplification and clarification: mutation and crossover share the same simple search 
space, that naturally corresponds to the classical notion of neighbourhood structure 
used by many meta-heuristics, and their relationship becomes clear.  
 
Since the notion of landscape and abstract genetic operators are of central importance 
in our framework, we will present them in this article in sections 2.1 and 2.2, where 
we recast them in a more abstract and general way emphasising the geometric 
interpretation of the search space. This framework allows treating genetic operators 
for discrete search spaces and continuous search spaces in a uniform way, since at an 
abstract level, both types of spaces come with a notion of distance, and is thus all is 
needed to fully-define our genetic operators. 
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In this framework the definitions of genetic operators are representation-independent 
but they can be, through a dual interpretation of the notion of distance of the search 
space, tightly rooted in the syntax of the specific representation considered. This has 
surprising and important consequences including the unification in a single 
framework of all evolutionary algorithms based on different solution representations, 
a general unitary theory of evolutionary algorithms and principled crossover design 
for any representation (Moraglio & Poli, 2004). Section 2.3 is devoted to introducing 
duality and clarifying its origin. 
 
Since our definitions of genetic operators are generic and are connected neither with 
the solution representation nor with problem at hand, it is important to understand 
how they relate with the NFL theorem (Wolpert & Macready, 1996). In particular we 
need to explain how problem knowledge can be specified and used by the formal 
evolutionary algorithm to perform better than random search. The key is the 
difference between problem and landscape, the former being given and the latter 
being designed. We will see, in section 2.4, how the landscape is a knowledge 
interface between formal algorithm and formal problem and how through a domain-
specific solution representation and a move operator that makes sense for the problem, 
one can easily and naturally design such a landscape. 
 
In section 2, many aspects of the framework are discussed only abstractly; in the rest 
of the article these concepts are put at work on concrete examples. Since the notion of 
distance is so fundamental for the application of the geometric framework, in section 
3 we analyse various notions of distance for permutations, their origins, their 
interdependencies and their use within the framework. Section 4 is devoted to the 
important special case of edit distances for permutations and the related mutation 
operators.  
 
The major surprise brought about by the application of the general geometric 
definition of crossover to the permutation representation consists in the discovery that 
the notion of crossover for permutation is intimately connected with the notion of 
sorting algorithm. This is ultimately due to the fact that doing geometry using 
distances that are firmly rooted in the syntax of a specific representation, such as edit 
distances, allows for a dual interpretation of geometric objects and transformations. 
For permutations, the geometric notion of shortest path or geodesic, that is important 
in our framework because a segment is the union of all geodesics between two points, 
corresponds dually to the syntactic notion of minimal sorting trajectory. This creates 
the dual connection between abstract crossover and sorting algorithms mentioned 
above. In section 5, we explore this connection thoroughly clarifying what the 
similarity and differences between crossovers and ordinary sort algorithms are. In 
section 6, we propose a set of new crossover operators based on well-known sorting 
algorithms.  
 
In addition, in section 7, we show that pre-existing crossover operators for 
permutations match the abstract definition of crossover. So, even if they do not look 
like sorting algorithms, they fit the geometric definition of crossover and so they are 
sorting algorithms in disguise! 
 
One peculiarity of the permutation representation that we will encounter is that there 
are many equivalently natural notions of crossover; hence one may wonder what the 
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right notion of crossover is after all. For the NFL theorem (Wolpert & Macready, 
1996) there cannot be the right crossover: what is a good crossover for a problem 
must be necessarily bad for another one. The question is therefore how to match 
crossover and problem in a principled way. In section 8 we discuss three heuristic 
methods to do that: build a crossover using a good mutation, build a crossover using a 
neighbourhood based on the small-move small-fitness change design principle, or 
build a crossover using a distance that is connected with a distance that is relevant for 
the solution interpretation.    
 
In section 9, we propose the n-queens problem. We do an experimental comparison of 
a number of crossovers based on three classical sorting algorithms: selection sort, 
bubble sort and insertion sort. 
 
Permutations, circular permutations and permutations with repetitions are generally 
confused. Even if they are indeed related solution representations, they are not the 
same and, in particular, they give rise to related but different notions of edit distance 
and, consequently, different but related notions of crossover. In section 10, we discuss 
the case of circular permutations in connection with an important problem that is 
naturally based on such a representation, the travelling salesman problem (TSP). 
 
In the context of devising a crossover for TSP or for crossover based on bounded edit 
moves we encounter a new aspect of distance duality and crossover implementation: 
the computational barrier. Only crossover defined using distances that use simple 
syntactic moves allow for an efficient implementation. When the distance is not 
tightly connected with the solution representation, the duality geometry/syntax is not 
enough to guarantee a straightforward implementation of geometric crossover by 
simple syntax manipulation of the solution representation. Therefore even if there is 
no reason in principle to define crossover over a distance defined via a solution 
representation there is a good computational reason to do so! We discuss this for the 
TSP problem in section 10. 
 
In (Moraglio, 2000) was introduced a natural and effective crossover for JSSP. In 
section 11 we show that such a crossover fits perfectly the definition of abstract 
geometric crossover. This is another piece of evidence that the abstract geometric 
definition of crossover captures the general notion of crossover. In this case we did 
not use a crossover defined over the solution representation space directly (schedule) 
but we encoded schedules as permutations. However we show that, since the encoding 
is betweenness preserving, the crossover on permutations corresponds to a crossover 
over schedules in their original domain. Finally, in section 12, we present our 
conclusions.  

2. Geometric framework 
 
In previous work (Moraglio & Poli, 2004) we have given representation-independent 
definitions of crossover and mutation operators linked tightly to the notion of fitness 
landscape. We named these abstract operators topological operators because they are 
defined over the connectivity structure of the underlying search space. However, since 
they admit an important geometric interpretation, we prefer now to call them abstract 
geometric operators to stress the fact that we treat the search space as a geometric 
space.  
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In the original framework, we defined the distance in the search space starting from 
the syntax of solutions. In section 2.1 we give some necessary preliminary definitions. 
In section 2.2 we recast the original representation-independent definitions of genetic 
operators in a more abstract form, separating completely the notion of distance with 
its origin in the solution representation. We embrace an axiomatic approach and 
accept as a distance any function that meets the metric axioms, whether originating 
from syntax, real vectors or something else. In section 2.3, we analyse then the 
consequences of specifying the distance in the search space through the solution 
representation and introduce the important notion of duality that arises when doing 
geometry using a notion of edit distance. We will show that duality has surprising 
consequences. Finally, in section 2.4, we connect formal problem and solution 
representation, clarifying that ultimately is this connection that embeds problem 
knowledge into an evolutionary algorithm. 
 
2.1 Preliminary definitions 
 
2.1.1 Formal search problem 
Let S denote the solution set1 comprising all the candidate solutions to a given search 
problem P. Here we distinguish between the concept of solution and its representation. 
The solutions in the solution set must be seen as formal solutions not relaying on any 
specific underlying representation. The goal of a search problem P is to find specific 
solution/s in the search space that maximize (minimize) an objective function RSg →: . 
We write P=(S, g). Notice that global optima are well defined when the objective 
function is well defined. In particular, they are independent of any structure defined 
on S� On the contrary, local optima are defined only when a structure over S is 
defined. It is very important to understand that a search problem in itself does not 
come with any predefined structure or notion of distance over the solution set. 
 
2.1.2 Formal fitness landscape 
Formally, a metric space (M, d) is a set M provided with a metric or distance d that is 
a real-valued map on MM ×  which fulfils the following axioms for all :, 21 Mss ∈  
1. 0),( 21 ≥ssd  and 0),( 21 =ssd  if and only if 21 ss = ; 
2. ),(),( 1221 ssdssd = , i.e. d is symmetric; and 
3. ),(),(),( 322131 ssdssdssd +≤ , i.e. d satisfies the triangle inequality. 
We assign a structure to the solution set by endowing it with a notion of distance d 
respecting the axioms for a metric. M=(S, d) is therefore a solution space and L=(M, 
g) is the corresponding fitness landscape. Notice that d is an arbitrary distance and 
need not have any particular connection or affinity with the search problem at hand. 
Once we have a landscape, local optima are well defined. The same solution set can 
be associated with more than one distance giving rise to different search spaces for 
the same search problem. The distinction between search problem and fitness 
landscape is crucial to understand how problem knowledge is embedded in the search 
(see Section 2.1.4).  
 
 
                                                
1 We distinguish between solution set and solution space. The first refers to a collection of elements, while the 
second implies a structure over the elements. 
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2.1.3 Metric geometry 
In classical Euclidean geometry, the measure of the distance between two points in 
the plane, say A and B, is calculated using the well known formula: 

22 )()(),( BABA yyxxBAd −+−= . This is certainly a very intuitive notion of 
distance. By redefining the distance function between two points one obtains a new 
geometry for each distance redefinition. One simple example is the so-called 1st order 
Minkowski distance: ||||),( BABA yyxxBAd −+−= . This definition of distance is 
fairly natural: it is the minimum distance that a taxicab would need to travel to reach 
point B from point A, if all streets are only oriented vertically and horizontally. For 
this reason, this metric is often referred to as the Manhattan metric. Many geometric 
figures, like circles, ellipses, parabolas, are defined in terms of distance. For instance, 
a circle is just the set of points with a fixed distance to the centre. These, of course, 
look quite different if we use a non-Euclidean measure of distance.  
 
If we go further and say that a shape corresponds to a particular definition 
independently from the specific notion of metric used, we are then dealing with 
abstract shapes that are defined axiomatically and present abstract geometric 
properties that are shape-specific but not distance-specific. These abstract shapes are 
studied in metric geometry. Two of them, balls and segments, turn out to be very 
useful to define abstractly mutation and crossover and in the following we consider 
them in more detail. 
 
2.1.4 Balls and segments 
In a metric space ),( dS  a closed ball is the set of the form 

}),(|{);( ryxdSyyxB ≤∈= where Sx ∈ and r is a positive real number called the 
radius of the ball. A line segment (or closed interval) is the set of the form 

)},(),(),(|{];[ yxdyzdzxdSzyx =+∈= where Syx ∈, are called extremes of the 
segment. Note that ];[];[ xyyx = . The length l of the segment ];[ yx  is the distance 
between a pair of extremes ),(]);([ yxdyxl = . Let H be a segment and Hx ∈  is an 
extreme of H, there exists only one point Hy ∈ , its conjugate extreme, such that 

Hyx =];[ . Examples of balls and segments for different spaces are shown in Figure 1. 
Note how the same set can have different geometries (see Euclidean and Manhattan 
spaces) and how segments can have more than a pair of extremes. E.g. in the 
Hamming space, a segment coincides with a hypercube and the number of extremes 
varies with the length of the segment, while in the Manhattan space, a segment is a 
rectangle and it has two pairs of extremes. Also, a segment is not necessarily “slim”: 
it may include points that are not on its boundaries.  Finally, a segment does not 
coincide with a shortest path connecting its extremes (geodesic). In general, there may 
be more than one geodesic connecting two extremes.  
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2.2 Abstract geometric operators and formal evolutionary algorithm 
 
2.2.1 Formal genetic operators 
We define two classes of operators in the landscape (i.e. using the notion of distance 
coming with the landscape): abstract mutation and abstract crossover. Within these 
classes, we identify two specific operators: abstract uniform mutation and abstract 
uniform crossover.  
 
A g-ary genetic operator OP takes g parents gppp ,..., 21  and produces one offspring c 

according to a given conditional probability distribution: 
),...,|(}...,,|Pr{}),...,(Pr{ 21,221121 gOPggg pppcfpPpPpPcOPcpppOP =======  

Mutation is a unary operator while crossover is typically a binary operator. 
 
Definition 1 The image set or accessibility of a genetic operator OP is the set of all 
possible offspring produced by OP with non-zero probability when the parents 
are gppp ,..., 21 : }0),...,|(|{)],...,(Im[ 2121 >∈= gOPg pppcfScpppOP  

Notice that the image set is a mapping from a vector of parents to a set of offspring. 
 
Definition 2 A unary operator M is a abstract �-mutation operator if 

);()](Im[ εpBpM ⊆  where � is the smallest real for which this condition holds true.  

In other words, in a abstract �-mutation all offspring are at most � away from their 
parent. 
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Definition 3 A binary operator CX is a abstract crossover if ];[)],(Im[ 2121 ppppCX ⊆ . 

This simply means that in a abstract crossover offspring lay between parents. We use 
the term recombination as a synonym of any binary genetic operator. 
We now introduce two specific operators belonging to the families defined above.  
 
Definition 4 Abstract uniform �-mutation UM is a abstract �-mutation where all z at 
most � away from parent x have the same probability of being the offspring: 

|),(|
)),((

}|Pr{)|(
ε

εδ
ε xB

xBz
xPzUMxzfUM

∈====  

),(}0)|(|{)](Im[ εεε xBxzfSzxUM M =>∈=  

where δ is a function which returns 1 if the argument is true , 0 otherwise.  
When � is not specified, we mean � = 1. 
 
Definition 5 Abstract uniform crossover UX is an abstract crossover where all z 
laying between parents x and y have the same probability of being the offspring: 

|],[|
]),[(

}2,1|Pr{),|(
yx

yxz
yPxPzUXyxzfUX

∈===== δ  

],[}0),|(|{)],(Im[ yxyxzfSzyxUX UX =>∈= . 
 
These definitions are representation-independent and therefore the operators are 
well-defined for any representation. 
 
2.2.2 Formal evolutionary algorithm 
Many evolutionary algorithms look alike when cleared from algorithmically irrelevant 
differences, such as authorship, historical origin, domain of application, phenotype 
interpretation and representation-independent algorithmic characteristics that, in effect 
can be freely exchanged between algorithms such as, for example, the selection 
scheme. Ultimately, the origin of the differences of the various flavours of 
evolutionary algorithms is rooted in the solution representation and relative genetic 
operators.  
 
Since we have been able to fully define genetic operators in a complete abstract way 
without any reference to the solution representation we can now define rigorously 
formal evolutionary algorithms around the definitions of formal genetic operators. A 
general, formal evolutionary algorithm2 is shown in Figure 2.  
 
 
 
 
 
 
 
 
 

                                                
2 A different notion of formal evolutionary algorithm, based on abstract genetic operators that are not based on 

fitness landscape, was introduced in (Surry & Radcliffe, 1996). 
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                                                    Figure 2- Formal evolutionary algorithm 
 
It is important to notice that the whole formal evolutionary algorithm is a function of 
the distance d of the search space. Since such a distance can be chosen arbitrarily 
independently from the problem at hand, the formal evolutionary algorithm is fully-
defined yet completely disconnected from the problem. Naturally, NFL holds over all 
the possible choices of distance functions over the solution set. To get better 
performance than random search for any problem is necessary to match problem and 
formal algorithm by choosing a distance that helps the search.   
 
2.3 Specifying distance via solution representation 
In section 2.2 we have given abstract definitions of genetic operators that do not rely 
on any specific distance and that are completely disconnected from solution 
representation. In this section we will link solution representation to genetic operators 
by considering the application of abstract operators to a class of distances rooted in 
the solution representation: edit distances. This has a number of surprising 
consequences. 
 
2.3.1 Configuration space and edit distance 
A configuration space C is a pair (G, Nhd) where G is a set of syntactic 
configurations (syntactic objects or genotypes) and GGNhd 2: →  is a syntactic 
neighbourhood function which maps every configuration in G to the set of all the 
configurations in G which can be obtained by applying a unitary syntactic 
modification operator (edit move). The edit move must be reversible (i.e. 

)()( yNhdxxNhdy ∈⇔∈ ) and connected (any configuration can be transformed into 
any other by applying a finite number of edit moves). Notice that given the same 
configuration set G there may be more than one configuration space sharing the same 
configuration set but differing in the syntactic neighbourhood function (using a 
different edit move). A configuration space C=(G, Nhd) is therefore endowed with a 
syntactic neighbourhood structure induced by the syntax of the configurations and the 
particular notion of edit move adopted. Such a neighbourhood structure can be 
associated with an undirected syntactic neighbourhood graph where vertices represent 
configurations and edges represent the relation of neighbourhood between 
configurations. The function returning the length of the shortest path (number of 
edges) connecting each pair of vertices in this graph respects all the axioms of a 
metric and is called edit distance. From a syntactic point of view, the edit distance 

Error! FORMAL EVOLUTIONARY ALGORITHM(d) 
Generate (P(0)) 
t 0 
WHILE NOT Termination_Criterion (P(t)) DO  

Evaluate (P(t)) 
P' (t) Select (P(t)) 
P''(t) Apply_Abstract_Operators (P'(t),d) 
P(t+1) Replace (P(t), P''(t)) 
t t + 1  

END 
RETURN Best_Solution 
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between two configurations correspond to the minimum number of edit moves needed 
to transform one configuration into the other. Notice that the same configuration set 
can be associated to different edit moves giving rise to different notion of edit 
distance for the same set. 
 
2.3.2 Connecting representation, mutation and crossover 
In (Moraglio & Poli, 2004) we provided two results that clarify the connection 
between representation, mutation and crossover. The first result is that given any 
notion of abstract �-mutation there is a corresponding notion of abstract crossover and 
vice versa. Hence, there is one-to-one connection between mutation and crossover. 
The second result is that each solution representation may admit more than one notion 
of crossover and corresponding mutation: one for each edit distance applicable to that 
representation.  
 
2.3.3 Distance duality: edit distance geometry 
Descartes (Descartes, 1637) introduced the idea of duality in geometry by drawing a 
one-to-one correspondence between (vectors of) real numbers to points of the 
Euclidean space through the notion of coordinates. This duality taught at school to 
everyone, the Cartesian coordinate system, seems so obvious and natural nowadays 
that its importance is somehow invisible to the most. The remarkable thing of the 
Cartesian duality is that it connects two different worlds, numbers and geometry, and 
allows manipulating algebraically geometric shapes. This duality is the basis of 
analytic geometry and its successor, calculus. Here we introduce a generalization of 
Cartesian duality drawing a correspondence between syntactic objects and points of 
non-Euclidean discrete geometric spaces. We refer to these geometries as edit 
distance geometries.  
 
The edit distance is a measure of syntactic dissimilarity between two syntactic objects. 
Every syntactic object uniquely represents a point in the space induced by the syntax 
and the notion of edit move considered. The induced space naturally inherits the edit 
distance from the syntax. However, in the transition the distance loses its meaning of 
dissimilarity measure and becomes a measure of spatial remoteness between points of 
the space. When one uses this distance as base for metric geometry, one actually uses 
a measure of syntactic similarity as if it were a notion of spatial remoteness. This 
creates the dual bond between syntax and space. So, any geometric definition based 
on edit distance has also a syntactic meaning. For example, the definition of a ball of 
radius one corresponds to all points that are in space within the radius (geometric 
interpretation) and also correspond to all syntactically related configurations that 
differ in their syntax of an edit unit from a given one (syntactic interpretation). So, 
geometric shapes can be interpreted as syntactic templates. This natural duality of edit 
distance geometries is important because allows to use instruments and ideas from 
geometry to reason about syntactic objects and vice versa. We call this property 
distance duality. Distance duality is a never-ending source of surprises because for 
each choice of syntax and edit move the syntactic interpretation of the same geometric 
definition is different and peculiar of the specific syntax and move considered. This is 
the same type of surprise that arises when one draws a ball using alternative notions 
of distance for real vectors, say Euclidean and Manhattan, obtaining respectively a 
rounded-ball and a diamond-ball. This has powerful consequences for evolutionary 
algorithms. One important consequence of duality is that the geometric definition of 
crossover, being also a syntactic definition, tells exactly what crossover is for any 
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choice of syntax and edit move. In Section 5, we show this for geometric spaces based 
on edit distances for permutations: the geometric notion of moving along a geodesic 
between points a and b (shortest path) corresponds syntactically to sorting the 
permutation that represent point a toward the permutation that represent point b on the 
minimal sorting trajectory. As a consequence, abstract geometric crossover for 
permutations can be implemented by a minor modification of traditional sorting 
algorithms.  
 
2.4 Representation mapping and natural solution representation 
 
2.4.1 Fitness landscape as knowledge interface 
How does the generic nature of a formal evolutionary algorithm relate to the NFL 
theorem and problem knowledge? To understand where the problem knowledge used 
by a formal evolutionary algorithm resides, we must make a clear distinction between 
problem and landscape. The problem is something given and it does not come with a 
predefined structure over the solution set. A landscape is a problem plus a structure 
over the solution set and it is something that is designed. Abstract genetic operators 
are defined over the connectivity structure of the landscape through a notion of 
distance arising from it; hence the way the landscape is designed ultimately 
determines the performance of the operators for a given problem. An abstract operator 
in itself has no knowledge of the problem and when matched blindly with the problem, 
for the NFL, its expected performance equals random search (Radcliffe & Surry, 
1995). The problem knowledge is therefore embedded in the way the connectivity of 
the search space is mapped to the solution of the problem, that is to say that the fitness 
landscape plays the role of a knowledge interface between formal problem and formal 
evolutionary algorithm.  
 
2.4.2 Connection between formal problem and solution representation 
We have a formal solution set S and a configuration space C=(G,d). The genetic 
operators are implemented using the configuration space C; in this space the genetic 
operators are fully defined (since the space comes with a distance) and implementable 
in practice (since the space is defined over a syntax). As we mentioned earlier we treat 
S as a formal set of solutions and in particular we don’t assume any specific solution 
representation. In order to connect the problem to the algorithm we need to define a 
representation mapping CSr →:  that maps every solution in S to a configuration in C. 
For simplicity we consider r to be bijective. Now we can use the notion of distance d 
defined over the configuration space as a distance between formal solutions 
through 1−r . Notice that if r is an arbitrary mapping then the problem at hand and the 
evolutionary algorithm are not matched; hence for the NFL the expected performance 
of the evolutionary algorithm is the same as random search. 
 
2.4.3 Natural fitness landscape 
To match problem and algorithm in order to get expected performance better than 
random search the representation mapping r has to be chosen in a way to put some 
problem knowledge in the evolutionary algorithm. For many meta-heuristics based on 
neighbourhood search, in practice this is done quite straightforwardly in a heuristic 
way. The neighbourhood structure is built using a domain-specific representation, 
plus a neighbourhood function derived by studying the objective function of the 
problem, so that a syntactic unitary move corresponds to a little variation in the value 
of the objective function. For example, for the TSP the domain-specific representation 
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would be a city tour and the move 2-opt, inverting a sub-path of the tour, is chosen 
heuristically motivated by the fact that looking into the objective function is the one 
that changes the minimum number of weights contributing to changing the fitness of 
two neighbouring solutions. The theoretical reason behind this heuristic use of 
problem knowledge is not yet understood, but it is well-known that this is a good way 
to build the search space for most meta-heuristics (Pardalos & Resende, 2002). 
 

3. Distances between permutations 
In the previous sections we reported and substantially extended the geometric 
framework for evolutionary algorithm introduced in (Moraglio & Poli, 2004). The 
framework arose as a representation-independent generalization of crossover for 
binary strings and real-coded GAs but it is completely general. In this section we 
apply the framework to the permutation representation. 
 
Differently from binary strings, where a single, natural definition of distance, the 
Hamming distance, is universally accepted, for permutations many notions of distance 
are equally natural. Such distances relate to each others in various ways with subtle 
dependencies. Further complication arises from the fact that permutations and circular 
permutations (and also permutations with repetitions to a lesser extent) are treated as 
if they were the same representation, which is incorrect: they are different 
representations and they allow for different notions of distance (for a survey on 
metrics on permutations see (Deza & Huang, 1998)). 
 
Since the notion of distance is so fundamental for the application of the geometric 
framework, in the following we analyse various notions of distance for permutations, 
their origins, their interdependencies and their use within the framework. To fully 
understand distances for permutations, we cannot separate them from permutation 
interpretations. Permutations can be used to represent solutions to different types of 
problems for which different relations among the elements in the permutation are 
relevant. There are three major interpretations of a permutation (Back et al, 2000). For 
example, in TSP permutations represent tours and the relevant information is the 
adjacency relation among the elements of a permutation. In resource scheduling 
problems permutations represent priority lists and the relevant information in this case 
is the relative order of the elements of a permutation. In other problems, the important 
characteristic is the absolute position of the elements in the permutation. 
  
Let us consider the permutation (C D E B F A). If the adjacency is important then the 
fact that the elements D and E are adjacent is relevant as well as the fact that the 
elements C and B are not adjacent. If the important aspect is the relative order then 
what is relevant is the fact that D precedes E and that C precedes B. If the absolute 
order is important then the relevant point is that C is in position 1, D in position 2, etc. 
 
For each interpretation of permutation, it is possible to write a binary matrix that 
represents the actual relation among elements in the permutation. So, we can have a 
relative order matrix, an absolute position matrix and an adjacency matrix. It is 
possible to define three distance functions for permutations based in these matrices. 
The distance between two permutations is then the Hamming distance between their 
corresponding matrices in the three interpretations. We refer to these distances as 
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relative order distance (ROD), absolute position distance (APD) and adjacency 
distance (AD). Collectively we will call these distances interpretation distances. 
 
In principle, geometric operators for permutations can be defined using these notions 
of distance. So we can define rigorously relative order crossover (ROX) and mutation 
(ROM), absolute position crossover (APX) and mutation (APM), and adjacency 
crossover (AX) and mutation (AM). However, ROD, APD and AD are not 
straightforward to implement exactly (producing only matrices corresponding to 
feasible permutations) because are only indirectly related to the syntax of 
permutations. Therefore these distances are not a natural choice to be the base for 
geometric crossover. We will see later that to make crossover operators that are 
straightforward to implement over the syntax at hand we need to use distances that are 
firmly rooted in the solution representation (read edit distances). 
 
Each interpretation distance is also associated with a notion of syntactic non-edit 
distance between permutations. These distances are based on the syntax of 
permutations but do not rely on the notion of edit move. ROD is the displacement 
distance that sums for each element the number of positions away is in the two 
permutations. APD is the Hamming distance for permutations. AD is the breakpoint 
distance that counts the occurrences of two elements being consecutive in a 
permutation and non-consecutive in the other. In principle, geometric operators can 
be defined using these notions of syntactic distance but again, because these distances 
are not defined operationally3 over the syntax, the definitions of the corresponding 
genetic operators do not tell us how to manipulate the syntax of permutations to 
implement them producing feasible permutations within a segment. 
 
Since edit distances have a fundamental role in the geometric framework we analyse 
them in details in the next section. However, since interpretation distances (based on 
matrices), syntactic distances and edit distances are interdependent, all of them turn 
out to be useful and their connection with edit distances can be exploited in various 
ways as we show in later sections. 
 

4. Edit distances and mutations 
Both edit distances and traditional mutation operators are based around the notion of 
edit move. In the following we report the most common edit moves for the 
permutations (Vergara, 1997). Two requirements for an edit move (to be the base for 
an edit distance that respects the metric axioms) are symmetry, if the configuration a 
is reachable from configuration b in one move then b must be reachable from a in one 
move too, and full-connectivity that states that any configuration has to be reachable 
from any other in a finite number of moves. 
 

                                                
3 Since edit moves are unitary syntactic transformations that preserve syntactic feasibility, crossover operators that 

are defined using edit distances can be implemented as a sequence of unitary syntactically feasible 
transformations. This suggests how to reach feasible offspring from feasible parents. Moreover, depending on 
the syntax and the edit move used, the composition of unitary syntactic transformations can be aggregated in a 
single-shot syntactic manipulation (a non-unitary edit move) producing the same effect and still preserving 
feasibility. This suggests how to implement crossover operator quite straighforwardly. This is an important 
property of edit distances that other syntactic distances do not have. 
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• Inversion (or block-reversal): The reversal move selects any two points along the 
permutation then reverses the subsequence between these points. This move is 
particularly well-suited for the TSP and for all the problems that naturally admit a 
permutation representation in which adjacency among elements plays an 
important role.   

• Insert and block-transposition: The insert move selects one element and inserts it 
at some other position in the permutation shifting elements to make room for the 
insertion. The block-transposition move inserts a sub-sequence of elements rather 
than a single element. These moves have been used successfully for scheduling 
problems in which relative order of elements is important.  

• Swap and adjacent swap: The swap move selects two elements and swaps their 
positions. The adjacent swap operator swaps two contiguous elements.  

• Scramble: This move selects a sub-list and randomly reorders the elements while 
leaving the other elements in the permutation in the same absolute position. 

• Constrained moves: there are a number of variations for each of these moves 
which result from imposing constraints on the edit move such as the maximum 
size of the block or a limit on the distance between origin and destination points. 

 
All the previous edit moves are symmetric and fully connected. For example, the 
inversion move is symmetric because re-reversing the same sub-list produces the 
original permutation. It is connected because by repeated reversions it is possible to 
reach any permutation from any other permutation. Also the adjacent swap move is 
symmetric and connected because bubble sort based on adjacent swap is able to sort 
any permutation of elements. The same holds for the swap operator. The adjacent 
swap operator can be seen as a special case of swap or as a two-element sub-list 
inversion move. 
 
The edit distance between any two syntactic configurations is the minimum number 
of edit moves necessary to transform one configuration into the other. This definition 
of distance respects the axioms for a metric: identity, symmetry and triangular 
inequality. Each notion of edit move gives rise to a notion of edit distance. Therefore 
we will talk of reversal distance, transposition distance, swap distance, adjacent 
swap distance, scramble distance and so on. 
 
The most common mutation operators for permutations mirror almost exactly the 
most common edit moves. Even if the very idea of mutation is very similar to the one 
of edit move, we want to emphasise that an edit move is a deterministic and unitary 
syntactic transformation whereas a mutation is a non-deterministic operator with a 
given probability distribution and does not need to correspond all the times to a single 
edit move. In fact, there are mutations that are local in their effect (point mutation) 
and mutations that are non-local with a decreasing probability distribution on the 
distance (for example the standard mutation for binary string under Hamming 
distance is of this type). Furthermore, there are mutations that have a non-symmetric 
definition, for example a mutation that allows for insertion of an element in a 
permutation only after the current position of the element itself. 

5. Crossovers for permutations and sorting algorithms 
 
The definition of genetic operators we have introduced is geometric and based on a 
notion of distance. The distance can be any distance that respects the metric axioms. 



 14 

Hence, given any distance the genetic operators are well-defined and fully-specified. 
The permutation representation allows for distances of various types and with various 
origins. We have considered a few in sections 3 and 4. What type of distances should 
we use to specify genetic operators?  
 
Although in theory any distance will do, in practice the genetic operators need to be 
implemented and so they require a notion of distance that is defined around a 
representation and that is strongly rooted in the syntax like edit distances. In section 2, 
we have emphasized the practical importance/necessity of specifying the distance 
based on the representation. Indeed, when the distance is an edit distance it becomes 
possible to specifying operationally the genetic operators. However, specifying the 
genetic operators using other types of distance can be useful too: interpretation 
distances can be used to guiding design by suggesting a convenient edit distance to 
use for the problem at hand (see section 8) and syntactic non-edit distances can be 
used as approximations or bounds of edit distances and can be helpful in 
implementations and in proving theoretical results. 
 
Since the notion of edit distance is defined through the syntax of the specific 
representation is rooted in, geometric objects/transformations defined using such a 
distance have a natural correspondence to syntactic objects/transformations peculiar 
of the specific representation and move considered (distance duality). In the specific 
case of permutations, a point on a segment between two permutations, under a given 
edit distance, is on a minimal sorting trajectory connecting the two permutations. This 
allows implementing such crossovers by sorting algorithms. Bubble sort and insertion 
sort fit the definition of geometric crossover for, respectively, the adjacent swap 
distance and the swap distance. So, some ordinary sorting algorithms can actually be 
used as crossovers! Some edit distances give rise to crossovers that can be 
implemented exactly and efficiently. Other edit distances give rise to crossovers that 
are possible to implement efficiently (in polynomial time) only in an approximated 
way (see TSP example in section 10). For example, constraints on edit moves 
transform the complexity of computing the edit distance, hence of crossover, from 
polynomial to NP-hard (Vergara, 1997).  
 
Not all classic sort algorithms fit the definition of geometric crossover though. Only 
those algorithms that use the same move throughout the sorting and are guaranteed to 
do always the minimum number of move applications. Technically, these algorithms 
when applied to permutations solve the “minimal permutation sorting by x problem” 
where x stands for the move used. Bubble-sort, insertion sort and selection sort belong 
to this class of sorting algorithms the sorting move (respectively adjacent swap, 
insertion and swap) is pre-specified and fixed over the whole execution of the 
algorithm. Some more effective sorting algorithms, such as quick sort, use different 
moves while progressing with the sorting, so they cannot be used as geometric 
crossovers (but they could still lead to good recombinations for permutations). 
 
In the following we highlight five important differences between sorting algorithms 
and crossover operators: 
(i) Crossover operators sort one parent permutation toward the order of the other 

parent, not to the fully ordered permutation (1 2 3 …). However, it is easy to 
prove that these two ways of sorting are, in fact, equivalent. 
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(ii) Crossover operators do not sort a vector of real numbers or a list of words: 
they sort permutations in which the rank of each element to sort is already 
known. This additional information can be used to build different and more 
efficient sorting algorithms that do not resemble the classical (and more 
general purpose) ones. 

(iii) Crossover operators sort permutations around the notion of moves. Like 
classical sorting algorithms, they are optimal on the numbers of moves 
employed. Unlike them, crossover operators do not require optimality in the 
number of comparisons too. 

(iv) Crossover operators interrupt the sort at a random point to produce the 
offspring. 

(v) Crossover operators may perform a non-deterministic sorting. That is, given 
the same permutation to sort, crossover may follow different sorting 
trajectories in different executions4. 

 

6. Genetic operators implementation 
From an implementation point of view genetic operators need to be easy and efficient 
to implement. We propose the following operators.  
 
Generalization of standard binary string mutation 
In Figure 3 we report a straightforward generic mutation that can be used with any 
solution representation coming with a notion of edit distance. mp  is the mutation 
probability. The neighbours of a given syntactic configuration are all those syntactic 
configurations within the reach of a single edit move. The mutation operator can reach 
any point in the space from any other with a decreasing probability depending on the 
distance. It is therefore a macro-mutation operator and it is still a geometric �-
mutation operator (its image set is in a ball with radius the diameter of the space). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Mutation operator 
 

                                                
4 There are two quite distinct categories of sorting algorithms: deterministic and non-deterministic. Deterministic 
sorting algorithms perform the sorting always in the same way given the same permutation to sort. For example, 
deterministic bubble sort scans the permutation always from left to right and applies the first adjacent swaps that 
make closer the current permutation to the complete ordered one (identity permutation). Non-deterministic sorting 
algorithms are randomised sorting algorithms that do not select the next move deterministically but according to 
some randomised strategy. For example, the uniform non-deterministic sorting strategy for bubble sort is scanning 
the current permutation considering all the sorting moves (those that get the current permutation one move closer 
to the complete order) and then selecting one at random and applying it. 
 

MUTATION 
 
Input: parent, mp  Output: offspring 

offspring  parent 
WHILE mp > uniform_random([0,1]) DO 

neighbours  get_neighbours(offspring) 
offspring  uniform_random(neighbours) 

END  
RETURN offspring 
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Sorting crossovers 
In figure 4 we report the pseudo-code for all sorting crossovers for permutation. First 
the two parent permutations are composed obtaining a permutation in normal form. 
This has the advantage of transforming the less ordinary task of sorting one 
permutation toward a second arbitrary permutation into the more standard task of 
sorting a permutation into a completely order permutation (identity permutation). 
 
Then any sort algorithm that satisfies the requirement of being a “minimal sorting by 
x” algorithm, can be used to sort the permutation in normal form taking care of 
collecting the sequence of sorting moves (sorting trajectory). In Section 9, we have 
tested three classical sorting algorithms in their deterministic and uniform non-
deterministic versions to the n-queens problem. 
 
The distance between the two parents permutations based of the move considered is 
the number of moves on any (minimal) sorting trajectory between the two 
permutations. A crossover point is then selected at random on the sorting trajectory 
and the offspring permutation is obtained by applying the sequence of moves to the 
first parent permutation until the crossover point has been reached. 
 
Geometrically, given the two parents, the offspring of a deterministic sorting 
crossover all lay on the same geodesic connecting them; those of a non-deterministic 
sorting crossover instead are spread across all segment (the union of all geodesics 
connecting two points) identified by the two parents. In this respect, the former 
resembles more the traditional one-point crossover for binary strings; the latter instead 
resembles the uniform crossover. However, the actual probability distributions over 
the offspring are not necessarily uniform and depend on the specific geometry of the 
space considered.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Sorting crossover 

SORTING CROSSOVER 
 
Input: parent_perm1, parent_perm2 Output: offspring_perm 
 

normal_perm  parent_perm1 ° parent_perm2 1−  
sort_moves_seq sort (normal_perm) 
distance  length (sort_moves_seq) 
crossover_point  uniform_random(integer range: [0, distance]) 
 
offspring_perm  parent_perm1 
WHILE crossover_point>0 DO 
 offspring_perm  offspring_perm ° sort_moves_seq(crossover_point) 
 crossover_point  crossover_point -1   
END  
RETURN offspring_perm 
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7. Do pre-existing crossovers fit the abstract geometric definition 
of crossover? 
 
7.1 Pre-existing crossovers and permutation interpretations 
 
There are a number of crossover operators defined for permutation (for a good 
overview, see (Back et al, 2000)). Most of them were devised with a specific 
interpretation of the permutation in mind. This is reflected in their names. So, for 
example, Davis’s order crossover emphasizes the fact that a permutation is seen as a 
relative order, cycle crossover preserves absolute positions, and edge recombination 
crossover focuses on the adjacency relation of the elements in the permutation. 
  
Some crossovers achieve their goals of transmitting a specific relationship among 
elements from the parents to the children perfectly (perfect crossovers), others 
achieve their goals only approximately. For example cycle crossover transmits 
perfectly the common positional information of parents to children; both Davis’s 
order crossover and edge recombination are not able to transmit perfectly, 
respectively, the common relative order of the parents and the adjacency relation. 
However, another crossover, the merge crossover, perfectly transmits the relative 
order of parents to children.  
 
Some crossover operator is deliberately designed to be a trade-off, transmitting part of 
the relative order, part of the absolute position and part of the adjacency relation 
present in the parent permutations to the offspring permutations. This is indeed 
possible since the three relations have subtle interdependencies. One of such 
crossover operators is the partially matched crossover. Hybrid crossovers such as 
these have the advantage to work reasonably well independently from the specific 
interpretation of the permutation. However, they perform worse than perfect 
crossovers for a specific interpretation of the permutation on a problem in which this 
interpretation is relevant. 

 
7.2 Fitting absolute position crossovers 
 
In section 5 we started with the general definition of geometric crossover and, while 
specifying it to permutation representation, we discovered that geometric crossovers 
for permutations are sorting algorithms. Now, we do the opposite, we start from pre-
existing crossovers and show how these fit our definition of abstract crossover. 

  
Since it is easy to classify crossovers according to the specific interpretation given to 
a permutation (see Section 7.1), instead of showing that all pre-existing crossovers fit 
our geometric definition of crossover, it is more sensible to show that all perfect 
crossovers under a certain interpretation are sorting algorithms according to a specific 
notion of edit move for permutation. 
 
In this section we give two results about absolute position crossovers. We show that 
selection sort based crossovers are position preserving crossovers and that a specific 
pre-existing crossover that is position preserving is a selection sort based crossover. In 
sections 10 and 11, we study the cases of adjacency crossovers and relative order 
crossovers in connection with two important and exemplary problems, TSP and JSSP 
respectively. 
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Theorem (Selection sort crossover is position preserving) 
Selection sort crossover recombines two permutations producing offspring 
permutations preserving common values at the same position. 
Proof  
Selection sort uses the swap move to order the initial permutation to the target 
permutation. A sorting move for selection sort is one that fixes at least one value of 
the current permutation to the target position. When the current permutation is 
different from the target permutation, there always exists at least one sorting move. A 
swap that does not fix at least one value to its target position is not a sorting move and 
is not on a minimal sorting trajectory. A swap move that changes a value of the initial 
permutation that is already in its target position is not a sorting move because, instead 
of fixing at least one value, it un-fixes at least one. Hence all the intermediate 
permutations on a sorting trajectory (offspring) share the common values at the same 
positions with the initial and target permutations (parents). �   

 
Cycle crossover is a selection sorting crossover 
Cycle crossover divides the elements of the two parent permutations into cycles and 
then creates offspring by selecting randomly successive cycles from each parent. A 
cycle is a subset of elements that has the property that each element always occurs 
paired with another element of the same cycle when the two parents are aligned. 
Cycle crossover preserves perfectly the common absolute position of elements from 
parents to offspring. 
 
Theorem 
The cycle crossover can be seen as a selection sort crossover.  
Proof 
The procedure to exchange one cycle at random between the two parent permutations 
is as follows. Pick a position in the initial permutation at random. The value at that 
position is the reference value. Swap the reference value with the value at the same 
position in the target permutation. This is a sorting move because at least one value at 
one position is fixed by this move. If the reference value is not fixed swap the 
reference value with the value at the same position in the target permutation and keep 
on iterating this move until the reference value is fixed as well. All these moves are 
on a minimal sorting trajectory since each one fixes at least one value. When the 
reference value is also fixed the current permutation differs from the initial 
permutation exactly of one cycle, which has been substituted by the corresponding 
cycle of the target permutation by the sequence of swaps. This differs from the 
original cycle crossover implementation only in the fact that, instead of first 
identifying a cycle and then exchange it all in one go, it does swap moves until a 
whole cycle is exchanged without making it explicit beforehand. � 
 
Pre-existing crossovers that fit the definition of geometric crossover are sorting 
algorithms in disguise! Indeed they produce offspring on the minimal sorting 
trajectory between parents according to some edit move. The fact that most of pre-
existing crossover at first glance do not look like sorting algorithms, even when they 
are pure crossovers for a given interpretation of the permutation, is because they are 
special implementations of sorting algorithms for permutations and do not apply to 
general vectors of number. Since every element of a permutation identifies also its 
rank in the completely ordered permutation, this information can be used to 
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implement sort algorithms for permutations that are more efficient than standard sort 
algorithms and do not quite look the same.  
 
The case of cycle crossover being a perfect crossover under a certain interpretation of 
permutation and happening to be also a geometric crossover (read sorting crossover) 
is not accidental. Permutation interpretations and geometric aspects are intimately 
connected. In Table 1, we propose a summary of important attributes of 
crossover/recombination operators for permutations classified by permutation 
interpretation.  
 

Table 1 – Attributes of crossovers for permutations (summary) 
Permutation 

Interpretation 
Edit 

Move 
Sorting 

Algorithm 
Computational 

Complexity 
Problem 
Example 

Crossover 
Example 

Syntactic 
Distance 

Position swap Selection 
Sort 

P n-queens Cycle 
crossover 

Hamming 

Adjacency block-
reversal  

Sorting by 
Reversals 

NP-hard TSP Edge 
recombination 

Breakpoints 

Relative order adjacent 
swap 

Bubble 
Sort 

P JSSP Merge 
crossover 

Displacement 
 

Hybrid - - P general PMX - 
                   

 

8. Design issue: matching problem and algorithm 
 
One peculiarity of the permutation representation is that there are many equivalently 
natural notions of crossover; hence one may wonder what the right notion of 
crossover is after all. For the NFL theorem (Wolpert & Macready, 1996) there cannot 
be the right crossover: what is a good crossover for a problem must be necessarily bad 
for another one. The question is therefore how to match crossover and problem in a 
principled way. We discuss three heuristic methods to do that: build a crossover using 
a good mutation, build a crossover using a neighbourhood based on the small-move 
small-fitness change design principle, or build a crossover using a distance that is 
connected with a distance that is relevant for the solution interpretation.    
 
8.1 Good mutation, good crossover 
A certain general way of matching problem and evolutionary algorithm using 
crossover is a good one if it produces systematically better performance than random 
search in general. Notice that to match problem and algorithm one has to use problem 
knowledge (and algorithm knowledge) and therefore the general superior performance 
one gets does not conflict with the NLF theorem that holds true only in a black-box 
scenario. Therefore the question is: how can we choose solution representation and 
edit move to obtain a good match abstract crossover/problem at hand?  
 
Our hypothesis of a general way of matching an evolutionary algorithm using 
crossover and problem at hand is heuristic and passes through mutation: if a 
neighbourhood structure obtained by choosing solution representation and edit move 
for the problem at hand is good for mutation (or simple local search) then it is also 
good for crossover. This hypothesis makes sense since it mirrors the well-known rule 
of thumb that a good neighbourhood structure for a problem works well with different 
meta-heuristics (Glover, 2002). 
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Hence, what makes sense to test experimentally here is our hypothesis: whether or not 
in general a good match mutation/problem-at-hand corresponds to a good match 
crossover/problem-at-hand. Here we are not testing if abstract crossover is good in 
general, which for the NFL is futile. We are testing a general conditional statement 
that is not affected by the NFL and that is likely to be true since crossover and 
mutation are related operators.  
 
8.2 Permutation interpretations and edit distance design 
Permutations indeed allows for various notions of edit moves. In order to choose the 
“right” edit move and consequently the “right” crossover, the designer needs to know 
what the permutation is meant to represent (permutation interpretation) and this piece 
of information can be obtained only by knowing what the problem is. Therefore the 
notion of permutation interpretation is inherently connected with the notion of 
problem knowledge. As we have seen in section 3, permutation interpretations 
connect subtly with different types of distances for permutations. Exploiting the 
connection between interpretation distances, or phenotypic distances, that naturally 
connect with the interpretation of a specific representation for the problem at hand so 
embed problem knowledge, and edit distances that naturally connect with the syntax 
of the specific representation so allowing for the design and implementation of 
“concrete” operators matching “abstract” interpretation based operators, seems to be a 
promising direction indeed to match problem at hand to specific operators. 
 
The technical instrument necessary to map two distances is the embedding. An 
embedding maps the points of a given metric space into the points of a host metric 
space. The embedding has low distortion if all of the interpoint distances are 
approximately preserved. In applications, the host metric space is “simpler” than the 
original metric space. For many optimisation problems, low distortion of the 
interpoint distances causes only a correspondingly low distortion in the value of the 
objective function: near-optimal solutions with respect to the distorted distances 
correspond to near-optimal solutions with respect to the original distances; an 
approximation algorithm designed for the host metric space provides an 
approximation guarantee for the original metric space.   
    
8.3 Minimal change principle 
Depending on the interpretation of the permutation, the same mutation operator can 
be seen as a small change or a major change. For example, the inversion operator does 
a minimal change when one thinks of a permutation in terms of adjacency, but a 
major change when the same permutation is seen as a priority list (relative order).  
A single mutation should represent a minimal change (Radcliffe, 1992; Radcliffe, 
1994). According to this principle, there are three mutation operators that do a 
different minimal change in a permutation, one for each interpretation. When the 
permutation is thought as an adjacency relation then the minimal mutation operator is 
the inversion operator: while reversing the order of a sub-list, only two adjacency 
links (edges) are changed. When the permutation represents a relative order the 
minimal mutation operator is the adjacent swap operator that affects only the relative 
order of a pair of elements. Finally, when the absolute position of elements in the 
permutation is relevant, the minimal mutation operator is the swap operator that 
changes the absolute positions of only two elements.  
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A general heuristic way to design good neighbourhood structures for local search and 
other meta-heuristics and, simply states that neighbours solutions should have similar 
fitness. This rule of thumb has been rediscovered by many authors in many fields of 
search and optimisation many times and has various names (Pardalos & Resende, 
2002).  
 

9. Sorting crossovers for the n-queens problem 
The eight queens’ puzzle is the problem of placing eight chess queens on an 8 by 8 
chessboard such that none of them is able to capture any other. The piece colour is 
ignored, and any piece is assumed to be able to attack any other. That is to say, no two 
queens should share the same row, column, or diagonal. The generalized problem of 
placing n "non-dominating" queens on an n by n chessboard is a good example of a 
simple but non-trivial constraint satisfaction problem and, for this reason, is often 
used as an illustrative problem for non-traditional approaches, such as constraint 
programming, logic programming or genetic algorithms (Russell & Norvig, 2003). 
 
9.1 Solution representation, fitness function and genetic operators 
 
Various encodings and solution representations for the n-queens problem have been 
suggested (Eiben, 1995); some of them reduce the search space enormously compared 
to more naïve approaches thereby speeding up the search. Here, we use a permutation 
to represent a potential solution: the position of an element in the permutation 
identifies a row in the chessboard and the value of the element itself specifies the 
column of the location the queen in that row. This sets exactly n queens on an n by n 
chessboard and reduces the search space, in that, column and row conflicts are 
eliminated. Only diagonal conflicts may arise. The fitness function is the number of 
conflicts among pairs of queens and has to be minimized. 
    
The mutations and crossovers we consider are based on the generic mutation operator 
in figure 3 and on the generic sorting crossover operator in figure 4. 
 
We want to compare crossover operators derived from three classical sorting 
algorithms: selection sort, bubble sort and insertion sort. As already mentioned in 
Section 6, these algorithms fit the definition of algorithm doing “minimal permutation 
sorting by x” paradigm; they are based on swap move, adjacent swap move and 
insertion move respectively. The first two moves are good moves for absolute 
position and relative order problems, respectively. The third one does not associate to 
a clear-cut interpretation of the permutation and mixes characters of the previous two.  
 
For each sorting algorithm we propose two types of crossover. The first type 
deterministically sorts the first parent permutation toward the second parent 
permutation, collects all the permutations on the sorting trajectory and returns one of 
them at random. The second crossover type chooses a minimal sorting trajectory 
between two permutations at random (non-deterministic sorting) and then, 
analogously to the previous one, returns as offspring one of the permutations on that 
trajectory at random. We also consider three types of mutations; one for each move 
operator. 
 



 22 

For reference, we compare the sorting crossover operators with the traditional 
partially matched crossover (PMX) recombination with swap mutation that has been 
shown to perform really well for this problem (Goldberg, 1989). 
 
9.2 Experiments 
 
In our experiments we used an evolutionary algorithm with the parameters shown in 
Table 2. The results of the experiments are shown in Figures 5 and 6. 
 
 
  

                                    Table 2 – Parameters of the evolutionary algorithm 
Problem size 100 
Population size 5000 
Mutation probability 0.1 
Crossover probability 0.5 
Generation 500 
Selection  tournament size 2 
Statistics Average 30 runs 
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Figure 6 – Comparison among crossovers 

 
Figure 5 compares the algorithm using three different types of mutation, swap 
mutation (swp_only), adjacent swap mutation (adjswp_only) and insertion mutation 
(ins_only) without crossover. The x axis is number of generations and the y axis is the 
fitness of the best individual in the population averaged over 30 runs. Since the 
objective function has to be minimized, the swap mutation is clearly much superior of 
the other two mutations that perform similarly, perhaps with the insertion mutation 
performing slightly better. 
 
Figure 6 compares the performance of the algorithm using the following crossovers: 
partially matched crossover (PMX), deterministic and non-deterministic selection sort 
crossover based on the swap move (SS1X, SSUX), deterministic and non-
deterministic bubble sort crossover based on the adjacent swap move (BS1X, BSUX), 
deterministic and non-deterministic insertion sort based on the insertion move (IS1X, 
ISUX). No mutation was used. The picture gives a clear ranking of the performance 
of crossovers: (1) SSUX, (2) PMX, (3) SS1X, (4) ISUX, (5) IS1X, (6) BSUX and (7) 
BS1X. 
 
Each non-deterministic sorting crossover outperforms the corresponding deterministic 
one. This is not necessarily due to an inherent superiority of non-deterministic sorting 
crossovers over the deterministic counterparts. Non-deterministic crossovers are 
probably advantaged since they are more explorative and compensate the lack of 
mutation. 
 
The hypothesis that a move that produces a good mutation operator produces also a 
good corresponding crossover operator is clearly corroborated by the experiment. 
Indeed in our rank of crossovers both SSUX and SS1X, based on the swap move, are 
superior to both ISUX and IS1X, based on the insertion move, which in turn are 
superior to both BSUX and BS1X, based on the adjacent swap move. This 
classification mirrors exactly the classification of mutations on performance.  
 
We like to highlight that the rule “good mutation implies good crossover” is 
presumably a good heuristics that, nevertheless, neglects the geometric details of the 
space on which the operators are defined; so it may fail. Further study, theoretical and 
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experimental, is needed to understand the impact of specific geometric properties of 
the space to the relation between the performance of mutation and crossover.  
 
Interestingly, the non-deterministic sorting crossover based on the swap move (SSUX) 
outperforms the PMX operator that is one of the best operators for the n-queen 
problem. This shows the power and the simplicity of the geometric framework to 
build new effective crossovers for the problem at hand.  

10. Adjacency crossover, circular permutations and TSP 
Edge recombination is an operator expressly designed for TSP. It considers a solution 
as a tour of cities and, therefore, rather than being defined for permutations is defined 
over circular permutations. In its various improvements its stated objective is to 
greedily recombine parent tours in order to transmit as much as possible the adjacency 
relation, introducing in the offspring tours the minimum number of “foreign” edges 
not present in either parent (Back, 2000).  
 
As in the linear permutation case, also for circular permutations it is possible to write 
an adjacency matrix. Again, the segment between the parent circular permutations 
(under Hamming distance for the adjacency relation matrix) contains all the feasible 
offspring circular permutations that perfectly respect the adjacency relation of their 
parents. The geometric crossover for circular permutations under this notion of 
distance is well-defined and if we could implement it, it would actually achieve what 
edge recombination can only aspire to. 
 
A distance based on adjacency matrix is not an edit distance. In the case of circular 
permutations, the block-reversal move is the notion of edit distance closest to the 
adjacency matrix distance because in a single application to a tour, this does the 
minimal change to the adjacency relation among elements in the permutation. This 
move is the well-known 2-opt move, and it is the basis for successful local search 
algorithms for TSP (Glover, 2002). Figure 7 shows the possible offspring (the 
segment) between two circular (parent) permutations under topological crossover. 
 
Analogously to the linear case, the circular permutations in the segment under block-
reversal distance are those laying in a minimal sorting trajectory from a parent 
circular permutation to the other. Sorting circular permutations by reversals is NP-
hard (Solomon et al, 2003). So, the topological crossover under this notion of 
distance cannot be implemented efficiently. 
 
(Solomon et al, 2003) showed that sorting circular permutations by reversals is tightly 
connected with the problem of sorting linear permutations by reversals. So all the 
algorithms developed for the latter task can be used with minor modifications also for 
the former. Sorting linear permutations by reversals is NP-hard too (Caprara, 1997). 
However a number of approximation algorithms exist to solve this problem within a 
bounded error from the optimum (Kececioglu & Sankoff, 1995) 5. So, although an 
efficient implementation of geometric crossover cannot exist, it is possible to 

                                                
5 Sorting linear and circular permutations by reversals within a bounded error from the optima is a non-trivial task 

and has been object of research in the last decade since has important applications in genetics. Papers on the 
topic are extremely technical and rather than giving the full algorithm to solve the problem, they prove some 
properties of distances that can be used to implement the algorithm.  
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implement approximate crossovers whose image set is a super-set of that of the exact 
crossover. Further research will need to investigate these and compare them to ERX. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7- Example of geometric crossover between two circular permutations 

10.1 Discussion: computational barrier 
There is a computational barrier that manifests itself when the edit move is not 
elementary enough. The crossover operator cannot be implemented efficiently and 
exactly. 
 
However the situation is more complicated. You can think also of complicating 
artificially the syntax of the representation and the corresponding move making it 
appearing not as a unitary move but as a major move, but in actuality the 
corresponding neighbourhood structure is the same as before (so the two pair 
representation and move are equivalent from a point of view of the search) and 
therefore the crossover has the same computational complexity. Indeed the 
complexity of crossover is connected with the simplest pair representation and move. 
The computational barrier seems to be a limitation of the topological crossover: what 
is the use of a nice and general operator that cannot be implemented efficiently? There 
are two considerations to do: (i) if you choose a simple enough move definition the 
crossover can be implemented efficiently (ii) but more importantly, the topological 
crossover being defined over the structure of the search space shows an interesting 
connection between geometry of the search space and computational complexity of 
the problem at hand. This has in turns two consequences: 
 
From a computational complexity point of view and therefore from the efficiency 
point of view of the evolutionary algorithm employing a specific operator, the 
complexity of the operator can be a major issue. This is not true for actual algorithm, 
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that the practitioner uses and makes sure that the operator is very efficient, but this is 
a warning for the theoretician that defines operators assuming that they are 
implementable efficiently and focuses the analysis of efficiency of the algorithm 
based on other aspects. 
If for a given hard problem you need a specific neighbourhood structure to solve it 
efficiently, it is not surprising that you are moving the inherent complexity of the 
problem from the search process to the actual implementation of the search operator. 
In other words, you could define an operator that in a polynomial number of steps 
solves a NP-Hard problem. That is unlikely to mean that NP=P but rather that your 
operator is going to be NP-Hard to implement! This could be the case of topological 
crossover. So the moral is that you need a trade-off between the efficiency of the 
move you choose (so that the crossover can be implemented in polynomial time) and 
its effectiveness (so that you will not solve a NP-hard problem to optimality in a 
polynomial number of applications of the crossover derived by the chosen move). 
This is not due to a limitation of the topological crossover, but rather to the inherent 
computational complexity of the problem at hand.  
 

11. Relative order crossover, partial order relationship and JSSP 
Job Shop Scheduling Problem is a strongly NP-hard combinatorial optimisation 
problem and one of the best known machine scheduling problems. The JSSP is 
characterised by being highly constrained and ordering problem. Both these aspects 
have to be considered in order to figure out a natural solution representation to 
employ with an evolutionary algorithm. The main difficulty in choosing a proper 
representation for highly constrained combinatorial optimisation problems is dealing 
with the infeasibility of the solutions produced during the evolutionary process. In 
(Moraglio, 2000) was proposed an evolutionary algorithm that uses a natural encoding 
of solutions using a simple permutation representation, which covers all and only the 
feasible solution space, and a class of order-preserving recombination operators that 
guarantee the transmission of meaningful characteristics together with preserving the 
feasibility of solutions. Computational experiments showed that this representation 
outperforms many others producing good quality solutions in less time. Here we are 
interested in showing that this class of recombination operators fit the definition of 
abstract crossover under adjacent swap distance (hence one could use bubble-sort 
crossover for JSSP) and that the natural encoding JSSP solution space to permutation 
space has a simple geometric interpretation.  
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11.1 Disjunctive graph: problem constraints structure representation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The job shop scheduling problem can be represented with a disjunctive graph 
(Brucker, 2001). A disjunctive graph G=(N, A, E) is defined as follows: N is the set of 
nodes representing all operations, A is the set of arcs connecting consecutive 
operations of the same job, and E is the set of disjunctive arcs connecting operations 
to be processed by the same machine. A disjunctive arc can be settled by either of its 
two possible orientations. The construction of a schedule will settle the orientations of 
all disjunctive arcs so as to determine the sequence of operations on the same machine. 
Once a sequence is determinate for a machine, the disjunctive arcs connecting 
operations to be processed by the machine will be replaced by the oriented precedence 
arrow, or conjunctive arc. The set of disjunctive arcs E can be decomposed into 
cliques, one for each machine. The processing time for each operation can be seen as 
a weight attached to the corresponding nodes. JSSP is equivalent to finding the order 
of the operations on each machine, that is, to settling the orientation of the disjunctive 
arcs so that the resulting solution graph is acyclic (there are no precedence conflicts 
between operations) and the length of the longest weighted path between the starting 
and terminal nodes is minimal. This length determines the makespan. 
 
11.2 Permutation representation and natural solution encoding 
Many solution encoding/representation for JSSP have been proposed. The presence of 
constraints creates infeasibility problems for many of them. Depending on the 
representation chosen, there are various problems that may arise: creating solutions 
with cycle of constraints, creating solutions that do not respect the problem 
constraints, or using encoding that builds always feasible solutions but that does not 
cover all the solution space leaving out the optimum. Further important (soft) 
constraints of a encoding/representation is allowing for genetic operators that combine 
and transmit meaningful sub-parts of solutions.   
 

Figure 8 – Disjunctive Graph (Elements of A are indicated by arrows and elements of E are indicated by 
dashed lines.) 
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The problem constraints structure (solid arrows in Fig. 8) can be seen as a partial 
order among operations (nodes in Fig. 8). A schedule, a feasible solution for the 
specific problem, is obtained by orientating all the dashed lines in a way to obtain an 
acyclic graph; this as well can be interpreted as a partial order among operations that 
is stronger and include the partial order induced by the problem constraints alone. 
While adding further arrows to the solution graph, taking care not to create cycles, we 
obtain a total order among operations. This does not need to be specified by a graph; a 
simple sequence (a permutation) of nodes is appropriate. For example, by first 
specifying a solution and then by further specifying order constraints up to saturation 
we may obtain the permutation (4, 8, 5, 1, 2, 9, 6, 3, 7, 10). This sequence contains all 
the information necessary to build the constraint structures of the corresponding 
solution (and also the original problem) and therefore can be used as solution 
representation. Notice that all solutions can be represented (and in general each 
solutions has more than one representation), cyclic solutions cannot be represented 
but solution not respecting problem constraints can be represented. 
 
11.3 Common relative order preserving operators 
Recombining permutations corresponding to feasible solutions (respecting the 
problem constraints) using operators that perfectly transmit the common relative 
order, we obtain the twofold advantage of (i) producing feasible solutions, because 
the partial order relation induced by the problem is common to both parents and 
therefore transmitted completely (proven formally), and (ii) combining partial order 
relationships that are a natural way of decomposing the constraint structures of the 
solutions. In (Moraglio, 2000) was proposed various operators matching this 
requirement.  
 
In the following we prove that you can use bubble sort with JSSP. 
 
Theorem (Bubble sort crossover for JSSP) 
Crossover: Bubble sort crossover recombines two feasible JSSP schedules encoded in 
permutations and produces feasible offspring permutations.  
Mutation: any adjacent swap over a feasible permutation of two operations not 
sharing the same job produces a feasible offspring permutation.  
Proof 
Let us consider any two adjacent operations, say a and b, in a permutation 
representing a schedule such as a precedes b. This precedence is due for one of the 
following mutually exclusive reasons: (i) a precedes b and a adjacent b in a job 
(problem constraint) (ii) a precedes b and a adjacent b on a machine (solution 
constraint) (iii) a precedes b and a adjacent b because of the linearity of the 
permutation (dummy constraint). If you swap a and b the permutation will correspond 
to an infeasible solution only when their precedence constraint is a problem constraint 
(case (i)). In the other two cases, the swap is safe because, locally the swap do not 
clash with any problem constraint, plus, the swap of two adjacent operations has only 
a local effect and does not affect the precedence among any other pair of operations; 
hence from a feasible permutation another feasible permutation is obtained. 
 
Any intermediate permutation on a minimal sorting trajectory of the bubble sort is 
obtained by adjacent swaps. In particular any adjacent swap performed by bubble sort 
is a sorting swap; this means that adjacent operations are swapped only when in the 
target permutation the same two operations have opposite order (do not need to be 
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adjacent though). For hypothesis we recombine feasible permutations, hence in both 
permutations initial and target, the precedence constraints on job are always 
concordant since the two permutations encode solutions under the same problem 
constraint structure. Therefore none of the sorting swaps of the bubble sort will ever 
change the relative order of the job constraints hence producing on its sorting 
trajectory only permutations respecting the job precedence structure. Any of such 
permutations is a feasible offspring.�   
 
A natural neighbourhood structure over feasible schedules can be defined easily: two 
feasible schedules are neighbours if one can be obtained from the other by reversing 
the order of a single couple of operations on the same machine (reversal that do not 
force to reverse any other couple of operations to maintain feasibility and therefore 
these operations are adjacent). The distance between two feasible schedules can be 
induced by such a neighbourhood structure (shortest path distance) hence we have a 
metric space defined over feasible schedules. This metric space is called adjacent 
swap metric space over feasible schedules. The same metric space is well-defined 
over any set of order relationship (read direct acyclic graphs) sharing the same set of 
edges and differing only in their orientations (arcs).  
 
Theorem (permutations-schedules betweenness preserving) 
The solution encoding, mapping permutation space and schedule space under adjacent 
swap metrics, is a betweennes preserving morphism. 
Proof 
Let be a, b and c three permutations, such as c in [a,b] under adjacent swap distance, 
representing respectively the feasible schedules a’, b’ and c’. Let us consider the 
permutations a, b and c as graphs in which the order relation between any two nodes 
is specified by the presence of an oriented arc. By removing the arc between any same 
two nodes in the three graphs, obtaining the new graphs a”, b” and c”, we still have 
that c” in [a”,b”] under the adjacent swap metric defined for these graphs. This is 
true because (i) either the orientation of the arc was concordant in the three graphs 
and consequently all the distances between a”, b” and c” are the same as the 
distances between a, b and c so that c in [a,b] implies c” in [a”,b”]; (ii) or the 
orientation of the arc was discordant in a” and  b”, implying that in c” it was 
concordant with either a” or b”, and consequently the removal of the arc reduced by 
one both the distance between a and b and the sum of the distances from the a and b 
to c so that c in [a,b] implies c” in [a”,b”]. Since c in [a,b], the case in which the 
orientation of the arc was concordant in a and b and discordant in c is not compatible 
with the fact that c is on the minimal sorting trajectory between a and b. This 
reasoning it applies to the removal of arcs up to transforming the permutations a, b 
and c into the corresponding schedules a’, b’ and c’ and consequently c in [a,b] 
implies c’ in [a’,b’]. �  
 
A natural and effective crossover for JSSP fits perfectly the definition of abstract 
crossover. This is another piece of evidence in favour of the hypothesis that the 
abstract geometric definition of crossover captures the notion of crossover in general. 
In this case we did not use a crossover defined over the solution representation space 
directly (schedule) but we encoded schedules in permutations. However we have 
shown that, since the encoding is betweenness preserving, the crossover on 
permutations corresponds to a crossover over schedules in their original domain.    
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12. Conclusions 
In this article we have made a long journey started with general theoretical 
considerations about the abstract framework, continued by applying the theory to the 
permutation representation, and finishing by considering important well-known 
problems connected with the permutation representation and further elaborating the 
consequences of the framework in their specific contexts. We believe we have been 
able to cover all the major aspects of the permutation representation domain and 
address them nicely within our abstract geometric framework.  
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