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Abstract

The aim of this paper is to consider multivariate stochastic volatility models for
large dimensional datasets. We suggest the use of the principal component methodology
of Stock and Watson (2002) for the stochastic volatility factor model discussed by
Harvey, Ruiz, and Shephard (1994). We provide theoretical and Monte Carlo results
on this method and apply it to S&P data.
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1 Introduction

The aim of this paper is to consider multivariate stochastic volatility models for large dimen-

sional datasets. For this purpose we use a common factor approach along the lines of Harvey,

Ruiz, and Shephard (1994). More recently, Bayesian estimation methods, relying on Markov

Chain Monte Carlo, have been put forward by Chib, Nardari, and Shephard (2006) to es-

timate relatively large multivariate stochastic volatility models. However, computational

constraints can be binding when dealing with very large datasets such as, e.g, S&P 500

constituents. For instance, the Bayesian modelling approach put forward by Chib, Nardari,

and Shephard (2006) is illustrated by modelling a dataset of only 20 series of stock returns.

Recently, Stock and Watson (2002) have shown that principal component estimates of the

common factor underlying large datasets can be used successfully in forecasting conditional

means. We propose the use of principal component estimation for the volatility processes of

large datasets. A Monte Carlo study and an application to the modelling of the volatilities

of the S&P constituents illustrate the usefulness of our approach.
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2 The Stochastic Volatility Factor Model

Let yt = (y1,t, . . . , yN,t)
′ be an N -dimensional vector of observations, at time t, with elements

given by

yi,t = εi,t(e
hi,t)

1/2
, (1)

where εt = (ε1,t, . . . , εN,t)
′ is a multivariate noise vector with mean zero and covariance matrix

Σ = [σij] where Σ has diagonal elements equal to unity, and hi,t is an unobserved random

process whose properties we will specify in what follows. Denote ht = (h1,t, . . . , hN,t)
′. Then,

using the standard logarithmic transformation we have that wt = (ln(y2
1,t), . . . , ln(y2

N,t))
′ can

be written as

wt = µ + ht + ξt, (2)

where ξt = (ξ1,t, . . . , ξN,t)
′ = (ln(ε2

1,t) − E(ln(ε2
1,t)), . . . , ln(ε2

N,t) − E(ln(ε2
N,t))

′ and µ =

(E(ln(ε2
1,t)), . . . , E(ln(ε2

N,t)))
′. This forms a general class of models for studying time varying

volatilities. The properties of particular models depend on the assumptions made about ht.

In line with Harvey, Ruiz, and Shephard (1994) we model ht through common factors. We

have

ht = Aft, (3)

where ft is a k × 1 vector of factor processes. Given the computational constraints in es-

timating state space model representations of the common factors (underlying the large

dimensional dataset of stochastic volatilities) via either Maximum Likelihood as in Har-

vey, Ruiz, and Shephard (1994), or via Bayesian estimation methods put forward by Chib,

Nardari, and Shephard (2006), we estimate the common factor through applying principal

components to wt. Following Bai (2003), the error that arises, in modelling, from the fact

that ft is estimated rather than known is negligible if
√

T/N → 0. In order to forecast

wt we need to introduce dynamics in ft. For the particular application of the factor model

to S&P 500 constituents, considered in Section 4, the slow and hyperbolic decline in the

autocorrelation function of the factors suggests the presence of long memory. So, we fit an

ARFIMA model of the form (1 − L)dft = ut, where ut is a finite order ARMA process, i.e.

A(L)ut = B(L)ηt, where A(L) and B(L) are lag polynomials and A(L) has its roots outside

the unit circle; d is a real number and (1−L)−d is defined in terms of its binomial expansion

as (1 − L)−d =
∑∞

i=0
Γ(1−d)

Γ(i+1)Γ(−d−i+1)
(−1)iLi =

∑∞
i=0 biL

i. For 0 < d < 0.5, ft is stationary

with
∑∞

i=0 b2
i < ∞. In order to obtain consistent estimates of the factors through principal

components, the regularity conditions of Bai (2003) must hold. In particular, the existence

of a finite fourth moment for ft is needed. It is straightforward to show (and this is shown

in Cipollini and Kapetanios (2004)) that finiteness of the fourth moment of ηt is sufficient

for these regularity conditions to hold for a long memory and stationary ft. The common

factor modelling per se is not general enough to capture important aspects of the data as
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reported in various empirical studies. So we suggest the following extension to (3):

hi,t = a′ift + ψi,t (4)

where ψt = (ψ1,t, . . . , ψN,t)
′ is a vector of idiosyncratic errors. Then

wi,t = µi + a′ift + ψi,t + ξi,t = µi + a′ift + ζi,t (5)

where ζi,t = ψi,t + ξi,t. As long as ψi,t satisfies the regularity condition of Bai (2003), ft can

be consistently estimated and ζi,t can be modelled, as a residual, by fitting individual state

space stochastic volatility models. Specifically, the estimated model for each ζi,t, is of the

form

ζi,t = δiϕi,t + ξi,t (6)

ϕi,t = ρiϕi,t−1 + χi,t (7)

(6) is estimated by maximum likelihood. For this estimation we can set E(χ2
i,t) = 1, E(ϕi,0) =

0 and E(ϕ2
i,0) = 1

1−ρ2
i
. As shown in Harvey, Ruiz, and Shephard (1994) Gaussian ML

estimation is consistent. This two step approach is very flexible and can capture a wide

variety of volatility features. For example, the proportion of wi,t explained by a′ift and

ψi,t respectively, conditioning on the past, can vary over time giving rise to time varying

covariances. To see this note that

E(yi,tyj,t|t− 1) = σijE
(
e0.5(hi,t+hj,t)

∣∣ t− 1
)

= σijE
(

e0.5(a′ift+a′jft+ψi,t+ψj,t)
∣∣∣ t− 1

)
(8)

3 Monte Carlo Analysis

The model we consider is given by

yi,t = εi,t(e
hi,t)

1/2
(9)

ht = Aft (10)

We consider two alternative data generation processes for the factor. The first is an AR(1)

model given by ft = ρft−1 + ηt where we set k = 1. The second is an ARFIMA(1, d, 0)

given by (1 − ρL)(1 − L)dft = ηt. Throughout εi,t, ηt ∼ i.i.d.N(0, 1). We consider N =

50, 100, 200 and T = 200, 500, 1000, 2000. For the AR(1) factor model, ρ = 0.1, 0.5, 0.9. For

the ARFIMA(1, d, 0) model, ρ = 0.5 and d = 0.2, 0.4. Estimation of the ARFIMA model

is carried out by minimising the conditional sum of squares as discussed in Baillie, Chung,

and Tieslau (1996). For every experiment we carry out 1000 replications. We report two

performance indicators: (i) the average absolute correlation of the true and estimated factor

over replications and (ii) the proportion of the series variance explained by the estimated
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factor compared to the proportion of the series variance explained by the true factor averaged

over both series and replications. Results for the AR(1) factor model are reported in Table 1A

and for the ARFIMA(1, d, 0) model in Table 1B.

The estimation method works well. The average absolute correlation between true and

estimated factor never drops below 0.95. It improves with N and with higher ρ. As discussed

in Bai (2003), the performance of the method depends on the minimum of
√

N and T . Since

we consider N < T the fact that performance does not improve with T is intuitive. Moving

on to the proportion of series variance explained, we see that the estimated factor does as

well or even better compared to the true factor.

4 Empirical analysis

We apply our suggested method of analysing stochastic volatility data to large datasets

given by the constituents of S&P500 and S&P100. Data, obtained from Datastream are

daily returns and span the period 01/01/1995-13/01/2004 comprising 2356 observations.

We consider only companies for which data are available throughout the period leading us

to have N = 438 for the S&P500 dataset and N = 93 for the S&P 100 dataset. Once all

periods when markets were closed are dropped from the datasets the number of observations

is 2275. We, first, demean daily returns, denoted yt, to get ỹt = yt − 1/T
∑T

t=1 yt. Then, we

transform the data to get wi,t = ln(ỹ2
i,t). Finally, we demean the transformed data to get

w̃t = wt − 1/T
∑T

t=1 wt, and we apply principal components to w̃t. In Table 2, we report

the cumulative average R2 across all w̃t for the first 20 factors. It is clear that whereas the

first factor explains about 10% of the variation in the datasets, further factors can add only

marginally to the explanatory power of the set of factors. Therefore we conclude that one

factor captures a large common component of the stochastic volatility of these large datasets.

Further insight is obtained by plotting the autocorrelation functions (with the upper 95%

bound of the confidence interval of the null hypothesis that the process is white noise) of the

factors in Figure 1. The autocorrelation functions decline very slowly. This points towards

long memory models whose autocorrelation function declines hyperbolically. Consequently,

we fit an ARFIMA(p, d, 0) to the factors. The results in Table 3 show evidence of stationary

long memory.

We, next, consider stochastic simulations (using 1000 replications) to generate the density

forecast for the an equally weighted portfolio return, whose constituents are those from the

S&P500. The density forecasts are produced out of sample, using recursive estimation of the

parameters estimates of the model and the forecast evaluation periods is made of the last

100 observations.

The density forecast of the factor stochastic volatility model are obtained by simulating

the common factor using its estimated long memory representation. Then, we couple the
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Figure 1: Factor Autocorrelation Function

realisations for the artificial generation of the factor together with stochastic simulations for

the idiosyncratic components obtained by simulating the state space model in (6). This gives

the artificial generated paths for w̃t and combining this with (1) we obtain the stochastic

simulations for the demeaned returns which are then added up to provide the forecast of the

portfolio returns under alternative scenarios. All error terms are set to be N(0, 1) random

variables. We compare the accuracy of the density forecast for the factor stochastic volatili-

ties with the one associated with a model using a separate stochastic volatility specification

(INDIV), an Orthogonal GARCH (Alexander (2000)), a multivariate EWMA specification

(J. P. Morgan (1996)) and a constant covariance model (CCOV)1. In the case of INDIV we

simply remove the effect of the factors in retrieving the stochastic volatility estimate. In or-

der to obtain portfolio simulations from the OGARCH model we, use random draws from a

1We attempted to estimate the DCC model developed by Engle (2002) for the S&P500 dataset using the
MATLAB routine developed by Kevin Sheppard. However, we were not able to use the available routine. As
pointed out by the author of the routine, for such a large dataset, the system would require approximately
36GB of memory available for MATLAB.
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N(0, 1) to stochastically simulate the first principal component of the vector of (de-meaned)

stock returns as a GARCH(1,1). For the artificial generation of portfolio returns obtained

from the CCOV and from the multivariate EWMA, we simulate zt+1H
0.5
t+1, where the N-

dimensional vector of the errors, z, is drawn from a N(0, I) distribution. Specifically, as for

the CCOV model, Ht+1 is set to the constant sample covariance matrix; as for the EWMA,

both the volatilities and also the cross products in Ht+1have an IGARCH specification with

weights equal to 0.94 and 0.06, for the GARCH and ARCH component, respectively.

We consider two methods of evaluating the predictive densities we obtain. We, first,

consider the Kolmogorov-Smirnov (KS) test to test the null of i.i.d. uniformity in the proba-

bility integral transform zt =
∫ yt

−∞ pt(u)du,where yt is portfolio return realisation and pt(u) is

conditional prediction of the portfolio return associated with scenario u. Then, we consider

the Berkowitz (2001) Likelihood Ratio test for the null of normality and serial independence

in the series Φ−1(zt),where Φ−1(.) is the inverse normal cumulative density function. The

probability values for the KS test and the Berkowitz (2001) test are respectively 0.30 and

0.14. Conversely, for the case of the INDIV model the relevant probability values are 0.06

and 0.004, whereas for both OGARCH models, EWMA and CCOV both probability values

are 0.

We also consider the performance of each model in producing the probability forecast of

an event characterised by negative portfolio returns. The probability forecast estimation for

each time period that belongs to the forecast evaluation period is obtained by counting the

number of scenarios for which the equally weighted portfolio return are negative and dividing

this by the number of replications. The performance measure used is the Kuipers score (see

Granger and Pesaran (2000)), which is defined as the difference between the proportion of

negative returns events that were correctly forecasted, and we use 0.5 as the cut-off value to

call a negative return event via probability forecast. Kuipers scores above zero mean that

the model generates proportionally more correct forecasts than false alarms. Looking at the

scores for the four models we consider we get the following scores: 0.117 (FACTOR), 0.003

(INDIV), -0.082 (OGARCH1), -0.132(CCOV) and 0.038 (EWMA). Clearly, the factor model

is to be preferred over the other specifications according to this criterion.

5 Conclusion

This paper has suggested the use of principal components as advocated by Stock and Watson

(2002) to complement stochastic volatility modelling of multivariate time series. The method

has been extended to highly persistent stationary data which exhibit long memory behaviour.

A small Monte Carlo analysis has been undertaken. The method has been applied to the

S&P 500 constituent dataset with very encouraging results.
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Table 1A: Results for AR(1)
ρ N/T 200 500 1000 2000

Average Absolute Correlation
50 0.953 0.953 0.954 0.954

0.1 100 0.975 0.976 0.976 0.976
200 0.988 0.988 0.988 0.988
50 0.963 0.964 0.965 0.965

0.5 100 0.981 0.982 0.982 0.982
200 0.990 0.991 0.991 0.991
50 0.988 0.990 0.990 0.990

0.9 100 0.994 0.995 0.995 0.995
200 0.997 0.997 0.998 0.998

Average Relative Explained Variance
50 1.062 1.048 1.048 1.048

0.1 100 1.035 1.025 1.024 1.024
200 1.026 1.013 1.012 1.012
50 1.073 1.043 1.038 1.037

0.5 100 1.057 1.026 1.020 1.019
200 1.066 1.015 1.010 1.010
50 1.081 1.023 1.012 1.010

0.9 100 1.056 1.019 1.008 1.005
200 1.055 1.015 1.006 1.003

Table 1B: Results for ARFIMA(1, d, 0)
d N/T 200 500 1000 2000

Average Absolute Correlation
50 0.974 0.975 0.976 0.976

0.2 100 0.987 0.987 0.988 0.988
200 0.993 0.994 0.994 0.994
50 0.985 0.988 0.989 0.989

0.4 100 0.993 0.994 0.994 0.994
200 0.996 0.997 0.997 0.997

Average Relative Explained Variance
50 1.315 1.095 1.055 1.032

0.2 100 1.194 1.077 1.033 1.018
200 1.188 1.075 1.024 1.014
50 1.275 1.124 1.058 1.026

0.4 100 1.252 1.101 1.041 1.021
200 1.218 1.101 1.041 1.018

Table 2: Cumulative Explained Variation
No. of Factors S&P500 S&P100

1 0.096 0.112
2 0.109 0.132
3 0.122 0.150
4 0.131 0.166
5 0.139 0.181
6 0.143 0.195
7 0.147 0.208
8 0.151 0.224
9 0.156 0.237
10 0.161 0.250
11 0.166 0.264
12 0.169 0.277
13 0.173 0.290
14 0.177 0.302
15 0.181 0.314
16 0.184 0.327
17 0.188 0.338
18 0.192 0.350
19 0.195 0.362
20 0.199 0.374

Table 3: Long Memory Model
S&P500 S&P100

p 1 1
d̂ 0.416 0.398

std(d̂) 0.0197 0.0198
95%CI(d̂) (0.37, 0.46) (0.36, 0.44)

CI: Confidence Interval
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