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Abstract: We consider the spread of a harmful state through a population divided into two

groups. Interaction patterns capture the full spectrum of assortativity possibilities. We show

that a central planner who aims for eradication optimally either divides equally the resources

across groups, or concentrates entirely on one group, depending on whether there is positive or

negative assortativity, respectively. We study a game in which agents can, at a cost, immunize.

Negative assortative interactions generate highly asymmetric equilibrium outcomes between

ex-ante identical groups. When groups have an underlying difference, even a small amount of

inter-group contacts generates large asymmetries.

We study the diffusion of a harmful state through a population. Immunity is available, but

is costly. The state is meant to capture various kinds of choices or risky behaviors such

as, for example, tobacco use, in which case immunity is interpreted as a commitment to

avoid the temptation of smoking. The state can also capture the presence of an electronic

virus on a computer network; in this case immunity represents the purchase of anti-virus

software, or other costly measures taken to avoid the virus. But perhaps the most conventional

interpretation is that the state represents human infection of various communicable diseases

that spread through social contacts; in this case immunity captures a decision to vaccinate

oneself.
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We model the diffusion process using a standard Susceptible-Infected-Susceptible (SIS)

framework, developed originally for the kind of epidemiological application mentioned above.

See Bailey (1975) and Anderson & May (1992) for classical treatments. More recently, the

SIS model and its variants have been proposed as useful in understanding a wide variety

of processes including such diverse applications as behaviors, information diffusion, learning

dynamics, myopic best response, and imitation dynamics.1

The diffusion process works as follows. Individuals exist in one of two states, S and I, and

transition between these states over time. Transitions from I to S occur at a given recovery

rate, but transitions from S to I occur at an endogenous rate that depends, in particular,

on the expected number of individuals in state I that will be met in a given period. We

take a long-run perspective, and base our utility and welfare calculations on the (unique

nondegenerate) steady-state of this process, which determines, most importantly, an expected

proportion of time that a given individual will be infected with the harmful state.

There are two new features of our framework that enrich the canonical SIS model, and

which drive the bulk of our analysis. First, we want to study the importance of group structure,

and of group-dependent contact patterns, on diffusion outcomes. We therefore model the

population structure and contact patterns in a sufficiently detailed manner so as to depart

from the restriction that interactions occur through uniform random mixing in a homogenous

population. We assume instead that society is composed of two groups, which we label A and

B, and we parameterize the degree of positive or negative assortativity in the interactions

between the groups.2 At one extreme, individuals have contacts only within their respective

groups, and so the diffusion of the harmful state within each group is independent of the

diffusion in the other group. At the other extreme, all contacts involve A-B pairs, resulting

in a bipartite interaction structure. In this case, the diffusion of the harmful state within one

group depends entirely on the prevalence in the other group. The range of cases in between

capture varying extents of assortativity, and in each of these cases the diffusion process is linked

across the two groups. The intermediate case, in particular, involves interaction patterns that

are completely blind to group labels.

1See, for example, Jackson & Rogers (2007), López-Pintado (2008) and Jackson & Yariv (2010), as well as
references therein.

2Jackson & Lopez-Pintado (2011) consider a setting with positive assortative interactions but there are
no incentives in their model. Montopoli, Bhattacharyya & Bauch (2009) studies numerically a model with
vaccination in a two-country setting. Our paper is related more closely to the work of Reluga (2009) which also
considers strategic vaccination in a two-group setting. The focus in Reluga (2009) is on the stability of equi-
libria, whereas our analysis explores different economic questions about eradication policies and comparative
statics.
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Most applications of interest involve some degree of positive assortative matching. In

social networks, the main driving force behind positively assortative interactions is homophily,

whereby individuals exhibit a tendency to interact with others who are similar to themselves.3

Due to the robust nature of homophilic biases, positive assortative interactions have been

shown to pervade social networks on many dimensions, including economic status, race, and

political preferences.4

Notwithstanding the prevalence of positively assortative networks, there are important

cases in which negative assortative interactions are prevalent. This includes the application

to sexual contact networks, in which the predominance of interactions are male-female. In the

realm of communicable diseaes, sexually transmitted diseases are among the most important to

understand. More generally, negative assortative interactions are typical of settings in which

agents match for reasons relating to complementarities of skill or knowledge. A particular

application is to a financial market consisting of buyers and sellers who seek each other out

for profitable exchange. The diffusion process captures the possibility that rumors of a bad

aggregate state will spread through the market, thereby preventing surplus from being realized.

Here, immunity would be interpreted as taking the costly action of becoming informed about

the true aggregate state, so as not to be influenced by the spread of a pessimistic rumor.

The second aspect is that, while diffusion processes are often studied in a purely stochas-

tic framework, we explicitly model the incentives of agents who are exposed to the diffusion

process. In the last two decades some progress has been made towards incorporating cer-

tain aspects of incentives into epidemiological diffusion models.5 This research has identified

important effects of modeling agents’ incentives, demonstrating crucial differences with the

earlier models that are purely mechanical in nature. Our paper contributes to this line of work

by modeling the immunization decision of individuals in a strategic setting. In particular, we

assume that all agents simultaneously decide whether or not to undertake a costly immuniza-

tion.6 The cost of the immunity must be weighed against the expected cost of exposure to the

3In fact, from a network analysis perspective, it may be more natural to use the term homohily in place of
positive assortativity. We use the latter because it is easier to unify with the complementary case of negatively
assortative interactions, which are also important in our analysis.

4There is a large literature on homophily in social networks. Important early work is contained in Marsden
(1987) and Marsden (1988). Examples of more recent work include McPherson, Smith-Lovin & Cook (2001),
Moody (2001), and Echenique, Fryer & Kaufman (2006).

5The literature in economics dates at least to Brito, Sheshinski & Intriligator (1991). Important contribu-
tions include Kremer (1996), Geoffard & Philipson (1996), Geoffard & Philipson (1997), Bauch & Earn (2004),
Boulier, Datta & Goldfarb (2007), Toxvaerd (2010a) and Toxvaerd (2010b).

6In a complementary paper, Goyal & Vigier (2010) studies the dual roles of vaccination and level of
interaction in a game theoretic framework.
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harmful state during the diffusion process. As such, individuals anticipate the consequences

that their collective immunization decisions will have on the outcome of the diffusion process,

and decide optimally under these beliefs.

A game theoretic analysis of immunization in which assortativity affects contact patterns is

novel and, as we shall see, provides interesting insights into behavior and welfare. In fact, our

main results come specifically from the combination of these two factors. We now summarize

these findings.

Our first set of results concerns the problem of a central planner attempting to eradicate

the harmful state (Section 2).7 The planner might be a governmental agency deciding how

many vaccines to produce for a communicable disease and how to allocate them across the

population. Alternatively, the social planner could be a governmental agency that aims to

eliminate smoking in schools via an educational program and it has to decide how large the

program should be and which students it should target or require to participate. How should

the planner’s policy depend on the structure of interactions among potential smokers? What

information does the government need in order to determine the optimal size of the program

(level of immunity) and how to efficiently distribute the resources to the population?

We show that there is a sharp discontinuity in the optimal eradication policy when we

move from positive assortative interactions to negative assortative interactions (Proposition

2). In the former case, the optimal allocation involves splitting the resources equally between

the two groups and the minimum budget needed to eradicate the harmful state is independent

of the exact degree of positive assortativity. In contrast, when there are negative assortative

interactions, the optimal allocation is to first focus resources exclusively on one group until

it is fully immunized and then immunize part of the other group, if required. Furthermore,

under negative assortative interactions, the minimum budget necessary to achieve eradication

is decreasing in the intensity of assortativity, reaching its lowest level when the network of

interactions is bipartite.

The basic intuition behind this result is the following. Suppose group B receives more

immunizations than group A, and the planner has an extra immunization to allocate. Consider

first the case of positive assortativity. There are two effects to account for. The direct

benefit of an additional immunization depends on the infection rate among non-immunized

7Galeotti & Goyal (2009) also study optimal policies in the presence of social effects. While Galeotti &
Goyal (2009) model social effects in a reduced form, here we explicitly define the process of diffusion. Another
difference is that we focus on the effect that assortativity has in the design of optimal policies, an aspect that
is not considered by Galeotti & Goyal (2009).
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agents, which is greater in group A (Proposition 1). The indirect benefit of an additional

immunization is tied to how many of the immunized agent’s contacts it protects. Viewed

in this way, when interactions are positively assortative, immunizing one group at a higher

level than the other is inefficient, since within the high-immunity group, more relationships

are already immunized, and thus an immunization in the low-immunity group protects more

relationships on the margin. The direct and indirect effects are aligned, and therefore the

optimal policy immunizes both groups at the same rate. In the case of negative assortativity,

both of these effects are reversed and so the optimal policy focuses on only one group.

An important implication of this result is that in contexts where the harmful state diffuses

through social networks that exhibit positive assortativity, it is not a valuable use of resources

for a central planner to learn the exact degree of assortativity, as the optimal plan is not

sensitive to these details. In contrast, if the harmful state diffuses through social networks

that exhibit negative assortativity such as, for example, sexual contact networks, there is

value to the social planner in learning the degree of assortativity, as the budget required for

eradication depends on that information. In particular, the planner can save on immunity

resources the greater is the intensity of assortativity, saving the most when the social network

is bipartite.

Our second set of results explore equilibrium behavior (Section 3). We posit that an agent

can become immune to the harmful state at a cost, which has to be paid at the beginning of

the game. The strategic nature of individual immunization decisions in a context in which

assortativity affects contact patterns gives rise to the possibility of asymmetric outcomes in

which one group immunizes at a higher level than the other, even when the groups are ex-ante

identical. We identify the contexts in which such an equilibrium is plausible, along with the

associated implications for prevalence and welfare in the two groups.

We show that when there are positive assortative interactions, ex-ante identical groups

necessarily obtain symmetric equilibrium outcomes: the immunization rate is the same across

groups, with the consequence that the prevalence of the harmful state and welfare are the same

across groups as well. Moreover, these outcomes are invariant to the specific level of positive

assortativity. In contrast, when there are negative assortative interactions, the equilibrium is

highly asymmetric. It is either the case that one group does not immunize at all, or that the

other group immunizes completely, or possibly both (Proposition 4). The prevalence of the

harmful state is higher in the group with the low immunization rate than in the group with

the high immunization rate, yet the group with the low immunization rate has the highest

welfare (Proposition 5). Hence, higher infection prevalence is not indicative of lower welfare.
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Furthermore, the difference between the welfare of the two groups is higher when the degree

of negative assortativity is higher, thereby reaching a maximum in a bipartite social network.

We also show that the prevalence of each group may be nonmonotonic with the degree of

assortativity (Proposition 6).

Finally, we consider the possibility that there is an underlying economic asymmetry be-

tween the groups (Section 4). We capture this asymmetry by imposing different immunization

costs in the two groups.8 This would be the case if, for example, one group is wealthier than

the other, so that its cost of immunization is lower relative to the marginal benefit of being in

state S over state I. In this context we show that the introduction of small initial differences

across groups is amplified by a social multiplier, and this social multiplier is increasing in

cross-group interaction, even when there are positive assortative interactions (Proposition 7

and Corollary 1).

Broadly, our analysis shows how the details of group interactions have a profound ef-

fect both on how a planner should respond to reducing the prevalence of the state and on

the equilibrium outcomes of the diffusion process. Group interactions tend to generate large

asymmetries across groups in the outcomes of interest, namely welfare and prevalence, even

when groups are, ex-ante, very similar. It is therefore important to account for the structure

of interactions when studying, empirically, the sources of observed asymmetries in behavior

and diffusion outcomes across groups. Failing to account for the impact of inter-group inter-

actions may lead to overestimating the underlying differences across groups. Moreover, when

interactions are negatively assortative, we demonstrate that the planner will generally have

to resolve a tension between the optimal reduction of prevalence and reducing asymmetries in

welfare across the groups, whenever fairness is a consideration.

1 A model of social diffusion

There is a continuum population. Individuals are classified into two groups each of mass one,

labeled A and B. The groups serve purely as arbitrary labels; from a modelling perspective,

individuals in the two groups are identical in every respect.9 At each point in time, every

individual interacts with k other individuals. A proportion β ∈ [0, 1] of the interactions are

with individuals in the same group while the remaining interactions are with individuals in the

8Alternative forms of asymmetries, such as different infection rates across groups or different group size are
discussed in Section 4 and Section 5.

9We consider asymmetries between groups in Section 4.
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other group. Thus β measures the extent of positive or negative assortativity of interactions.

At one extreme β = 1, there are no interactions across the groups, and society is segregated

into two separate networks. When β > 1/2, there is positive assortative interaction, in

the sense that the majority of contacts involve intra-group interactions. At β = 1/2, the

interaction structure is independent of group labels. For β < 1/2, most interactions involve

individuals from opposite groups and we say that there is negative assortative interaction; at

β = 0, the network becomes bipartite, so that all interactions are across groups.

We model the diffusion of a harmful state through this population in continuous time.

For the moment, assume that a proportion πg of group g ∈ {A,B} has immunity.10 At each

point in time, each individual who is not immunized exists in one of two states, which we call

Susceptible (S) and Infected (I). The states of non-immunized individuals change over time.

The transitions between states S and I depend on (i) the patterns of interactions between

individuals, (ii) the proportion of individuals with immunity, (iii) the rate of infection, and

(iv) the recovery rate.

Formally, let ρg be the proportion of the non-immunized group g individuals who are in

state I. Define θg as the probability that a randomly chosen contact of a group g individual

is infected. By definition, we have

θA = β(1− πA)ρA + (1− β)(1− πB)ρB(1)

θB = β(1− πB)ρB + (1− β)(1− πA)ρA.

A group g individual in state S becomes infected at a rate νθgk, where ν is the per-

contact rate of infection. When ν is small, which is typically the relevant case, this quantity

approximates the chance of becoming infected through independent interactions with each of

the k neighbors. Individuals in state I transition to state S at a rate δ. Define λ̃ = ν/δ as the

ratio of the rate of infection to the rate of recovery. Steady-state outcomes are characterized

by a stable prevalence in the two groups, where the transition rates between S and I are

balanced. We have
∂ρg
∂t

= (1− ρg)νθgk − ρgδ = 0,

for g = A,B. The first term is the in-flow from individuals in state S: the fraction of non-

immunized players who are not infected, 1− ρg, times the rate of infection, νθgk. The second

10We assume throughout the paper that immunity is perfect: an agent with immunity cannot be infected
by the harmful state. The analysis is easily extended, without additional insights, to the case where immunity
is imperfect.
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term is the out-flow: each non-immunized infected agent recovers at a rate δ. Now define

λ = kλ̃ as the intensity of infection. As will be clear below, the effect of k, ν and δ is

summarized by the single parameter λ in the analysis. Solving the condition above we obtain:

(2) ρg =
λθg

λθg + 1
.

We define the prevalence of group g as the proportion of agents in group g that have adopted

the harmful state, i.e., Pg = (1− πg)ρg, with total prevalence given by P = PA + PB.

Using standard arguments, one can show the following:

Observation 1 For any given intensity of infection λ > 0, degree of assortative interaction

β < 1 and a pair of immunization levels (πA, πB), there exists either (i) a unique steady-state

in which no agent is infected, i.e., ρg = 0, g ∈ {A,B}, or (ii) two steady-states, one in which no

agent is infected and the other with a positive, though potentially different, level of infection

in both groups. In case (ii) the unique steady-state with positive level of infection is globally

stable.11

Since the groups are inherently identical, when dealing with asymmetric outcomes, we

focus, without loss of generality, on the case πA < πB.

The extent to which individuals in the two groups interact puts a particular structure on

the way that their steady state outcomes relate to one another. These relationships depend

crucially on whether matchings are positively or negatively assortative, as we now demonstrate.

Proposition 1 In the steady state with positive level of infection the following hold:

1. Suppose β < 1/2. πA < πB iff ρA < ρB iff θA < θB iff PA > PB.

2. Suppose β > 1/2. πA < πB iff ρA > ρB iff θA > θB iff PA > PB.

Regardless of the degree of assortativity, the group with the lower immunization rate

experiences higher prevalence. When interactions are negatively assortative, this same group

experiences a lower level of infection among the non-immunized agents and a lower proportion

of infected neighbors. On the other hand, when interactions are positively assortative, the

group with the lower immunization rate experiences a higher level of infection among the

non-immunized and a higher proportion of infected neighbors.

11This result can be shown through a straightforward modification of standard results in the SIS framework
as can be found, for example in Vega-Redondo (2007).
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In what follows, we first study the problem of a planner who allocates a budget of im-

munizations with the aim of eradicating the harmful state from the population (Section 2).

We then turn to the equilibrium analysis (Sections 3 and 4). There, agents choose whether

to become immune at a cost, or to be exposed to the diffusion process. In both cases, we

assume that agents are concerned with the steady state outcome, and that the outcome of the

diffusion process is the unique positive-valued steady state prevalence, when it exists. Notice

that Proposition 1 applies to any pair of immunization rates (πA, πB). We will make use of it

in the analysis when considering optimal immunization plans as well as equilibrium outcomes.

2 Eradication of Infection

We begin our analysis by considering the problem of a central planner whose objective is to

eradicate the harmful state. We ask two questions. First, what is the smallest amount of

immunization the social planner requires to eradicate the harmful state? Second, how should

the social planner allocate that immunity across the population so as to achieve eradication?

We solve for the optimal immunization plan subject to the parameter that describes the

transmission rate of the undesirable state, λ, as well as the structure of interactions, as

captured by β.12

The planner may represent a government deciding how many vaccines for a communicable

disease to produce and how to allocate them across distinct groups. Alternatively, we may

think that a governmental agency has some resources to use towards reduce smoking in schools

via an educational program and it has to decide how large the educational program should be

and which students should attend the program. Under reasonable conditions on the production

cost of immunizations (e.g., constant marginal cost), the objective to eradicate the undesirable

state is equivalent to the objective to maximize social welfare net of immunization costs.13

12There is a literature on the difficulties of inducing discretionary immunization due to the effect of strategic
substitutes. See, for example, Geoffard & Philipson (1997), Barrett (2003), Bauch & Earn (2004). As our goal
is specifically to study the impact of interaction patterns across populations, we focus on the case in which
the planner can directly implement the desired outcome.

13In general, welfare maximization may involve non-trivial prevalence. This would be true, e.g., if the cost
function is sufficiently convex. The planner’s optimal immunization budget generally depends both on the cost
function and on the details of the matching process. Given any immunization budget for the planner, such
as the socially optimal one, we are interested in the optimal way to allocate that budget so as to minimize
total prevalence. The answer is similar to that provided in Proposition 2: when there are positive assortative
interactions, total prevalence is minimized by dividing the immunizations equally across groups; when there
are negative assortative interactions, total prevalence is minimized when immunizations are concentrated as

9



Interestingly, the conclusion that a social planner would find full eradication to be optimal,

if indeed costs are small enough that it prefers some action to taking no action, appears in

other analyses, including Rowthorn (2006) and Barrett & Hoel (2007).

What information does the government need to efficiently decide the optimal policy to

eradicate the infection? Should immunizations be allocated symmetrically or concentrated on

one group? How should the planner’s actions depend on the structure of interactions? We

find that the answer to these questions depends crucially on whether the interaction patterns

are positively or negatively assortative.

Proposition 2 For every (λ, β) there exists a threshold π̄∗ such that eradication is possible

if and only if the mass of immunizations available to the social planner is π̄ ≥ π̄∗.

When there are positive assortative interactions, the threshold π̄∗ is independent of β and

eradication is obtained by dividing π̄∗ equally across groups, i.e. πA = πB = π̄∗/2.

When there are negative assortative interactions, the threshold π̄∗ is strictly increasing in β

and eradication is obtained by concentrating π̄∗ as much as possible on one group, i.e.,πB =

min{1, π̄∗} and πA = max{0, π̄∗ − πB}.

The proof of Proposition 2 develops in two steps. In the first step, we fix the division of

immunity across groups and determine, for this division, the smallest mass of immunization

needed to eradicate the disease. In the second step, we determine the allocation that minimizes

this threshold level of immunization needed to eradicate the disease.

The basic force behind this result relies in part on Proposition 1 and works as follows. First

focus attention on the infection rate among non-immunized agents, since this is precisely what

captures the direct benefit of an additional immunization. When interactions are positively

assortative, the infection rate is higher in the group receiving less immunity, while when

interactions are negatively assortative, the infection rate is higher in the group receiving more

immunity. Next observe that, independent of the nature of assortativity, it is always the case

that the group receiving the higher level of immunization obtains the lower overall prevalence.

The indirect benefit of an additional immunization to a node in the group with lower immunity

is summarized by the following.14 When interactions are positively assortative, the agent

interacts mostly within its own group where there is a higher proportion of susceptible agents,

thereby generating a large externality, while, conversely, when interactions are negatively

assortative, the agent interacts mostly with the other group where the proportion of susceptible

much as possible on one group.
14The converse is true for a node in the group with higher immunity.
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agents is lower, generating a smaller externality. Summarizing, the direct and indirect effects

are aligned in both cases, such that when interactions are positively assortative it is efficient, on

the margin, to immunize an agent in the group with lower immunity, and when interactions are

negatively assortative it is efficient to immunize an agent in the group with higher immunity.

Proposition 2 shows that there is a sharp discontinuity in the optimal eradication policy

of the planner when we move from positive assortative interactions to negative assortative

interactions. Figure 1(a) illustrates how the minimum level of immunization that the social

planner needs to eradicate the undesirable state, denoted by π̄∗, changes with the degree of

assortative interaction. Figure 1(b) illustrates how the optimal allocation of π̄∗ changes with

the degree of assortative interaction.

1/2 0 

2/3 

1 
β 

π* 

5/9 

(a) Minimum level of immunization needed for
eradication.

1/2 0 

2/3 

1 
β 

π* 

1/3 

5/9 

πA=πB=π /2 
 

* 

πB=π* 

πA=0 

(b) Optimal allocation of immunization.

Figure 1: Optimal eradication policy, λ = 1.5, β ∈ [0, 1].

When there are positive assortative interactions, the threshold π̄∗ is always higher than in

the case of negative assortative interactions and the planner eradicates the undesirable state

by splitting equally the resources for immunization among the two groups. The minimum level

of immunizations that the social planner needs for eradication is given by π̄∗ = 2(1−1/λ) and

it has a very natural interpretation: it is equal to the value that total prevalence would take

in the absence of any immunity in the population. In this sense, one can think of achieving

eradication under positive assortative interaction as being equivalent to providing immunity

to every infected individual at a given moment in the steady-state of the diffusion process.

When there are negative assortative interactions the minimum level of immunization

needed to eradicate the harmful state is decreasing in the intensity of negative assortativity,
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reaching therefore the minimum level when the network of interactions becomes bipartite.15

Moreover, eradication is obtained by allocating immunity exclusively to one group, and then

allocating immunity to the other group, if necessary, only once the first group is fully immu-

nized. Fixing the intensity of infection, an increase in inter-group interactions increases the

externalities that one group exerts on the other and, by concentrating immunity to one group,

the planner leverages these group-level externalities more effectively, reducing the requisite

budget for eradication.

Proposition 2 illustrates when and why it is important to incorporate the details of the

interaction structure into the design of eradication policies, even when there are no underly-

ing differences between groups. Consider, for example, a social planner who implements an

eradication policy ignoring group labels and assumes interactions result from uniform random

matching, as in the classical treatments of SIS. In this case, to eradicate the infection, the so-

cial planner will allocate randomly to the population a mass of immunizations π̄∗ = 2(1−1/λ).

In view of Proposition 2, this implies that in contexts where the harmful state diffuses through

a positively assortative network, there is no value for the social planner to learn the exact

details of the interaction structure, i.e., the value of β. In contrast, if the harmful state

diffuses through social networks that exhibit negative assortativity, as in sexual contact net-

works, there is a positive value for the social planner to learn the exact value of β, since this

information allows the social planner to achieve the goal of eradication while using a smaller

budget of (presumably costly) immunization. This benefit is greatest when the social network

is bipartite. In fact, as β decreases from 1/2 the benchamark policy of allocating randomly

π̄∗ = 2(1−1/λ) across groups produces an over-investment of resources which gets increasingly

worse relative to the optimal eradication policy.

3 Immunity in a decentralized game

We turn now to assessing the outcomes that might be expected in the absence of any action

taken by a planner. Before the diffusion process starts, individuals may choose, at a cost, to

immunize themselves. We model this decision as a simultaneous move game in which agents

anticipate the effects of aggregate immunization on the diffusion outcomes. Formally, the

action of agent i is ai ∈ {0, 1}, where ai = 0 is interpreted as no immunization. Immunization,

15The influential work of Anderson & May (1984) provides a result that eradication can be easier to achieve
in the presence of population heterogeneity. A related result is obtained in Goyal & Vigier (2010) under
particular assumptions.
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when taken, is perfect.

Individuals receive a flow utility of one in state S and zero in state I. Individuals are

infinitely patient, so that utility is measured by the limiting proportion of time in state S.

Denote the cost of immunization by c > 0. An agent who immunizes receives utility 1 − c,
since she is never infected but must pay for the immunity. On the other hand, a group g

agent who does not immunize saves the cost, but spends a proportion ρg of time in state I,

obtaining utility 1−ρg. Importantly, the steady state values of ρg depend on the immunization

decisions of individuals in both groups. Thus, immunization decisions are optimal if (and only

if) πg > 0 implies ρg ≥ c and πg < 1 implies ρg ≤ c. In particular, at an interior equilibrium

it must be that

(3) ρA = ρB = c.

Having introduced immunization cost, we will be concerned with welfare in the two groups.

There are two costs in the model: the explicit cost of immunization and the opportunity cost

of being infected. We define the welfare of group g as the expected utility of a randomly

selected agent, i.e.,

Wg = 1− πgc− (1− πg)ρg.

Our interest is in understanding how the pattern of interactions affects the equilibrium im-

munization rates of both groups, and consequently their prevalence and welfare.

A Equilibrium characterization

We first observe that if the intensity of infection λ is sufficiently low, or the cost of immuniza-

tion c is sufficiently high, then in equilibrium no player will immunize. We have:

Proposition 3 If λ(1 − c) < 1 there is a unique equilibrium and it is such that no player

immunizes.

The idea behind Proposition 3 is easy to understand. The smaller is the intensity of

infection, λ, the lower will be the steady-state prevalence, all else equal, and so the lower will

be the incentive to immunize. On the other hand, given any level of prevalence, the incentive

to immunize is decreasing in its cost. It is never optimal to immunize when c > 1, since

an individual can never gain more than the difference in utility between being susceptible

and infected from immunity. Notice, though, that the threshold below which no individual
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immunizes is independent of β. In light of these observations, we henceforth restrict attention

to the case in which immunization decisions are non-trivial.

Assumption 1 λ(1− c) > 1.

We maintain Assumption 1 throughout the rest of the analysis. The following result

summarizes the equilibrium characterization.

Proposition 4 For every (λ, β, c) there is exactly one stable equilibrium. When there is

positive assortative interaction the stable equilibrium is symmetric, interior, and constant in

β. When there is negative assortative interaction the stable equilibrium is asymmetric and

such that either πA = 0 or πB = 1 (possibly both).

The Appendix contains a complete characterization of equilibria and their stability prop-

erties.16,17 We offer here a rough intuition that underlies this result. First, recall from the

equilibrium condition (3) that, at an interior equilibrium, it must be that the proportion of

non-immunized agents that are infected in the two groups is the same, i.e., ρA = ρB. The

steady-state condition (2) then implies that for an agent in either group, the expected propor-

tion of neighbors that is infected is the same, i.e., θA = θB. For these two conditions to hold,

it is necessary that immunization rates are symmetric across groups, i.e., πA = πB. Hence,

any interior equilibrium is necessarily symmetric.18 Once that is known, it is easy to explicitly

solve for the equilibrium immunization rate, which gives π = 1 − 1/(λ(1 − c)). Notice that

this rate is indeed interior under Assumption 1.

By this argument any additional equilibrium must be asymmetric and involve a boundary

solution. When there are positive assortative interactions, it is impossible to satisfy the equi-

librium conditions at two distinct values of πA < πB. In contrast, when there are negative

assortative interactions, the fact that most interactions are inter-group implies that one group

free-rides off the high immunization rate of the other group. This is rational because the

16Under negative assortativity, the symmetric interior equilibrium exists but it is unstable. To understand
why this is so, note that as β decreases, the degree of strategic substitutability between the groups’ immuniza-
tion rates increases. That is, the best response of each group to the other group’s immunization rate becomes
more sensitive. When β = 1/2, the slope of the reaction functions at the interior equilibrium is unity, and so
it is at this point that the interior equilibrium switches from being stable to unstable.

17In perhaps the most closely related paper, Reluga (2009) obtains results on the existence and stability of
equilibria in a similar setting.

18The knife-edge case of uniform mixing, β = 1/2, is the only exception, in which case there is a continuum
of interior equilibria.
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high-immunity group interacts mostly with the low-immunity group, which has higher preva-

lence, justifying the cost of their immunizations. The low-immunity group, meanwhile, takes

advantage of the fact that most of their interactions are with the high-immunity group which

has low prevalence. The consequence is that the free-riding group, while infected at a higher

rate, obtains higher welfare because their high prevalence is necessarily more than offset by

the savings in immunization costs. That is, higher infection prevalence is not indicative of

lower welfare; indeed, the opposite is true. We have:

Proposition 5 Consider the case of negative assortative interactions. In the stable equilib-

rium, the group that immunizes less has both higher prevalence and higher welfare.

When there are positive assortative interactions, both groups immunize at interior rates

that are constant in β, whereas in the case of negative assortative interactions one of the groups

is either fully immunized or not immunized at all. Hence, equilibrium group immunization

rates are discontinuous around β = 1/2. Nevertheless, the resulting prevalence in each of the

two groups, as well as their welfare, are continuous in β. Furthermore, when there are positive

assortative interactions, all interesting outcomes like prevalence and welfare are constant in

β. However, this neutrality result in the degree of assortativity on equilibrium outcomes no

longer holds when there are negative assortative interactions. In fact, in this case the effect of

β on group prevalence, immunization rate and welfare is subtle, and cannot always be signed.

We turn now to exploring these comparative statics.

Figure 2 illustrates features of the comparative statics. In the figure, the cost of immuniza-

tion c is constant throughout, whereas the intensity of infection λ takes values that increase

from the left column to the right column. The higher is λ(1− c) the higher is the incentive to

immunize, all else equal. So, when we move from the left column to the right column we are

considering environments in which, ex-ante, it is more profitable to invest in immunization.

The three rows depict immunization rates (top), prevalence (middle) and welfare (bottom),

where group A is shown in dashed blue, group B in dotted red, and the total population in

solid green.

As we have already discussed the equilibrium under positive assortative interactions, we

focus here on negative assortativty. In this range, consider the extreme cases. When β = 0,

it is always the case that group A completely free rides on group B, and that there remain

some non-immunized agents in group B, so that 0 = πA < πB < 1. This is true because

when the network is bipartite, the infection will be eradicated even when there remain some

non-immunized individuals in group B, due to herd immunity. Consider now values of β near
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Figure 2: In all cases c is constant (at 0.86). The value of λ increases from the left column
to the right column (taking values 9, 12, 16). Each row depicts different quantities with group
A in dashed blue, group B in dotted red, and the total in solid green. Row 1: Immunization
rates, Row 2: Prevalence, Row 3: Welfare.

1/2. When the incentive to immunize is sufficiently high, λ(1−c) > 2, the total immunization

rate in society is greater than 50%, and so the equilibrium involves πB = 1, as in the third

column. Otherwise, the equilibrium involves πA = 0, as in the first two columns.

These observations characterize which boundary conditions bind the equilibrium immu-

nization rates near the extreme cases of β = 0 and β = 1/2 for negative assortative interac-

tions. This is useful because, as we will see, the comparative statics of the equilibrium are

very different in these cases.

Consider first the case where the incentive to immunize is high, so that 0 < πA < πB = 1

near β = 1/2. Start from uniformly random interactions and consider decreasing β from 1/2.

Since group B is fully immunized, the free-riding of group A becomes more effective and this

causes the immunization rate of group A to decrease, until nobody in group A immunizes. As

this immunization rate drops, the prevalence in group A is increasing, due to the equilibrium

condition that ρA is constant at value c. But even as the prevalence in group A increases, so
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does their welfare.

Once we are in a region where group A completely free-rides (πA = 0), prevalence in

group A now changes directions and begins to decrease with a further decline in β, since the

immunization rate in group A is now constant at zero. This fact gives rise to the possibility

of a nonmonotonicty in prevalence, as illustrated in the middle-right panel of Figure 2. While

there is an interval of β in which both boundary conditions bind (πA = 0 and πB = 1), at

some point the prevalence in A becomes low enough that it is no longer optimal for group B

to fully immunize. At this point πB < 1, which holds until we reach β = 0.

Notice that, under parameters implying this pattern of interactions, total immunization

is always lower than when β > 1/2 (first row, third column), while the total prevalence is

nonmonotonic (second row, third column). Despite the nonmonotonicity in prevalence, it is

always true that welfare strictly increases as β decreases, reaching is maximum value at the

bipartite network.

Turning now to the remaining case when the stable equilibrium transitions to immunization

levels with 0 = πA < πB < 1 near β = 1/2, we see that the comparative statics are possibly

nonmonotonic. The first and second columns of Figure 2 fall under these parameters. Indeed,

in this case there are two opposing forces on the immunization decision of group B as β

decreases. First, group B interacts more and more with group A which has higher prevalence,

putting upward pressure on πB. Second, as β decreases the prevalence in group A is decreasing,

putting downward pressure on πB. The net result of these two effects is subtle and depends on

the particular parameters in question. In particular, the immunization rate and the prevalence

of group B may well be nonmonotonic in β, as in the second column of Figure 2.

From the above discussion, we are able to conclude that when group A fully free-rides, their

prevalence increases with β, whereas when group A only partially free-rides, the opposite is

true. We derive an even simpler conclusion about welfare. For group B, the high-immunization

group, welfare is always constant, because πB > 0 implies that welfare is equal to 1−c. Finally,

although it is much less obvious, we can also show that for group A, welfare is always decreasing

in β. This is summarized in the following result.

Proposition 6 Consider the stable equilibrium when there are negative assortative interac-

tions.

1. For the group that immunizes more, welfare is constant in β.

2. For the group that immunizes less, welfare is decreasing in β.

Furthermore, for the group that immunizes less, prevalence is either (i) increasing in β
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if λ(1 − c) < 2, or (ii) first increasing in β for β < 1/λ(1 − c), and then decreasing in

β thereafter, if λ(1− c) > 2 .

B Efficiency properties of equilibrium

We are now in a position to relate the equilibrium characterization to the properties of the

social planner’s problem.

As we have anticipated in Section 2, we observe that when immunization has marginal cost

c, the optimal action for a social planner who wishes to maximize social welfare is either full

eradication or to do nothing. When there are positive assortative interactions, Proposition

2 tells us that to eradicate the harmful state the social planner needs to provide a mass of

immunizations which is equal to the steady state value that total prevalence would take in

the absence of any immunity in the population. Since the benefit of not being infected by

the harmful state is normalized to 1, we have that eradication is better than providing no

immunity if and only if c < 1. Under negative assortative interactions, eradication can be

achieved for an even smaller cost, and so when c < 1 eradication is again optimal.

Notice that the distribution of immunity across groups in equilibrium is efficient. When

there are positive assortative interactions, the two groups immunize at the same rate and so

total immunity is, in equilibrium, divided equally across groups. When there are negative

assortative interactions, the equilibrium allocation of immunity is as asymmetric as possible,

conditional on the level of total immunity, since πA > 0 only if πB = 1.

Given that immunization carries a positive externality, it is of course not surprising that

equilibrium immunization rates are inefficiently low. What these observations imply, however,

is that the source of inefficiency rests entirely on the aggregate level of immunization. The

welfare loss arising from equilibrium immunizations relative to the first-best outcome is highest

for intermediate ranges of λ and c. For extreme values of either λ or c, the equilibrium and

the first-best immunization rates coincide.

4 The effects of group-level heterogeneity

Thus far group labels have been relevant only to the extent that they influence the interactions

among individuals. Yet there are often underlying differences between individuals of differ-

ent populations that correlate with their matching patterns. In this section we investigate

equilibrium outcomes under a specific economic asymmetry between groups. In particular,
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we study parameters cB < cA, so that the cost of immunization is group-dependent. This

specification captures the case where one group has easier access to immunization, or where

one group is wealthier, so that the cost of immunization is lower relative to the difference in

utility between being healthy and infected.19 As we shall show, the introduction of even small

underlying differences across groups is amplified by a social multiplier, and the multiplier

increases with the intensity of inter-group interactions.

In order to exhibit this point, we focus on positive assortative interactions, i.e., β >

1/2. Recall that in this case, under symmetric costs, the unique equilibrium involves equal

immunization rates and identical outcomes in the two groups. The following proposition

characterizes equilibria under asymmetric costs.

Proposition 7 Suppose cB < cA and λ(1 − cA) > 1. There exists β̄ > 1/2 such that: If

β ∈ [1/2, β̄] in the unique equilibrium all agents in group B immunize, πB = 1, while only

a proportion of agents in A immunize, πA ∈ (0, 1); if β ∈ [β̄, 1], the unique equilibrium is

interior and πB > πA.

We now show how initial differences between the two groups are amplified by the pattern

of interactions via a social multiplier effect.20 This amplification in fact drives the equilibrium

to a boundary solution at β = β̄. In this sense, arbitrarily small differences between the

groups result in very asymmetric outcomes as the intensity of positive assortativity decreases.

We denote by ∆π the difference between πB and πA when β = 1 and, hence, the diffusion

in the two groups is independent. Similarly, ∆P is the difference between the prevalence of

group A and the prevalence of group B when β = 1. Using our characterization, one obtains

that

∆π = [πB − πA]|β=1 =
cA − cB

λ(1− cA)(1− cB)
= ∆P = [PA − PB]|β=1 > 0

We now show how immunization rates and prevalence levels are driven apart as β decreases

from one.

Corollary 1 Suppose cB < cA, λ(1− cA) > 1 and β > 1/2.

19Other forms of ex-ante asymmetries are also plausible. For example, one could consider the case where one
group has a more effective natural immunity, or a higher rate of recovery, than the other group, i.e., λB > λA.
This case is not identical, but is qualitatively similar, to the cost heterogeneity case. Details are available
upon request. In the conclusion we also elaborate on the case in which the two groups have different sizes.

20Under a complementarity assumption, Goyal & Vigier (2010) find a result that emphasizes a different
form of heterogeneity.
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• The difference between the equilibrium immunization rate of group B and group A is the

product of ∆π and a social multiplier Φπ(β, cA, cB) > 1, which is decreasing and convex

in β.

• The difference between the equilibrium prevalence of group A and group B is the product

of ∆P and a social multiplier ΦP (β, cA, cB), which is decreasing and convex in β.

• The difference between the equilibrium welfare of group B and of group A equals cA− cB
and therefore it is constant in β.

Together, Proposition 7 and Corollary 1 illustrate how small initial differences across groups

are amplified by a social multiplier, even in the case where there are positive assortative

interactions. For all β ≥ 1/2 we have that the immunization rate of the low cost group is

higher than the immunization rate of the high cost group and that as β decreases from 1

the immunization rate of the low cost group increases, whereas the immunization rate of the

high cost group decreases. Similarly, the prevalence of the low cost group is lower than the

prevalence of the high cost group and, as β decreases from 1, the prevalence of the low cost

group decreases, whereas the prevalence of the high cost group increases.

In light of these results, we conclude that the structure of group interactions that we study

tends to produce highly asymmetric outcomes. The only exception to this tendency is under

positive assortative interactions when either the two groups are inherently identical, or they

are nearly identical, and the intensity of assortativity is very strong.

5 Conclusion

We have explored the diffusion of a harmful state through a population in an environment

where immunization is possible, but costly, and where contact patterns generally depend on

types in the population. This framework allows us to study, in particular, the impact of the

degree of positive or negative assortativity on strategic aspects of immunization.

We have first studied the problem of a social planner who designs a policy to eradicate the

spread of the harmful state. We have then derived the equilibrium of a game in which agents,

averse to the possibility of being infected by the harmful state, choose whether to immunize

or not, anticipating the consequence of their choices on the diffusion process.21

21We note here a simple observation that emphasizes the importance of incorporating economic aspects into
diffusion models, as has been recognized for some time and is expressed clearly in the work of Bauch & Earn
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Our analysis demonstrates that the details of group interactions have a profound effect on

how a planner should respond to reducing the prevalence of the harmful state. As a conse-

quence, we have derived the conditions under which it is more valuable for the social planner

to know the exact pattern of interactions. Furthermore, we have shown that inter-group in-

teractions generate large asymmetries across groups in the equilibrium outcomes regarding

welfare and prevalence, even when groups are, ex-ante, very similar. It is therefore important

to account for the structure of interactions when studying, empirically, the causes of ob-

served asymmetries in behavior and diffusion outcomes across groups. Failing to account for

the effects of group interactions would, in this setting, lead to overestimating the underlying

differences across groups, and consequently to suboptimal immunization plans.

Our model is intentionally stark, allowing us to derive analytical results more easily, but

also precluding the study of certain issues relevant to the broader motivation of our work. On

the one hand, the messages of this paper indicate that incorporating information about the

structure of society and the contact patterns among individuals is of primary importance for

making inferences about diffusion processes. On the other hand, understanding the precise

implications of these details will require further study.

For example, some preventative measures are effective for only a short time, and the

decision about whether to take such measures is more appropriately modeled as a dynamic

problem, taking into account time preferences and the possibility of a changing environment.

There is also a large scope for generalizing the nature of the diffusion process through society.

For example, the population could change size over time, in ways that reflect, for example,

a death rate that depends on current prevalence. Also, the rule we have specified by which

individuals spread infection is but one example, and different diffusion rules have the possibility

to generate qualitative differences in results.

One could consider as well more complex type profiles and contact patterns in order to

generalize the insights from the present paper. We leave most of these matters for future

work. We conclude, however, with a brief discussion of an extension to our model that allows

us to study the effect of group size. This demonstrates, in particular, that our conclusions are

(2004) and Geoffard & Philipson (1996). In our equilibrium model total prevalence tends to decrease in the
intensity of infection λ. The opposite conclusion is obtained in a non-strategic model where immunization
decisions do not react to changes in λ. As the intensity of infection increases, equilibrium immunization rates
increase to the level that, conditional on not having immunity, the proportion of time infected remains constant
(ρ = c). Given that the non-immunized individuals are infected at a constant rate, but more individuals are
immunized, prevalence must decrease. As a result, welfare is constant, as the increased cost of immunization
are exactly offset by the decrease in prevalence.
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robust to the introduction of this form of asymmetries.

A A consideration of the effects of group size

We set the mass of group A equal to one, as before, while the mass of group B is q ∈ (0, 1].

So group A is the majority group and group B is the minority group. Let us define β as the

probability with which a randomly chosen contact of a group B individual belongs to group

B. Since group A is larger than group B, the fact that all agents have the same number

of interactions implies that group A individuals will be more positively assortative (or less

negatively assortative, as the case may be) than group B individuals. Defining γ as the

probability with which a randomly chosen contact of a group A agent comes from group A,

we have the following consistency condition

1− γ = q(1− β).

Using this condition, we obtain new expressions for the probabilities that an agent from either

group interacts with an infected agent:

θA = [1− (1− β)q](1− πA)ρA + (1− β)q(1− πB)ρB

θB = β(1− πB)ρB + (1− β)(1− πA)ρA.

With these expressions, one can characterize steady states of the system as a function of β

and q.

We consider first the planner’s problem of eradicating the harmful state with the minimal

budget. The main intuitions from Section 2 carry over in a straightforward manner. First,

observe that for any value of q, the value of the mixing parameter β̂ = q
1+q

corresponds

to homogeneous mixing in which the distribution of all agents’ contacts corresponds to the

population frequencies. Hence, the value β̂ = q
1+q

is what separates the cases of positively

and negatively assortative interactions. Naturally, when q = 1 the model reduces to the

specification of Section 1 and we have β̂ = 1
2
. When there are positive assortative interactions,

β > β̂, the planner should distribute immunization to the population evenly. This corresponds

to setting immunization levels proportional to population sizes, so that group A receives a

portion 1
1+q

of the immunization budget and πA = πB. On the other hand, under negative

assortativity, β < β̂, the optimal allocation involves focusing the resources on one group. Here,

the groups are not identical, and it turns out to be optimal to focus first on the minority group,
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and to devote remaining resources to the majority group only if necessary. The reason is that

the majority group has extra interactions amongst themselves, and so immunizations there

leverage the negative assortativity less effectively.22 The minimum budget required to achieve

immunization is decreasing in q and β.

The equilibrium characterization is significantly more involved for the case of unequal

groups. Here we describe some partial results that suggest the main features are similar

to the case of equal size groups, but that additional subtleties arise due to the asymmetry

between groups. First, for all values of q and β there exists an interior equilibrium, which

has immunization levels that are the same across groups, and constant in β. When there are

positive assortative interactions, this is the unique equilibrium, as in the case of equal group

sizes. Under negative assortativity, β < β̂, there are asymmetric equilibria. In this case, if

β is not too small, there is an equilibrium in which one group fully immunizes and the other

group partially immunizes. The range of parameters for which this equilibrium occurs is larger

for the case in which the minority group fully immunizes, as compared to the case where the

majority group fully immunizes. In this case, the total immunization rate is higher than the

case in which it is the majority group that fully immunizes.

22If one considers cost heterogeneity in this context, then if cA/cB is sufficiently small, it can be more
efficient to immunize the majority group first.
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Appendix A: The Diffusion Model

Proposition 1 The following hold:

1. Suppose β < 1/2. πA < πB iff ρA < ρB iff θA < θB iff PA > PB

2. Suppose β > 1/2. πA < πB iff ρA > ρB iff θA > θB iff PA > PB

Proof of proposition 1. We first note that, regardless of β, using the steady state conditions,

we have that

ρA − ρB =
λ

(1 + λθA)(1 + λθB)
[θA − θB],

and so ρA > ρB iff θA > θB. Next, note that

θA − θB = βPA + (1− β)PB − βPB − (1− β)PA = (2β − 1)(PA − PB).

So, if β > 1/2, then θA > θB iff PA > PB, while if β < 1/2, then θA < θB iff PA > PB. Hence

if β > 1/2, then ρA > ρB iff θA > θB iff PA > PB, while if β < 1/2, then ρA < ρB iff θA < θB

iff PA > PB.

Consider now the case of β < 1/2. Suppose that ρA < ρB, then we know that PA =

(1− πA)ρA > PB = (1− πB)ρB, and so it is necessary that 1− πA > 1− πB, or equivalently,

πA < πB. Suppose now that πA < πB and, for a contradiction, ρA > ρB. Since ρA > ρB it

has to be the case that PA = (1 − πA)ρA < PB = (1 − πB)ρB which requires that πA > πB,

a contradiction. Hence, if β < 1/2, then: πA < πB iff ρA < ρB. This concludes the proof of

part 1 of the proposition.

We now move to part 2. So, suppose that β > 1/2. We first show that ρA < ρB implies

that πB < πA. Note that

ρA =
λ[β(1− πA)ρA + (1− β)(1− πB)ρB]

1 + λ[β(1− πA)ρA + (1− β)(1− πB)ρB]
>

λρA[β(1− πA) + (1− β)(1− πB)]

1 + λρA[β(1− πA) + (1− β)(1− πB)]
=

ρAλA

1 + ρAλA

where the first inequality follows because we have replaced ρB with ρA, the expression is

increasing in ρB and, by assumption ρA < ρB, the second equality follows by simply defining

A = β(1− πA) + (1− β)(1− πB). From the above we infer that

ρA >
ρAλA

1 + ρAλA
iff 1 + λρAA > λA iff ρA > 1− 1

λA
.
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Next note that

ρB =
λ[β(1− πB)ρB + (1− β)(1− πA)ρA]

1 + λ[β(1− πB)ρB + (1− β)(1− πA)ρA]
<

λρB[β(1− πB) + (1− β)(1− πA)]

1 + λρB[β(1− πB) + (1− β)(1− πA)]
=

ρBλB

1 + ρBλB

where the first inequality follows because we have replace ρA with ρB, the expression is in-

creasing in ρA and, by assumption ρA < ρB, the second equality follows by simply defining

B = β(1− πB) + (1− β)(1− πA). From the above we infer that

ρB <
ρBλB

1 + ρBλB
iff 1 + λρBB < λB iff ρB < 1− 1

λB
.

Since, by assumption, ρB > ρA, it is necessary that

1− 1

λB
> 1− 1

λA
iff B > A iff (2β − 1)(πB − πA) < 0 iff πB < πA.

In a similar way one can prove that ρA > ρB implies that πA < πB (It is enough to take

an upper bound for ρA and a lower bound for ρB, analogously to the above argument ). And

so we have that ρA > ρB iff πA < πB. This completes the proof of the proposition.
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Appendix B: The social planner’s problem

Proof Proposition 2 The proof is divided in three steps.

First step. We start by asking what is the minimum mass of immunization needed to

eradicate the undesirable state, given an exogenous allocation. Formally, for a total mass

of immunizations available to the planner, an allocation is described by a number α ∈[
max

{
0, 1− 1

π̄∗(α)

}
, 1/2

]
, where πA = απ and πB = (1 − α)π. For a given allocation α,

the minimum mass of immunizations needed to eradicate the disease is denoted by π̄∗(α) and

is the solution to

ρA(απ̄∗(α), (1− α)π̄∗(α)) = ρB(απ̄∗(α), (1− α)π̄∗(α)) = 0.

We derive π̄∗(α) for the relevant case in which π̄∗(α) > 0, i.e., λ > 1. We assume this

throughout.

For a given πA and πB, recall that the steady states conditions are

ρA =
λ [β(1− πA)ρA + (1− β)(1− πB)ρB]

1 + λ [β(1− πA)ρA + (1− β)(1− πB)ρB]
,(4)

ρB =
λ [β(1− πB)ρB + (1− β)(1− πA)ρA]

1 + λ [β(1− πB)ρB + (1− β)(1− πA)ρA]
.(5)

Using condition (5), we can express ρA as follows

(6) ρA = ρB

[
1− λβ(1− πB)(1− ρB)

λ(1− β)(1− πA)(1− ρB)

]
.

Using condition (6) in condition (4) we obtain

(7) ρA =
λρB

[
β
[

1−λβ(1−πB)(1−ρB)
λ(1−β)(1−ρB)

]
+ (1− β)(1− πB)

]
1 + λ [β(1− πA)ρA + (1− β)(1− πB)ρB]

.

Combining condition (6) with condition (7), we produce

(8)
λ
[
β
[

1−λβ(1−πB)(1−ρB)
λ(1−β)(1−ρB)

]
+ (1− β)(1− πB)

]
1 + λ [β(1− πA)ρA + (1− β)(1− πB)ρB]

=

[
1− λβ(1− πB)(1− ρB)

λ(1− β)(1− πA)(1− ρB)

]
.
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Setting ρA = ρB = 0 in (8), we obtain that condition (8) holds if and only if

(9) 1− λβ(2− π̄∗(α)) = (1− πA)(1− πB)λ2(1− 2β),

where π̄∗(α) = πA +πB. Replacing further πA = απ̄∗(α) and πB = π̄∗(α)−πA, we obtain that

9 holds if and only if

1− λβ(2− π̄∗(α)) = (1− απ̄∗(α))(1− π̄∗(α) + απ̄∗(α))λ2(1− 2β),

and solving for π̄∗(α) we obtain that the minimum mass of immunization needed to eradicate

the disease under allocation α is

(10) π̄∗(α) =
A−
√
A2 +BC

2λ(1− 2β)C
,

where A = β + λ(1− 2β), B = 4(1− 2β)(1− λβ − λA) and C = α(1− α). We observe that

when β < 1/2, for π̄∗(α) > 0 it has to be the case that A −
√
A2 +BC > 0, whereas when

β > 1/2, for π̄∗(α) > 0 it has to be the case that A−
√
A2 +BC < 0.

Second Step. Now that we have derived π̄∗(α), we compute the allocation that minimizes

the smallest mass of immunizations needed to eradicate the disease. Formally, we look for

α∗ = arg min
α∈[max{0,1− 1

π̄∗(α)},1/2]
π̄∗(α).

Consider β < 1/2. Note that the sign of the derivative of π̄∗(α) with respect to α is the same

as the sign of the derivative of π̄∗(α) with respect to C (recall that α ≤ 1/2). We have

dπ̄∗(α)

dC
=

1

2λC2
√
A2 +BC

1

1− 2β

[
BC − 2A

√
A2 +BC + 2A2

]
.

Since 1− 2β > 0, it follows that dπ̄∗(α)
dC

> 0 if and only if

BC − 2A
√
A2 +BC + 2A2 > 0.

To see that this is the case note that BC − 2A
√
A2 +BC + 2A2 is increasing in C. In

fact, simple algebra shows that the derivative of BC − 2A
√
A2 +BC + 2A2 with respect

to C is positive whenever B[
√
A2 +BC − A] > 0, which holds because B < 0 (as λ > 1
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and β < 1/2) and
√
A2 +BC − A < 0 (see observation at the end of step 1). Therefore,

BC−2A
√
A2 +BC+ 2A2 > [BC−2A

√
A2 +BC+ 2A2]C=0 = 0. Hence, if β < 1/2, the best

way to eradicate the disease is to focus first on one group, i.e., α∗ = max{0, 1− 1
π̄∗(α)
}.

Consider now the case where β > 1/2. Recall the expression above for dπ̄∗(α)
dC

and note

that, since 1− 2β < 0, it follows that dπ̄∗(α)
dC

< 0 if and only if

BC − 2A
√
A2 +BC + 2A2 > 0.

If B is positive, we can apply the same argument used above to show that indeed BC −
2A
√
A2 +BC + 2A2 > 0. Suppose B < 0; since 1− 2β < 0, the fact that B < 0 implies that

1−λβ−λA > 0 or, equivalently, 1−λβ > λA. Simple algebra shows that BC−2A
√
A2 +BC+

2A2 is decreasing in A; so, expression BC − 2A
√
A2 +BC + 2A2 is minimised at the highest

value that A can take, which is A such that 1 − λβ = λA. But at this value B = 0 and

therefore we have that BC − 2A
√
A2 +BC + 2A2 > [BC − 2A

√
A2 +BC + 2A2]B=0 = 0.

Hence, if β > 1/2 the best way to eradicate the disease is to split the mass of immunizations

across groups, i.e., α∗ = 1/2.

Third step. Using expression (10) for π̄∗(α) and our conclusion in step 2, we can now

derive the minimum mass of immunization needed to eradicate the disease. In particular, if

β > 1/2, the minimum mass of immunization needed to eradicate the disease is obtained by

evaluating π̄∗(α) at α = 1/2, which gives π̄∗ = 2
(
1− 1

λ

)
. Note that this is independent of β.

Consider the case of β < 1/2. If the total amount of immunization needed is less than

1, π̄∗ < 1, then, the minimum amount of immunization needed to eradicate the disease is

obtained by taking the limα→0 π̄
∗(α). This gives us

π̄∗ = 1− 1

λ

1− λβ
λ(1− 2β) + β

,

which is consistent with our initial hypothesis that π̄∗ < 1 if and only if β < 1/λ. It is easy to

verify that π̄∗ is increasing in β for all β < 1/λ. Finally, suppose that π̄∗ > 1, so that in the

optimal assignment πB = 1 and πA = π̄∗ − 1. Then, by substituting α = 1− 1
π̄∗ in expression

(10) and solving for π̄∗, we obtain that π̄∗ = 2− 1
λβ

, which is increasing in β. This concludes

the proof of the proposition.
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Appendix C: Equilibrium Analysis

Proof of Proposition 3 and Proposition 4. Propositions 3 and 4 are proved jointly. The

proof is divided in two steps. In the first step we characterize all equilibria of our game. The

second step identifies the stable equilibria.

First step: equilibrium characterization. For πA = πB = 0 we have that ρA = ρB =

ρ∗ = 1 − 1/λ. For this to be an equilibrium, it must be that ρ∗ ≤ c, which is equivalent to

λ(1 − c) ≤ 1. Note also that when λ(1 − c) < 1, the only equilibrium is πA = πB = 0, since

πg > 0 implies ρg < 1− 1/λ < c, contradicting the equilibrium requirement that ρg ≥ c when

πg > 0.

We now focus on the case λ(1 − c) > 1. We start with a characterization of interior

equilibria. An interior equilibrium requires that, using (3), ρA = c = ρB, which implies by

(2) that θA = θB, which, using (1) and provided β 6= 1/2, implies that πA = πB. Setting

πA = πB = π∗ and solving ρA = c produces

π∗ = 1− 1

λ(1− c)
.

Thus, provided β 6= 1/2, for λ(1− c) > 1 there exists a unique interior equilibrium, in which

case it is symmetric. Next, it is never an equilibrium for πA = πB = 1, since any player could

profitably deviate by not immunizing, given that all other players are immunized.

The only remaining possibility for equilibria are therefore asymmetric. Without loss of

generality, we focus on the case πA < πB. By the above, any additional equilibrium must

be such that either πA = 0 or πB = 1, as otherwise it would be interior and therefore not

asymmetric. There are therefore three possibilities: (1) πA = 0 and πB ∈ (0, 1), (2) πA = 0

and πB = 1, and (3) πA ∈ (0, 1) and πB = 1. We consider each of these possibilities in turn.

Case 1. Suppose πA = 0 and πB ∈ (0, 1). In equilibrium ρB = c. Using this and the

steady-state conditions (2) we obtain that the following two conditions must hold

ρA =
λ[βρA + (1− β)(1− πB)c]

1 + λ[βρA + (1− β)(1− πB)c]
,(11)

c =
λ[β(1− πB)c+ (1− β)ρA]

1 + λ[β(1− πB)c+ (1− β)ρA]
.(12)

29



Solving condition (11) for πB we obtain

π̂B(ρA) =
λc(1− β)− λβρ2

A + ρA(λβ(1 + c)− 1− λc)
λc(1− β)(1− ρA)

,

and, similarly, solving condition (12) for πB we obtain

π̃B(ρA) = 1− 1

λβ(1− c)
+

1− β
βc

ρA.

Note that an equilibrium is defined by πB = π∗ and ρA = ρ∗ such that π̂B(ρ∗) = π̃B(ρ∗) = π∗ ∈
(0, 1) and ρ∗ ∈ (0, c], where ρ∗ ≤ c is required for πA = 0 to be consistent with equilibrium.

Note that π̂B(0) = 1, π̂B(c) = λ(1−c)−1
λ(1−c)(1−β)

> 0 and π̂B(ρ) is strictly concave in ρ ∈ [0, c].

Thus π̂B(ρ) > 0 for all ρ ∈ [0, c]. Also note that π̃B(0) = 1− 1
λβ(1−c) < π̂(0), π̃B(c) = λ(1−c)−1

λ(1−c)β

and π̃B(ρ) is linear and strictly increasing in ρ ∈ [0, c]. Thus there is at most one such

equilibrium (π∗, ρ∗).

A necessary condition for equilibrium is that π̂B(c) ≤ π̃B(c) which is equivalent to β ≤ 1/2.

So suppose β ≤ 1/2. Recall that ρ∗ solves π̂B(ρ∗) = π̃B(ρ∗), which is well-defined and in (0, c].

Define ρ̃ such that π̃B(ρ̃) = 1, which gives

ρ̃ =
c

λ(1− c)(1− β)
.

Define

Ψ(β, c, λ) = (1− β)(1− c)[βλ− 1]− βc,

and notice that π̂B(ρ̃) < 1 if and only if Ψ(β, c, λ) < 0.

The equilibrium exists if, and only if, π̃B(ρ∗) < 1, i.e., π̃B(ρ∗) < π̃B(ρ̃). Since π̃B(ρ) is

strictly increasing, this is equivalent to ρ∗ < ρ̃. This is equivalent to π̂B(ρ̃) < π̃B(ρ̃) = 1.

Finally, by the definition of Ψ, this is equivalent to Ψ(β, c, λ) < 0.

The following lemma provides the region of parameters in which this condition is satisfied.

Lemma 1 Suppose β ∈ [0, 1/2) and λ(1− c) > 1; let Ψ(β, c, λ) = (1−β)(1− c)[βλ− 1]−βc.

1. Suppose c < 1/2.

1.1 If λ(1− c) < 2 then Ψ(β, c, λ) < 0.
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1.2 If λ(1 − c) > 2 then there exists β ∈ (0, 1/2) such that Ψ(β, c, λ) = 0, and

Ψ(β, c, λ) < 0 if and only if β ∈ [0, β).

2. Suppose c > 1/2.

2.1 If λ(1− c) < [1 + 2(c(1− c))1/2] then Ψ(β, c, λ) < 0.

2.2 If λ(1 − c) ∈ [[1 + 2(c(1 − c))1/2], 2] then there exists 0 < β < β̄ < 1/2 such that

Ψ(β, c, λ) = Ψ(β̄, c, λ) = 0, and Ψ(β, c, λ) ≤ 0 if and only if β < β or β > β̄.

2.3 If λ(1 − c) > 2 then there exists β ∈ (0, 1/2) such that Ψ(β, c, λ) = 0, and

Ψ(β, c, λ) ≤ 0 if and only if β < β.

Proof of Lemma 1. The following two observations are used in the proof.

Observation 1. Ψ(0, c, λ) = −(1− c) < 0, Ψ(1/2, c, λ) = 1−c
2

[
λ
2
− 1
]
− c

2
, which is negative

iff λ(1− c) ≤ 2.

Observation 2.
∂Ψ(β, c, λ)

∂β
= (1− c)[1 + λ(1− 2β)]− c,

which is positive if c ≤ 1/2, whereas if c > 1/2 it is positive for low β and negative for high

β (still below 1/2).

First suppose that λ(1 − c) > 2; observations 1-2 imply that there exists a β < 1/2 such

that Ψ(β, c, λ) = 0 and that Ψ(β, c, λ) < 0 if, and only if, β < β; this proves part 1.2. and part

2.3. Second suppose that c < 1/2 and λ(1− c) < 2; observations 1-2 imply that Ψ(β, c, λ) < 0

for all β < 1/2, which proves part 1.1.

Third, suppose that c > 1/2 and λ(1− c) < 2. Recall that observation 1 and observation

2 tell us that Ψ(0, c, λ) < 0, Ψ(1/2, c, λ) < 0, and Ψ(β, c, λ) is first increasing and then

decreasing in β. So, there are two possibilities. One possibility is that the maximum value

of Ψ(β, c, λ) is negative, in which case Ψ(β, c, λ) < 0. The other possibility is that the

maximum value of Ψ(β, c, λ) is positive, in which case there exist β < β̄ < 1/2 such that

Ψ(β, c, λ) = Ψ(β̄, c, λ) = 0 and, Ψ(β, c, λ) < 0 for all β < β and for all β > β̄. To distinguish

between these two cases, define β∗ = arg maxβ∈[0,1/2] Ψ(β, c, λ). This is given by

β∗ =
1

2
− 2c− 1

2λ(1− c)
,
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and note that

Ψ(β∗, c, λ) =
1

2λ(1− c)

[
1− c

2
(λ(1− c) + 2c− 1)

(
λ− 1

1− c

)
− c(λ(1− c)− 2c+ 1)

]
.

It is now easy to verify that Ψ(β∗, c, λ) ≤ 0 iff λ(1 − c) < 1 + 2(c(1 − c))1/2. This concludes

part 2.1 and 2.2. The proof of lemma 1 is now completed.

Case 2. Suppose πA = 0 and πB = 1. For equilibrium ρA ≤ c ≤ ρB. If β > 1/2 then

θB < θA which implies that ρB < ρA, a contradiction. Hence, β ≤ 1/2. Using the steady state

condition (2) we obtain

ρA =
λβ − 1

λβ
,

and we derive ρB as

ρB =
(1− β)(λβ − 1)

β + (1− β)(λβ − 1)
.

Since ρA ∈ (0, c], then β > 1
λ

and β ≤ β̂ = 1
λ(1−c) . Since ρB ≥ c then Ψ(β, c, λ) ≥ 0. Using

Lemma 1, we conclude that β > 1
λ
, β ≤ β̂ = 1

λ(1−c) and Ψ(β, c, λ) ≥ 0 if and only if λ(1−c) > 2

and β ∈ [β, β̂], where we recall that Ψ(β, c, λ) = 0.

Case 3. Suppose πA ∈ (0, 1) and πB = 1. In equilibrium ρA = c ≤ ρB and a necessary

condition for ρA ≤ ρB is that β ≤ 1/2. So, let β ≤ 1/2. Solving for ρA = c we obtain

πA = 1− 1

λβ(1− c)
,

and πA ∈ (0, 1) if and only if β > β̂ = 1
λ(1−c) . It is easy to check that ρB ≥ c for all β ≤ 1/2.

Note that β̂ ≤ 1/2 if and only if λ(1−c) > 2. So, this equilibrium exists whenever λ(1−c) > 2

and β >∈ (β̂, 1/2]. This concludes the characterization of equilibria.

Second step: stability. The equilibrium characterisation shows that: 1. there is only one

interior equilibrium and the interior equilibrium exists for all β, 2. for β > 1/2 the equilibrium

is unique, 3. for β < 1/2 there is only one (upon relabelling) asymmetric equilibrium. Hence,

to prove the result on global stability, it is sufficient to show that the derivative of the best

response of group B with respect to group A’s immunization rate, evaluated at the interior
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equilibrium, is larger than −1 if, and only if, β > 1/2. Formally,

dπ∗B(πA)

dπA
|πA=πB=π∗ > −1 if, and only if, β > 1/2.

We now prove this statement. We first observe that for every (π∗B(πA), πA) with πA sufficiently

close to the interior equilibrium value π∗, we have that ρB(π∗B(πA), πA) = c, i.e., the proportion

of infected agents of group B who are not immunized does not change with πA, taking into

account that immunization in B is optimal given πA. This directly implies that θB(π∗B(πA), πA)

is also constant when πA is sufficiently close to π∗, i.e.,

dθB(π∗B(πA), πA)

dπA
|π∗ = 0.

Note that

dθB(π∗B(πA), πA)

dπA
= −βcdπ

∗
B(πA)

dπA
+ (1− β)

[
(1− πA)

dρA(πA, π
∗
B(πA))

dπA
− ρA

]
,

dρA(πA, π
∗
B(πA))

dπA
=

∂ρA(πA, π
∗
B(πA))

∂πA
+
∂ρA(πA, π

∗
B(πA))

∂πB

dπ∗B
dπA

,

and that at π∗ we have that ρA = c. Hence,
dθB(π∗

B(πA),πA)

dπA
|π∗ = 0 if and only if

dπ∗B(πA)

dπA
|π∗ =

(1− β)
[
(1− π∗)∂ρA(πA,π

∗
B(πA))

∂πA
|π∗ − c

]
βc− (1− β)(1− π∗)∂ρA(πA,π

∗
B(πA))

∂πB
|π∗

.

Next,
dπ∗
B(πA)

dπA
|π∗ > −1 if and only if

(1− β)

[
(1− π∗)∂ρA(πA, π

∗
B(πA))

∂πA
|π∗ − c

]
> (1− β)(1− π∗)∂ρA(πA, π

∗
B(πA))

∂πB
|π∗ − βc,

or, equivalently,

(1− β)(1− π∗)
[
∂ρA(πA, π

∗
B(πA))

∂πA
|π∗ − ∂ρA(πA, π

∗
B(πA))

∂πB
|π∗

]
> c(1− 2β).

Using the fact that ρA = λθA/[λθA + 1] and that θA = β(1− πA)ρA + (1− β)(1− πB)ρB, we
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obtain
∂ρA(πA, π

∗
B(πA))

∂πA
|π∗ − ∂ρA(πA, π

∗
B(πA))

∂πB
|π∗ =

c(1− 2β)

(1 + λθA(π∗))2
,

and we can rewrite the condition above as

(1− β)(1− π∗) c(1− 2β)

(1 + λθA(π∗))2
> c(1− 2β),

which holds if and only if β > 1/2. This completes the proof for stability.

Proof of Proposition 5. In view of Proposition 4 we consider two cases. The first case is

when in equilibrium πB = 1. Since πB = 1, then PB = 0 and WB = 1− c. Prevalence in group

A must be positive, for otherwise ρB = 0 < c, which contradicts equilibrium. So group A’s

prevalence is higher than group B’s prevalence. Furthermore, if πA > 0, then ρA = c and so

WA = WB. If πA = 0, then equilibrium implies that ρA < c, and so WA > WB. The second

case is when in equilibrium πB ∈ (0, 1). Since πB ∈ (0, 1), equilibrium implies that ρB = c

and therefore PB = (1− πB)c and WB = 1− c. Furthermore, if πB ∈ (0, 1) then πA = 0 and

so ρA < c. Hence, WA = 1 − ρA > 1 − c = WB. Finally, since ρA < c = ρB it follows that

θB > θA. Given that β < 1/2 and that θB − θA = (PB − PA)(2β − 1), we have that θB > θA

if and only if PA > PB.

Proof of Proposition 6. In view of Proposition 4 we observe that since πB > 0, WB =

1 − c. We now consider three cases. The first is when πA = 0 and πB = 1; in this case

PA = ρA = 1 − 1
λβ

proving that PA increases in β and welfare WA = 1 − PA is decreasing.

The second case is when πB = 1 and πA ∈ (0, 1). The welfare is WA = 1− c; the prevalence is

PA = (1− πA)ρA = (1− πA)c. Since πA = 1− 1
λβ(1−c) , an increase in β, increases πA, and so

it decreases PA. The last case is when πA = 0 and πB ∈ (0, 1). The welfare is WA = 1 − ρA
and PA = ρA. Solving equilibrium conditions (11) and (12) we obtain an explicit solution for

ρA. Taking the derivative with respect to β, one can show that the sign of dρA
dβ

is the opposite

of the sign of

F (β) = c+ γ(1− 2c) + β(1− 2γ)(1− 2c)−
√
−4γc(1− β)(1− 2β) + [β + (1− 2β)(c+ γ)]2,

where γ = λ(1−c). By inspection F (β) < 0 for all β < 1/2, which shows that ρA is increasing

in β.

To conclude the proof we note that if λ(1−c) < 2, the equilibrium characterization implies

that in equilibrium πA = 0, and so the proof follows. If λ(1− c) > 2 in equilibrium πA = 0 if
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and only if β < 1/λ(1− c).

Proof of Proposition 7. Solving the equilibrium conditions of an interior equilibrium

together with the steady state conditions we obtain:

πA = 1− cA(1− cB)β − (1− β)cB(1− cA)

kλ(2β − 1)cA(1− cA)(1− cB)
(13)

πB = 1− cB(1− cA)β − (1− β)cA(1− cB)

kλ(2β − 1)cB(1− cA)(1− cB)
.(14)

By investigation of these two expressions it is easy to check that for all β ∈ (1/2, 1] the

following holds: (1.) πB > πA, (2.) πB is decreasing in β, while πA is increasing in β. Next,

define β̄ to be such that πB(β̄) = 1. Solving we obtain that

β̄ =
cA(1− cB)

cA(1− cB) + cB(1− cA)
> 1/2,

and that πA(β̄) > 0. These considerations imply that for all β ∈ [β̄, 1] there exists an interior

equilibrium, πA and πB are defined by expression (13) and (14), and πB > πA. We now show

that for all β ∈ [1/2, β̄] there exists an equilibrium where πB = 1 and πA ∈ (0, 1). Suppose

πB = 1 and πA ∈ (0, 1). For equilibrium, ρA = cA; solving the equilibrium condition for πA

we obtain that

(15) πA = 1− 1

λkβ(1− cA)
,

and this implies that

ρB =
(1− β)cA

β(1− cA) + (1− β)cA
≥ cB

if, and only if, β < β̄. Again, note that at β = 1/2, πA is still positive. It is easy to establish

that for β > 1/2 there is only one equilibrium.

Proof of Corollary 1. Using Proposition 7 and taking the difference between the equilibrium

immunization rate of group B and group A, it is easy to verify that this equals ∆πΦπ(β, cA, cB),

where

Φπ(β, cA, cB) =

 1−cB
β(cA−cB)

, if β ∈ (1/2, β̄)

cAcB(2β−1)+(1−β)(cB+cA)
cAcB(2β−1)

, if β > β̄

and that Φπ(β, cA, cB) > 1 and it is decreasing and convex in β. Similarly, taking the difference
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between the equilibrium prevalence of group A and group B it is easy to verify that it equals

the product of ∆P and a social multiplier ΦP (β, cA, cB), where

ΦP (β, cA, cB) =


cA(1−cB)
β(cA−cB)

, if β ∈ (1/2, β̄)

1
2β−1

, if β > β̄

and that ΦP (β, cA, cB) > 1 and it is decreasing and convex in β. Finally, direct computation

shows that the difference between the equilibrium welfare of group A and of group B equals

cA − cB and therefore it is constant in β.
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