
The Design Navigator: Charting Java Programs
Epameinondas Gasparis

Dept of Computing and
Electronic Systems,

University of Essex, UK
http://ttp.essex.ac.uk

Amnon H. Eden
Dept of Computing and

Electronic Systems,
University of Essex, UK and

Center for Inquiry,
Amherst, NY, USA

Jonathan Nicholson
Dept of Computing and

Electronic Systems,
University of Essex, UK

Rick Kazman
Software Engineering

Institute, Carnegie-Mellon
University and University

of Hawaii, USA

ABSTRACT
The Design Navigator is a semi-automated design mining tool
which reverse engineers LePUS3 design charts from Java™ 1.4
programs at any level of abstraction in reasonable time. We dem-
onstrate the Design Navigator’s step-wise charting process of Java
Foundation Classes, generating decreasingly abstract charts of
java.awt and discovering building-blocks in its design.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement - restructuring, reverse engineering and reengi-
neering.

General Terms: Design, documentation, languages

Keywords: Reverse engineering, design mining, software
visualization, software modelling, object-oriented design

1. INTRODUCTION
It is a scenario that every experienced programmer dreads: use a
large program whose documentation is inaccurate, incomplete or
altogether nonexistent [5]. Commercial reverse engineering tools
can generate unreadable diagrams cluttered with hundreds or
thousands of visual tokens. In contrast, the Design Navigator
analyzes any Java™ 1.4 program, discovers its conceptual build-
ing-blocks, and charts (any part of) it at any level of abstraction in
the entire spectrum between maximum information (a minimally-
abstract or 1:1 map) and minimal information (a maximally-
abstract or 1:∞ map).
The literature demonstrates that design mining is difficult but not
impossible [5][6][7]. The Design Navigator’s approach to the
problem is distinguished from most existing tools by the follow-
ing:

 User-guided: Charts are generated interactively using zoom-in
(‘concretization’) and zoom-out (‘abstraction’) operations

 Formal: Charts are statements in LePUS3 [1], a mathemati-
cally defined object-oriented architecture description lan-
guage

 Programming-language independent: The Design Navigator
is not tailored to a specific language (only its analyzer is)

We demonstrate the capabilities of the Design Navigator in charting
a small subset of the Java Foundation Classes 1.4 (package
java.awt), henceforth JFC. We also discuss how the application

of abstraction or concretization operators promotes program under-
standing by gradually discovering the building-blocks in the design
of Java™ programs that are otherwise hard to spot.

2. DESIGN NAVIGATION
Design Navigation is a user-guided approach to design mining
which generates, on demand, visual representations (LePUS3
charts) of programs. Since LePUS3 is mathematically defined [1],
the hypothetical ‘set of charts of JFC’ (formally: the set of charts
that JFC implements) is also well-defined (Figure 1):

Charts(JFC) {C | JavaSemantics(JFC) C}

Theoretical analysis of this set [4] reveals that it has the mathemati-
cal properties of a lattice (Figure 1): a diamond-shaped grid of inter-
connected nodes (charts). At the bottom is the chart with maximum
information about JFC, and at the top is the chart with minimal
information about JFC.

...

 Figure 1 – Charts(JFC): The (hypothetical) set of charts of

JFC is shaped as a mathematical lattice

Given this well-defined conceptual framework, Design Navigation
in JFC is defined as a tool-assisted, process of traversing
Charts(JFC) by step-wise application of abstraction/concretization
operators. Each Design Navigation step is formally defined as the
product of either an abstraction (‘zooming-out’, or ‘up’ in Figure 1)
or a concretization (‘zooming-in’, or ‘down’ in Figure 1) operator.
Since each chart C can be concretized or abstracted in many ways,
depending on which [set of] term[s] is concretized/abstracted, each
node C in Figure 1 represents a chart in Charts(JFC) which is
connected with several nodes above and below it such that—

 a node connected above C represents an abstraction of C
 a node connected below C represents a concretization of C

3. DESIGN NAVIGATOR
The Design Navigator operates in two stages: at the preliminary
stage, it analyzes a Java program and creates a repository of facts
about it. At the second stage, demonstrated in the next section, De-

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74369516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sign Navigation commences, during which the user repeatedly in-
structs the Design Navigator to apply an abstraction or a concretiza-
tion operator, producing at each step a new chart, until the desired
level of abstraction is reached.
The Design Navigator has been used to reverse engineer various
popular class libraries and frameworks such as JGraph, JDOM,
JUnit and other packages from the Java™ class library including the
Servlet API, packages java.io and java.util. Even for large
programs (a few hundreds of classes), it produces appropriately
abstract charts in tens of seconds.

4. CASE STUDY: CHARTING JFC
What can we learn about JFC using the Design Navigator? We
present the LePUS3 charts produced using the concretization opera-
tors. These charts have been modified to improve readability and
remove some terms (using the Elimination abstraction operator).

 Chart 1 – AllClasses stands for the set of all classes in JFC

Chart 1, the Top Chart of JFC, is generated by the Design Naviga-
tor by analyzing JFC and only reveals that there exists a set of
classes in our program. To discover more about AllClasses we ap-
ply the Partition concretization operator, producing Chart 2.

ComponentHrc

RestMember

Component
HrcOps

 Chart 2 – ComponentHrc represents an inheritance hierarchy

In Chart 2 the Design Navigator discovered an inheritance hierarchy
in JFC, denoted ComponentHrc, such that—

 each class in ComponentHrc has (at least) one field (‘Member’) of
some class in the set of classes Rest

 each class in ComponentHrc has a (possibly inherited) set of the
methods, each of which has a method signature in
ComponentHrcOps. In other words, there exists a set of sets of dy-
namically-bound methods in ComponentHrc

To reveal more about the classes and methods in the ComponentHrc
hierarchy, we apply the Enumeration and Partition concretization
operators, resulting in Chart 3, discovering that—

 class Container ‘aggregates’ (has at least one array field holding
instances of [subtypes of]) Component

 classes Component, Button and Scrollbar define a set of dy-
namically-bound methods, sharing the same set of method sig-
natures (ComponentOps2)

 each method in class Container whose signature is in
ComponentOps2 forwards the call to the respective method in
class Component

 Chart 3 – Charting an instance of the Composite in JFC

In fact, Chart 3 completely matches the description of the Compos-
ite [3] pattern in LePUS3 [2], convincing us that classes Button,
Component, Container and Scrollbar participate in an instance of the
Composite pattern.

5. CONCLUSION
We have presented the Design Navigator, a tool that allows pro-
grammers to reverse engineer concise, precisely defined, appropri-
ately abstract LePUS3 charts from Java™ 1.4 programs in polyno-
mial time, solely by the stepwise application of design navigation
operators. The tool gradually discovers some of the building-blocks
in the design of a program, bringing to light relationships which
otherwise are difficult to detect and charts them at the appropriate
level of abstraction. The principles of Design Navigation as demon-
strated by the Design Navigator can be useful to many programmers
who wish to understand unfamiliar Java™ programs.

6. REFERENCES
[1] Eden, A.H., Gasparis, E., and Nicholson, J. 2007. LePUS3 and

Class-Z Reference Manual. Tech. Rep. CSM-474, ISSN 1744-
8050, University of Essex. www.lepus.org.uk

[2] Eden, A.H., Nicholson, J., and Gasparis, E. 2007. The 'Gang of
Four' Companion: Formal specification of design patterns in
LePUS3 and Class-Z. Tech. Rep. CSM-472, ISSN 1744-8050,
University of Essex. www.lepus.org.uk

[3] Gamma, E., et al. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, Addison-Wesley.

[4] Gasparis E., and Eden, A.H. 2007. Design Mining in
LePUS3/Class-Z: Search Space and Abstraction/Con-
cretization Operators. Tech. Rep. CSM-473, ISSN 1744-8050,
University of Essex. www.lepus.org.uk

[5] Kazman, R., and Carrière, S. J. 1999. Playing Detective:
Reconstructing Software Architecture from Available
Evidence. Automated Software Eng. 6(2) 107–138.

[6] Murphy, G. C., et al. 2001. Software Reflexion Models:
Bridging the Gap between Design and Implementation. IEEE
Trans. Soft. Eng. 27(4) 364–380.

[7] Storey, M., et al. 2002. SHriMP views: an interactive
environment for information visualization and navigation. In
CHI '02 Extended Abstracts on Human Factors in Computing
Systems (Minneapolis, Minnesota). New York: ACM, 520–
521.

