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Abstract:  Spectrally Efficient non orthogonal Frequency Division Multiplexing (SEFDM) Systems occupy less bandwidth 

than equivalent orthogonal FDM (OFDM). However, enhanced spectral efficiency comes at the expense of an increased 

complexity in the signal detection. In this work, we present an overview of different detection techniques that trade the error 

performance optimality for the signal recovery computational effort. Linear detection methods like Zero Forcing (ZF) and 

Minimum Mean Squared Error (MMSE) offer fixed complexity but suffer from a significant degradation of the Bit Error 

Rate (BER). On the other hand optimal receivers like Sphere Decoders (SD) achieve the optimal solution in terms of error 

performance. Notwithstanding, their applicability is severely constrained by the SEFDM signal dimension, the frequency 

separation between the carriers as well as the noise level in the system. 

 

1. Introduction.  

Increased interest in spectrally efficient multicarrier systems has been evident over the past few years. Indeed, in 

the beginning of the current decade, Rodrigues and Darwazeh in [1] and Xiong in [2] introduced practical 

implementations of multicarrier systems that occupied half the bandwidth of an equivalent OFDM. However, 

these multicarrier systems had considerable limitations since the detection was possible for real alphabets (e.g. 

BPSK) only.  

Later, Rodrigues and Darwazeh in [3] and Hamamura and Tachikawa afterwards [4] proposed FDM systems that 

deliberately violate the orthogonality principle by having the subcarrier frequency separation smaller than the 

inverse of the FDM signalling period. Consequently, these systems offered the potential of considerable 

bandwidth efficiency by conveying the same information of conventional OFDM systems in a fraction of their 

bandwidth. 

Interestingly, Rusek and Anderson have very recently shown [5] that the concept of reducing the frequency 

separation between orthogonal subcarriers is the dual case of the Mazo's time-domain transmission technique 

whose aim is to transmit information faster than the Nyquist rate [6]. In addition, they have proved that in 

presence of AWGN the frequency separation of the subcarriers can be reduced up to a limit (the dual of the so 

called Mazo's limit) with no impact on the minimum Euclidean distance between the transmit vectors. As a 

consequence, one ought not to expect any degradation in the performance of spectrally efficient FDM systems, 

in relation to OFDM systems, up to this frequency separation limit. Notwithstanding, the reliable detection of the 

information of such FDM systems is still a very challenging issue since the optimal maximum likelihood 

detection is overly complex. 

This paper provides an overview of detection techniques for the non orthogonal SEFDM introduced in [3]. In 

particular, standard sub-optimal Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) detectors are 

applied and compared to various versions of optimal Sphere Decoders (SD) in terms of Bit Error Rate (BER). In 

addition, a complexity comparison between a typical and a regularised version of SD is given. 

The paper is organised as follows: In section 2 we describe the SEFDM system as introduced in [3]. In section 3 

we discuss about the various detection methods that are investigated. Section 4 presents a range of simulation 

results unveiling the merits and demerits of these techniques. Finally, section 5 summarises our conclusions.   

2. SEFDM Model Description 

The original SEFDM transceiver is described in [3]. A high data rate input stream is split into N parallel low 

data rate streams. The latter modulate, according to a specific modulation scheme of level M, N SEFDM 

subcarriers fn(t), n = 0, . . . , N − 1, whose frequency separation Δf is only a fraction of the inverse of the 

SEFDM symbol period T, i.e., 
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T
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Thus, the required bandwidth is reduced by a factor 1-α, at the expense of the loss of orthogonality between the 

carriers. The transmitted signal, in an SEFDM symbol period, is given by 
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where Sn represents the n
th

 modulation symbol. In order to demonstrate the SEFDM system spectral gain, the 

spectrum of the transmitted FDM signal is depicted in Fig. 1 for α = 1 (OFDM), α = 0.75 (25% spectral gain) 

and α = 0.5 (50% spectral gain). For these cases, the evaluation of the noise equivalent bandwidth provides 

similar spectral gains to the ones observed above. Assuming the only impairment introduced by the 

communication channel is Additive White Gaussian Noise (AWGN) n(t), the received signal r(t) can be 

expressed as: 

).()()( tntstr       (3) 

 

 
 

Fig. 1: FDM Spectrum of N=32 and T=4μsec FDM schemes for 

α={1,3/4,1/2}. 

Fig. 2: SEFDM modem. 

The proposed receiver consists conceptually of two stages. The first stage uses a bank of N correlators to extract 

N sufficient statistics from the received signal. The second stage uses a detector. The particular choice of the 

correlation functions, bi(t) with i=0,1…N-1, at the receiver outer stage is driven by two important requirements: 

(i) The correlation functions should be orthonormal in order to prevent colouring of n(t), and (ii) That detection 

of the SEFDM signal could be computationally facilitated. Both requirements are met by generating an 

orthonormal base that spans the SEFDM signal space using the Iterative Modified Gram Schmidt (IMGS) 

orthonormalization method [7]. We underline the use of IMGS instead of the classic version of the GS algorithm 

because of its superior performance in terms of numerical stability.  

We also note it is possible to relate the vector of sufficient statistics to the vector of information symbols using 

the following linear statistical model  

,NMSR       (4) 

 

where R = [Ri] is the vector of the N observation statistics, S = [Si] is the vector of the N transmitted symbols, M 

= [Mij] is the N×N covariance matrix of the SEFDM carriers and the orthonormal base, and N = [Ni] is a vector 

containing N independent Gaussian noise samples of zero mean and covariance matrix σ
2
IN (IN being an identity 

matrix of N×N dimension). The elements of R and M are given by 
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Finally, it is interesting to note that the typical implementation of an SEFDM system mimics the IFFT-FFT 

based implementation of an OFDM system [4]. For example, an Inverse Fractional Fourier Transform (IFrFT), 

with quadruple the complexity of a conventional IFFT, could be used for the SEFDM signal generation [8]. A 

block diagram of a possible SEFDM modem is illustrated in Fig. 2. 

3. Optimal and Suboptimal Detection 

The optimum ML detection of SEFDM reduces to the following combinatorial optimisation problem: 

,S 

,MSR
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NQ tosubject

  minimise
     (6) 
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where ||·|| denotes the Euclidean norm and Q
N
 is the feasible set of the problem comprising of all the possible N-

tuples of the data symbols. It is apparent that the above problem can be solved through an exhaustive comparison 

amid the values of the cost function for all the feasible points. However, the complexity of such a solution would 

be of exponential order over the constellation cardinality and the number of the SEFDM carriers, i.e. O(M
N
).  

Thus, a first simple solution to the complexity problem could come from the relaxation of the feasible set Q
N
. In 

particular, after discarding the constraint of eq. (6) so that the elements of S can be any real numbers, the 

SEFDM detection reduces to an unconstrained Least Squares (LS) problem that has the solution Ś=M
-1

R. Since 

the elements of Ś are any real numbers, a slice operation is then applied to recover the originally transmitted 

symbols S. Such a kind of detection is well known as Zero Forcing. 

A slightly different approach to ZF is MMSE detection. In his case, the cost function of the previous 

unconstrained LS problem is regularised so that big solutions are penalised as follows: 

,SMSR
2 2

  minimise     (7) 

where ε is called the regulator and in MMSE  is set to be equal to 1/SNR (SNR is the Signal to Noise Ratio). The 

solution to (7) is given by Ŝ=(M
H
M+εI)

-1
M

H
R, where (·)

H
 denotes the Hermitian of a matrix and I is the identity 

matrix of N×N size. As in ZF case, the final MMSE estimate is derived after the application of a slicer on the Ŝ. 

Although ZF and MMSE have a fixed polynomial complexity (i.e. O(N
3
)), both of them suffer from an overly 

amplification of noise that results into a severe degradation of their error performance. 

Should we constrain the feasible set so that S takes values in the {±1±j} N-tuples, optimality is achieved using 

Sphere Decoding, which is a dynamic programming algorithm proposed by Finchke and Pohst [9] for the fast 

solution of integer LS (ILS) problems. Consequently, eq. (6) could be reduced to the following: 
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where C is the so called SD radius parameter.  Despite the fact that SD guarantees an optimal solution, its main 

drawback is that its computational efficiency depends on the noise and the bad conditioning of the projections 

matrix M [10]. An efficient solution to the last problem could be given by regularising, similarly to MMSE, the 

cost function of eq. (8) before implementing the typical SD algorithm. 

In the next paragraph, we demonstrate by simulation comparisons between ZF, MMSE detectors and standard 

and regularised versions of Sphere Decoders.  

 

Fig. 3: Error performance of various detection techniques versus α. 

Eb/N0 was set to 5 dB. 

Fig. 4: Error performance of various detection techniques versus 

Eb/N0; α was set to 0.75. 

4. Simulation Results 

We performed simulations for different number of 4-QAM SEFDM carriers N with frequency separation that 

ranged from the OFDM (α=1) to the half OFDM one (α=0.5). In addition, we evaluated the performance of the 

examined detection techniques for various values of the Energy of the bit over the Noise power density, Eb/N0.  

Fig. 3 shows BER for the different detections for a small dimension, N=4, SEFDM signal versus α. Eb/N0 was 

set to be equal to 5 dB. It appears that ZF and MMSE significantly diverge from the optimal case. On the 

contrary, SD result coincides with ML as expected. We also need to underline the fact the optimal case achieves 
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the BER of an equivalent OFDM for α approximately equal to 0.8. Henceforth, BER gradually degrades even if 

brute force ML detection is applied. 

Fig. 4 presents a similar comparison of BER versus the Eb/N0 for a fixed a=0.75. It is obvious that SD prevails 

approximating the OFDM performance represented by the single carrier (SC) 4-QAM curve. 

 

Fig. 5: Error performance of various Sphere Decoders versus α; 
Eb/N0 was set to 5 dB. 

Fig. 6: Complexity comparison versus a between SD and RSD 
detection techniques; Eb/N0 was set to 5 dB. 

Figs 5 and 6 illustrate results for the standard and Regularised SD (RSD) detections. In the former, it is shown 

that both schemes achieve the same error performance since they both solve equivalent optimisation problems 

[10]. In the latter, the complexity of both techniques versus a, for a fixed Eb/N0, is evaluated. The number of the 

visits to the SD tree nodes is used as a measure of comparison. It becomes clear that RSD improves standard SD 

complexity. In addition, the regularisation benefit enhances as the conditioning of M is worsening with the 

decrease in α and\or the increase of SEFDM signal dimension N.  

5. Conclusions. 

We investigated optimal and sub-optimal detection techniques for a non orthogonal spectrally efficient FDM 

system. We showed by simulation that relaxations of the ML detection problem like ZF and MMSE suffer from 

a severe degradation in their error performance due to the overly amplification of the noise. On the other hand 

Sphere Decoders achieve the optimum solution but their complexity is random depending on the noise and the 

projections matrix properties. An efficient solution to the latter is given by a regularised version of the SD 

algorithm. Hence, a tangible detection could be accomplished for a small dimensional SEFDM signal in high 

SNR regimes. 
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