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Abstract. This paper addresses the estimation of geometric anisotropy parameters
from scattered data in two dimensional spaces. The parameters involve the orien-
tation angle of the principal anisotropy axes and the anisotropy ratio (i.e., the ratio
of the principal correlation lengths). The mathematical background is based on the
covariance Hessian identity (CHI) method developed in [3, 1]. CHI links the ex-
pectation of the first-order sample derivatives tensor with the Hessian matrix of the
covariance function [6]. The paper focuses on the application of CHI to samples that
require segmentation into clusters, either due to sampling density variations or due
to systematic changes in the process values. A non-parametric isotropy test is also
presented. Finally, a composite (real and synthetic) data set is used to investigate the
impact of CHI anisotropy estimation on spatial interpolation with ordinary kriging.

1 INTRODUCTION

Scattered samples of a physical process from an environmental sensor network are con-
sidered. To generate smooth maps of the process, a spatial model is needed that will be
used for interpolation of the measurements on the regular map grid. The spatial model
should incorporate estimates of the anisotropy. It is assumed that the process can be mod-
eled in terms of a second-order stationary, Gaussian or lognormal spatial random field,
at least within clusters (subsets of the sampling set). Hence, we focus on the estimation
of statistical, geometric anisotropy. A method is formulated for classifying scattered data
according to their position, sampling density, and the process values in order to estimate
the anisotropy parameters.

2 THE CLUSTERED CHI METHOD FOR ANISOTROPY ESTIMATION

Consider an environmental sensor network (e.g., radioactivity probes) contairsag-

pling pointss; = (x;,y;), ¢ = 1,..., N, where(z;,y;) are expressed in an equidistant
projection system. The sampled process to be mapped is denot€gsly The covari-

ance Hessian identity (CHI) method requires stationarity and normality or log-normality.
To justify the use of stationarity, it is necessary to consider as a separate group subsets
of the sampling network that contain a large (efg,, > 50) number of extreme values
(compared to the background). Thus, sepastdagonarity domainsre defined that con-

tain the “normal” and “extreme” values respectively. On-grid deterministic interpolation

is used to approximate the sample derivatives of scattered data in the CHI method. If the
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sampling density varies significantly over a stationarity domain, the data are segregated
into clusters ofsimilar sampling density (SS2nd define a different interpolation grid
for each cluster by tuning the grid step to the cluster sampling density.

2.1 Clustering

The first step of the clustering process removes sensor locations that are isolated and
distant. A rectangular box centered at the network’s centroid is defined. The extent of
the box in directiong andy is +40,, and+40, whereo,, o, are the standard deviations

of the coordinate locations. The points that lie outside the boundary box and do not have
a neighbour within a radius equal toin(o,, 0,) are removed. The stationarity domain

of extreme values (G2) that exceed the threshold is then identified. The remaining points
form the stationarity domain G1.

Different clusters are identified by constructing a sampling density matrix (SDM) on
a regular grid (different than the map grid) that covers the sensor network. The sampling
density grid (SDG) consists a¥ equal area cells. The sampling density of each cell is
proportional to the number of sensor points enclosed by the cell. Each sensor point is
assigned the sampling density value of the corresponding SDG cell. Image edge detec-
tion techniques are used to determine the cluster perimeters. The SDM is smoothed by an
averaging3 x 3 filter. Then, arb x 5 edge detection logarithmic filter is passed over the
grid to detect likely cluster perimeters. Once the candidate cells have been determined,
closed perimeters are identified by checking that there is a sequence of edge cells linked
sequentially (i.e., each cell should have a neighbour insiglexa8 neighbourhood cen-
tered at the cell’s position). Each closed perimeter is labeled and considered as a cluster
perimeter. The partitioning of sensor points inside cluster perimeters forms the initial
cluster assignment. Some points are not assigned to clusters at this stage.

Meaningful SSD clusters for CHI anisotropy detection should contain at least 50 sen-
sor points. Smaller clusters are rejected, and the sampling points inside them, as well as
unassigned sensor points, are assigned to a neighbouring, sufficiently populated cluster.
The assignment is performed by optimizing a cost function that weighs SDM differences
between the sensor point and the three closest neighbour clusters as well as physical dis-
tances between the sensor point and the centroids of the clusters. The distances and the
sampling density differences are normalized in thel| interval. In the cost function,
the point-cluster distances are weighed with the coeffidightind the sampling density
differences by the coefficientl. This scheme ensures that points near a specific cluster’s
perimeter are preferably assigned to that cluster, while points that are equally far from all
three clusters are assigned to the cluster that has a similar sampling density. All sensor
sites are finally assigned to an SSD cluster that includes more than 50 sensor points.

2.2 Anisotropy estimation

The estimates of the anisotropy parametdtsd) in each cluster are based on the CHI
method [1]. The anglé represents the angle between one of the principal axes, arbitrarily
called M 1, and the horizontal axis of the coordinate systéin= &; /&, is the ratio of the
correlation lengths along/1 and its orthogonal direction/2. If Q” are sample-based



estimates of the slope tensor &f(s), andqgiag = %, Goft = % represent the diagonal
11 11

and off-diagonal ratios, respectively,andd are given by

2 1 — QQOH - 11— Qdia,

6’:—tan1(—), RP=1+ 5 . (1)

2 - Qdiag Qdiag — (1 + Qdiag) COS2 0

Equations (1) are valid if the process is Gaussian or log-Gaussian, second-order stationary,
and differentiable. They;., andg.q are estimated by finite differences on an interpolated
square grid covering the domain. The interpolation is conducted using a non-parametric,

deterministic approach (e.g., triangle-based linear interpolation or minimum curvature).

Anisotropy can be estimated separately for each SSD cluster. However, using individ-
ual cluster estimates to interpolatds) on the map grid would require a smoothing filter
(e.g., moving windows). Alternatively, one can seek an average estimate of the anisotropy
within the stationarity domains. Given the nonlinearity of the expressions in (1), simply
averaging the anisotropy parameters of the clusters is not appropriate. Let us assume that
each stationarity domain involves, clusters ¢ = 1,2), and that@fj;c, c=1,...,K,
represents the estimate of slope tensor forcttecluster in they-th domain. Anisotropy
estimates are based on theighted average??;, of the slope tensor:

=7 Zﬁ(zgl wg;cng;c
N Zﬁ(zgl Wyse

The weightsw,,. are set equal to the aref, enclosed by the convex hull of each cluster.

(2)

2.3 A Statistical Test for Isotropy

The anisotropy parameter estimates are statistics and exhibit sample-to-sample fluctua-
tions. A non-parametric joint probability density function (jpdf) has been developed and
its confidence regions have been calculated [5]. These can be used to test (a) if two sets
of anisotropy parameters are statistically different and (b) if the isotropy assumption can
be rejected at a given confidence level. The isotropy test is used to determine if it is
necessary to perform an isotropy restoring transformation (rotation and rescaling) of the
coordinates. This helps to reduce the computing time of map generation for isotropic
data. The isotropy hypothesis can not be rejected if

e (N— 27/ (N —14)rq N+2\/(N—Ta)ra> 3)

N — 2r, N — 2r,

wherer,, is a constant defined by the confidence level; f65% confidence levet, ~ 6.

The test is conservative (as shown by theoretical arguments and numerical simulations),
leading to wider confidence intervals than the true ones, due to the underestimation of
correlation effects. The accuracy of the test is compromised for small data sets or sparsely
sampled areas, due to poor estimation of the anisotropy parameters in such cases.

3 Stuby DESIGN AND RESULTS

To test the benefit of anisotropy estimation for mapping, a cross validation approach is em-
ployed: validation errors obtained by ordinary kriging (OK) with an isotropic variogram



4e+06 5e+06

3e+06

2e+06

(a) G1 (black) and G2 (red) stationarity(b) Cluster perimeters for points in G1.
groups.

5e+06
I

4e+06
I

y
2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

3e+06
I

2e+06
I

T T T T T T T T
3e+06 4e+06 5e+06 6e+06 7e+06 1e+06 3e+06 5e+06 7e+06

(c) Sampling sites inside cluster perimeter&) Final assignment of points to clusters.

Figure 1: Segmentation of the data set into two groups of normal (G1) and extreme (G2)
values after removal of distant points, and segmentation of G1. Crosses (+) denote edge
points on the sampling density grid.

model are compared with those obtained after an isotropy restoring coordinate transfor-
mation which is based of, . We have conducted tests on single-cluster synthetic data
and densely sampled real data (not shown herein), which show that application of CHI
Improves interpolation performance. The impact of anisotropy estimation for a realistic
and rather complicated data set is studied below. The sampling network is represented
by the sites of the European Radiological Exchange Platform (EURDEPS: 3626
sampling sites are used with their positions expressed in the INSPIRE coordinate system
(http://inspire.jrc.ec.europa.eulX (s) represents gamma dose rates (GDR) measured in
nSv/h (nanoSievert per hour). The network involves both densely sampled areas (e.g.,
Germany and Austria) and sparsely sampled ones (e.g. in South Europe). The GDR ex-
ercise data were generated by the German Federal Office for Radiation Protection (BfS)
for workpackage 5.4 of INTAMAP (www.intamap.org). They combine real background
radioactivity measurements with simulated effects that include systematic errors, as well
as extreme values due to lighting strikes and the dispersion of a radioactive plume caused
by a severe reactor accident in central Europe. The clustering process is illustrated by



means of Fig. 1 for the entire data set. First, isolated stations remote to the European
continent are removed. Fig. 1(a) shows the partitioning of the remaining points into two
stationarity groups. In Fig. 1(b) the identified edges are demonstrated, while Fig. 1(c) dis-
plays the sampling points inside the cluster perimeters. Fig. 1(d) shows the final cluster
assignments as well as the perimeters of the convex hulls.
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(a) Linear interpolation grid in G1. Range of(b) Linear interpolation grid in G2. Range of
values29.0 — 248.8 nSv/h. values251.0 — 26992.5 nSv/h.

Figure 2: Interpolated fields used in the clustered CHI anisotropy estimation.

To calculate validation measur&), training setrealizations from the remaining sites
are used. Each training set contain8 of the total number of points, and the sampled
points are replaced at the end of each run. To include anisotf8py) are estimated for
each stationarity group, using linear interpolation for finite differences estimation. The
interpolated fields for G1 and G2 are shown in Fig. 2. Since G1 contains a number of
clusters, the anisotropy estimates are based on Eq. (2). Then, if the isotropy test (3) does
not support the isotropic hypothesis, an isotropy restoring coordinate transformation is
used. Next, the range and sill of the variogram are estimated in the isotropic coordinate
system using the R functicautomap [2]. The estimate$R, §) are incorporated to ob-
tain the anisotropic variogram. Finally, OK is applied usinggstat package [4]. For
each training set the optimal variogram is selected from among the exponential, Gaus-
sian, spherical and Matérn models. Validation measures compare the estimates with the
“true” values at the prediction location$ /8 of the points). These measures involve a
spatial average over the prediction set followed by an average over the realizations. The
results are reported in Table 1. The 1st row is obtained using isotropic variogram models.
The 2nd row is obtained by estimating the anisotropy parameters, performing an isotropy
restoring transformation (rotation and rescaling of coordinate axes), and then determining
the variogram. Incorporation of anisotropy improves the validation measures.

1The computation time i82 sec for OK without and 7 sec for OK with the anisotropy correction. In
the first case, OK uses all the sampling points. In the second case, the training set is split into G1 and G2.
There is an additional cost for assigning prediction points to G1 or G2, based on the ownership group of
their nearest neighbours in the training set. Nearest neighbours are efficiently determined using kd trees
(function ann, yalmpute package). The code ran on an Intel Core2 Duo CPU with 2Gb RAM, using Ubuntu
8.10 OS.



Table 1: Average validation measures rounded to the second decimal place. ME: Mean er-
ror. MAE: Mean absolute error. MARE: Mean absolute relative error. MRSE: Mean root
square error. MRSRE: Mean root square relative error. R: linear correlation coefficient.

ME MAE MARE MRSE MRSRE R
With isotropic hypothesis —13.12 600.95 1.30 1428.94 5.84 0.95
With isotropy correction | —4.55 538.46 0.77 1402.35 5.76 0.95

4 CONCLUSIONS

The clustered CHI method for estimating anisotropy parameters from scattered data sam-
pled on irregular supports is presented. The performance of the method depends on
the sampling density, the presence or lack of stationarity, and the differentiability of the
mapped process. Application of the CHI method to a “difficult” data set leads to improved
interpolation validation measures compared to the isotropic hypothesis.
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