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Quantile regression with clustered data∗

Paulo M.D.C. Parente† J.M.C. Santos Silva‡
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Abstract

We show that the quantile regression estimator is consistent and asymp-

totically normal when the error terms are correlated within clusters but inde-

pendent across clusters. A consistent estimator of the covariance matrix of the

asymptotic distribution is provided and we propose a specification test capable

of detecting the presence of intra-cluster correlation. A small simulation study

illustrates the finite sample performance of the test and of the covariance matrix

estimator.

JEL classification code: C12, C21, C23.
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1. INTRODUCTION

In many applications inference is performed using micro data sampled from a number

of groups or clusters; typically it is assumed that observations from different groups are

conditionally independent but intra-cluster correlation is not ruled out. In this context

valid inference can be performed by using a consistent estimator of the covariance matrix
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of the asymptotic distribution of the estimator when intra-cluster correlation is allowed for.

This was the motivation for the work of Liang and Zeger (1986) and Arellano (1987), who

extended the results in White (1984) to derive covariance matrix estimators that are valid

when there is heteroskedasticity and intra-cluster correlation.

Although these methods were initially developed with panel data in mind they are also

useful with dyadic data and even in cross-sections, where the clusters can be defined for

example by regions or industries. A well-known example where it is important to allow for

intra-cluster correlation occurs when cross-sectional regressions using micro data contain

some regressors observed only at a more aggregate level; see Moulton (1986, 1990). The

ubiquitous use of the so-called clustered standard errors in applied econometrics shows how

prevalent this kind of situation is (see Cameron and Miller, 2011, for a recent survey on

inference with this kind of data).

The asymptotic distribution of maximum likelihood and least squares estimators allowing

for intra-cluster correlation have been widely studied, and popular software packages now

implement covariance matrix estimators that are valid in this case (see, e.g., Rogers, 1993).

However, it appears that so far the case of quantile regression has not been considered.

This is unfortunate because quantile regression can suffer from the “Moulton problem”

and because pooled quantile regression and correlated random effects quantile regression

are gaining popularity in applied panel-data econometrics (see, e.g., the influential paper

by Abrevaya and Dahl, 2008). In these cases practitioners perform inference by using

bootstrap procedures but we are not aware of any formal proof that these estimators

are consistent in this context. Moreover, bootstrapping quantile regression is somewhat

impractical when the problem involves very large samples and many regressors because in

this case the computation of the bootstrap covariance matrix using a reasonable number

of bootstraps is still very time consuming.

In this paper we extend the results of Kim andWhite (2003) and show that the traditional

quantile regression estimator (Koenker and Bassett, 1978) is consistent and asymptotically

normal when there is within-cluster correlation of the error terms. Additionally we present a
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consistent estimator for the covariance matrix of the asymptotic distribution of the quantile

regression estimator with intra-cluster correlation and propose a specification test capable

of detecting the presence of this kind of correlation. A small simulation study is used to

illustrate the finite sample performance of the proposed methods. An Appendix provides

the proofs of all theorems.

2. QUANTILES WITH CLUSTERS

2.1. Set-up and asymptotic properties

Consider the case in which the researcher is interested in estimating the θ-th quantile of

the conditional distribution of y given x, denoted Qθ(y|x), and assume that

Qθ(y|x) = x′β0,

where x and β0 are k × 1 vectors and for simplicity we omit that the vector of parameters

is indexed by θ. We are interested in the case where estimation is to be performed using

a sample {(ygi, xgi), g = 1, . . . , G, i = 1, . . . , ng}, where g indexes a set of G predefined

groups or clusters, each with ng elements. That is, we are interested in estimating

ygi = x′giβ0 + ugi, (1)

Pr(ugi ≤ 0|xgi) = θ. (2)

In what follows we will consider the properties of the estimator of β0, with ng fixed and

G→∞, for the case in which the disturbances ugi are assumed to be uncorrelated across

clusters but are permitted to be correlated within clusters. For simplicity, and without loss

of generality, we consider only the case where ng = n.

The quantile regression estimator for clustered data is defined by

β̂ = arg min
β∈Rk

1

G

∑G

g=1

∑n

i=1
ρθ
(
ygi − x′giβ

)
,

where ρθ(a) = a (θ − I[a < 0]) is known as the check function and I[e] is the indicator

function of the event e.
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The consistency of β̂ can be proved under the following assumption:

Assumption 1 (a) Let xg = (x′g1, . . . , x
′
gn)′ and yg = (yg1, . . . , ygn)′; the data

{
(yg, x

′
g)
′}G
g=1

are independent and identically distributed across g; (b) E[‖xgi‖] <∞; (c) The conditional

distribution of ugi given xgi, F(ugi|xgi), has a unique θ-th conditional quantile at ugi = 0.

Assumption 1 (a) is made for simplicity but can be relaxed to allow some dependence

across g, although some of the remaining regularity conditions would have to be strength-

ened. Assumption 1 (b) and (c) are standard (see Theorem 2.11 of Newey and McFadden,

1994, p. 2140) but can be relaxed (see Koenker, 2005, p. 118).

We are now able to establish consistency.

Theorem 1 Under Assumption 1, β̂
p→ β0.

To prove asymptotic normality we need the following additional assumption:

Assumption 2 (a) F(ugi|xgi) is absolutely continuous with continuous density f(u|xgi)

that satisfies f(0|xgi) < f1 <∞ and f(0|xgi) > 0 for all xgi and for a positive constant f1;

(b) E[‖xgi‖3] <∞ for all i and g; (c) The matrix A = E[(
∑n

i=1

∑n
j=1 xgix

′
gjψθ(ugi)ψθ(ugj))],

where ψθ(a) = θ− I [a < 0], is positive definite; (d) The matrix B =
∑n

i=1 E[xgix
′
gif(0|xgi)]

is positive definite.

Assumption 2 (a), (c), and (d) are standard (see Koenker, 2005, p. 120). Assumption 2

(b) is stronger than that considered by Koenker (2005, p. 120) in the standard i.i.d. setting

but coincides with that required by Powell (1984) and Kim and White (2003).

In the Appendix we prove the following theorem:

Theorem 2 Under Assumptions 1 and 2 we have

√
G
(
β̂ − β0

)
D→ N (0,Ω) ,

with Ω = B−1AB−1.
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2.2. Consistent covariance matrix estimation

For the estimator β̂ to be useful it is necessary to have a consistent estimator of Ω. As

mentioned before, practitioners often use bootstrap procedures to estimate Ω (see, e.g.,

Abrevaya and Dahl, 2008) but it is not clear that this estimator is valid in the context

considered here. More importantly, bootstrap methods are still somewhat impractical

in realistic applications, especially in models for which quantile regression takes many

iterations to converge. In what follows we provide consistent estimators of A and B that

can be used to obtain a consistent estimator of Ω.

A consistent estimator of

A = E
[∑n

i=1

∑n

j=1
xgix

′
gjψθ(ugi)ψθ(ugj)

]
is given by

Â =
1

G

∑G

g=1

∑n

i=1

∑n

j=1
xgix

′
gjψθ(ûgi)ψθ(ûgj),

where ûgi = ygi − x′giβ̂. Given that β̂
p→ β0, Assumptions 1 and 2, Loève’s cr inequality

(Davidson, 1994, p. 140), and a uniform weak law of large numbers, imply that Â
p→ A.

A more challenging task is to obtain a consistent estimator of B. Following Powell (1984,

1986) and Kim and White (2003) we consider the estimator

B̂ =
1

2ĉGG

∑G

g=1

∑n

i=1
I [|ûgi| ≤ ĉG]xgix

′
gi,

where the bandwidth ĉG may be a function of the data. To establish the consistency of B̂

we require the following additional assumption which was also considered by Powell (1984)

and Kim and White (2003):

Assumption 3 (a) f(a|xgi) < f1 <∞ for all a and xg and for a positive constant f1; (b)

There is a stochastic sequence ĉG and a non-stochastic sequence cG such that ĉG/cG
p→ 1,

cG = o(1) and c−1
G = o(

√
G).

The following theorem gives the desired result:
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Theorem 3 Under assumptions 1, 2, and 3, B̂
p→ B.

In order to implement this estimator of B it is necessary to define a practical method of

choosing the bandwidth ĉG. The solution used in the simulations presented in Section 3 is

based on the method described by Koenker (2005, p. 81). In particular, we define

ĉG = κ
[
Φ−1 (θ + hnG)− Φ−1 (θ − hnG)

]
,

where hnG is (see Koenker, 2005, p. 140 or Koenker and Machado, 1999, p. 1301)

hnG = (nG)−1/3

(
Φ−1

(
1− 0.05

2

))2/3
(

1.5 (φ (Φ−1 (θ)))
2

2 (Φ−1 (θ))2 + 1

)1/3

,

and κ is a robust estimate of scale. After some experimentation, we decided to define κ as

the MAD (median absolute deviation) of the θ-th quantile regression residuals.1

3. A SPECIFICATION TEST

In the spirit of White (1980) and Kim and White (2003), in this section we propose

a simple test to check whether the use of the covariance matrix estimator obtained in

Subsection 2.2 is necessary. In particular, we derive a test based on the moment condition

E
[∑n

i=1

(∑n

j=1
zgizgjψθ(ugi)ψθ(ugj)− ψθ(ugi)2z2

gi

)]
= 0, (3)

where zgi = g(xgi) and g(·) is a scalar function. When (3) holds for zgi defined as an

arbitrary element of xgi, the matrix Ω reduces to the covariance matrix obtained by Cham-

berlain (1994) and Kim and White (2003) for the case where the errors ugi and ugj are

uncorrelated but may be heteroskedastic.

Further insights into the nature of (3) can be gained by noting that it is implied by the

following twin sets of moment conditions:

E[zgizgj (θ − I [ugi < 0])] = 0, (4)

E[zgizgj
(
θ2 − I [ugi < 0] I [ugj < 0]

)
] = 0. (5)

1It is customary to multiply MAD by 1.4826 because in the normal distribution 1.4826MAD is approx-

imately equal to the standard deviation. However, some preliminary simulations revealed that the results

were substantially better when the scaling factor was not used.
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The moment conditions in (4) are closely related to the first order conditions of the

estimator and can be used to test the correct specification of (1) and (2) by checking for the

omission of the variables zgizgj. The set of moment conditions in (5) will hold if ugi and ugj

are independent and are of particular interest in the context we are considering. Therefore,

a test based on (3) is both a test of the validity of (2) and a test of the independence

between ugi and ugj.

Formally, we propose a test for the joint null hypothesis

H0 :

{
Fi (a|xg) = F (a|xgi) for all i,

Fi,j (a, b|xg) = Fi (a|xg)× Fj (b|xg) for i 6= j,
(6)

where Fi (a|xg) = Pr (ugi ≤ a|xg) and Fi,j (a, b|xg) = Pr (ugi ≤ a, ugj ≤ b|xg),2 based on the

following statistic, which is based on the sample analog of (3):

T =
1√
G

∑G

g=1

∑n

i=1

(∑n

j=1
zgizgjψθ(ûgi)ψθ(ûgj)− ψθ(ûgi)2z2

gi

)
.

In order to obtain the asymptotic distribution of T we define

D = Var
(∑n

i=1

(∑n

j=1
zgizgjψθ(ugi)ψθ(ugj)− ψθ(ugi)2z2

gi

))
,

= E

[(∑n

i=1

[∑n

j=1
zgizgjψθ(ugi)ψθ(ugj)− ψθ(ugi)2z2

gi

])2
]
,

= 2
∑n

i=1

∑n

j=1,i 6=j
E
[
z2
gjz

2
giθ

2(1− θ)2
]
,

and make the following additional assumption:

Assumption 4 (a) E[‖zgi‖4+η] <∞ for some η > 0; (b) D is strictly positive.

Theorem 4 Under Assumptions 1, 2, and 4, and H0, T
D→ N (0, D).

In practice D can be consistently estimated by

D̂ =
2

G

∑G

g=1

∑n

i=1

∑n

j=1,i 6=j
z2
gjz

2
giθ

2(1− θ)2,

2Notice that H0 implies (3) but the reverse is not true; we will derive the distribution of the test statistic

under H0.
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and therefore a test based on T is very easy to implement.3 However, the test requires the

choice of zgi, which plays an important role in the interpretation of its outcome. In the

simulation study to be presented below we focus on the case where zgi = 1 and the model

has an intercept. In this case the sample analog of (4) will necessarily hold because it is

implied by the first order conditions of the estimator and consequently the test has non-

trivial power only against intra-cluster correlation; i.e., only (5) is being tested. Therefore,

this particular form of the test is the quantile regression analog of the heteroskedasticity

and non-normality robust version of the Breusch and Pagan (1980) error components test

introduced by Wooldridge (2002, p. 265).4

4. SIMULATION EVIDENCE

In this section we present the results of a small simulation study on the performance of

the covariance matrix estimator proposed in Section 2 and of the test introduced in Section

3.

The simulated data were generated as

ygi = γ0 + γ1xgi +
(
xhgi
)
ugi,

xgi = ξg + εgi,

ugi = αg + vgi,

i = 1, . . . , n; g = 1, . . . , G,

where γ0 = γ1 = 0, h ∈ {0, 1} is a parameter controlling the presence of heteroskedasticity,

n ∈ {2, 5}, G ∈ {100, 1000, 10000}, ξg ∼ χ2
(1), εgi ∼ χ2

(2), αg ∼ χ2
(dα), vgi ∼ χ2

(dv), and

ξg, εgi, αg, and vgi are independent. We considered cases with and without intra-cluster

correlation in ugi: in the first case we set dv = 2 and dα = 1, and in the second case dv = 3

and dα = 0. Therefore, in all cases ugi ∼ χ2
(3) and xgi ∼ χ2

(3). For each of the designs, ξg, εgi,

3Note that when ng = n and zgi = 1 we have that D̂ = D = 2θ2(1− θ)2n(n− 1).
4Like Breusch and Pagan (1980) and Wooldridge (2002), we consider only the univariate case. However,

following Kim and White (2003), it is also possible to develop a multivariate version of the test.
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αg, and vgi were newly generated for each of the 10000 replications used in the experiment.

The performance of the covariance estimator is evaluated for θ ∈ {0.25, 0.50, 0.75} by

estimating the θ-th quantile regression of ygi on xgi and a constant and testing whether

the slope parameter of the regression is equal to its true value (γ1 + hQθ (ugi)). All the

simulations where preformed in Stata 11 (StataCorp., 2009) using the command qreg2

(Machado, Parente, and Santos Silva, 2013) that implements both the covariance matrix

estimator and the test studied here.

Tables 1 and 2 give the rejection frequencies of the null hypothesis at the 5% level; we

report the results obtained using both the covariance matrix estimator proposed in Section

2 and a covariance matrix estimator obtained using 100 cluster-bootstraps. In evaluating

the results of these experiments we will follow Cochran (1952), who suggested that a test

can be regarded as robust relative to a nominal level of 5% if its actual significance level

is between 4% and 6%. Given the number of replicas used in these experiments, we will

consider that estimated rejection frequencies within the range 3.62% to 6.47% provide

evidence consistent with the robustness of the test.

In line with the findings for the case of independent observations reported by Buchinsky

(1995), our results show that the bootstrap estimator performs well in most of the cases

considered. As for the results based on B̂−1ÂB̂
−1
, we see that there is some tendency to

overreject the null when n = 100 and a slight tendency to under-reject for larger samples

when the errors are heteroskedastic (h = 1) and there is no intra-cluster correlation (dv = 3

and dα = 0). Crucially, the results obtained using B̂−1ÂB̂
−1
are quite reasonable when they

are more interesting, i.e., when the samples are large and the errors actually have intra-

cluster correlation (dv = 2 and dα = 1).5

Overall, the results obtained when using B̂−1ÂB̂
−1
to estimate Ω are quite encouraging,

suggesting that this estimator can be used in situations where the bootstrap is impractical.6

5We performed an additional set of experiments with a similar design but with normally distributed

errors and the results for the tests based on B̂−1ÂB̂
−1
were slightly better than those reported here.

6Notice that computing the bootstrap results presented here is approximately 100 times slower than

computing the results based on B̂−1ÂB̂
−1
.
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Table 1: Rejection frequencies at the 5% level (dv = 3 and dα = 0)

B̂−1ÂB̂
−1

Bootstrap

h n G θ = 0.25 θ = 0.50 θ = 0.75 θ = 0.25 θ = 0.50 θ = 0.75

0 2 100 0.0383 0.0675 0.1069 0.0508 0.0566 0.0585

1000 0.0541 0.0580 0.0641 0.0570 0.0571 0.0567

10000 0.0474 0.0515 0.0543 0.0515 0.0530 0.0578

5 100 0.0548 0.0716 0.0859 0.0576 0.0599 0.0580

1000 0.0511 0.0540 0.0517 0.0567 0.0576 0.0492

10000 0.0504 0.0522 0.0502 0.0527 0.0554 0.0500

1 2 100 0.0621 0.0684 0.1055 0.0567 0.0609 0.0624

1000 0.0340 0.0442 0.0551 0.0507 0.0590 0.0544

10000 0.0338 0.0374 0.0461 0.0512 0.0535 0.0564

5 100 0.0488 0.0546 0.0791 0.0574 0.0606 0.0603

1000 0.0356 0.0330 0.0457 0.0558 0.0479 0.0481

10000 0.0396 0.0370 0.0416 0.0561 0.0517 0.0493

Table 2: Rejection frequencies at the 5% level (dv = 2 and dα = 1)

B̂−1ÂB̂
−1

Bootstrap

h n G θ = 0.25 θ = 0.50 θ = 0.75 θ = 0.25 θ = 0.50 θ = 0.75

0 2 100 0.0419 0.0677 0.1102 0.0545 0.0575 0.0604

1000 0.0482 0.0557 0.0612 0.0528 0.0585 0.0550

10000 0.0562 0.0554 0.0554 0.0615 0.0583 0.0566

5 100 0.0598 0.0740 0.0920 0.0632 0.0610 0.0644

1000 0.0520 0.0558 0.0616 0.0553 0.0567 0.0582

10000 0.0496 0.0487 0.0565 0.0520 0.0539 0.0601

1 2 100 0.0717 0.0721 0.1103 0.0660 0.0608 0.0667

1000 0.0332 0.0419 0.0582 0.0506 0.0539 00547

10000 0.0366 0.0398 0.0445 0.0543 0.0544 0.0510

5 100 0.0584 0.0630 0.0946 0.0627 0.0626 0.0663

1000 0.0375 0.0400 0.0566 0.0540 0.0514 0.0561

10000 0.0363 0.0364 0.0448 0.0481 0.0492 0.0501
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Moreover, we note that although tests based on the bootstrap standard errors performed

well in these experiments their use is not generally recommended (see, e.g., the comment

in Davidson and MacKinnon, 2004, p. 208). Therefore, if bootstrap is at all feasible, it is

perhaps better to use the processing time to obtain bootstrap confidence intervals, or to

compute bootstrap p-values for the test statistics based on B̂−1ÂB̂
−1
. The study of the

performance of these methods is, however, beyond the scope of the present paper.

The performance of the specification test is again evaluated by computing the rejection

frequencies at the 5% level of the null hypothesis, which in this case is defined by (6). The

test is based on the statistic

T =
∑G

g=1

1√
G

∑n
i=1

(∑n
j=1 ψθ(ûgi)ψθ(ûgj)− ψθ(ûgi)2

)
√

2θ2(1− θ)2n(n− 1)
,

and in these experiments we took G ∈ {100, 500, 1000} because the power of the test

increases quickly with the sample size.

Table 3 presents the rejection frequencies under the null (dv = 3 and dα = 0) and Table

4 presents the results under the alternative (dv = 2 and dα = 1). For comparison, the

rejection frequencies obtained with the test suggested by Wooldridge (2002, p. 265) are

also included in Tables 3 and 4.

Table 3: Rejection frequencies under the null (at 5%)

θ = 0.25 θ = 0.50 θ = 0.75 Wooldridge

n G h = 0 h = 1 h = 0 h = 1 h = 0 h = 1 h = 0 h = 1

2 100 0.0494 0.0524 0.0566 0.0630 0.0496 0.0565 0.0513 0.0349

500 0.0493 0.0513 0.0501 0.0547 0.0539 0.0543 0.0512 0.0425

1000 0.0523 0.0483 0.0540 0.0516 0.0475 0.0456 0.0513 0.0449

5 100 0.0411 0.0401 0.0482 0.0498 0.0400 0.0399 0.0624 0.0506

500 0.0487 0.0470 0.0509 0.0510 0.0506 0.0510 0.0533 0.0557

1000 0.0522 0.0519 0.0570 0.0550 0.0513 0.0519 0.0540 0.0499
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Table 4: Rejection frequencies under the alternative (at 5%)

θ = 0.25 θ = 0.50 θ = 0.75 Wooldridge

n G h = 0 h = 1 h = 0 h = 1 h = 0 h = 1 h = 0 h = 1

2 100 0.4285 0.4385 0.6066 0.5998 0.6409 0.6427 0.7005 0.3343

500 0.9709 0.9685 0.9995 0.9998 0.9992 0.9991 0.9999 0.9096

1000 0.9997 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9891

5 100 0.9962 0.9973 0.9998 0.9998 0.9963 0.9966 0.9493 0.7131

500 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9867

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974

Under the null all tests generally perform well and there is little to choose between

them. Under the alternative the results depend on the value of h. In the heteroskedastic

case (h = 1) the quantile-based tests clearly dominate Wooldridge’s test, whereas in the

homoskedastic case (h = 1) the situation is reversed. However, for realistic sample sizes

there is little to choose between the tests because their power quickly approaches 1.

5. CONCLUDING REMARKS

We present the asymptotic results needed to perform inference with quantile regression

when the data are obtained by sampling from different groups and it is assumed that ob-

servations from different groups are conditionally independent but intra-cluster correlation

is not ruled out. We propose a consistent estimator of the covariance matrix of the as-

ymptotic distribution of the estimator allowing for possible intra-cluster correlation and

propose a simple test to check the presence of this type of correlation. The results of a

small simulation study suggest that the proposed tools are likely to work reasonably well

in practice.
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APPENDIX

Throughout the Appendix cr, CS, M, and T denote the cr, Cauchy-Schwarz, Markov,

and triangle inequalities respectively. LLN denotes the Khintchine’s Weak Law of Large

Numbers, UWL denotes a uniform weak law of large numbers such as Lemma 2.4 of Newey

and McFadden (1994), and CLT is the Lindeberg-Lévy central limit theorem.

Proof of Theorem 1: We use Theorem 2.7 of Newey and McFadden (1994). Note that

β̂ = arg min
β∈Rk

SG(β)− SG(β0)

= arg min
β∈Rk

[
1

G

∑G

g=1

∑n

i=1
ρθ(ygi − x′giβ)− 1

G

∑G

g=1

∑n

i=1
ρθ(ugi)

]
.

We have to show that SG(β) − SG(β0) converges uniformly to a function. In this case

pointwise convergence suffi ces as pointwise convergence of convex functions implies uniform

convergence on compact subsets. Note that

SG(β)− SG(β0) =
1

G

∑G

g=1

∑n

i=1
[ρθ(ygi − x′giβ)− ρθ(ugi)]

=
1

G

∑G

g=1

∑n

i=1
[ρθ(ugi − x′giδ)− ρθ(ugi)],

where δ = β − β0. Note that Knight’s identity (Koenker, 2005, p. 121) tells us that

ρθ(u− v)− ρθ(v) = −vψθ(u) +

∫ v

0

{I[u ≤ s]− I[u ≤ 0]} ds,

where ψθ(u) = θ − I(u < 0). Thus

SG(β)− SG(β0) =
1

G

∑G

g=1

∑n

i=1
−x′giδψθ(ugi)

+
1

G

∑G

g=1

∑n

i=1

∫ x′giδ

0

{I[ugi ≤ s]− I[ugi ≤ 0]} ds.

Now by a LLN 1
G

∑G
g=1

∑n
i=1−x′giδψθ(ugi) = op(1) and the second term of the rhs converges

to

S(δ) =
∑n

i=1
E[

∫ x′giδ

0

{F[s|xgi]− θ} ds].

13



Note that S(δ) = 0 if and only if δ = 0 and S(δ) > 0 if δ 6= 0. To see this note that if

x′giδ > 0 for some i F[s|xgi] − θ > 0, thus
∫ x′giδ

0 {F[s|xgi]− θ} ds > 0. If x′giδ < 0 for some

i F[s|xgi] − θ < 0, thus
∫ x′giδ

0 {F[s|xgi]− θ} ds > 0. Since δ = β − β0 = 0 is a unique local

minimizer and the limiting function is convex, δ = β − β0 = 0 is also a global minimizer

and the function is convex and consequently β̂ = β0 + op(1).

Proof of Theorem 2: We adapt the proof of Koenker (2005, p. 121). Consider the

objective function

ZG(δ) =
∑G

g=1

∑n

i=1
[ρθ(ugi − x′giδ/

√
G)− ρθ(ugi)].

This function is convex and minimized at δ̂G =
√
G(β̂ − β0). Using Knight’s identity we

have

ZG(δ) = Z1G(δ) + Z2G(δ)

Z1G(δ) =
1√
G

∑G

g=1

∑n

i=1
−x′giδψθ(ugi)

Z2G(δ) =
∑G

g=1

∑n

i=1

∫ G−1/2x′giδ

0

{I[ugi ≤ s]− I[ugi ≤ 0]} ds.

Now Z1G(δ) = −δ′W , where W = G−1/2
∑G

g=1

∑n
i=1 xgiψθ(ugi). Also, by a CLT, W

D→

N (0, C) where

C = Var(
∑n

i=1
xgiψθ(ugi))

= E[
∑n

i=1
xgiψθ(ugi)(

∑n

j=1
xgjψθ(ugj))

′]

= E[
∑n

i=1

∑n

j=1
xgix

′
gjψθ(ugi)ψθ(ugj)].

Now write

Z2Ggi(δ) =

∫ G−1/2x′giδ

0

{I[ugi ≤ s]− I[ugi ≤ 0]} ds,

and Z2G(δ) =
∑G

g=1

∑n
i=1 Z2Ggi(δ). Note that

Z2G(δ) =
∑G

g=1

∑n

i=1
E[Z2Ggi(δ)|xgi] +RG(δ),
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where

RG(δ) =
∑G

g=1

∑n

i=1
{Z2Ggi(δ)− E[Z2Ggi(δ)|xgi]} .

Note also that∑G

g=1

∑n

i=1
E[Z2Gg(δ)|xg] =

∑G

g=1

∑n

i=1

∫ G−1/2x′giδ

0

{F[s|xgi]− θ} ds

=
1√
G

∑G

g=1

∑n

i=1

∫ x′giδ

0

{
F[

t

G1/2
|xgi]− θ

}
dt

=
1

G

∑G

g=1

∑n

i=1

∫ x′giδ

0

{
F[ t

G1/2
|xgi]− θ

t/
√
G

}
tdt

=
1

G

∑G

g=1

∑n

i=1

∫ x′giδ

0

{f [0|xgi]} tdt+ op(1)

=
1

2G

∑G

g=1

∑n

i=1
δ′f [0|xgi]xgix′giδ + op(1).

Now by CS

Z2Ggi(δ) =

∫ G−1/2x′giδ

0

{I[ugi ≤ s]− I[ugi ≤ 0]} ds (7)

≤
∣∣x′giδ∣∣
G1/2

≤ ‖δ‖ ‖xgi‖
G1/2

.

Note that E[RG(δ)] = 0 and that by cr, (7), and CS we have

Var(RG(δ)) =
∑G

g=1
E[(
∑n

i=1
Z2Ggi(δ))

2]

≤ n
∑G

g=1

∑n

i=1
E[Z2Ggi(δ)

2]

≤ n
‖δ‖
G1/2

∑G

g=1

∑n

i=1
E[Z2Ggi(δ) ‖xgi‖]

= n
‖δ‖
G1/2

∑G

g=1

∑n

i=1
E[E[Z2Ggi(δ)|xgi] ‖xgi‖]

= n
‖δ‖
G3/2

∑G

g=1

∑n

i=1
E[‖xgi‖

∫ x′giδ

0

{
F[ t

G1/2
|xgi]− θ

t/
√
G

}
tdt]

≤ n
‖δ‖

2G3/2

∑G

g=1

∑n

i=1
E[‖xgi‖ δ′f [0|xgi]xgix′giδ] + o(1)

≤ n
‖δ‖3

2G1/2
f1

∑n

i=1
E[‖xgi‖3] + o(1)

= o(1).
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Thus RG(δ) = op(1). Hence by a LLN

Z2G(δ) =
1

2G

∑G

g=1

∑n

i=1
δ′f [0|xgi]xgix′giδ + op(1)

= δ′Bδ/2 + op(1).

Therefore

ZG(δ) = −δ′W + δ′Bδ/2 + op(1).

The convexity of −δ′W + δ′Bδ/2 assures that the minimizer is unique and therefore

√
G(β̂ − β0) = arg minZG(δ)

D→ δ̂0 = arg min−δ′W + δ′Bδ/2.

Now note that δ̂0 = B−1W (see Koenker, 2005, p. 122, and the references therein).

Proof of Theorem 3: The proof is similar to that of Lemma 5 of Kim andWhite (2003).

Let BG = (2cGG)−1
∑G

g=1

∑n
i=1 I(|ugi| ≤ cG)xgix

′
gi. Using the mean value theorem we have

E[BG] = E[
∑n

i=1 f(c̃G|xgi)xgix′gi], where |c̃G| ≤ cG and therefore c̃G = o(1). Hence, by the

Lebesgue dominated convergence theorem E[BG] = B. It follows from the law of large num-

bers for double arrays (Davidson, 1994, Corollary 19.9, p. 301, and Theorem 12.10, p. 190)

that BG
p→ B. We now show (i)

∣∣∣B̃G − BG

∣∣∣ p→ 0 where B̃G = (2cGG)−1
∑G

g=1

∑n
i=1 I(|ûgi| ≤

ĉG)xgix
′
gi, and (ii)

∣∣∣B̂− B̃G

∣∣∣ p→ 0. The conclusion follows from T.

To prove (i) consider the (h, j)th element of
∣∣∣B̃G − BG

∣∣∣, which is given by∣∣∣(2cGG)−1
∑G

g=1

∑n

i=1
[I(|ûgi| ≤ ĉG)− I(|ugi| ≤ cG)]xgihx

′
gij

∣∣∣ .
Now using the facts that ûgi = ugi − (β̂ − β0)′xgi, I(|a| ≤ b) = I(a ≤ b) − I(a < −b),

|I(x ≤ 0)− I(y ≤ 0)| ≤ I(|x| ≤ |x− y|), |I(x < 0)− I(y < 0)| ≤ I(|x| ≤ |x− y|), T , and CS

we have ∣∣∣(2cGG)−1
∑G

g=1

∑n

i=1
[I(|ûgi| ≤ ĉG)− I(|ugi| ≤ cG)]xgihxgij

∣∣∣ ≤ U1G + U2G

U1G = (2cGG)−1
∑G

g=1

∑n

i=1
[I(|ugi − cG| ≤ dG)] |xgih| |xgij|

U2G = (2cGG)−1
∑G

g=1

∑n

i=1
[I(|ugi + cG| ≤ dG)] |xgih| |xgij| ,
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where dG = |cG − ĉG| +
∥∥∥β̂ − β0

∥∥∥ ‖xgi‖. We prove that U1G
p→ 0, the proof U2G

p→ 0 is

similar.

Let D1G = {U1G > η}, D2G =
{
c−1
G

∥∥∥β̂ − β0

∥∥∥ ≤ ∆
}
, and D3G =

{
c−1
G |cG − ĉG| ≤ ∆

}
for

a constant ∆ > 0. Thus

Pr(U1G > η) = Pr(D1G)

≤ Pr(D1G ∩ D2G ∩ D3G) + Pr(Dc2G) + Pr(Dc3G).

Now as
√
G(β̂ − β0) = Op(1) and c−1

G = o(
√
G) it follows that limG→∞ Pr(Dc2G) = 0.

Also as ĉG/cG
p→ 1, we have limG→∞ Pr(Dc3G) = 0. Additionally if c−1

G

∥∥∥β̂ − β0

∥∥∥ ≤ ∆ and

c−1
G |cG − ĉG| ≤ ∆ we have |dG| ≤ cG∆ + cG∆ ‖xgi‖. Hence by M

Pr(D1G ∩ D2G ∩ D3G) ≤ (2ηcGG)−1
∑G

g=1

∑n

i=1
E[

∫ cG∆+cG∆‖xgi‖

−cG∆−cG∆‖xgi‖
f(s|xgi)ds |xgih| |xgij|]

≤ (2ηcGG)−1
∑G

g=1

∑n

i=1
E[

∫ cG∆+cG∆‖xgi‖

−cG∆−cG∆‖xgi‖
f1ds |xgih| |xgij|]

= (η)−1∆
∑n

i=1
E[(‖xgi‖+ 1) |xgih| |xgij|] <∞

under Assumptions 3. Now take ∆ arbitrarily small and consequently U1G
p→ 0.

To prove (ii), note that B̂ − B̃G =
(
cG
ĉG
− 1
)

B̃G. Note also that by (i) B̃G = Op(1) and

since
(
cG
ĉG
− 1
)

= op(1) by assumption, the result follows.

Proof of Theorem 4: For simplicity of notation we write
∑

gi :=
∑G

g=1

∑n
i=1 and∑

j :=
∑n

j=1. Note that

T =
1√
G

∑
gi

(∑
j
zgizgjψθ(ûgi)ψθ(ûgj)− ψθ(ûgi)2z2

gi

)
=

1√
G

∑
gi

∑
j,i6=j

zgizgjψθ(ûgi)ψθ(ûgj)

=
1√
G

∑
gi

(∑
j,i6=j

zgizgjψθ(ugi)ψθ(ugj)
)

+RG,

where

RG =
1√
G

∑
gi

(∑
j,i6=j

zgizgj[ψθ(ûgi)ψθ(ûgj)− ψθ(ugi)ψθ(ugj)]
)
.
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Now by Lemma 5

RG =
1

G1/2

∑
gi

∑
j,i6=j

zgizgjh
∗
gij(β̂) + op(1),

where

h∗gij(β̂) = θ2 − θF(x′gj(β̂ − β0)|xgj)− θF(x′gi(β̂ − β0)|xgi)

+F(x′gi(β̂ − β0)|xgi)× F(x′gj(β̂ − β0)|xgj), i 6= j.

By a Taylor expansion around β0 we have

RG =
1

G

∑
gi

∑
j, i6=j

zgizgjH
∗
gij(β̃)

√
G(β̂ − β0) + op(1),

where β̃ is on the line segment joining β̂ and β0 and

H∗gij(β̃) = −θf(x′gj(β̃ − β0)|xgj)x′gj − θf(x′gi(β̂ − β0)|xgi)x′gi

+f(x′gi(β̂ − β0)|xgi)× F(x′gj(β̂ − β0)|xgj)x′gi

+f(x′gj(β̂ − β0)|xgj)F(x′gi(β̂ − β0)|xgi)x′gj,

where i 6= j. Now notice that

1

G

∑
gi

∑
j,i6=j

zgizgjH
∗
gij(β̃) = op(1)

by a UWL. Since
√
G(β̂ − β0) = Op(1) we have RG = op(1). Thus

T =
1√
G

∑
gi

(∑
j,i6=j

zgizgjψθ(ugi)ψθ(ugj)
)

+ op(1)

and consequently T → N (0, D) as D > 0 and

D = E[
(∑n

i=1

[∑n

j=1,i 6=j
zgizgjψθ(ugi)ψθ(ugj)

])2

]

≤ n2
∑n

i=1

∑n

j=1,i 6=j
E[z4

gi]
1/2E[z4

gj]
1/2(θ + 1)2 <∞

by two applications of cr and one of CS.

Let

mG(β) =
1

G

∑
gi

(∑
j,i6=j

zgizgj[θ − I(ugi ≤ x′ig(β − β0))][θ − I(ugj ≤ x′gi(β − β0))]
)
.
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Lemma 5 Suppose that Assumption 4 holds. Then, under H0, for any δG = o(1) we have

sup
‖β−β0‖≤δG

∣∣∣∣√G(mG(β)−mG(β0))− 1

G1/2

∑
gi

∑
j,i6=j

zgizgjh
∗
gij(β)

∣∣∣∣ = op(1),

where

h∗gij(β) = θ2 − θF(x′gj(β − β0)|xgj)− θF(x′gi(β − β0)|xgi)

+F(x′gi(β − β0)|xgi)× F(x′gj(β − β0)|xgj).

Proof: Note that

mG(β) =
1

G

∑
gi

∑
j,i6=j

zgizgjhgij(β),

where

hgij(β) = [θ2 − θI(ugj ≤ x′gj(β − β0))− θI(ugi ≤ x′gi(β − β0))

+I(ugi ≤ x′ig(β − β0))I(ugj ≤ x′gj(β − β0))], i 6= j.

Now taking the expected value of hgij(β) conditional on xg we have

E[hgij(β)|xg] = θ2 − θFj(x′gj(β − β0)|xg) + θFi(x
′
gi(β − β0)|xg)

+Fi,j(x
′
ig(β − β0), x′gj(β − β0)|xg)

= θ2 − θF(x′gj(β − β0)|xgj) + θF(x′gi(β − β0)|xgi)

+F(x′gi(β − β0)|xgi)× F(x′gj(β − β0)|xgj),

where the last line follows from H0 and i 6= j.

Note now that

√
G(mG(β)−mG(β0))− 1

G1/2

∑
gi

∑
j,i6=j

zgizgjh
∗
gij(β) =

1

G1/2

∑
gi

∑
j,i6=j

zgizgj[hgij(β)− hgij(β0)− h∗gij(β)].

Since the indicator functions I(ugi ≤ x′ig(β − β0)) and I(ugj ≤ x′gi(β − β0)) and the con-

ditional distribution functions F(x′gi(β − β0)|xgi) and F(x′gj(β − β0)|xgj) are functions of
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bounded variation (and hence type I class of functions in the sense of Andrews, 1994) and

as Assumptions 1 (a) and 4 (a) hold, it follows that

1

G1/2

∑
gi

∑
j,i6=j

zgizgj[hgij(β)− hgij(β0)− h∗gij(β)]

is stochastic equicontinuous by Theorems 1, 2 and 3 of Andrews (1994).
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