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Abstract

This paper examines the impacts of family inputs — i.e., maternal employment,
child care and home learning — on the early development of British children. Using
rich longitudinal data from the UK Millennium Cohort Study we estimate cognitive
and non-cognitive achievement production functions that allow outcomes to depend
on the history of family inputs and unobserved child endowments. We find evidence
of small effects on early child outcomes of all the family inputs under consideration.
Nonetheless, according to some models, family inputs are found to reduce socio-
economic status inequalities in early child development quite substantially, while
according to other models they are found to magnify them. Attempting to equalize
child outcomes through early policy interventions that generically affect family in-
puts may therefore prove difficult.
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1 Introduction

A. Motivation

Does maternal employment change the strength of the association between parental socio-

economic status (SES) and child outcomes over the first few years of life of a child? How

does the home environment in which a child grows affect this relationship? And how do

child care decisions influence these processes? The aim of this paper is to provide answers

to such questions, which are of fundamental interest to economists and social scientists

and of crucial relevance for policy makers.

The level of most nations’ investments in children is massive. Government expendi-

tures on all levels of education are enormous. In the late 2000s, among industrialized

countries, the expenditures per primary-school pupil were approximately £4,500 a year,

while the expenditures per secondary-school student were nearly £6,000, representing a

substantial increase of 17 and 13 percent respectively over the same expenditures one

decade earlier (Hanushek 2002; OECD 2011).

In addition, considerable public and private resources are spent on housing, feeding,

clothing, and transporting children, for providing nonparental care services, and for assur-

ing provision of health care services. Another cost (and perhaps one of the most important

and difficult to assess) refers to the implicit value of the time that parents spend moni-

toring, teaching, and caring for their children. Related to this parental time investment

are the employment decisions that parents commit to during their offspring’s childhood.

Mothers’ paid work, in particular, could be seen as a key factor in this process. This is

because, on the one hand, it represents a direct reduction of the time that mothers spend

with their offspring and, on the other hand, by increasing family income, it potentially

expands the resources that are made available to children.

Many studies have documented robust and convincing evidence on the existence of

an SES gradient in child outcomes (e.g., Currie and Hyson 1999; Carneiro and Heckman

2002).1 More recently, the literature has emphasized the presence of the gradient early on

in life (Case, Lubotsky, and Paxson 2002; Almond and Currie 2011a and 2011b; Currie

2011). In fact, there is also a good deal of empirical evidence that the differences between

children from high-status and low-status households tend to increase as the children be-

come older (Feinstein, 2003; Cunha and Heckman 2007 and 2008; Cunha, Heckman, and

1Considering family income as a specific component of SES, a large literature examines whether family
income affects child development or not (e.g., Almond and Currie 2011a). The recent evidence is mixed,
with some finding positive effects (Løken, Mogstad, and Wiswall 2012; Dahl and Lochner 2012) and
others finding none (Blau 1999; Løken 2010). For a review of the earlier literature, see Haveman and
Wolfe (1995).
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Schennach 2010).2

To bolster this evidence and motivate our analysis further, Figure 1 shows SES gra-

dients in cognitive skills and emotional development for British boys and girls drawn

from the UK Millennium Cohort Survey.3 Parental socio-economic status is measured

in terms of maternal education.4 University degrees or higher qualifications define high

SES (HSES), all post-secondary qualifications that are short of a university degree are

designated medium-high SES (MHSES), while GCSE (or equivalent) qualifications that

are attained at age 16 at the completion of secondary (compulsory) education define

medium-low SES (MLSES). Lower level qualifications identify low SES (LSES).

The figure reports cognitive and non-cognitive ability gradients relative to LSES at

ages 3, 5 and 7. We stress three features of academic and policy relevance. First, there is a

strong gradient at age 7, especially for cognitive skills and among boys. For instance, boys

with MLSES mothers attain a cognitive skill outcome that is one quarter of a standard

deviation higher than boys from LSES households, while the gap between LSES boys

and boys from HSES households rises to more than two-thirds of a standard deviation.

These inequalities are quantitatively large and broadly confirm already known empirical

evidence on parental SES gradient on early child outcomes (e.g., Carneiro and Heckman

2002; Case, Lubotsky, and Paxson 2002; Feinstein 2003; Currie 2011). The cognitive

gradient for girls is also large, although the difference between MLSES and LSES seems

to be smaller.

Second, the gradient for non-cognitive skills is still large at age 7 but less pronounced

than that for cognitive development. The largest gap is between children from LSES

households and children from HSES households and is about 0.4 standard deviations.

Although statistically significant and economically meaningful, this smaller gap may be

indicative of the greater malleability of non-cognitive skills and of the potential for policy

intervention (e.g., Heckman and Rubinstein 2001; Heckman, Stixrud, and Urzua 2006;

Heckman 2006). Third, the evolution by age suggests that there is indeed some reduction

of the non-cognitive gradient for girls, although the reduction for boys is not substantial.

We observe instead an increase of the cognitive gradient for both boys and girls (Feinstein

2Recent studies, however, raise a number of concerns about the actual occurrence of this widening
gap. See for example Jerrim and Vignoles (2012).

3The description of the data and of the statistical procedure used to produce the graphs will be
postponed to Sections 3 and 5, respectively.

4Alternative measures of parental SES are income and occupation. One problem with such measures
is that they are typically observed at specific points in time and can only imperfectly reflect the lifetime
resources available to children, even without considering measurement error problems. In addition, when
the mother has never worked, it is difficult to infer the permanent income conditions of her household.
Using father’s education (or income or occupation), while not entirely solving some of the previous
concerns, raises further issues for single-mother households.
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2003). For example, compared to their achievements at age 3, boys in the top HSES

increase their verbal scores at age 7 by about one-third with respect to boys from the lowest

SES. The life cycle pattern of the gradient is an interesting and important dimension of

the issue we study here, but it is not the focus of the current paper and is thus left for

future research.

B. Background and Related Literature

Despite these stylized facts and the important contributions mentioned earlier, relatively

few studies have examined how maternal work and home environment in conjunction with

child care decisions affect early child development (ECD) and their marginal impact on

the SES gradient on ECD outcomes.5 Most of our knowledge about such relationships is

descriptive and is mainly drawn from epidemiological and developmental research, which

usually fails to focus on all the three processes together (e.g., Desai, Chase-Lansdale,

and Michael 1989; Baydar and Brooks-Gunn 1991; Belsky and Eggebeen 1991; Blau and

Grossberg 1992; McLoyd 1998; Harvey 1999; Han, Brooks-Gunn, and Waldfogel 2001;

Brooks-Gunn, Han, and Waldfogel 2002; Love et al. 2003; Brooks-Gunn and Markman

2005; Raikes et al. 2006; Grantham-McGregor et al. 2007; Kelly et al. 2011). From this

body of literature the evidence is mixed, with some studies finding advantageous effects

of maternal employment or of the home learning environment or of non-maternal child

care arrangements on child outcomes, and others finding no impact or detrimental effects.

The same inconclusive evidence emerges from the economics literature, which again

has typically concentrated its attention on only one of the three processes of interest in our

analysis at a time. In the case of maternal employment, for instance, Baum (2003) and

James-Burdumy (2005) find evidence of an adverse impact when maternal employment

begins in the first year of the child’s life, whereas employment after the first year appears

to have less clear-cut effects. Other studies find that the negative effect on cognitive

outcomes can be associated with maternal employment over a longer period of the child’s

life and not just with work during the first year only (e.g., Ruhm 2004; Liu, Mroz, and

van der Klaauw 2010; Ermisch and Francesconi 2013).

Reviewing a large body of empirical research, Blau and Currie (2006) conclude that

there is little convincing evidence that structural child care inputs (i.e., the technological

5An alternative, but related, strand of research investigates the causal effect of maternal education on
child outcomes (e.g., Behrman and Rosenzweig (2002); Currie and Moretti (2003); Black, Devereux, and
Salvanes (2005); Holmlund, Lindhal, and Plug (2011); Carneiro, Meghir, and Parey (2013). In this paper,
instead, we take a different stance, considering mother’s education as a proxy for parental permanent
income and exploring how family decisions — i.e., our endogenous family inputs — affect inter-household
SES inequalities in child outcomes.
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characteristics of child care provision, such as the child-staff ratio, group size, teacher

education and training, safety, staff turnover and program administration) affect early

child outcomes. A number of studies instead provide evidence that process quality of child

care (i.e., the characteristics of the interactions between children and their caregivers, their

environment, and other children) does have a positive influence on child outcomes. There

is also a substantial literature that examines the effects of programs providing universal

child care on child outcomes. Again, the findings are mixed: some find positive effects

(e.g., Berlinski, Galiani, and Gertler 2009; Havnes and Mogstad 2010 and 2011; Black et

al. 2012) and others find negative results (Herbst and Tekin 2010; Magnuson, Ruhm and

Waldfogel 2007).

A number of studies consider multiple family inputs jointly. For instance, in an empir-

ical analysis of the sources of racial test score gaps in the United States, Todd and Wolpin

(2007), who build on their earlier methodological work (Todd and Wolpin 2003), find that

home inputs are substantive determinants of children’s cognitive outcomes. In particu-

lar, differences in home inputs are found to account for 10–20 percent of the black-white

and the Hispanic-white test score gaps, with differences in school inputs and in mother’s

schooling accounting only for very small portions of the gap.

Gregg et al. (2005) analyze maternal work and non-maternal child care arrangements

in England. They find that full-time employment in the first 18 months after a birth by

mothers who predominantly use informal substitute care from relatives or friends leads to

poorer cognitive outcomes for children. But they find no evidence that part-time working

or full-time working with more formal care substitution leads to negative early outcomes,

and even for the adversely affected groups the magnitude of the effects is small at around

one-tenth of a standard deviation.

Another example is the study by Blau (1999), which examines the effects of maternally

reported school inputs (e.g., group size, staff-child ratios, and teacher training) as well as of

type of care, cost of care, hours per week, and month per year spent in the arrangement

on a series of cognitive and non-cognitive and test scores, controlling for measures of

the quality of the home environment. Blau finds that the effects of child care quality

are generally insignificant, and sometimes wrong-signed, while measures of the home

environment are statistically significant and have relatively large effects.6

Bernal (2008) estimates jointly employment and child care decisions of women after

6It is possible that, in Blau’s (1999) work, maternal reports on school inputs are measured with error,
and this might bias their estimated effects toward zero. This finding however is confirmed by the estimates
reported in Todd and Wolpin (2007). In any case, the differential effects of school inputs are not part of
the analysis in the present study. This is left for future research.
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childbirth to evaluate the effects of these choices on children’s cognitive outcomes. Her

results indicate that the effects of both maternal paid work and child care on children’s

outcomes are negative and sizable: having a mother that works full-time and uses child

care during one year is associated with a reduction in cognitive test scores of approximately

1.8 percent (or 0.13 standard deviations of the score distribution). Bernal and Keane

(2010) extend Bernal’s (2008) study on children of married women to examine the effects

on children of single mothers. They confirm Bernal’s previous results and find that a

mother working full-time and placing a child in child care for one full year reduces the

child’s cognitive ability test score by 2.7 percent on average, or 0.14 standard deviations.

But, as recognized by Del Boca, Flinn, and Wiswall (2012), structural modeling comes

with some limitations. In their study, which nonetheless emphasizes the importance of

modeling household time decisions and money investments in children jointly with house-

hold preferences, such limitations include the treatment of fertility as an exogenous pro-

cess, the lack of an explicit consideration of the time and money inputs of individuals and

institutions outside of the household (e.g., schools), and the absence of self-investment.7

Our analysis shares some of the same limitations too.

C. Our Contribution

As mentioned already, our approach is related to the work of Todd and Wolpin (2007).

Their study, which builds on Todd and Wolpin (2003), estimates a dynamic child quality

production function that views child development as a cumulative process, with the final

child quality level being determined by heritable endowments and the sequence of family

and school inputs supplied during the developmental period. This estimating framework

allows for unobserved endowment effects, potentially endogenous input choices, and cu-

mulative effects of child investments at early stages of the development process. Their

results indicate that both contemporaneous and lagged inputs matter in the production

of current achievement, and that it is important to allow for unobserved child-specific

endowment effects and the endogeneity of inputs.

We build on this framework and, besides the home environment, we focus on the

effects of maternal work and child care decisions. Considering these other family decisions

is important for at least two reasons. First, they interact with standard home inputs

affecting their productivity and their impact on child outcomes. Second, they are the

target of a wide array of policy interventions in most industrialized countries. Thus,

7Although desirable, adding such decisions and inputs raises a host of endogeneity problems, many of
which are described in Liu, Mroz, and van der Klaauw (2010).

6



understanding how they influence child outcomes is of key policy relevance. Moreover, we

analyze not only cognitive but also non-cognitive outcomes, which have been shown to

be strong predictors of later outcomes and, likewise, to affect them causally (Heckman,

Stixrud, and Urzua 2006; Heckman and Kautz 2012).

In addition to the estimation of the technological relationship between maternal work,

child care arrangements, home inputs and child outcomes, we also focus on the specific

contribution that each of those processes has on the socio-economic status gradient. This

is important when we are interested in addressing issues of inequality across households.

Finally, and for the first time, we perform our analysis for Britain. This is significant in

and of itself, but it is also essential if we try to build up robust scientific evidence for the

design of effective policy interventions.

The rest of the paper is organized as follows. Section 2 provides the econometric

framework to address the main questions of this study. It presents a number of estima-

tion methods discussing their identifying assumptions. Section 3 describes the data used

in estimation. Section 4 shows the production function estimates of the effect of mater-

nal employment, child care decisions, and home inputs on cognitive and non-cognitive

outcomes of children. We investigate heterogeneity across estimation methods and, using

cross-validation techniques, assess the model that performs best according to an out-of-

sample root mean-squared error criterion. We finally show the results of the decomposi-

tion of the contribution of each of the three processes under analysis to the SES gradient.

Section 5 concludes.

2 Econometric Issues and Methods

We use a simple framework for modeling early child development (ECD) outcomes based

on the production function approach suggested by Krueger (1999) and Todd and Wolpin

(2003; 2007). Let Yit denote an early outcome for child i at age t.8 We consider two

sets of inputs into the production function of the EDC outcome Y : that is, the vector

of observed inputs, Xit, which includes both endogenous and exogenous inputs, and the

vector of unobserved inputs denoted by uit. Let φi0 be the child’s endowment at conception

(e.g., the child’s mental capacity and ability) and εit be a random shock that is not under

the parents’ control, including measurement error.

8Since we do not consider sibling/mother fixed effects models, we formulate our discussion as if we
had only one child per household.
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A general formulation of ECD production function is then

Yit = Y
(
Xi(t),ui(t), φi0, εit

)
, (1)

where Xi(t) and ui(t) are the histories of the vectors of observed and unobserved inputs

up to age t, respectively. A straightforward regression analog of (1) is given by

Yit =
t∑

k=1

Xi,t+1−kβk +
t∑

k=1

ui,t+1−kθk + αtφi0 + εit, (2)

where all inputs enter linearly and additively.

Direct estimation of (2) is complicated by the double problem that the inputs u are

unobserved and that information on the initial endowment φ0 is generally missing or

unreliable. Leaving aside these two problems, another issue with the estimation of (2) is

that it imposes strict data restrictions, requiring information on the full history of the

observed inputs, Xi(t).

Scientific research has witnessed the implementation of a variety of contributions

which, facing different data limitations, have aimed at estimating (2) in different ways.

Much of the available evidence is drawn from works that rely exclusively on contempora-

neous input measures. They thus estimate a relationship as:

Yit = Xitβ1 + ηit, (3)

where, borrowing the notation used in (2), we have

ηit =
t∑

k=2

Xi,t+1−kβk +
t∑

k=1

ui,t+1−kθk + αtφi0 + εit (4)

Many of the early economics studies and of the studies in the epidemiological and medical

literatures estimate models like (3).

What are the restrictions imposed by the contemporaneous specification (3) in relation

to the general production function given in (2)? Essentially, these boil down to three.

First, expression (3) imposes a past input irrelevance assumption, βt =βt−1 = ...=β2 = 0.

This means that contemporaneous inputs are sufficient statistics for the entire history of

inputs. Second, all the unobserved (omitted) inputs, ui(t), must be orthogonal to the

included current input measures. Third, contemporaneous inputs must be unrelated to

the child’s unobserved endowment, Cov(Xit, φi0)=0.

Another popular variant of (2) is a value added (VA) specification, which relates the
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ECD outcome Yit to contemporaneous input measures, Xit, and the lagged (baseline)

outcome, Yi,t−1, as in

Yit = Xitβ1 + λYi,t−1 + νit, (5)

where the new residual is given by:

νit =
t−1∑
k=1

Xi,t−k(βk+1 − λβk) + (αt − λαt−1)φi0 + uitθ1

+
t−1∑
k=1

ui,t−k(θk+1 − λθk) + (εit − λεi,t−1). (6)

As with the contemporaneous input specification, also the VA model imposes a set of

restrictions on the ECD production function (2) (Todd and Wolpin 2003). First, it requires

an age equivalence impact of all observed inputs X, according to which βk = λβk−1, for

all ages k = 1, t−1. Second, it imposes θk = λθk−1, for all ages k = 1, t−1, i.e., an age

equivalence impact of all unobserved inputs u. Third, αt = λαt−1, which amounts to

an age equivalence impact of the unobserved child endowment φ0. Finally, by imposing

Cov(uit, Xit)=Cov(uit, Yi,t−1)=0, the VA specification requires that the contemporaneous

omitted inputs be uncorrelated with the included inputs and lagged outcome.9

There are two additional models based on the VA specification that, in different ways,

try to account for the fact that Cov(Yi,t−1, νit) might not be zero. The first, called a value

added – fixed effects (VA–FE) model, which imposes αt−λαt−1 =α′, can be written as

Yit = Xitβ1 + λYi,t−1 + α′φi0 + ν ′it (7)

where ν ′it is an appropriate re-definition of νit in (6).10 The second variant, which can be

seen as a value added – instrumental variables (VA–IV) model, relies on past outcomes,

Yi,t−2), as instruments for the baseline outcome, Yi,t−1. Instrumentation here could help

address the issue of measurement error in the outcome variable (Andrabi et al. 2011).11

9Another frequently estimated VA specification is Yit − Yi,t−1 = Xitβ1 + νit, which is more restrictive
than (5), as it sets λ=1.

10Due to space limitations, in our empirical analysis below, we shall not present the estimates obtained
from this model specification.

11The study by Andrabi et al. (2011) applies a value-added approach to estimate education production
functions using data from Pakistani public and private schools. This work emphasizes the importance
of persistence in interpreting value-added models of learning and accounts for imperfect persistence,
unobserved heterogeneity, and measurement error. The main finding of this study is that only a small
fraction of learning persists between grades. Instead, models that assume perfect persistence would yield
biased estimates of input variables, while ignoring unobserved heterogeneity or measurement error would
bias the estimation of the learning persistence process. We shall use some of the insights of this study in
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In fact, it is well know that, in the context of the strict VA specification (5) and (6),

measurement error attenuates the coefficient on lagged achievement and can bias input

effect estimates.

Another prominent class of estimators used to account for the permanent unobserved

factors in (2) makes use of variation across observations within which the unobserved

factors are assumed to be fixed. One such fixed effect estimator uses variation that occurs

within children, at different ages.12 This is the cumulative specification, which modifies

the general ECD production function (2) in

Yit =
t∑

k=1

Xi,t+1−kβk + εit, (8)

where, making use of (2), the residual is given by

t∑
k=1

ui,t+1−kθk + αtφi0 + εit. (9)

If expression (8) is first differenced, so that we obtain

Yit − Yi,t−1 =
t−1∑
k=1

(Xi,t+1−k −Xi,t+1−k+1)βk +Xi1βt

+(αt − αt−1)φi0 + (εit − εi,t−1), (10)

it is straightforward to see from (10) that parameter identification can be achieved if: (a)

the effect of child endowment on outcomes is independent of age (i.e., αt =αt−1); and (b)

later input choices are invariant to the realization of earlier outcomes.

Assumption (b), i.e., the assumption that input choices do not respond to prior out-

come realizations, is arguably strong on theoretical grounds. For instance, it is reasonable

to expect that parents choose inputs at a given point in time (e.g., spend time reading to

the child) on the basis of past observed outcomes (e.g., the child’s reading proficiency).

One way of relaxing this assumption is then to combine the cumulative specification with

the value added model in what we call cumulative value added (CVA) specification, i.e.,

Yit =
t∑

k=1

Xi,t+1−kβk + λYi,t−1 + vit, (11)

our analysis, especially in relation to learning persistence, even though our focus is not on school inputs.
12A second important fixed effect estimator uses variation that occurs within families, i.e., across

siblings. This is not described here since we do not apply it in our empirical analysis. See Todd and
Wolpin (2003).
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whereby the residual in (11) is given by:

vit = (αt − λαt−1)φi0 + uitθ1 +
t−1∑
k=1

ui,t−k(θk+1 − λθk) + (εit − λεi,t−1). (12)

Here, the introduction of Yi,t−1, which is assumed to be a sufficient statistics for the miss-

ing (unobserved) historical inputs, explicitly recognizes the relationship between observed

input choices (including past choices) with earlier realizations of achievement. Identifica-

tion of the observed input impacts in (11) requires the same assumptions as those imposed

by the VA model (5), except that the age equivalence impact of all observed inputs is

no longer needed. As in the VA specification, measurement error could be an issue. We

thus instrument Yi,t−1 in (11) either with its earlier realization, Yi,t−2, or with alternate

outcomes. This is what we call cumulative value added – instrumental variable (CVA–IV)

specification.

A further class of estimators focuses on the importance of individual specific hetero-

geneity in learning. The insight here is that lagged achievement, as in the VA specifica-

tion (5) or the CVA specification (11), only captures individual heterogeneity if it enters

through a one-time process, but talented children are likely to learn faster than less tal-

ented children. As in Andrabi et al. (2011), then, we assume that the unobserved child

endowment effect in (2) is independent of age, i.e., αt = α. Then, first differencing the

specification of the VA model (5) yields

Yit − Yi,t−1 = (Xit −Xi,t−1)β1 + λ(Yi,t−1 − Yi,t−2) + (νit − νi,t−1), (13)

where the differenced residual takes the form

νit − νi,t−1 = Xi,t−1(β2 − λβ1) + ui,t−1(θ2 − λθ1)

+θ1(uit − ui,t−1) + (εit − λεi,t−1) − (εi,t−1 − λεi,t−2). (14)

As in the case of the cumulative specification, identification of (13) relies on the as-

sumption that later input choices do not vary with the realization of earlier outcomes

and on the additional assumption that the output response to later input choices is in-

dependent of early choices. We estimate (13) using a generalized method of moments

(GMM) after having instrumented for Yi,t−1−Yi,t−2 using specific contemporaneous exoge-

nous inputs and lagged outcomes, Yi,t−2 (Arellano and Bond 1991). Strict exogeneity of

inputs rules out feedback effects, according to which a child or a mother who experience

a positive or negative shock will not adjust inputs (e.g., change labor supply or child care
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arrangements) in response. This assumption allows us to use changes in time-varying

characteristics — i.e., changes in maternal work, child care utilization and home learning

environment — as exogenous controls in (13). This is however a strong assumption. It is

likely that a mother changes her labor supply if her child overperforms or underperforms at

school. Feedback effects instead can be accounted for by the other estimating method that

relies on predetermined inputs, according to which inputs are uncorrelated with present

and future disturbances but are potentially correlated with past disturbances. With this

approach we estimate (13) using lagged inputs and lagged outcomes as instruments.

In our empirical analysis we shall estimate all the models described in this section. For

each of them, we will provide a specific assessment of the effect of maternal employment,

home investments and child care arrangements. We will also try and determine which of

the models performs best from a statistical standpoint. Before turning to the estimation

results, the next section describes our data source, outcome measures and input variables.

3 Data

Our analysis is based on the UK Millennium Cohort Study (MCS), a longitudinal study

of a sample of children born between September 2000 and August 2001 in England and

Wales, and between November 2000 and January 2002 in Scotland and Northern Ireland.

The study has repeated measurements of children cognitive and non-cognitive outcomes

and contains rich information about parental socio-economic background, employment

status, child care arrangements, and specific parental inputs at various points in time.

This makes this study particularly well-suited to estimate the models described in the

previous section.

The MCS sampling frame is based on the UK electoral wards’ geography. The sam-

ple is clustered geographically and disproportionately stratified to over-represent (i) the

three smaller countries of the UK (Wales, Scotland and Northern Ireland), (ii) areas in

England with higher minority ethnic populations in 1991 (where at least 30 percent of the

population were Black or Asian); and (iii) disadvantaged areas (drawn from the poorest

25 percent of wards based on the Child Poverty Index). A list of all nine month old

children living in the sampled wards was derived from Child Benefit records provided by

the Department of Work and Pensions. Child Benefit claims cover virtually all of the

child population except those ineligible due to recent or temporary immigrant status.

The first wave of data collection took place when infants were around 9 months old

and includes data on 18,818 babies in 18,552 families. Subsequent information was col-
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lected when children were about 3, 5, and 7 years old. During each sweep of interviews,

interviewers administered physical and cognitive assessments, while the mother (usually

the main respondent) was asked to report about the socio-economic circumstances of the

family as well as the child’s health and emotional development.

Our sample includes all singleton children interviewed at 9 months with at least one

cognitive or non-cognitive measure of development at ages 3, 5, or 7 and valid information

on a set of family background variables and maternal inputs (14,793 children). We further

select only cases where the main respondent was the natural mother. This leaves us with

14,263 children. As we observe very little about the school environment, we keep only

children attending state-funded schools at ages 5 and 7 (about 93.2 percent of the sample).

Our final sample thus consists of 13,297 children and 34,389 children-year observations.

The MCS records a number of standard tests of cognitive development. These are

mainly taken from the British Ability Scales (BAS). The BAS are a set of standard age-

adjusted tests of cognitive abilities and educational achievements suitable for use with

young children (Elliott, Smith, and McCulloch 1996 and 1997). Our measure of cognitive

development is derived from three assessments: the BAS Naming Vocabulary test at ages

3 and 5 and the BAS Word Reading at age 7. The Naming Vocabulary Test is a test

where children are shown pictures of objects and are asked to identify them. In the Word

Reading Test the child reads aloud a series of words presented on a card. Although the

tests are not exactly the same, here we assume they measure child cognitive outcomes

(verbal ability) over time. In each case the tests were administered via Computer Assisted

Personal Interviewing (CAPI) by interviewers who were specifically trained, but did not

have a psychology background. All tests were adjusted for age and difficulty of the

question with a reference to a set of standard tables, and expressed as T-scores which

have mean 50 and standard deviation 10. For ease of interpretation, we transform them

into z-scores, with mean 0 and standard deviation 1 in a representative population.

The Strengths and Difficulties Questionnaire (SDQ) is a brief behavioral screening

questionnaire designed to measure psychological adjustment in children aged 3 to 16

(Goodman 1997 and 2001). In the MCS, parents were asked to answer a battery of 25

questions which identify five different components: (i) hyperactivity/inattention, (ii) con-

duct problems, (iii) emotional symptoms, (iv) peer problems, and (v) pro-social behavior.

The respondent indicates whether each item is (a) “not true”, (b) “somewhat true”, or

(c) “certainly true” of the child in question. The responses are then scored so that higher

scores indicate more problematic behavior. Responses to the first four sub-scales (i.e.,

excluding pro-social behavior) are then summed up to obtain the Total Difficulty Score,
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which varies between 0 and 40 and is taken here as a measure of the child emotional

development. For ease of interpretation, the score is reverse-coded and expressed as a

z-score using the mean and the standard deviation observed in a representative sample

of the UK population.13 The SDQs were administered at ages 3, 5, and 7, so that we can

construct consistent measures of the child’s psychosocial development over time.

Figures 2 and 3 show the frequency distributions by child’s age and sex of the cognitive

and non-cognitive skill measures, respectively, while Table 1 reports the corresponding

means and standard deviations.14 The distributions are very similar by sex. As children

age, we observe a slightly increased dispersion in outcomes, especially in the case of verbal

scores (Figure 2). Both outcomes, but the Total Difficulty scores in particular, are skewed

to the left, especially as children grow older.

We focus on three sets of inputs. The first is maternal employment, which is available

for all waves. Although the survey offers precise information on hours worked, here we

focus on the distinction between non-working mothers (reference category), mothers in

part-time employment, and mothers in full-time employment. The distinction between

part-time and full-time work is based on the number of hours worked in a typical week,

with a cutoff at 30. Table 1 shows that the percentage of working mothers increases as

children grow older. When the child is 3 years old, more than 48 percent of all mothers in

our sample work either full time or part time (almost 16 and 33 percent, respectively). By

the time the child is aged 7, the proportion of working mothers increases to 61 percent,

with two-thirds of them being in part-time jobs and the other one-third being in full-time

jobs.

The second input of interest is child care. The MCS collects detailed information

about child care arrangements at every wave, including the type of regular child care used

(the respondent can specify more than one option), the number of hours, the exact period

of the day in which the arrangement was in place and, for those who used formal or paid

child care, the amount paid per hour, week, or session. We restrict our attention to the

main regular arrangement, as defined by the respondent and do not consider the number

of hours or the amount paid. Where the mother is not working we assume that she is

the main carer, so that child care arrangements are defined only for working mothers.

We consider two different types of arrangements: informal and formal (or paid) child

care. Informal care includes care provided by the partner, grandparents, other relatives

or friends. Formal care includes care provided by nurseries, child minders, nannies, or

13For more details, see http://www.sdqinfo.com/norms/UKNorm3.pdf.
14Means and standard deviations differ from their notional standards (0 and 1, respectively), partly

reflecting selection as well as noise.
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others.15 In the UK all children aged 5 attend primary schools, so that for ages 5 and 7

child care arrangements are those which are in place outside normal school hours. These

include the use of breakfast and after-school clubs, which are included in the formal care

category.

Table 1 indicates that working mothers mainly use informal child care arrangements,

which account for 20, 31, and 29 percent of care arrangements at ages 3, 5, and 7, respec-

tively. Use of formal arrangement is lower at ages 3 and 5 (16 and 15 percent, respectively),

but increases to 25 percent at age 7, possibly because of the greater availability of before-

and after-school arrangements for school aged children. The proportion of children with

no child care arrangement (or, alternatively, whose mothers are not in paid employment)

decline from 52 percent at age 3 to 39 percent at age 7.16

Finally, we focus on the home learning environment. This is a measure of the time the

mother devotes to the child in a range of activities, including (i) reading, (ii) telling stories,

(iii) playing music or teaching songs, (iv) drawing, (v) playing sports/games outdoors,

(vi) playing games indoors, (vii) going to the park. In the Parenting Activities module

administered at ages 5 and 7, mothers were asked to indicate how frequently they carried

out these activities with their children on a 6- or 8-point scale, ranging from “every day”

to “none at all”. At age 3, instead, mothers were asked question on a more limited range

of activities (i.e., reading, playing music or teaching songs, drawing, and teaching a sport

or other physical activity), and the questions were formulated so to include also the time

that other carers spent in these activities with the child. Thus, although in most cases

these activities refer to the mother’s time spent with the child, our indicator should be

more broadly seen as a measure of the general home learning environment.

The indicator is constructed by combining the mother’s answers to the relevant ques-

tions using principal component analysis. Using the Kaiser criterion, which suggests to

retain only those factors with eigenvalues greater or equal to one, we find evidence of a

single common factor. This explains about 37 percent of the total variance at each age

3, 5, and 7. All items load positively onto the single factor at each age of the child. At

age 7, for example, after rotation the factor loadings are 0.514 (reading), 0.546 (story

telling), 0.549 (teaching songs), 0.704 (drawing), 0.684 (outdoor activities), 0.724 (indoor

activities), and 0.492 (going to the park). Our measure of home learning environment

is strongly correlated over time — with correlation coefficients of 0.582 between ages 5

15Separating out nurseries from other forms of paid child care does not change any of our main results.
16It is worth noticing that we have a non-negligible fraction of the sample with missing information.

This could be due to the complex structure of the child care module which contains more than 50
questions. In the analysis, therefore, we shall consider this as a separate category.
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and 7, and of 0.384 between ages 3 and 5 — as well as to maternal education — with

correlation coefficients of 0.21 at age 3, 0.143 at age 5, and 0.091 at age 7. Figure 4

shows the frequency distributions of the home learning environment measure by child age

and sex. The distributions are similar by sex. As children grow older, the distributions

tend to be less skewed to the left and become more symmetric. Our empirical analysis

also includes other individual and family characteristics. Some are time invariant, such

as parity, mother’s age at birth, ethnicity, and region of birth (not shown for brevity in

Table 1). Other characteristics included in the analysis are time varying. These comprise

child’s age (in days) at the time of the interview (and its square), a dichotomous indicator

for single parent households, and number of siblings. Just over two-fifths of children are

firstborn, almost 90 percent of them are whites, and their mothers were on average 29

years old at their birth. As children age, the family size (number of siblings) increases,

and about one in five children has lived in a single-parent household. Because we perform

our analysis separately on girls and boys, Table 1 reports the summary statistics for all

variables by sex.

4 Results

As described in Section 2, the estimation of general education production functions, which

account for the presence of unobserved endowments, input choices that are selected in re-

sponse to such endowments, and learning heterogeneity, is challenging. Longitudinal data

like the MCS presented in the previous section enable us to perform this estimation ac-

commodating most of its challenges. Here we present the estimates from the specifications

discussed in Section 2, which impose different set of restrictions on the general model (2).

A. Main Estimates

Tables 2a and 2b report the estimated production function coefficients for cognitive out-

comes for boys and girls, respectively. The corresponding estimates for non-cognitive

outcomes are in Tables 3a and 3b. We present estimates only on the three sets of inputs

of interest, i.e., maternal employment, child care use, and the home learning environment.

In all tables, each column shows coefficient estimates for a different model specification.

We begin with Tables 2a and 2b. From the contemporaneous specification in column

(i), we find that maternal work, whether part time or full time, increases cognitive achieve-

ment significantly by about 0.2 of a standard deviation regardless of child’s sex. Formal

child care arrangements do not affect cognitive development, while a better home learning
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environment improves cognitive skills by 0.07 of a standard deviation. As discussed in

Section 2, however, the contemporaneous specification places strong restrictions on the

production technology even though it is less demanding than other specifications in terms

of data requirements.

When historical data on inputs are available, a simple test of the contemporaneous

model is to include lagged input measures in the analysis and check whether their asso-

ciated coefficients are significantly different from zero. Column (ii) shows the estimates

from the cumulative model, which augments the contemporaneous specification by includ-

ing lagged data on inputs. The F -test rejects the contemporaneous specification against

the cumulative model for both boys and girls. In the case of boys, the estimated effects

of current inputs decline considerably when lagged inputs are included, suggesting that

omitting historical measures leads to an overstatement of the impact of contemporaneous

inputs. In the case of girls, instead, we cannot detect any significant difference in the

effects of maternal work and child care arrangements, but we again find that the contem-

poraneous specification overstates the impact of the current home learning environment.

The cumulative effect of home learning, however, is positive as it is that of maternal em-

ployment irrespective of child’s sex, whereas the cumulative effect of formal child care is

positive only for girls but not for boys.

Column (iii) of Tables 2a and 2b shows the results from the VA–IV specification. The

input estimates from the strict value-added specification as given in (5), which includes a

one-period-lagged outcome along with contemporaneous inputs, are essentially identical

to those of the VA–IV model. The only exception is the persistence parameter on the

lagged dependent variable, λ, that in the standard VA specification is significantly lower

at about 0.4 for both boys and girls. One striking feature of the value-added results is

that, as compared to the contemporaneous and cumulative specifications, the input effect

estimates are much weaker in the case of boys’ cognitive achievement. For girls’ instead

the VA–IV effects are similar to those found with the two previous specifications, except

for mother’s full time employment which, albeit still significant, drops to less than 0.1

of a standard deviation. As mentioned in Section 2, the instrumentation of the VA–IV

model helps us address the potential measurement error problem of the VA specification.

Correcting for measurement error increases λ from 0.4 to about 0.72 for boys and 0.62 for

girls, consistent with sizeable measurement error attenuation (Andrabi et al. 2011).

The fourth column presents the CVA estimates of (11), which adds to the strict value-

added model the one-period-lagged input variables without instrumentation. As in the

case of the simple VA model the persistence estimate is around 0.4 for both boys and girls.
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But the pattern of estimated effects for the main inputs is different by sex. For boys, the

current input effects are no longer statistically significant, while lagged maternal work

increases cognitive achievement by 0.09 of a standard deviation and lagged home learning

environment by just 0.02 of a standard deviation. For girls instead, contemporaneous

maternal employment leads to a statistically significant increase of 0.12–0.14 of a standard

deviation, while lagged employment does not have any impact. As in the cumulative

model, lagged formal child care continues to be a significant determinant of girls’ cognitive

achievement, but not of boys’.

Some of the features of the results from the CVA specification persist when we an-

alyze the estimate a CVA–IV specification, which accounts for the endogeneity of prior

achievement, Yi,t−1 in (11), by instrumenting it with its earlier realization, Yi,t−2 (column

(v)).17 In particular, none of the contemporaneous inputs has an effect for boys, while

maternal part- and full-time employment increase girls’ cognitive skills by 0.16 and 0.12

of a standard deviation. Boys’ cognitive development instead is positively affected only

by lagged maternal work.

Column (vi) presents results obtained using the GMM–predetermined estimator. As

in Andrabi et al. (2011), the estimate of the persistence parameter λ is statistically differ-

ent from models that correct for measurement error only, such as the VA–IV specification

in column (iii), for both boys and girls. This means that there is substantial omitted

heterogeneity in learning which biases standard estimates upward. Differently from the

earlier results, the effect estimates of contemporaneous maternal full-time work on boys’

cognitive skills is negative and large, over 0.4 of a standard deviation, while the effect of

part-time work, which is also negative, is statistically less well measured.18 According to

this specification, boys’ cognitive development is strongly affected by current home learn-

ing environment. We find a similar positive effect estimate of about 0.19 of a standard

deviation in the case of girls. But differently from boys’, the GMM–predetermined esti-

mates of maternal employment on girls’ cognitive development are positive, although not

statistically significant at conventional levels. Reassuringly, the Hansen’s J test cannot

reject the overidentifying restrictions implied by the model, suggesting that instrumenting

the difference Yi,t−1−Yi,t−2 in (13) using previous year outcomes works well. We find the

same result when the difference is instrumented using alternate outcomes. We take this

as an indication that, regardless of the instrumentation, the effect estimates of the inputs

17The same results as those shown here were found when we used alternate prior subjects as instruments.
Those estimates therefore are not presented.

18This finding echoes the results found by James-Burdumy (2005) and Ermisch Francesconi (2013) who
use within-family (mother) fixed effects models.
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of interest are well identified.19

We also performed our analysis using a standard within-child fixed-effects model, which

takes advantage of the panel structure of the MCS. For convenience the results from this

specification are not reported. The broad pattern of results from this specification is

similar to that found with the GMM-predetermined model in column (vi), although the

input effects are generally less precisely measured.

Tables 3a and 3b show the results for the non-cognitive outcome obtained from the

same set of specifications. As in the case of cognitive achievement, we typically find a

decline in the absolute value of input effects as we move from the more restrictive contem-

poraneous specification to the other models, especially value-added models. For instance,

for boys, the CVA–IV (column (v)) effects of current maternal part-time and full-time

work of 0.09 standard deviations are approximately half the size of the corresponding

effects found in the contemporaneous and cumulative specifications (columns (i) and (ii),

respectively). The other inputs, instead, seem to play more marginal roles, except that

— according to the GMM-predetermined specification in column (vi) — formal day care

increases emotional skills by 0.11 standard deviations and home learning environment by

0.06 standard deviations. Interestingly, in the case of girls, apart from the contemporane-

ous and cumulative models and once measurement error problems of the VA specification

are accounted for, none of the inputs of interest affects the formation of non-cognitive

skills. Moreover, for both boys and girls, past outcomes, the persistence parameter λ

is close to zero in the GMM-predetermined model that account for endogenous input

responses to past outcome realizations.

B. Goodness of Fit and Model Selection

An important issue in our analysis is how to select among all the competing model specifi-

cations we have estimated. As in Todd and Wolpin (2007), we address this issue by using

a cross-validation method, whose goal is to find the model that performs best according

to an out-of-sample root mean-squared error (RMSE) criterion (Hastie, Tibshirani, and

Friedman 2001). Cross-validation is useful in situations like ours, in which the models

that are compared are non-nested and when it is not clear which is the preferred null

hypothesis model.20

19We also estimated the GMM specification under the assumption of strict exogeneity of inputs. For the
sake of brevity we do not show these results. The λ estimates are similar to those reported in column (vi)
of Table 2. But, irrespective of child’s sex, the effect estimates on the other inputs are generally weaker
and statistically less well determined than those found with the GMM–predetermined specification.

20Stone (1976) shows that, for models estimated using maximum likelihood methods, the cross-
validation method with random hold-out samples is asymptotically equivalent to the Akaike information
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Cross-validation requires us to partition our sex-specific samples into a number of

complementary subsets. In particular, we divide each sample into five roughly equal-sized

subsamples.21 Each model is then estimated on one of the five subsamples separately

and used to construct the RMSE for the other four left-out subsamples. This procedure

is repeated alternating the subset of data that is left out. The RMSE values are then

averaged over the five rounds to obtain the mean RMSE for that model specification.

Table 4 shows the mean RMSE for each of the production function specifications

presented in Tables 2a-2b and 3a-3b, except for the contemporaneous and the VA–IV

models. The reason for these exceptions is simple and based on conventional specification

tests reported in the two tables. The contemporaneous specification is always strongly

rejected against the cumulative specification as revealed by the F test results. Similarly,

the VA–IV model is generally rejected against the cumulative value-added specifications

(columns (iv) or (v) in Tables 2a-2b and 3a-3b), although this is not the case when the

comparison is the CVA–IV model for girls’ emotional skills.

As seen in Table 4, the GMM–predetermined model is the specification that exhibits

the lowest RMSE in the case of cognitive achievement for both boys and girls. For the

non-cognitive outcome, instead, the specification that statistically performs best is given

by the CVA–IV model, irrespective of the sex of the child.

Taking stock of these results, it is useful to refer back to the input effect estimates

presented in the previous subsection and summarize our key substantive findings. For

boys, a mother working full-time reduces the child’s cognitive development by 0.44 stan-

dard deviations. The effect of part-time employment is again negative and large (0.2 of

a standard deviation) but less statistically significant. For girls, instead, maternal work

is positively associated with cognitive achievement but, irrespective of how intensely the

mother is attached to the labor market, this effect is not statistically significant. The more

time the mother devotes to improve the home learning environment the higher the child’s

cognitive outcome, with a one unit increase in the home learning environment measure

leading to a 0.18–0.19 standard deviations increase in cognitive skills for both boys and

girls. Irrespective of child’s sex, we can never detect a significant relationship between

cognitive skills and formal day care arrangements.

In the case of emotional development, current maternal part- and full-time work have

now positive effects, of about 0.09 standard deviations, on boys’ achievement. No other

input, whether current or lagged, has an impact on the boys’ outcome. Likewise, none of

criterion.
21The same qualitative results emerge when we partition the original samples into three or four subsets.

The results from these alternative exercise are therefore not shown for convenience.
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the three sets of inputs affects girls’ non-cognitive skill formation.

C. Input Contributions to the SES gradient

Using the production function estimates in Tables 2a-2b and 3a-3b, we examine the extent

to which differences in inputs can account for socio-economic status (SES) disparities in

outcomes. Our results are summarized in Figure 5. As mentioned in the Introduction

while presenting Figure 1, parental SES is proxied by mother’s education. Mothers with

university degrees or higher qualifications define high SES (HSES) households. House-

holds in which women have post-secondary qualifications that are short of a university

degree are called medium-high SES (MHSES) households, while mothers with GCSE

(or equivalent) qualifications that are attained at age 16 at the completion of secondary

(compulsory) education define medium-low SES (MLSES) households. Lower level qual-

ifications identify low SES (LSES) families.

Figure 5 reports gradients at age 7 relative to LSES obtained from a baseline model

(shown also in Figure 1) — which includes child’s parity, age and age squared, region of

birth, mother’s age at birth and its square, ethnicity, number of siblings, and an indicator

for single parent families as a basic set of inputs — the contemporaneous specification,

the CVA–IV model, and the GMM–predetermined specification. The contemporaneous

model was chosen because it can be seen as a standard benchmark, even it has been

statistically rejected against other specifications. The last two models, instead, were the

preferred models according to the cross-validation criterion. The baseline model does not

include our three inputs of interest, i.e., maternal work, child care arrangements, and

home learning environment. It therefore serves as a natural comparison model against

which we can examine how the three inputs jointly reduce or magnify the SES gradient

on outcomes.22 From each of the estimated specifications, we compute model-specific

idiosyncratic residuals, which are then regressed on the four SES indicators. The implied

estimated coefficients from such regressions are shown in Figure 5. To ease the estimates’

interpretation, we complement Figure 5 with Table 5, which reports the differences (in

levels and percentages) between HSES coefficients from each of the competing models and

the corresponding HSES coefficient from the baseline specification.23

According to the contemporaneous model, the overall impact of parental inputs on the

22As stressed in the Introduction, the age pattern of the SES gradient is not a focus of this study. One
of the reasons is that most of the model specifications of interest cannot be estimated at age 5 or earlier
due to our limited possibility (or impossibility) of coherently measuring lagged outcomes and inputs at
earlier ages.

23The results obtained for the other levels of parental SES are very similar to those reported in Table
5 and thus are not shown for convenience.
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SES gradient in cognitive achievement is quite circumscribed, in spite of the role played by

maternal employment and home learning time. Approximately only 7 percent of the gap

in cognitive skills between the HSES and LSES groups (or about 0.04–0.05 of a standard

deviation) would be closed jointly by the three parental inputs of interest. A slightly

greater (but still limited) proportion, between 12 and 17 percent, of the SES gradient in

emotional skills could be reduced by the inputs under scrutiny.

The evidence emerging from the CVA–IV model is substantially different. In the case

of cognitive skill production, all three family inputs together contribute to over 50 percent

of the reduction in the parental SES gradient for both boys and girls. This reduction is

only partially due to the role of the family inputs and primarily picks up the role played

by the lagged outcome. In the case of non-cognitive development (for which the CVA–IV

specification shows the best statistical performance), they go even further and eliminate

the gradient entirely.

Finally, the estimates from the GMM–predetermined specification (which the cross-

validation method identifies as the preferred model for cognitive skill production) indicate

that the three family inputs jointly lead to a reduction of 19 percent (0.11 of a standard

deviation) in the gradient for girls’ cognitive skill development. For boys, instead, they

magnify the gradient on the cognitive outcome by approximately 25 percent at all SES

levels. This is likely to be driven by the large negative effect of maternal employment

detected by the GMM–predetermined model (see Table 2). The same magnification effect

is observed also for non-cognitive skill development, with an increase of the gradient at

the HSES level of approximately 67 percent (0.26 standard deviations) and 23 percent

(0.09 standard deviations) for boys and girls respectively.

5 Conclusions

This study estimated early cognitive and non-cognitive skill production functions, ac-

knowledging the possibility that early child development is a cumulative process that is

likely to depend on the entire history of relevant inputs, parental ability, and unobserved

endowments. We focused on a specific set of family inputs that comprise maternal employ-

ment, child care arrangements, and home learning environment. One of our distinctive

goals was to examine how those three family inputs affect the parental socio-economic

status on early child development outcomes.

Using rich longitudinal data from the UK, we estimated several alternative specifica-

tions of the ECD production function, which impose different restrictions on the data.
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We do not have a one-size-fits-all interpretation of the input effects across all model spec-

ifications. In general, across almost all the specifications considered, formal child care

arrangements seem to play no role in shaping early child outcomes. Maternal work in-

stead has small positive impacts on cognitive development according to some of the more

restrictive specifications, and zero or even negative effects according to specifications that

account for lagged input effects or heterogeneous learning dynamics. The evidence on

the effect of home learning environment is also mixed, ranging from small and positive in

some cases to small and negative in others. Much of the same conclusions can be made

for non-cognitive skill formation, with the exception that none of the three family inputs

has a substantial impact on girls’ emotional development.

Our main substantive conclusion therefore is that the three family inputs under anal-

ysis — maternal employment, child care arrangements and home learning environment

— have only modest impacts on early child outcomes. Despite this, their effect on how

outcomes differ by parental socio-economic status is not negligible, especially when this

effect works through past outcome realizations. According to some of the model speci-

fications that include lagged input and outcome effects, differences in family inputs can

jointly account for up to 50 percent of the SES gradient in the cognitive outcome and

could entirely eliminate the outcome gap between children in low SES households and

children in high SES households. However, according to other specifications that are bet-

ter suited to capture heterogeneity in learning, differences in family inputs are likely to

increase, rather than attenuate, cognitive and non-cognitive outcome inequalities.

The SES results from the former class of models are encouraging as they are indica-

tive of some malleability in the production of all skills, especially non-cognitive abilities

(Heckman, Stixrud, and Urzua 2006), and open the possibility for effective early policy

interventions (Heckman 2006; Heckman and Masterov 2007). The results from the latter

class of models, instead, raise caution about the salience of using either maternal em-

ployment or parental time investment in home learning activities as tools to help equalize

outcomes across different SES groups.

Although this study represents the first attempt to estimate early production functions

structurally for Britain, there are a few desirable extensions to consider in future work.

First, the muted effect of family inputs on outcomes measured at ages 3–7 does not

exclude the possibility of large effects at earlier ages. This is something that cannot be

assessed with MCS data, but could be addressed with datasets in other countries and

should be of interest for future data collection exercises, such as the new UK birth cohort

(Life Study). Second, an analysis that examines child outcomes over different ages would
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provide a useful picture of the dynamic evolution of skill formation for British children.

This is likely to become easier as more sweeps of the MCS are collected. Third, greater

attention could be devoted to issues related to the quality of parental time with the child

and the quality of non-maternal child care services (Sammons et al. 2004) as well as to

the role of fathers. Fourth, it might be important to consider other inputs which have

been excluded in our study, especially school inputs, such as in Todd and Wolpin (2007)

and Andrabi et al. (2012). This can be a potentially fruitful avenue of research when

analysts can merge children in the MCS to administrative school records. Finally, more

direct policy implications would require us to gain greater knowledge not only of the input

choices made by parents (and schools) but also of parental preferences. This may need

the formulation and estimation of a fully structural model of family and school input

decisions that would allow us to account for the possibility that changes in one input (or

its price) affect decisions about other inputs.
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Figure 1: SES Gradient in Cognitive and Emotional Ability by Child’s Sex and Age
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Source: UK Millennium Cohort Study (MCS).
Notes: Figures are relative to children whose mothers have less than GCSE (or equivalent) qualifications.
Solid line represents children whose mothers have GCSE (or equivalent) qualifications (MLSES); dashed
line represents children with mothers with qualification levels above GCSE (or equivalent) qualifications but
short of university degrees (MHSES); dash-dotted line represents children whose mothers have qualification
levels equivalent to university degree or above (HSES). Figures are the coefficients of the four SES indicators
regressed on the idiosyncratic residuals obtained from a model that includes child’s parity, age and age
squared, ethnicity, number of siblings and an indicator for experience of life in a single parent household.
Cognitive outcomes are measured by BAS naming vocabulary scores at ages 3 and 5 and by BAS word
reading scores at age 7. Non-cognitive outcomes are measured by the Total Difficulty scores derived from
the Strengths and Difficulties Questionnaires at all ages.
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Figure 2: Frequency Distribution of Cognitive Outcomes by Child’s Sex and Age
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Source: UK Millennium Cohort Study (MCS).
Note: Cognitive outcomes are measured by BAS naming vocabulary scores at
ages 3 and 5 and by BAS word reading scores at age 7.
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Figure 3: Frequency Distribution of Non-Cognitive Outcomes by Child’s Sex and Age
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Source: UK Millennium Cohort Study (MCS).
Note: Non-cognitive outcomes are measured by the Total Difficulty scores de-
rived from the Strengths and Difficulties Questionnaires at all ages.
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Figure 4: Frequency Distribution of Home Learning Environment Scores by Child’s Sex
and Age
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Source: UK Millennium Cohort Study (MCS).
Note: For a detailed explanation of how this measure has been constructed see
the text in Section 3.
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Figure 5: Input Contribution to the SES Gradient at Age 7
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Source: UK Millennium Cohort Study.
Notes: The figure shows the SES gradient (relative to LSES) in child’s cognitive and non-cognitive outcomes
at age 7. Each bar is the average value of the model-specific idiosyncratic residuals. For further details of
the baseline model, see the note to Figure 1.
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Table 1: Summary Statistics by Child’s Sex and Age

Boys at age (years): Girls by age (years):
3 5 7 3 5 7

Outcomes
Cognitive outcome -0.14 0.42 0.067 0.13 0.47 0.84
(Verbal score) (1.10) (1.11) (1.26) (1.09) (1.05) (1.10)

Number of observations 5,801 5,903 5,242 5,645 5,693 5,139

Non-cognitive outcome -0.24 0.16 0.11 -0.06 0.34 0.34
(Total Difficulty score) (0.93) (0.89) (0.98) (0.89) (0.81) (0.88)

Number of observations 5,860 5,854 5,418 5,639 5,621 5,163

Inputs
Maternal employment

Not working 0.52 0.45 0.40 0.51 0.46 0.39
Working full time 0.16 0.18 0.22 0.15 0.18 0.22
Working part time 0.33 0.37 0.38 0.36 0.36 0.39

Child care arrangement
None 0.51 0.45 0.41 0.52 0.46 0.40
Informal 0.21 0.32 0.29 0.20 0.31 0.28
Formal 0.16 0.15 0.24 0.16 0.14 0.25
Missing 0.12 0.09 0.06 0.12 0.09 0.07

Home learning environment 0.06 0.01 0.02 0.19 0.07 0.09
(0.94) (0.96) (0.97) (0.90) (0.93) (0.92)

Time varying exogenous inputs
Child age at interview (in days) 1145 1907 2640 1146 1905 2638

(73.65) (89.74) (88.97) (74.23) (89.70) (88.46)
Single parent household (=1) 0.17 0.19 0.20 0.17 0.19 0.21
Number of siblings 0.74 0.83 0.87 0.75 0.84 0.87

(0.44) (0.37) (0.34) (0.44) (0.37) (0.34)

Time invariant exogenous inputs
Firstborn (=1) 0.43 0.43 0.43 0.41 0.42 0.42
Mother’s age 29.00 28.94 29.05 29.08 29.01 29.14

(5.83) (5.84) (5.81) (5.85) (5.84) (5.82)
White (=1) 0.87 0.87 0.87 0.87 0.87 0.87

N 6,111 5,991 5,418 6,111 5,991 5,260

Notes: Figures are means (standard deviations for the continuous variables are in parentheses). N is
the total number of observations.
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Table 2a: Effect of Maternal Employment, Child Care Arrangement, and Home Learning
Environment on Cognitive Development — Boys

Contemp. Cumulat. VA–IV CVA CVA–IV GMM–predet.
(i) (ii) (iii) (iv) (v) (vi)

Mother works full time 0.186∗∗ 0.076+ 0.107+ 0.012 0.011 -0.433∗

(0.031) (0.041) (0.057) (0.039) (0.069) (0.179)
Mother works part time 0.196∗∗ 0.110∗∗ 0.024 0.028 -0.076 -0.201+

(0.025) (0.031) (0.048) (0.029) (0.052) (0.103)
In formal child care 0.004 -0.018 -0.057 -0.026 -0.054 0.093

(0.027) (0.033) (0.048) (0.031) (0.051) (0.122)
Home learning 0.065∗∗ -0.018 -0.038+ -0.016 -0.028 0.178∗∗

environment score (0.010) (0.014) (0.020) (0.013) (0.024) (0.056)
Mother worked 0.140∗∗ 0.091∗ 0.157∗

full time (t-1) (0.043) (0.041) (0.070)
Mother worked 0.142∗∗ 0.094∗∗ 0.207∗∗

part time (t-1) (0.033) (0.031) (0.050)
In formal 0.061+ 0.049 -0.011

child care (t-1) (0.036) (0.034) (0.060)
Home learning 0.078∗∗ 0.023+ -0.016

environment score (t-1) (0.013) (0.013) (0.024)
Lagged cognitive 0.717∗∗ 0.401∗∗ 0.712∗∗ 0.348∗∗

outcome (t-1) (0.040) (0.010) (0.041) (0.043)

F -test on lagged inputs 14.29 4.47 20.02
(p-value) (0.000) (0.001) (0.000)

Hansen J test 1.36
(p-value) (0.929)

Observations 16,946 10,323 4,360 10,057 4,360 4,360

Notes: Each model also controls for child’s age (and age square), number of siblings, mother’s age at
birth, and indicator variables for having experience of life with a single parent, being a firstborn child,
being of white ethnicity, and region of residence.
+ significant at 10% level; ∗ significant at 5% level; ∗∗ significant at 1% level.
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Table 2b: Effect of Maternal Employment, Child Care Arrangement, and Home Learning
Environment on Cognitive Development — Girls

Contemp. Cumulat. VA–IV CVA CVA–IV GMM–predet.
(i) (ii) (iii) (iv) (v) (vi)

Mother works full time 0.180∗∗ 0.167∗∗ 0.096∗ 0.115∗∗ 0.116∗ 0.221
(0.029) (0.038) (0.048) (0.036) (0.058) (0.156)

Mother works part time 0.208∗∗ 0.183∗∗ 0.155∗∗ 0.141∗∗ 0.162∗∗ 0.182+

(0.024) (0.029) (0.041) (0.027) (0.046) (0.09 7)
In formal child care -0.000 0.000 -0.013 -0.010 -0.011 0.032

(0.025) (0.031) (0.040) (0.028) (0.043) (0.104)
Home learning 0.074∗∗ -0.034∗∗ -0.066∗∗ -0.020+ -0.097∗∗ 0.188∗∗

environment score (0.010) (0.013) (0.017) (0.012) (0.021) (0.055)
Mother worked 0.019 -0.024 -0.039

full time (t-1) (0.039) (0.037) (0.059)
Mother worked 0.069∗ 0.004 -0.018

part time (t-1) (0.030) (0.028) (0.044)
In formal 0.090∗∗ 0.090∗∗ 0.003

child care (t-1) (0.033) (0.031) (0.050)
Home learning 0.100∗∗ 0.029∗ 0.054∗

environment score (t-1) (0.013) (0.012) (0.022)
Lagged cognitive 0.615∗∗ 0.405∗∗ 0.611∗∗ 0.388∗∗

outcome (t-1) (0.037) (0.010) (0.037) (0.038)

F -test on lagged inputs 16.07 3.35 7.04
(p-value) 0.0000 0.0051 0.218

Hansen J test 7.59
(p-value) 0.18

Observations 16,477 10,047 4,359 9,851 4,359 4,359

Note: See notes to Table 2a.
+ significant at 10% level; ∗ significant at 5% level; ∗∗ significant at 1% level.
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Table 3a: Effect of Maternal Employment, Child Care Arrangement, and Home Learning
Environment on Non-Cognitive Development — Boys

Contemp. Cumulat. VA–IV CVA CVA–IV GMM–predet.
(i) (ii) (iii) (iv) (v) (vi)

Mother works full time 0.218∗∗ 0.188∗∗ 0.102∗∗ 0.082∗∗ 0.092∗ -0.160∗

(0.026) (0.032) (0.032) (0.025) (0.039) (0.081)
Mother works part time 0.176∗∗ 0.166∗∗ 0.099∗∗ 0.077∗∗ 0.093∗∗ -0.102∗

(0.021) (0.025) (0.027) (0.020) (0.031) (0.049)
In formal child care 0.056∗ -0.006 -0.060∗ -0.020 -0.047+ 0.105∗∗

(0.022) (0.026) (0.026) (0.020) (0.028) (0.053)
Home learning 0.106∗∗ 0.043∗∗ 0.000 0.018∗ 0.020 0.059∗

environment score (0.009) (0.012) (0.012) (0.009) (0.015) (0.028)
Mother worked 0.080∗ 0.037 0.024

full time (t-1) (0.032) (0.026) (0.039)
Mother worked 0.081∗∗ 0.054∗∗ 0.017

part time (t-1) (0.025) (0.020) (0.029)
In formal 0.051+ -0.024 -0.047

child care (t-1) (0.026) (0.021) (0.032)
Home learning 0.085∗∗ 0.016+ -0.038∗

environment score (t-1) (0.010) (0.009) (0.015)
Lagged non-cognitive 0.961∗∗ 0.657∗∗ 0.966∗∗ 0.027

outcome (t-1) (0.024) (0.010) (0.024) (0.032)

F -test on lagged inputs 18.72 2.15 8.91
(p-value) 0.0000 0.0572 0.1127

Hansen J test 2.12
(p-value) 0.833

Observations 17,045 10,355 4,436 10,087 4,436 4,436

Note: See notes to Table 2a.
+ significant at 10% level; ∗ significant at 5% level; ∗∗ significant at 1% level.

37



Table 3b: Effect of Maternal Employment, Child Care Arrangement, and Home Learning
Environment on Non-Cognitive Development — Girls

Contemp. Cumulat. VA–IV CVA CVA–IV GMM–predet.
(i) (ii) (iii) (iv) (v) (vi)

Mother works full time 0.187∗∗ 0.134∗∗ -0.035 0.054∗ -0.007 0.058
(0.024) (0.029) (0.030) (0.024) (0.037) (0.076)

Mother works part time 0.192∗∗ 0.166∗∗ 0.011 0.103∗∗ 0.031 0.049
(0.020) (0.022) (0.026) (0.018) (0.028) (0.045)

In formal child care 0.005 -0.021 0.015 -0.007 0.022 0.039
(0.020) (0.023) (0.024) (0.018) (0.026) (0.049)

Home learning 0.127∗∗ 0.076∗∗ 0.001 0.032∗∗ 0.011 0.042
environment score (0.009) (0.011) (0.012) (0.008) (0.014) (0.027)

Mother worked 0.082∗∗ -0.004 -0.038
full time (t-1) (0.029) (0.024) (0.039)

Mother worked 0.099∗∗ 0.005 -0.037
part time (t-1) (0.022) (0.018) (0.027)

In formal 0.001 -0.017 -0.029
child care (t-1) (0.024) (0.020) (0.031)

Home learning 0.071∗∗ 0.001 -0.020
environment score (t-1) (0.010) (0.008) (0.014)

Lagged non-cognitive 0.970∗∗ 0.620∗∗ 0.976∗∗ 0.023
outcome (t-1) (0.025) (0.010) (0.026) (0.029)

F -test on lagged inputs 14.73 0.38 5.87
(p-value) 0.0000 0.865 0.3192

Hansen J test 4.26
(p-value) 0.513

Observations 16,423 10,003 4,367 9,765 4,367 4,367

Note: See notes to Table 2a.
+ significant at 10% level; ∗ significant at 5% level; ∗∗ significant at 1% level.
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Table 4: Cross-Validation RMSE for Selected Alternative Specifications

Cognitive outcome Non-cognitive outcome
Boys Girls Boys Girls

Cumulative 1.132 1.018 0.902 0.800
CVA 1.409 1.004 0.843 0.763
CVA–IV 1.428 1.003 0.839* 0.761*
GMM–predetermined 1.111* 0.965* 0.920 0.809

Notes: Figures are based on five roughly equally sized random holdout samples. Each model is
estimated on one of the five samples separately and used to compute the RMSE for the other
four left-out samples. This procedure is repeated alternating the subset of data that is left out.
The number in each cell is the average RMSE over the five rounds.
* denotes the model specification with the smallest RMSE value.

39



Table 5: SES Gradient Closed by Family Inputs

SES Gradient Contemp. CVA–IV GMM–predet.
at baseline

Boys
Cognitive outcome

HSES vs LSES 0.679 0.631 0.338 0.836
[7.1%] [50.2%] [123.1%]

Non-cognitive outcome
HSES vs LSES 0.384 0.319 –0.012 0.640

[17.0%] [–3.1%] [166.6%]

Girls
Cognitive outcome

HSES vs LSES 0.590 0.548 0.270 0.480
[7.2%] [54.2%] [18.6%]

Non-cognitive outcome
HSES vs LSES 0.390 0.344 –0.010 0.480

[11.7%] [–2.6%] [122.9%]

Notes: The first column reports the HSES vs LSES gradient estimated from a baseline model
which, besides mother’s education, includes child’s age and age squared, mother’s age at birth
and its square, child’s parity, number of siblings, and indicators for region of birth, ethnicity, and
having experienced life in a single parent household. The baseline model specification includes
neither family inputs nor lagged outcomes. Each of the numbers in the other columns is the
SES (HSES vs LSES) gradient. Numbers in square brackets are the percentage of the gradient
closed (or magnified) by family inputs and, in the case of CVA–IV and GMM–predetermined
specifications, also by lagged outcomes. A number below 100 in square brackets indicates a
reduction of the SES gradient, while a number greater than 100 indicates an increase. Negative
numbers indicate a full elimination of the gradient.
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