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Abstract

We study long-run learning in an experimental Cournot game with no explicit information

about the payo� function. Subjects see only the quantities and payo�s of each oligopolist after

every period. In line with theoretical predictions and previous experimental �ndings, duopolies

and triopolies both reach highly competitive levels, with price approaching marginal cost within

50 periods.

Using the new ConG software, we extend the horizon to 1,200 periods, far beyond that

previously investigated. Already after 100 periods we observe a qualitative change in behavior,

and quantity choices start to drop. Without pausing at the Cournot-Nash level quantities

continue to drop, eventually reaching almost fully collusive levels in duopolies and often reaching

deep into collusive territory for triopolies. Fitted models of individual adjustment suggest that

subjects switch from imitation of the most pro�table rival to other behavior that, intentionally or

otherwise, facilitates collusion via e�ective punishment and forgiveness. Remarkably, subjects

never learn the best-reply correspondence of the one-shot game. Our results suggest a new

explanation for the emergence of cooperation.
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1 Introduction

Imitation is an attractive heuristic when players have little information about the strategic envi-

ronment but can observe others' choices and success. Compared to popular learning models that

focus on own payo�s, imitation makes more comprehensive use of available information � but not

necessarily better use, as �rst shown by Vega-Redondo (1997) for the case of Cournot games where

imitation generates the perfectly competitive Walrasian outcome.

In this paper we show how subjects, although initially attracted to imitation, learn their way out

of it, and eventually acquire heuristics that not only avoid the pitfalls of extreme competition but

also enable them to cooperate. The cooperation we see emerges only in the long run, beyond the

horizons previously investigated. Interestingly, cooperation does not seem to be supported by Nash

reversion or similar strategies; indeed the evidence suggests that our subjects never even learn the

best response function. Instead, they eventually gravitate to heuristics that are no more complicated

than imitation, but that align incentives and enable a form of punishment and forgiveness.

We study Cournot games as they are of special interest not only to industrial organization the-

orists but also from a wider view. Within the broad class of aggregative games (Alós-Ferrer and

Ania 2005), Cournot games are notable for a tension between social e�ciency and individual opti-

mization. (Since consumers are not considered players in such games, social e�ciency refers to the

players' joint payo� maximum at the cartel pro�le.) The e�cient pro�le contrasts to the Cournot-

Nash equilibrium, but there is an even less e�cient pro�le of interest � the fully competitive or

Walrasian outcome. Vega-Redondo showed that imitating quantity choices of the more pro�table

players leads precisely to that least e�cient pro�le, where economic pro�ts are zero.

Of course, this unfortunate outcome arises from a blind spot in the imitation heuristic � it

ignores the fact that prices fall with greater quantities. Nevertheless, the heuristic has been quite

descriptive of laboratory behavior reported by several authors in low-information environments

where players observe other players' quantity choices and pro�ts but not the underlying payo�

function. Most of these studies feature what has been considered �long horizon� repeated interaction

of around 50 periods (see, for example, Huck, Normann, and Oechssler 1999, O�erman, Potters,

and Sonnemans 2002, or Apesteguía, Huck, and Oechssler 2007).

Our point of departure is to examine a much longer horizon. We employ the new ConG software

(Pettit, Friedman, Kephart, and Oprea 2012) which allows for periods to be so short that human

subjects perceive action as taking place in continuous time. Here we instead use the software to

implement discrete 4-second periods � rather short by recent standards, but perceived by our
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subjects as comfortable stop-action in discrete time. This enables us to increase the number of

periods to 1,200.

The results are dramatic � what looked like stable long-run behavior in earlier studies turns out

to be transient. In the �rst 50 periods of our experiment we replicate the very competitive outcomes

observed in previous studies. However, soon thereafter the trend reverses and quantity choices start

to drop. Quantities often approach the Cournot-Nash level after 100 periods but they do not halt

there, or even pause. Rather they continue to drop until they reach almost fully collusive levels in

duopolies and reach, on average, deep into collusive territory in triopolies.

The primary contribution of the present paper is to document that transition in outcomes. The

transition illustrates the importance of very long horizons in low information environments, and it

also sheds light on an important general question: how can players learn to abandon dysfunctional

heuristics and �nd di�erent rules that better reconcile group interest with self interest?

With that general question in mind, we also examine individual behavior before and after the

transition, using known models of dynamic adjustment. We show how subjects abandon the tempt-

ing but fallacious imitation heuristic and instead combine two other modes of behavior: simple

matching of others' quantities, and a basic algorithm (�win-continue, lose-reverse�) that responds to

the pro�tability of the previous quantity adjustment. Together, these two heuristics move quantities

towards the collusive region. They e�ectively make subjects more mindful of future consequences

of their current actions: subjects learn that deviations from cooperation are not very pro�table as

they are quickly matched (an e�ective punishment) and that repentance brings forgiveness (as a

return to cooperation is also matched).

The next section reviews static theory relevant to our experiment, and computes the three

benchmark outcomes: the joint pro�t maximum (JPM), the Cournot Nash equilibrium (CNE), and

the perfectly competitive Walrasian outcome (PCW). The section then discusses several well known

heuristics intended to describe individual adaptation in low-information environments like ours.

The heuristics include Vega-Redondo's imitate-the-best-max (IMIT), matching the average action

played by others (MATCH) and win-continue lose-reverse (WCLR). The section also notes some

standard adaptation models that require more information, such as myopic best response (BR), and

�forward-looking� repeated game strategies such as Tit-for-Tat (TFT). The section concludes with

a discussion of observable consequences and hypotheses that motivate our experiment.

Section 3 lays out our laboratory procedures. It describes the ConG user interface we used as well

as matching procedures and treatments. Section 4 summarizes results. It shows that initially play
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becomes very competitive, consistent with Vega-Redondo's IMIT, but that subjects subsequently

change behavior and obtain much more e�cient outcomes. Section 5 analyzes the transition in

terms of the individual adaptation models.

Section 6 discusses our �ndings, which do not trivially vindicate standard repeated game theory.

Although we observe clear end-game e�ects that demonstrate that subjects are aware of last rounds

and are aware of (stage game) pro�table deviations from cooperation, we �nd that our subjects do

not understand Nash reversion. Indeed, they never learn crucial parts of the best-reply correspon-

dence of the stage game, let alone its Nash equilibrium. Nevertheless, subjects do become more

sophisticated over time in that they enjoy ever-longer spells of collusive play with more e�ective

and shorter punishment phases.

Appendix A contains supplemental data analysis, Appendix B uses simulations to examine

identi�cation issues in the data, and Appendix C reproduces instructions to subjects. On-line

Appendix D collects supplementary mathematical derivations.

2 Perspectives from Received Theory

We study a repeated Cournot game played by a �xed �nite number n ≥ 2 of strategically identical

players with constant marginal cost c ≥ 0. Each period, each player i chooses a quantity xi in a

�nite interval [xL, xU ]. Price P is a decreasing function of the aggregate quantity X =
∑n
j=1 xj ,

and player i's pro�t that period is πi = a+ (P (X)− c)xi, including an exogenous additive constant

a that captures bene�ts from other activities net of �xed cost. Our experiment uses n = 2 or 3, the

interval [xL, xU ] = [0.1, 12n ], a = c = 10, and unit elastic demand with XP (X) = 120, so

πi(xi, x−i) = 10 +

(
120∑
j xj
− 10

)
xi. (1)

2.1 Static predictions

Maximal quantity choice xi = xU = 12
n by every player i yields the minimal price P = 120

nxU
= 10

equal to marginal cost. Associated minimal pro�ts are πPCWi = a + 0 = 10 for every player. We

refer to this action pro�le as the perfectly competitive Walrasian outcome (PCW).

At the other extreme of the action space, minimal quantity choice xi = xL = 0.1 by every player

i yields the maximal price P = 120
nxL

= 1200/n and indeed maximal total pro�ts nπJPMi = 9n+ 120.

We call this pro�le the joint pro�t maximum (JPM).
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Table 1: Static outcomes for payo� function (1)

Duopoly Triopoly

xi P πi xi P πi

JPM 0.1 600 69 0.1 400 49

CNE 3 20 40 2.66̄ 15 23.3̄

PCW 6 10 10 4 10 10

The best response of player i to X−i =
∑
j 6=i xj is the unique solution x

∗
i = b(X−i) ∈ [0.1, 12n ] to

the �rst-order condition

0 =
∂πi
∂xi

=
120

xi +X−i
− 10− 120xi

(xi +X−i)2
, (2)

and is given by

b(X−i) = 2
√

3X−i −X−i. (3)

Imposing the relevant symmetry condition xi +X−i = nxi in (2) and solving for xi, we obtain the

Cournot-Nash equilibrium pro�le as xCNEi = 12(n−1)
n2 . The corresponding price is PCNE = 10n

n−1 ,

and the resulting equilibrium pro�t for each player is πCNEi = a+ 10
n−1 · x

CNE
i = 10 + 120

n2 . Table 1

summarizes these static predictions for the duopoly (n = 2) and triopoly (n = 3) cases.

Compared to a linear demand speci�cation, the unit elastic demand embodied in payo� function

(1) has three important advantages for experimental work. First, as shown in Table 1, it gives a

clean separation between the three static outcomes of interest. Second, it creates a much stronger

temptation to defect at the JPM. Finally, for n < 6, the payo� function is not as �at around the best

response. See on-line Appendix D for details on the limitations arising from a linear speci�cation

of the demand function.

2.2 Dynamic adjustment models

The existing theoretical literature o�ers a variety of predictions regarding which outcomes will

emerge as players react to other players' choices and pro�ts in Cournot games like (1). Among these,

the best supported in previous low information experiments is the simple heuristic of imitating the

choice of the player who earned the highest payo� among all players last period. This heuristic,

�rst analyzed by Vega-Redondo (1997), is often referred to as �imitate-the-best-max�. Below we will

refer to it as IMIT. Vega-Redondo's model also allows agents from time to time to make mistakes

and choose a quantity di�erent from the one prescribed by the imitation rule. He shows that as the

error rate goes to zero, the limit of the dynamic process spends almost all time in the PCW pro�le.
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Indeed, convergence is global and rapid: from any other pro�le, a single player choosing xU one

period will, except perhaps for a few transitory mistakes, immediately be imitated by all players,

and single deviations from the PCW pro�le will never be imitated under Vega-Redondo's (1997)

rule. Apesteguía, Huck, and Oechssler (2007) show that PCW is also the unique stochastically

stable outcome for a wide range of other imitation rules, including Schlag's (1998) proportional

imitation rule, and the imitate-the-best-average rule of Eshel, Samuelson, and Shaked (1998).

Alós-Ferrer and Ania (2005) show that stochastic stability of the PCW outcome follows also from

the fact that it is a strict �nite-population ESS in the sense of Scha�er (1988). That is, unilateral

deviations from the PCW pro�le (xU , xU , . . . , xU ) satisfy the strict payo� inequality

πi(x
′|

n−1︷ ︸︸ ︷
xU , . . . , xU ) < πi(xU |x′,

n−2︷ ︸︸ ︷
xU , . . . , xU )

for all x′ 6= xU , i.e., the deviator earns a lower payo� than the non-deviators.

The intuition behind these stability results is simple. All �rms in Cournot oligopoly face the

same price, and as long as that price is above marginal cost, the most pro�table �rm is the one with

the largest quantity. Imitation will therefore lead �rms to increase quantities, driving price down

to marginal cost. (Price below marginal cost is not possible with our restricted strategy space, but

even if it were, the �rm with the smallest quantity would be the most pro�table, and once again

imitation would drive the price back towards marginal cost.) In our game PCW is the unique pro�le

where price equals marginal cost. At any other feasible pro�le, a deviation towards the PCW choice

xU will give the deviator higher pro�ts than the non-deviators. Moreover, as just noted in the ESS

discussion, any single deviation from PCW earns the deviator smaller pro�t than the non-deviators.

Thus the PCW outcome is the only stochastically stable state, and is relatively robust to mistakes.

Though IMIT is theoretically prominent and empirically successful, many competing adjust-

ment rules are available. One such alternative is an even simpler variety of imitation: simply match

average actions independently of payo�s. There are a number of possible reasons for such behav-

ior. A player's utility might be subject to conformism biases (Bernheim 1994), or players might

use popularity weighting (Ellison and Fudenberg 1993) in their decision process. Forward looking

subjects may even strategically adopt such a rule as a simple (and salient) way of committing to

matching movements towards collusion and deterring deviations in the other direction. Variations

on the theme include moving towards the action of a randomly chosen other player, or towards

the average action among all other players. For speci�city, we will refer to that last variation as

MATCH, and include it in our list of heuristics.

For n > 2 , the stationary points of MATCH, like other unconditional imitation processes, are
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symmetric (monomorphic) states, where all players make the same choice. The set of all symmetric

states is connected via (a chain of) single deviations. Thus, under MATCH, every symmetric state,

including PCW, is stochastically stable for n > 2. For the n = 2 (duopoly) case, there are also

stochastically stable periodic states, which we call �blinkers,� in which the two players players swap

actions every period.

The heuristics discussed so far respond to the current choices and payo�s of all players, but

there are other heuristics that use even less information. Players might respond only to their own

past strategies and payo�s, and ignore (or be unaware of) those of other players. For instance, they

might simply adjust their actions based on the success of the last adjustment. Huck, Normann, and

Oechssler (2003, 2004) propose an adaptive process that we shall call �win-continue lose reverse�

(WCLR): agents keep moving in the direction of a previous quantity change if it resulted in an

increase in earnings and move in the opposite direction otherwise. WCLR is related to learning

direction theory, as �rst proposed by Selten and Buchta (1998). The distinction is that learning

direction theory has players move in the direction of a better reply, which requires counterfactual

knowledge. By contrast, WCLR relies only on direct personal experience in the current period plus

memory of one's own action and pro�t in the previous period; it does not require any knowledge of

the best reply function.

Huck, Normann, and Oechssler (2003, 2004) show that players following WCLR converge to the

JPM pro�le if they move simultaneously (and to the CNE pro�le if they move in an alternating

fashion). The intuition for JPM convergence is easy to understand in duopoly, where it prevents

players from systematically increasing their separation. As opposite movements keep the price

unchanged, it is impossible that the large �rm increases its pro�t through a higher quantity if the

smaller �rm increases its pro�ts through a smaller quantity. Moreover, when �rms move in the same

direction, it will be the leading �rm (the larger �rm for upward movements, the smaller �rm for

downward movements) that is going to reverse �rst. Hence, over time quantity separation shrinks.

Eventually players choose the same quantities, and thereafter any (joint) movement towards the

JPM outcome will continue while any movement away from it will result in lower pro�ts and hence

reverse direction. On the other hand, if the protocol calls for players to alternate moves, then this

sort of entrainment cannot occur. WCLR then leads players towards their best response, eventually

resulting in convergence to the CNE pro�le.

Cournot (1830) assumed that each player always knows enough about the payo� function to best

respond to the current pro�le of other players' choices. Standard learning models generalize this

approach mainly by allowing for strategic uncertainty. For example, �ctitious play (Brown 1951,
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Robinson 1951) postulates that next period's choice is a best response, not to the pro�le experienced

this period, but rather to the time-average action pro�le over the current and all previous periods.

Thus it requires memory as well as counterfactual knowledge of payo�s.

It is well known in games similar to ours that the CNE is the unique point in the serially undom-

inated set, i.e., the set of strategies that survives the elimination of strictly dominated strategies.

On-line Appendix D extends that result to our game. Milgrom and Roberts (1991) show that any

process of adaptive learning (including �ctitious play and Cournot's best response process) con-

verges to the serially undominated set, i.e. to the CNE. Thus in our game, the CNE is a global

attractor of such processes, or (in stochastic versions of the models with small noise amplitude) a

neighborhood of CNE is stochastically stable. As shown by Beggs (2005), a further consequence

is that reinforcement learning (Erev and Roth 1998) which, of course, requires no counterfactual

knowledge of the payo� function, also converges to the CNE.

2.3 Questions and Hypotheses

Which adjustment rule best describes actual behavior in these games? From our perspective, this

may be the wrong question to ask. Though we often conceive of agents in models (and subjects

in experiments) as followers of consistent adaptive rules, there is no reason in principle that this

need be the case. Adaptive rules that seem natural to the inexperienced may lead to undesirable

outcomes. In such cases, including ours, it seems reasonable to conjecture that moderately sophis-

ticated subjects will eventually abandon such rules, once their pathological consequences become

apparent. Such transitions have seldom been considered in the literature.

Low information Cournot games are prime examples of environments that inspire usage of de-

structive heuristics. The literature contains robust evidence that IMIT-like rules govern behavior

in experiments lasting 40-60 periods. Increasing adherence to the IMIT heuristic results in steadily

rising quantities and substantial reductions in pro�ts. These games are therefore an ideal testbed

for our conjecture.

Our central question is whether, given enough experience, subjects will learn to abandon IMIT

and thereby collectively escape from the low earnings at the PCW outcome. Our primary empirical

hypothesis is that, though subjects will initially trend towards Walrasian quantities as in previous

studies, they will eventually move towards CNE or even JPM quantities, increasing their pro�ts in

the process.

Were this to occur, a second question the arises: what do subjects do instead, once they abandon

8



Figure 1: Screenshot from ConG software.

IMIT? One possibility is that they will develop a crude sense of their best response functions with

experience, switch to the BR heuristic, and thus converge to the more pro�table CNE pro�le. If

subjects are more sophisticated yet, they might use their newfound knowledge of the best response

function to implement repeated game strategies like tit-for-tat, leading to even higher earnings at

the JPM.

On the other hand, subjects might not learn their best response function at all, switching instead

to simpler heuristics. Subjects might learn to ignore their counterparts entirely, adopting WCLR,

leading to eventual collusion (or to CNE). Or subjects could adopt MATCH, perhaps leading to

some degree of collusion.

In order to detect these sorts of changes in heuristics, we will estimate simple econometric models

on early, intermediate and late data and study whether these reveal signi�cantly di�erent patterns

of adjustment. Appendix B provides evidence that such econometric exercises, conducted on sim-

ulations of agents following IMIT, BR, MATCH and WCLR heuristics, are capable of identifying

and di�erentiating these behaviors to a reasonable degree. Our second main hypothesis, then, is

that we will observe evidence of signi�cantly di�erent rules governing period-to-period adjustment

in earlier versus later periods of play.

3 Laboratory procedures

In order to provide a window into long-run behavior, our subjects play Cournot games for hundreds

of periods, far more than in any previous experiment on this topic of which we are aware. To make
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this feasible in the span of a two-hour session, we introduced several new features using the ConG

software package (Pettit et al. 2012). Figure 1 shows a screenshot that illustrates three key features:

• In order to allow subjects to instantly process information, previous-period actions and payo�s

are shown to subjects via an intuitive graphical interface. The x-axis represents quantity

choices and color coded tick marks show each subject's previous-period quantity choice, e.g.,

the subject's own choices are shown in green. The y-axis represents pro�ts: the heights of dots

(color matched to x-axis ticks) represents previous-period pro�ts, and small font text next to

the dot gives the exact amount.

• Second, all periods are time limited at four seconds. A timer bar above the quantity/pro�t

graph �lls in over the course of the period; once it is �lled the period is over. During the

period subjects can adjust their actions as often as they like; the payo�-relevant actions are

those seen when the period ends. Immediately thereafter subjects see the actions and payo�s

achieved in that period by themselves and their fellow oligopolists.

• Third, in order to allow subjects to register decisions instantly, subjects make quantity choices

by simply clicking on the screen (or dragging the hollow-box slider at the bottom of the screen).

The set of available quantities is nearly continuous, with a granularity of less than 0.007 units

over the interval [0.1, 6] in the Duopoly treatment and [0.1, 4] in the Triopoly treatment.

When subjects choose not to adjust quantities they can maintain the status quo simply by

not clicking on the screen at all.

Several comments are worth making about the design choices. First, the 4 second time limit was

shown in extensive piloting to steer safely between the twin pitfalls of time pressure and boredom.

Subjects did not seem hurried or frantic during game play and, in informal post-experiment in-

terviews, expressed comfort with the pacing of the game. Second, this comfort is supported by

a carefully constructed graphical interface designed to make information dissemination and action

quicker than in standard implementations. Visualization makes subjects almost instantly aware

of the actions and payo�s of all members of their group while the point-and-click interface allows

subjects to register decisions in a fraction of a second. Third, subjects were not forced to make

a new decision in each period as previous quantity decisions were automatically maintained each

period unless changed. Thus, at very low cost, subjects could stand still for several periods while

thinking about their decisions, reducing time pressure signi�cantly. Finally, the evidence in section

4 shows that during the �rst 50 periods of play, our experiment yields data very similar to that

seen previous experiments. This similarity reassures us that our design choices do not drastically
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reshape behavior.

The new design features, however, allowed us to run 1,200 periods in less than two hours.

We employed 72 subjects in six sessions of twelve subjects each at the LEEPS laboratory at the

University of California, Santa Cruz in April 2011. In half of the sessions we matched subjects

exclusively into duopolies and in the other half into triopolies, i.e. we ran two treatments using

a completely between-subject design. Our matching algorithm grouped subjects into independent

�silos� of six subjects each. Subjects interacted only with subjects in their own silos, thereby giving

us six completely independent groups in each treatment. Each 1,200 period session is divided into

three 400 period blocks. At the beginning of each block, subjects are rematched to new counterparts

in their silo, and no subject interacts more than once with the same counterpart(s).

Because our focus is on adaptation to low-information environments, we told subjects very little

about their payo� functions. Using clear but non-technical language, we told them only that the

functions were symmetric, time-invariant and determined uniquely by the [quantity] choices of the

group members. Subjects were students from all �elds and recruited online via ORSEE (Greiner

2004). Instructions, read aloud to the subjects at the beginning of the session, are reproduced in

Appendix C. Subjects were paid their average earnings in each of the three blocks at the rate of 12

US cents per point in Duopoly and 18 cents in Triopoly. We paid an additional a show-up fee of

$5. On average, sessions lasted just under two hours and subjects earned $21.00.

4 Aggregate results

We �rst analyze the very beginning of the experiment in order to see whether there are any qualita-

tive di�erences between our data and earlier Cournot experiments in low-information environments.

The left-hand panel of Figure 2 plots median quantities from the Duopoly treatments while the

right-hand panel does the same for Triopoly in the �rst 25 periods of the experiment. In Appendix

A we plot the evolution of median pro�ts in the same manner.

Markets become very competitive within just a few periods and stabilise in the competitive

region between Cournot-Nash and Walras. This is not only true for the overall medians but for

all market groups in both treatments. There are slight di�erences between duopolies and triopolies

with the latter being even closer to Walras than the former. There are some triopoly markets where

price is equal to marginal costs for sustained periods of time. To statistically establish the initial

rise in quantities, note that median quantities rise from the �rst to the 20th period for each of the
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Figure 2: Median quantities in the �rst 25 periods
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six independent matching groups in each treatment. This di�erence is statistically signi�cant at the

one percent level in both cases by a paired Wilcoxon Signed-Rank test. Over the next 25 periods,

median quantities continue to �uctuate in the Walrasian region above Cournot-Nash. Thus, over

the �rst 50 periods we see essentially the same trends as in earlier studies. This is despite the

fact that in those studies it took over an hour to run 50 periods, versus about 3 minutes in our

experiment.

Result 1 Median action choices initially trend upwards, and within 25 periods are much closer to

PCW levels than to CNE levels in both duopolies and triopolies.

Figure 3 plots median quantities over the full 1,200 periods of our experiment. Each dot rep-

resents the median from a 25-period window. The three blocks are indicated through dotted lines.

Analogous pro�t series can be found in Appendix A.

In Duopoly, there is a stark contrast between the �rst �fty periods and the long-run. Highly

competitive outcomes as predicted by Vega-Redondo's IMIT are only observed in the �rst 50 periods.

After that average quantity choices start to drop sharply. Quantities continue to fall even after

crossing the Cournot-Nash level, and in periods 300-380 are much closer to full collusion than

to Cournot-Nash. Of course, the median could hide some interesting heterogeneity. However,
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Figure 3: Median quantities in all periods, plotted in 25 period bins.
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inspection of individual groups reveals that none of our matching groups spent any signi�cant time

systematically close to the CNE. More on this below and in Appendix A.2.

In the second block, collusion becomes prevalent much more quickly; in some duopolies it is

nearly perfect and remarkably stable for long intervals of time. Collusion is even more pronounced

in the third block.

In Triopoly, quantities again start to trend downwards after the intense competition of the �rst

50 periods. However, the decline of quantities (and the rise of pro�ts) is much slower than in

Duopoly and never approaches full collusion on average (although there is one group of subjects

that colludes perfectly in the last block). Also, heterogeneity across groups is much greater than in

Duopoly, especially in the last block. Nevertheless there is a systematic trend that takes subjects

deep into the collusive territory between Cournot-Nash and the joint pro�t maximum.

To statistically establish the secular drop in quantities, note that the median quantities fall from

the �rst to the �nal block in each of the six independent matching groups in each treatment. This

di�erence is statistically signi�cant at the �ve percent level in both cases by a paired Wilcoxon

Signed-Rank test.

Table 2 summarizes our aggregate results. It shows median quantities, prices, and pro�ts for
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Table 2: Median quantities, prices, and pro�ts

Duopoly Triopoly

Periods Quantity Price Pro�t Quantity Price Pro�t

1− 50 4.54 13.98 23.74 3.46 12.52 16.52

1− 400 3.17 18.43 35.45 3.11 13.59 18.66

401− 800 0.57 90.01 63.11 2.74 14.60 21.20

801− 1, 200 0.28 107.36 68.53 2.08 18.70 26.73

1151− 1200 0.40 91.30 68.51 2.03 19.44 23.03

the three blocks and also for the �rst and last 50 periods only. An analogous table reporting means

can be found in Appendix A.

Result 2 After peaking in the �rst 25-50 periods, quantities in both Duopoly and Triopoly begin

a long decline towards the collusive JPM level. Median quantities closely approximate JPM by the

�nal block in Duopoly, while in Triopoly median quantities fall nearly by half, and remain well below

the CNE level.

Figure 3 also shows both end-game and restart e�ects. Subjects collude despite being aware of

the �nite nature of the game. And subjects do not revert to the same level of cooperation once they

have been rematched. Rather they enter with more cautious quantities and engage in an adaptive

process that leads them gradually towards more cooperative outcomes.

Figure 4 reveals another aspect of the aggregate data. It plots the likelihood that a subject

adjusts quantity in period t+ 1 as a function of her quantity choice in period t. A separate series is

plotted using data from the �rst 25 periods (in red) and using data from the �nal block (in black).

Circles around points are scaled in size to the proportion of subjects holding the corresponding

quantity in period t.

Highly competitive choices are most persistent in the �rst 25 periods, consistent with IMIT, in

both duopolies and triopolies. The pattern changes dramatically by the �nal block. In Duopoly

persistence completely reverses, with collusive quantities becoming most persistent and Walrasian

quantities least persistent. In Triopoly, where group heterogeneity is more challenging, the relation-

ship becomes almost �at, with slightly stronger persistentce near cartel levels than near Walrasian

levels. Still, the change from early period behavior is striking.
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Figure 4: Stability of quantities.
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Figure 4 illustrates a second important trend in the data. Subjects are considerably less likely

to change their quantities later in the experiment than earlier. This suggests subjects approach

a behavioral equilibrium with experience, particularly in Duopoly where colluding subjects rarely

change their quantities.

Result 3 Quantities are less variable later in the session. Early in the session, quantities near

the PCW level are the most persistent, but late in the session, quantities near JPM are the most

persistent.

5 Analyzing the dynamics

5.1 Individual adjustments in the experiment

To better understand the transition in aggregate behavior, we investigate the underlying individual

heuristics, beginning with BR and MATCH. Figure 5 plots counterpart quantity in period t− 1 on

the x-axis and own quantity in period t on the y-axis. Median responses are plotted in solid red
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Figure 5: Median quantities in Duopoly
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Figure 6: Median quantities in Triopoly
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and 25th and 75th percentile in dotted red. For reference we plot the BR prediction in blue and

the MATCH prediction as the dotted main diagonal.

The left panel shows data from the �rst 25 periods. Quantities virtually never coincide with

best response. This is not surprising as subjects are given no initial information about their payo�

functions. Instead, quantities tend to roughly follow the diagonal at high quantities and exceed

it at low quantities. This is roughly consistent with IMIT, where players imitate high-quantity

counterparts, and out-produce low-quantity counterparts.

The right panel aggregates all later data. Although best response fares no better in the long

run, there is a clear change in behavior. Quantities (except at the sparsely populated upper end)

are tightly bunched along the diagonal, consistent with MATCH.

Figure 6 provides analogous graphs for Triopoly, with average counterpart t − 1 quantities on

the x-axis. The pattern for both early and later responses are similar to (though noisier than) that

observed in Duopoly.

The complete absence of BR in the adjustment data is mirrored in data from post-experimental

questionnaires, reported in Appendix A.3. Fully incentivized elicitation of subjects' beliefs regarding

the direction of better replies in the stage game revealed that the vast majority of subjects were

aware that one could pro�tably deviate from the JPM. However, they never acquired systematic

knowledge of the rough shape of the best-reply correspondence. For example, very few subjects

realized that the best reply against the CNE pro�le is the CNE action. Rather they believed that

higher quantities would be more pro�table. Appendix A.2 reports further evidence on the irrelevance

of BR in explaining subjects' behavior.

Result 4 Subjects both in the short and long run show no tendency towards best response.

The aggregate data suggest that subjects begin some sort of behavioral transition after around

40-60 periods. To investigate, we collected all1 individual quantity choices xit and, using OLS with

robust standard errors clustered at the subject level, �tted them to the following equation:

xit − xit−1 = α + β1(x
−i
t−1 − x

i
t−1) + β2(ht−1 − xit−1) (4)

+ β3sign(xit−1 − xit−2)sign(πit−1 − πit−2) + εit

The explanatory variables correspond to heuristics de�ned in section 2:

1Coe�cient estimates are qualitatively similar but larger if we examine only observations with xi
t+1 6= xi

t.

17



• The intercept α re�ects a possible overall trend in the quantity chosen.

• MATCH refers to the player's adjustment towards the average action x−it−1 by other players,

so perfect adherence to that model would yield coe�cient β1 = 1.

• Coe�cient β2 picks up the additional weight placed on imitation (IMIT) of the highest action

ht−1 = maxj=1,...,n x
j
t−1, beyond its contribution to the average.

• WCLR is 1 or -1 or 0 depending on whether the most recent change in pro�t has the same

sign as the corresponding change in quantity, or the opposite sign, or there was no change in

pro�t or quantity. The coe�cient β3 estimates the step size.

Can statistical models of this form actually identify and di�erentiate underlying adjustment heuris-

tics? Some skepticism is warranted because speci�cations like this raise endogeneity issues, and

because behavior at the boundaries of the action space can also derail identi�cation. To deal with

such questions, we report in Appendix B estimates using simulated data. The simulations use agents

programmed to follow speci�c heuristics including MATCH, IMIT, WCLR and BR, and have the

same number of observations (with the same clustering structure) as in our experiment with human

subjects. The results suggest that in practice the estimation actually can do a pretty good job of

discriminating among the underlying heuristics. Most importantly, the simulation exercise suggests

that we can expect to strongly identify and di�erentiate the MATCH and IMIT rules from one

another.2

We estimate equation (4) on the �rst 50 periods of data and then separately on the �nal 50

periods of data to examine changes in the dynamic adjustment process. We also include estimates

on the 1100 periods between these two endpoints. Under the hypothesis that subjects rely mainly

on IMIT at the beginning of the session, we expect β1 to be indistinguishable from zero and β2 to be

signi�cantly positive. Under the hypothesis that subjects move to MATCH we expect the reverse:

β1 should be signi�cantly positive and β2 should drop to zero.

Results are presented in Table 3. In both Duopoly and Triopoly, we observe the same pattern: β2

is signi�cant in the �rst 50 periods, replaced by β1 in the �nal 50. Between, results are intermediate

but show a movement from IMIT to MATCH. Coe�cients are below 1 in most cases, but this is

likely due to an inevitable censoring problem facing this type of model. The subjects who are most

2The one heuristic that is di�cult to identify in simulations is BR, the best response rule. The simulations suggest

that the BR variable will arti�cially show up as statistically signi�cant regardless of the actual rule agents follow.

Happily, robust evidence from the data and from incentivized quizzes allow us to rule out BR prior to estimation.

This allows us to avoid these identi�cation issues by excluding the BR variable from our empirical speci�cations.
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likely to imitate are also the most likely in any given period to hold quantities identical to their

counterparts. These subjects contribute nothing to the estimate of these slope terms, so we expect

these estimates to be systematically downward biased. This problem is attenuated in Triopoly

where imitation of average quantities does not necessarily entail holding quantities identical to all

other players. As a result, we see larger estimates in Triopoly than in Duopoly.

Two other patterns are worth noting. First, there is evidence that subjects follow the WCLR

heuristic to some degree. This shows up in all estimates but is stronger later on in both Duopoly

and Triopoly. In late-period data the term is quite robust to the window used for the estimate in

Duopoly but is somewhat fragile in Triopoly. Our interpretation is that WCLR is stronger and less

noisy in Duopoly than in Triopoly. Finally, there is a signi�cant negative trend in the early-period

data in both Duopoly and Triopoly. We suspect that this also arises from a boundary problem.

Subjects tend to adjust their quantities frequently at the beginning of the experiment but quantities

are located, on average, quite close to the Walrasian equilibrium, a boundary in the action space.

This combination will tend to drive the mean adjustment below zero when subjects hold identical

quantities. Indeed, regressions on simulated IMIT agents, reported in Appendix B, also show

signi�cant negative trends even though these agents are not programmed to move autonomously in

either direction.

Result 5 While subjects tend to follow IMIT in the �rst 50 periods, they switch to MATCH later.

There is also evidence that subjects follow WCLR to some degree throughout.

This seemingly innocuous result makes a powerful di�erence in evolution of behavior. By ridding

themselves from the tempting but fallacious IMIT heuristic, subjects are able to avoid extreme

competition and begin to increase pro�ts. Indeed, dissatisfaction with low payo�s and an awareness

of an outcome region with collectively much higher payo�s probably is the reason that subjects

abandon IMIT. Inspection of many Duopoly and Triopoly matches over 400 periods suggests that

in some matches this abandonment happens more or less simultaneously, while in other matches

a single player takes the lead, reducing her own quantity to demonstrate to her counterparts that

higher payo�s are available.

Result 5 also shows the importance of long horizons in low information environments. With

previous technology 40-60 periods were considered su�cient to observe long-run behavior. We now

see that that horizon coincided with the turning point, where the allure of IMIT wears o�.

The MATCH rule to which our subjects switch may seem excessively simpleminded, but it turns
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Table 3: Coe�cient estimates from equation (4).

Duopoly

Coe�cient Measures First 50 Periods Between Final 50 Periods

α Intercept -0.35 -0.03 0

(0.10)∗∗∗ (0.01)∗∗∗ (0.03)

β1 MATCH 0.01 0.24 0.32

(0.044) (0.03)∗∗∗ (0.043)∗∗∗

β2 IMIT 0.59 0.10 0.10

(0.10)∗∗∗ (0.04)∗∗∗ (0.07)

β3 WCLR 0.18 0.09 0.18

(0.05)∗∗∗ (0.02)∗∗∗ (0.07)∗∗∗

Triopoly

Coe�cient Measures First 50 Periods Between Final 50 Periods

α Intercept -0.42 -0.09 0.01

(0.06)∗∗∗ (0.02)∗∗∗ (0.05)

β1 MATCH -0.05 0.25 0.56

(0.05) (0.06)∗∗∗ (0.16)∗∗∗

β2 IMIT 0.66 0.14 -0.00

(0.069)∗∗∗ (0.045)∗∗∗ (0.083)

β3 WCLR 0.13 0.05 0.09

(0.04)∗∗∗ (0.01)∗∗∗ (0.05)∗
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out to be remarkably e�ective in sustaining collusion. First, as MATCH assures that players are

close together, the WCLR component helps them to transverse the quantity region from outcomes

close to PCW straight through the CNE into the collusive region. Reducing quantities in parallel

bene�ts everybody, so in WCLR everybody continues to reduce quantity. Second, once players are

in the collusive region, simple MATCH also ensure an alignment of incentives that helps keep them

there. Indeed, MATCH e�ectively justi�es conjectural variations of +1 � the belief that others

will quickly match any change in quantity � and thus players have the incentive to reduce quantity

whenever it exceeds the JPM. Third, MATCH provides e�ective punishment for deviations, similar

to Tit-for-Tat, even with no knowledge of the best response.

Figure 7 illustrates these points using data from particular matched groups in the �nal 400

period block. Individual subjects' actions are plotted in red, green and (in Triopoly) blue. In the

Duopoly example, subjects closely track one another through a slow decline towards collusion. At

around period 20 actions level out but after a few dozen periods of testing the earnings impact of

increasing or decreasing joint quantities, the subjects begin moving decisively downwards, reaching

collusion after over 100 periods of play. After achieving full collusion, the subjects occasionally

defect but the MATCH rule leads to automatic punishment, reminding subjects that gains from

unilateral deviations will be �eeting. Collusion collapses only in the last few periods of the block.

Similar patterns emerge in Triopoly, but with less exploration of the action space and, perhaps as

a result, quantities stall out above fully collusive levels.

Appendix A shows a more comprehensive view of such patterns for all of the subjects in the

dataset. It contains bar-code like diagrams for which we partitioned the state space into three

regions: competitive (if all players' payo�s are below the CNE payo�), collusive (if all players'

payo�s are above the CNE payo�), and other (where some earn more and some earn less than the

CNE payo�). Every period is represented by a single color-coded bar with red representing the

competitive region, green collusive and black other. These �gures show one of the more remarkable

features of the data � namely how after a deviation from the collusive region occurs (that is after

a change from green to black) play almost always moves into the competitive region (that is into

the red) before returning back to collusive play. This is MATCH in action, providing punishment

and forgiveness, very much like tit-for-tat.

The plots also clearly demonstrate that subjects do not get tired despite the large number of

repetitions. On the contrary, their reaction time decreases and alertness to deviations increases,

rendering play ever more e�cient as time goes by. One can see that punishment phases get shorter

and collusive spells get longer. In the �rst block, the average collusive spell lasts 24.4 periods in
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Figure 7: Examples from the data illustrating MATCH behavior.
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Duopoly and 2.8 periods in Triopoly. This increases to 139.2 and 38 in the second block and, �nally,

reaches 174.2 and 67.2 in the last block. On the other hand, the average consecutive time spent in

non-collusive regions, conditional on a defection from collusion, drops in Duopoly from 68 to 56.6 to

13.8. This pattern is slightly di�erent in Triopoly where the respective �gures are 86, 142, and 90.1,

illustrating how much more complicated punishment and subsequent aligned return to collusion is

with three players.

5.2 Simulating a mixed process

In order to see whether a simple mixed process consisting of IMIT, MATCH, and WCLR can indeed

generate the data patterns we observe we run simulations based on (4) using the various behavioral

weights from the experimental data. With probability 1− e the program chose the action

xit = xit−1 + β1(x
−i
t−1 − x

i
t−1) + β2(ht−1 − xit−1) + β3sign(xit−1 − xit−2)sign(πit−1 − πit−2).

With the remaining probability e the program chose an action at random according to a uniform

distribution with support on the interval [xL, xH ]. The �rst two periods were also randomly gener-

ated. We have simulated early and late behavior using the coe�cients for the �rst and the last 50

periods taken from Table 3.

Table 4 reports the resulting medians and means of this simulation exercise along with the

experimentally observed values. Overall the simulated process tracks the experimental data quite

well. Note, however, that the noise rate required to replicate the experimental data is rather low in

the late Duopoly simulations, as compared to the other simulations. This can be seen as evidence

for more settled behavior in the Duopoly experiments, where many duopolies have managed to

sustain perfect collusion in later periods. In contrast, early behavior in duopolies and triopolies and

late behavior in triopolies appears to be still rather noisy.

6 Discussion and Conclusion

We believe our study makes three fundamental contributions. First, it shows the relevance of long

horizons in a low information environment. Thus it sheds light on the relative importance of the

amount of experienced feedback as opposed to the mere passing of time. Previously, behavior

after some 50 periods was generally considered su�cient experience to observe settled behavior.

Now we see that the technical limitations of earlier software (for which implementation of longer

horizons was impractical) meant that important aspects of learning in the long run were simply
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Table 4: Simulation results for Duopoly and Triopoly

Coe�cients from �rst 50 periods

Duopoly Triopoly

First 50 periods Exp. Data Sim. Data Exp. Data Sim. Data

Noise e 0.1 0.1

Median 4.54 4.3 3.46 3.44

Mean 4.22 4.11 3.07 3.21

Coe�cients from last 50 periods

Last block Exp. Data Sim. Data Exp. Data Sim. Data

Noise e 0.02 0.1

Median 0.28 0.37 2.08 2.06

Mean 1.34 1.05 2.01 2.04

missed. Interestingly, time as such (providing subjects with the opportunity to analyze the game

through cognition) turns out not to be the major bottleneck. Behavior in the �rst 50 periods of

our experiment nicely mirrors behavior observed in earlier studies although in our experiment 50

periods take just under four minutes while in previous studies over an hour would have passed. In

other words, multiplying the clock time for consideration by a factor of ten to twenty seems (in

the case of Cournot games at least) not to make a di�erence. Conversely, increasing the amount of

feedback or sheer repetition changes the picture dramatically.

Second, we see how additional repetitions with moderately informative feedback help subjects

to learn their way out of a super�cially attractive but ultimately fallacious heuristic. Eventually

imitation of successful others ceases to be attractive. Subjects learn that they are hurting them-

selves and are able to overcome their initial impulse to copy what has made others relatively more

successful. Escape is possible even from a devilishly baited trap.

Third, we o�er a new perspective on the emergence of cooperation. Subjects replace mal-adapted

imitation by other heuristics. Interestingly, these other heuristics are neither more complicated nor

more obviously sophisticated: they are just better suited to the repeated-game setting. Subjects

learn that it is in their collective interest to produce small quantities. They move into collusive

territory through alignment of actions and a local (win-continue, lose-reverse) search heuristic. By

mutually matching quantities, subjects teach one another that their actions will be shadowed by

others in the future, encouraging search for high collective payo�s (rather than search for individual

best response). This is reminiscent of the old literature on conjectural variations (Friedman 1977). In
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our experiment, subjects do not just have to believe that others will match their action adjustments;

they actually experience it �rst hand. Consequently, they learn over time that deviations from

cooperation do not pay and the ever increasing length of collusive spells in our data impressively

con�rms this emerging sophistication.

While the heuristics we model and simulate are purely backward-looking, it is clear that the

improvements over the three blocks of 400 periods � the longer spells of cooperation and the shorter

length of punishment cycles � point to a signi�cant element of forward-looking behavior. However,

subjects do not acquire the rationality assumed in folk theorems. In fact, they never learn to best

reply (not even for the most relevant of strategy pro�les). In some sense, of course, this does not

matter. Subjects do not play the one-shot game; they play a repeated game. And what they learn

about the repeated game is just enough for achieving collectively rational outcomes that are, from

an �as-if� perspective, seductively similar to the predictions of the theory of repeated games.
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Table 5: Mean quantities, prices, and pro�ts

Duopoly Triopoly

Periods Quantity Price Pro�t Quantity Price Pro�t

1− 50 4.22 17.26 27.81 3.07 13.97 19.32

1− 400 2.95 82.58 40.53 2.80 18.84 22.05

401− 800 1.54 259.33 54.57 2.60 33.57 23.98

801− 1, 200 1.34 286.50 56.61 2.01 74.66 29.92

1151− 1200 1.48 276.75 55.16 2.03 85.51 29.71

A Additional Analysis

A.1 Pro�t Time Series

Figures 8 and 9 plot pro�ts over time and are analogous to Figures 2 and 3. Top, middle and bottom

dotted horizontal lines represent Cartel, Nash and Walrasian pro�t levels, respectively. The plots

suggest that subjects' pro�ts fall well below Nash levels in the �rst 50 periods and rise above Nash

levels in the long run.

A.2 Mean quantities, prices, and pro�ts

Table 5, in analogy to Table 2, shows mean quantities, pro�ts, and prices each of our three blocks

and for the �rst and last 50 periods.

A.3 Failure of Best Response Over Time

In this section, we provide evidence that subjects never in the aggregate experience a period of

consistent best response. Figure 10 provides 6 panels. Each corresponds to a 1-point range of

counterparts' previous period average quantity (ranges are listed above each plot). In each range

the range of best responses is demarcated by dashed horizontal blue lines. Dashed horizontal red

lines provide the bounds for imitating average quantity. The x-axis of each panel plots period. Data

is binned into 50 period intervals and the black line plots medians. Figure 11 provides analogous

data for Triopoly.

It is evident from these �gures that median quantities very seldom enter the blue bounds of best
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Figure 8: Median pro�ts in early periods
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Figure 9: Median pro�ts in all periods, plotted in 20 period bins.
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Duopoly

Choice other Alternatives

Q. x2 x11 x21 correct

D1 3 1 3∗ 12/12

D2 3 3∗ 6 0/12

D3 1.15 1.15 2.31∗ 12/12

D4 6 2.49∗ 6 6/12

Triopoly

Choices others Alternatives

Q. x2 x3 x11 x21 correct

T1 4 4 1.8∗ 4 4/12

T2 0.1 0.1 0.1 1.35∗ 9/12

T3 0.1 0.1 1.35∗ 4 5/12

T4 2.66 2.66 0.75 2.66∗ 11/12

T5 2.66 2.66 2.66∗ 4 0/12

Table 6: Best response quiz. Correct answers are denoted by an asterisk.

response, and that the exceptions are isolated, not bunched. The data therefore are inconsistent

with subjects entering a phase of best response at the aggregate level. Instead, plotted datatend to

increase from panel to panel after early periods, consistent with the MATCH heuristic.

A.4 Incentivized Quiz Results

At the end of some of the later sessions, subjects were shown printouts of screens similar to the

ones used in the experiment. Markers denoted the counterparts' strategies and two slider positions

indicated two possible strategies available. Subjects were asked to circle the slider that would earn

the higher payo� in the one-shot game given the counterparts' strategies, and they received a cash

payment of $0.50 for each correct answer. Table 6 summarizes the questions and reports on the

fraction of correct answers.

Questions D1 and T4 asked whether the CNE quantity or a lower quantity gives a higher pro�t

against the other(s) choosing the CNE quantity. Almost everybody had this question correct,

indicating that subjects are aware that downward deviations from the CNE are not pro�table. D2

and T5 asked a similar question: is an upward deviation from the CNE pro�t increasing? Strikingly,
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Figure 10: Response to counterpart actions over time in Duopoly.
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Figure 11: Response to counterpart actions over time in Triopoly.
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nobody had this question correct. D4 and T1 asked whether subjects would choose a best response

to the PCW-outcome or would go for the PCW outcome themselves. The message that emerges is

somehow mixed: in Duopoly half of the subjects belief that the PCW-quantity earns higher pro�ts

than the best response and in Triopoly 3/4 of the subjects held this belief. D3 and T2 asked whether

individual pro�ts are higher at a (rather) collusive outcome or when deviating to a higher quantity.

Everybody had this answer correct in Duopoly and 3/4 had this answer right in Triopoly. Thus,

almost everybody was aware that it pays o� to deviate from the collusive outcome. Finally, T3

asked whether subjects think that the PCW outcome gives a high payo� than the best response

when the others collude. 7/12 subjects had this question wrong. The overall message that emerges

from this exercise is that subjects at best have a rather blurred picture of the game and their optimal

strategy choice.

A.5 Bar codes and Punishment

We partition the state space into three regions: competitive (if all players' payo�s are below the

CNE payo�), collusive (if all players' payo�s are above the CNE payo�), and other (where some

earn more and some earn less than the CNE payo�). We color-code these regions red (competitive),

green (collusive) and black (other). Figures 5 and 6 plot transition probabilities over time for

movements between these regions. Figures 7 to 12 show bar codes where every period is represented

by a single color-coded bar indicating in which region subjects stayed in every period. These �gures

show one of the more remarkable features of the data � namely how, after a deviation from the

collusive region occurs (that is after a change from green to black), play almost always moves into

the competitive region (that is into the red) before returning back to collusive play.

Subjects' reaction speeds get faster from block to block and punishment phases get shorter and

shorter in duopolies. For triopolies, we see how this process is nosier and slower, refecting the more

di�cult coordination problem.

The transition probabilities demonstrate several features of the data set: They show the in-

creasing stability of collusion for both duopolies and triopolies. And they show how rare are direct

transitions from collusive to competitive and vice versa. Almost all changes occur via �other�,

re�ecting individual defections (rather than common dissatisfaction with collusive outcomes) and

demonstrating that forgiveness and repentance occur subsequently rather than simultaneously.
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Figure 12: Transition probabilities, Duopoly.

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Green

Time

S
w

itc
h 

P
ro

ba
bi

lit
y

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Black

Time

S
w

itc
h 

P
ro

ba
bi

lit
y

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Red

Time

S
w

itc
h 

P
ro

ba
bi

lit
y

Figure 13: Transition probabilities, Triopoly.
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Figure 14: Bar codes from Block 1, Duopoly.
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Figure 15: Bar codes from Block 2, Duopoly.
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Figure 16: Bar codes from Block 3, Duopoly.
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Figure 17: Bar codes from Block 1, Triopoly.
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Figure 18: Bar codes from Block 2, Triopoly.
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Figure 19: Bar codes from Block 3, Triopoly.
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B Observable Implications of Dynamic Models

Can one actually tell the di�erence between, say, IMIT behavior and MATCH behavior in data

like ours using standard econometric techniques as in section 5.1? Empirical models examining

intertemporal adjustment are vulnerable to a host of empirical problems, particularly endogeneity,

that have the potential to derail identi�cation of underlying adjustment rules. To better understand

what we can expect to infer from actual data, we simulate each of the models of interest, and then

use standard econometric techniques (the same ones used in section 5.1) to try to recover the true

parameters used to generate the simulated data.

For example, our IMIT simulation initializes each player's �rst period choice using an inde-

pendent draw from the uniform distribution over [xL, xU ]. With probability 0.05 each subsequent

choice for that player is drawn independently from the same distribution, but with probability 0.95

is instead set equal to the highest quantity chosen by any player (including self) in the previous

period. We simulate 18 sets of 400 period duopolies and 12 sets of triopolies, the same size and

shape as the data set collected in the laboratory, and analyze that simulated data in the second

pair of columns in Table B.

We run simulations of the same size using each of the other three adaptive rules discussed

above. The �rst pair of columns in Table B replaces IMIT with 0.95 probability with BR (to the

last period's pro�le) with 0.95 probability. A literal interpretation of MATCH leads to blinkers

in Duopoly (players alternate out of phase between two arbitrary actions), so we apply the 0.95

probability instead to an equal mix of no-change and MATCH; results are reported in the third pair

of columns. Finally, the last pair of columns applies the 0.95 probability to the WCLR algorithm

with �xed step size 0.10. Of course, the simulation truncates the action at the endpoints xL, xU .
3

The table reports coe�cient estimates from the OLS regression (with clustered standard errors)

xit − xit−1 = α+ β1(x
−i
t−1 − x

i
t−1) + β2(ht−1 − xit−1) + (5)

β3sign(xit−1 − xit−2)sign(πit−1 − πit−2) + β4(b(X
−i
t−1)− x

i
t−1) + εit

of quantity adjustments xit − xit−1 by each player i in periods t = 2, ..., 400. Thus the speci�cation

is identical to that in equation (4) with the inclusion of the additional explanatory variable BR,

the player's adjustment towards the best response b(X−it−1) to the other players' actions last period.

3 Results are qualitatively similar (with obvious quantitative changes) for other values e of the Noise level than

e = 0.05, and for other noise distributions than uniform iid, e.g., additive. It may be worth noting that the di�erence

of two iid uniform realizations is triangular, unimodal and symmetric around 0.
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Duopoly Simulations ALL DATA

Variable BR Sim IMIT Sim MATCH Sim WCLR Sim

Intercept 0.01 0.02 -0.02 -0.11 0.03 0.00 0.03 0.08

(0.003)∗∗∗ (0.004)∗∗∗ (0.011) (0.007)∗∗∗ (0.004)∗∗∗ (0.004) (0.008)∗∗∗ (0.007)∗∗∗

IMIT -0.01 -0.32 0.97 1.000 -0.02 -0.02 -0.02 -0.06

(0.016) (0.025)∗∗∗ (0.01)∗∗∗ (0.01)∗∗∗ (0.027) (0.028) (0.009)∗∗ (0.008)∗∗∗

MATCH 0.01 0.66 0.01 0.01 0.49 0.52 0.01 0.05

(0.014) (0.018)∗∗∗ (0.008) (0.008) (0.021)∗∗∗ (0.021)∗∗∗ (0.006) (0.005)∗∗∗

WCLR 0.002 0.177 0.006 0.018 0.016 0.05 0.10 0.11

(0.007) (0.008)∗∗∗ (0.021) (0.021) (0.031) (0.03)∗ (0.004)∗∗∗ (0.004)∗∗∗

BR 1.00 0.03 0.06 0.05

(0.012)∗∗∗ (0.004)∗∗∗ (0.004)∗∗∗ (0.005)∗∗∗

Triopoly Simulations

Variable BR Sim IMIT Sim MATCH Sim WCLR Sim

Intercept -0.03 -0.03 -0.02 -0.09 -0.03 -0.01 -0.04 0.03

(0.005)∗∗∗ (0.01)∗∗∗ (0.012)∗∗ (0.004)∗∗∗ (0.004)∗∗∗ (0.004) (0.01)∗∗∗ (0.007)∗∗∗

IMIT -0.00 0.51 0.94 0.99 0.02 0.02 0.002 -0.02

(0.016) (0.029)∗∗∗ (0.02)∗∗∗ (0.016)∗∗∗ (0.021) (0.022) (0.008) (0.008)∗∗

MATCH 0.00 0.19 0.03 0.01 0.45 0.48 0.01 0.05

(0.013) (0.02)∗∗∗ (0.014)∗∗ (0.014) (0.018)∗∗∗ (0.019)∗∗∗ (0.007) (0.006)∗∗∗

WCLR 0.00 0.01 0.01 0.01 -0.00 0.01 0.09 0.10

(0.005) (0.01) (0.012) (0.012) (0.006) (0.006) (0.003)∗∗∗ (0.003)∗∗∗

BR 0.99 0.03 0.05 0.04

(0.012)∗∗∗ (0.007)∗∗∗ (0.003)∗∗∗ (0.004)∗∗∗

Table 7: Recovering the Data Generating Process. Simulations all include 0.05 noise. MATCH steps are

taken with probability 0.50, and WCLR step size is 0.10. Standard errors are in parentheses. One asterisk

indicates signi�cance at the 0.05 level, two at the 0.01 level and three at the 0.001 level.
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Notice that the column pairs of the table report two �ts to the simulation data, one with the

augmented speci�cation just mentioned and the other with speci�cation (4) excluding BR.

In most cases we recover reasonable approximations of the true generating process. For example,

the �rst column reports estimates of the BR response coe�cient that are quite precise and not too

far from the true value of 0.95, while other coe�cient estimates are insigni�cantly di�erent from the

true value of zero. The main discrepancy is the statistically signi�cant (but rather small) artifactual

trends implied by the intercepts. This is an artifact arising in most speci�cations.

Perhaps the most serious problem disclosed by the table is the consistently positive and highly

signi�cant coe�cient estimates for the BR variable in simulations where the true data generating

process does not involve any BR in the mix. Running additional simulations and looking at his-

tograms discloses that these artifacts are larger when the data have large modes near an endpoint.

Then random (or other) moves towards the interior are picked up by the BR variable, which always

lies in the interior of the action space. This problem persists even if we estimate Tobit instead of

OLS models, suggesting that the BR variable is robustly di�cult to properly identify using adjust-

ment models of this sort. Note that simply dropping the problematic BR variable (as we do in the

second speci�cation for each model) leads to wildly arti�cial parameter estimates when BR is the

true data generating process.

As it turns out, these issues are largely moot. As we document in the body of the paper, we

�nd overwhelming evidence both from non-parametric analysis of the data and from diagnostic

incentivized quizzes that subjects do not employ BR. We therefore will drop the BR variable and

employ our second speci�cation in our main empirical analysis.

A �nal issue highlighted by the simulations is that WCLR generates statistically signi�cant

results for every coe�cient in the model. However, notice that the step size of the WCLR process

is recovered with almost perfect accuracy (0.10) whereas all other coe�cients are very small (in

particular in comparison to the simulations that are based on them) and the IMIT coe�cient is

even negative.

Although this simulation exercise shows that we can get reasonable parameter recovery from

this empirical approach, it is most useful for demonstrating that we can meaningfully distinguish

adaptive rules from another to a great degree. Importantly:

• IMIT and MATCH can be clearly distinguished from one another; IMIT simulations do not

generate signi�cant MATCH coe�cients and vice versa.
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• Unlike IMIT and MATCH, WCLR generates signi�cant variables for both IMIT and MATCH.

Thus pure WCLR can be distinguished from either of these two adjustment rules.

These results give us con�dence that our straightforward econometric techniques can distinguish

among the relevant adjustment processes in our experimental data.

C Instructions

These are the instructions used in both Duopoly and Triopoly sessions. In the instructions we used

the term �period� to refer to what the paper calls �blocks� and �subperiods� to refer to what the

paper calls �periods.�

Instructions

Welcome! This is an economics experiment. If you pay close attention to these instructions, you

can earn a signi�cant sum of money, which will be paid to you in cash at the end of the last period.

Please remain silent and do not look at other participants' screens. If you have any questions, or

need assistance of any kind, please raise your hand and we will come to you. If you disrupt the

experiment by talking, laughing, etc., you may be asked to leave and may not be paid. We expect

and appreciate your cooperation today.

The Basic Idea

The experiment will be divided into a number of periods and in each period you will be anonymously

matched with one or two other players via the computer. Each period will be further divided into

a number of subperiods. In each subperiod you and your counterparts will secretly select strategies

and at the end of the subperiod the combination of your and your counterparts' strategies will

determine your earnings for the subperiod.

We will not tell you exactly how earnings are determined but here are a few facts:

• Your earnings in each subperiod depend entirely on your strategy and your counterparts'

strategies, and nothing else.
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• The function that determines your earnings will not change over the course of the experiment.

That is, if you and your counterparts use the same strategies at time A as at time B, you both

will all have the same earnings at time A as at time B.

• Your earnings are symmetric with your counterparts'. In particular, if you and your counter-

parts all choose the same strategy, then you all will earn the same amount.

The screen display

Figure 1 [identical to Figure 1 in the paper ] shows the computer display you will use to make

decisions and interact with your counterpart. At the top of the screen is a bar showing elapsed time

in the current subperiod. When the bar �lls up the subperiod is over and a new subperiod will

immediately begin. Your strategy is the location (from left to right) of the black square slider at

the bottom of the screen. During each subperiod you can freely adjust your tentative strategy by

clicking on the screen or dragging the slider. Your actual strategy for the subperiod is the location

of your slider at the end of the subperiod.

When the subperiod is over you will be shown a green dot visualizing your payo� rate from

that subperiod. The higher the dot, the higher the payo� earned. The precise payo� number is

shown �oating next to the dot. You will also be shown blue and red hash marks at the bottom

of the screen showing the location of your counterparts' strategies in the last subperiod and blue

and red dots representing your counterparts' payo�s from the subperiod that just ended (if you

are matched with only one other participant you will only see blue hash marks and dots).

It is important to keep in mind that your counterparts' strategies, your payo� dot and your

counterparts' payo� dots always display outcomes from last subperiod. You will not learn

payo�s or your counterpart's strategy from the current subperiod until after the subperiod is over.

Earnings

Your earnings will be given in points. Point totals reported after each subperiod are given as

payo� rates, i.e., the payo� you would receive for the entire period if you acted the same way

each subperiod. Your actual point earnings for a single subperiod can be calculated by dividing

the payo� number reported by the number of subperiods in the current period. For example, if the

period contains 50 subperiods and your payo� dot shows earnings rate of 200 in the last subperiod,

then you actually earned 200/50 = 4 points in that subperiod.
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Table 8: Static outcomes for the linear payo� function

Duopoly Triopoly

xi P πi xi P πi

JPM 3 6 28 2 6 22

CNE 4 4 26 3 3 19

PCW 6 0 10 4 0 10

Your points will accumulate over the course of the experiment. The screen will always display

your �Current Earnings� during the period so far and �Previous Earnings� accumulated over previous

periods. You will be paid cash for points earned at a rate written on the white board at the front

of the room.

Frequently asked questions

Q1. Is this some kind of psychological experiment with an agenda you haven't told us?

Answer. No. It is an economics experiment. If we do anything deceptive or don't pay you cash

as described then you can complain to the campus Human Subjects Committee and we will be

in serious trouble. These instructions are meant to clarify the game and show you how you earn

money; our interest is simply in seeing how people make decisions.

D On-line Appendix

D.1 Comparison to linear demand

To document the comparison to linear demand consider the inverse demand function P = 12− nx̄.

We summarize the relevant benchmarks for this case in Table 8.

Under our unit elastic demand function, switching to the best response to the JPM-quantity of

the other player yields an increase of pro�ts by 58.9% in Duopoly. In Triopoly this temptation is

even higher, as the best response to the JPM quantities increases pro�ts by 106.2% Note that the

temptations to deviate from the JPM-outcome are much lower in the corresponding linear demand

case where a deviator can expect only a 8% rise in pro�ts in Duopoly and a 18.2% increase in

Triopoly.

To see that for the unit elastic demand function the payo� function is not as �at around the

42



best response as in the case of a linear demand function for n < 6 note the following. Under linear

demand the FOC is 0 = dφi
dxi

= 12−(n−1)x̄−i−2xi and payo� curvature is determined by d2φi
dx2i

= −2.

By contrast, for our constant elasticity speci�cation, FOC is 0 = dπi
dxi

= 120∑
j
xj
− 10− 120xi

(
∑

j
xj)2

, and

payo� curvature is determined by d2πi
dx2i

= −240
(
∑

j
xj)2

+ 240xi
(
∑

j
xj)3

. Substituting for the last term from the

FOC and simplifying yields d2πi
dx2i

= −20
nx∗ , where the symmetric NE quantity is x∗ = 12n−1

n2 . Hence for

n = 6 we have d2πi
dx2i

= −20
(12) 5

6

= −2, the same as for d2φi
dx2i

, but for lesser n we have d2πi
dx2i

< −2 = d2φi
dx2i

.

D.2 Iterated Elimination of Strictly Dominated Strategies

To show that the CNE is the unique point in the serially undominated set, let us �rst consider the

derivative of the pro�t function. If this derivative is positive a higher quantity will lead to higher

pro�ts and if it is negative decreasing one's quantity is pro�t increasing. We have

∂πi(xi, X−i)

∂xi
=

120

xi +X−i
− 10− 120xi

(xi +X−i)2
.

We have ∂πi(xi,X−i)
∂xi

> 0 if 0 < xi < 3 and

X−i(xi) < X−i < X̄−i(xi) (6)

where X−i(xi) = 6−2
√

3
√

3− xi−xi and X̄−i(xi) = 6+2
√

3
√

3− xi−xi. Note that (6) represents

the set of quantities of the other players for which a quantity increase pays o�. Likewise, we have
∂πi(xi,X−i)

∂xi
< 0 if

xi > 3 (7)

or if 0 < xi ≤ 3 and

X−i > X̄−i(xi) (8)

The previous two inequalities capture cases where, depending on the own quantity and the quantity

chosen by the others, a quantity decrease results in higher pro�ts.

Duopoly: Consider an interval of the form [xL, x̂U ]. Note that by (7) we know that a slight quan-

tity decrease will earn strictly higher pro�ts (regardless of the quantity X−i chosen by the other) if

xi > 3. Since at an upper bound no quantity increase is possible all upper bounds 3 < x̂U ≤ 6 are

strictly dominated by a lower quantity. Iteratively applying this argument, starting from xU = 6,

shows that all upper bounds 3 < x̂U ≤ 6 are iteratively strictly dominated. Now consider any

interval of the form [x̂L, 3]. The set of quantities of the other player for which an increase in the

own quantity results in higher pro�ts is given by: X−i(x̂L) < X−i < X̄−i(x̂L). We have X−i ≥ x̂L

and X−i ≤ x̂U . Thus, if X−i(x̂L) ≤ x̂L and X̄−i(x̂L) ≥ x̂U it pays o� to increase one's quantity for

43



any quantity chosen by the other player. Both inequalities hold for x̂L < 3. Thus, for any interval

of the form [x̂L, 3] the lower bound is strictly dominated by a higher quantity, showing that the

CNE quantity xi = 3 is the only serially undominated strategy.

Triopoly: Again, (8) reveals that as in duopoly all quantities xi > 3 are iteratively strictly domi-

nated by some lower quantity. Thus, we have obtained a new undominated upper bound x0U = 3.

Now consider intervals of the form [x′L, 3). Consider (6) and note that we have X−i ≥ 2x′L and

X−i ≤ 6. We have X−i(x
′
L) < 2x′L whenever x′L ≤ 3 and we have X̄−i(x

′
L) > 2x0U = 6 whenever

x′L < 6(
√

2− 1) = x0L. Thus, for all lower bounds x
′
L < x0L we can �nd a pro�t increasing deviation

if the others choose their quantities in the interval [x′L, 3). Thus, we have obtained a new lower

bound x0L = 6(
√

2− 1).

Consider now an interval [x̂L, x̂U ] with lower bound x̂L and upper bound x̂H with 3
2 < x̂L <

x̂U ≤ 3. By (8), it pays o� to further reduce one's quantity for each upper bound x̂′U that satis�es

X−i > X̄−i(x̂
′
U ). We know that X−i ≥ 2x̂L. Thus, it pays o� to further reduce one's quantity if

2x̂L > X̄−i(x̂
′
U ). Provided that x̂L >

3
2 , this can be written as x̂′U > f(x̂L) where

f(x) = 2
√

6x− 2x.

Thus, we have found a new upper bound x̂′′U = f(x̂L).

By (6) it pays o� to further increase one's quantity for each lower bound x̂′L if X−i(x̂
′
L) <

X−i < X̄−i(x̂
′
L). Since X−i(x̂

′
L) ≥ 2x′L, the �rst inequality holds whenever x̂′L < 3. Further,

we have X̄−i(x̂
′
L) ≤ 2̂xL if x̂U > 3

2 and x̂′L < f(x̂U ). Hence, we have found a new lower bound

x̂′′L = f(x̂U ).

The previous argument establishes that, for 3
2 < x̂L < 3 and 3

2 < x̂U ≤ 3, given an undominated

interval [x̂L, x̂U ] we can obtain a new undominated interval [f(x̂L), f(x̂U )]. We can now iterate

the function f(·) on this interval. By the intermediate value theorem, a su�cient condition for the

function f to be a contraction mapping is that |f ′(x)| < 1 which is the case whenever 2
3 < x < 6.

Thus f is a contraction mapping which, by the Banach �xed point theorem, assures convergence

to the unique �xed point x = f(x) = 8
3 . This, together with the previous observations that

x0L = 6(
√

2− 1) and x0U = 3, shows that the CNE is the only quantity in the serially undominated

set.
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