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Abstract

It is well known that when agents are fully rational, compulsory public insurance
may make all agents better o¤ in the Rothschild and Stiglitz (1976) model of insurance
markets. We �nd that when su¢ ciently many agents underestimate their personal
risks, compulsory insurance makes low-risk agents worse o¤. Hence, behavioral biases
may weaken some of the well-established rationales for government intervention based
on asymmetric information.

The behavioral economics literature has produced broad empirical evidence that agents

do not always act in their own best interest. When considering single-agent models, a

possible implication of behavioral biases is paternalism: Policies designed to a¤ect agents�

choices for their own good.1 However, this implication has not been thoroughly investigated

in fully-developed market models.2 As behavioral biases are di¢ cult to observe, it is natural

to approach this investigation in markets with asymmetric information.

This paper explores the policy implications of behavioral biases in the classic model of

insurance markets with asymmetric information by Michael D. Rothschild and Joseph E.
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Stiglitz (1976). Insurance companies are perfectly competitive and cannot observe their

subscribers�risk, which may be either high or low. Some agents know their risk. We assume

that some agents are overcon�dent: They believe that their risk is low when, in fact, it

is high. This assumption is supported by robust empirical evidence that many individuals

underestimate important risks, such as those associated with driving.3 While overcon�dence

need not be common in all insurance markets, it is a natural �rst step to explore behavioral

biases in the Rothschild and Stiglitz (1976) framework.

When all agents are unbiased, the Rothschild and Stiglitz (1976) model makes a strong

case for government intervention. Because of asymmetric information, compulsory insurance

may improve all agents�welfare.4 A di¤erent rationale for compulsory insurance is behavioral.

Individuals may underinsure because they are overcon�dent. Compulsory insurance does

not harm unbiased agents because they want to be insured, and should be imposed on

overcon�dent individuals for their own bene�t.

Our main result shows that the asymmetric-information rationale and the behavioral

rationale for compulsory insurance do not reinforce each other. When there is a signi�cant

fraction of overcon�dent agents, compulsory insurance ceases to improve all agents�welfare

because it makes low-risk agents worse o¤. For instance, in the automobile insurance market,

compulsory driving insurance translates into a tax on safe drivers that subsidizes unsafe

drivers.5 So, contrary to prima facie intuition, behavioral biases may weaken asymmetric-

information rationales for government intervention because they may turn policies bene�cial

to all agents into wealth transfers between agents.

This unexpected result holds because overcon�dence changes the equilibrium of the Roth-

schild and Stiglitz (1976) model qualitatively. Without overcon�dence, the market equilib-

rium is pinned down by a binding incentive compatibility constraint. Low-risk agents�insur-

ance is constrained to ensure separation from high-risk subscribers. High-risk agents bene�t

from compulsory insurance because they obtain insurance coverage at lower prices. Com-

pulsory insurance also bene�ts low-risk agents because it relaxes the incentive compatibility
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constraint. However, when the economy has a signi�cant fraction of overcon�dent agents,

the incentive compatibility constraint no longer binds.6 Compulsory insurance is equivalent

to a transfer of wealth from low-risk to high-risk agents.

The incentive compatibility constraint does not bind in equilibrium because overcon�dent

agents cannot be screened from low-risk agents. These agents share the same beliefs about

their risk and so make identical decisions. In addition, we assume that insurance companies

cannot directly observe agents�beliefs. Hence, the higher the fraction of overcon�dent agents

in the economy, the higher the average risk of the pool of low-risk and overcon�dent agents,

and the higher the price that insurance �rms must o¤er to avoid negative pro�ts. At high

prices, these contracts become unattractive to high-risk agents. For instance, consider the

extreme case with the fraction of low-risk agents (relative to the fraction of overcon�dent

agents) is small. The insurance price for low-risk and overcon�dent agents is close to the

insurance price for high-risk agents. Therefore, low-risk agents are better o¤ purchasing

small amounts of insurance and are hurt by compulsory insurance.

Our basic result extends beyond compulsory insurance. When the fraction of overcon�-

dent agents is signi�cant, budget-balanced government intervention cannot weakly improve

the welfare of both high-risk and low-risk agents over the laissez-faire equilibrium of our

model, unless it changes the fraction of biased agents in the economy. This result also

extends beyond overcon�dence and still holds if we replace the assumption of a signi�cant

fraction of overcon�dent agents with the weaker assumption of a signi�cant fraction of biased

agents that can either be overcon�dent or undercon�dent. Finally, we show that policies that

directly reduce overcon�dence in the economy may bene�t low-risk agents without harming

high-risk agents. In the context of driving insurance, such policies materialize in voluntary

training programs designed to help drivers improve their self-assessment skills.

The paper is organized as follows. Section I presents the model. Section II provides

a graphical description of the equilibrium. Section III presents our main result informally.

Section IV contains additional policy results. Section V concludes. The formal analysis is
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laid out in a web appendix.

Related Literature Our paper is related to two branches of behavioral economics. The

�rst branch studies market interactions between sophisticated �rms and biased consumers.

Stefano DellaVigna and Ulricke Malmendier (2004), Glenn Ellison (2005) and Xavier Gabaix

and David Laibson (2005) study models where consumers may have naive beliefs, overlook

add-on prices, or underestimate the chance of being subject to hidden fees. They �nd that

in competitive markets, naive consumers may be exploited to the advantage of sophisticated

consumers.

Unlike these models, our naive, overcon�dent agents cannot be separated from low-risk

agents because their beliefs are the same. This entails higher insurance prices and an ef-

�ciency loss, not only distributive e¤ects. Ran Spiegler (2005) �nds an e¢ ciency loss in a

market where consumers have a bounded ability to infer quality by sampling goods. Unlike

our work, his emphasis is on equilibrium characterization, rather than policy analysis.7

The second related branch of behavioral economics studies the e¤ects of behavioral biases.

Roland Benabou and Jean Tirole (2002) and Botond Koszegi (2000) show that overcon�-

dent agents may strategically ignore information. Roland Benabou and Jean Tirole (2003)

study incentives to manipulate self-con�dence. Muhamet Yildiz (2003) studies how exces-

sive optimism a¤ects bargaining. Michael Manove and A. Jorge Padilla (1999) and Augustin

Landier and David Thesmar (2003) study how entrepreneurs�overcon�dence a¤ects �nan-

cial contracting. K�r Eliaz and Ran Spiegler (2006) study principal-agent problems where

agents may be overcon�dent. Olivier Compte and Andrew Postlewaite (2003) study optimal

beliefs when con�dence enhances task performance. Eric J. van den Steen (2004) shows

that agents with di¤erent priors may overestimate their chances of success. Joel Sobel and

Luis Santos-Pinto (2005) show that rational agents may develop optimistic self-assessments

if they disagree on which skills determine abilities. Anil Arya and Brian Mittendorf (2004)

study an example of insurance market with a monopolistic �rm and undercon�dent agents:
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the equilibrium is a pooling, full insurance outcome and the incentive compatibility contraint

does not bind.

I. The Model

For each agent, there are two possible states of the world. In state 1 her wealth isW: In state

2 an accident of damage d occurs and the individual�s wealth isW�d: An insurance contract

is a pair � = (�1; �2) so that the individual�s wealth is (W � �1;W � d+ �2) when buying

�. The amount �1 is the premium, �1+�2 is the insurance coverage, and P = �1=(�1+�2)

is the price of a unit of insurance. We assume that �1 � 0; �2 � 0: individuals cannot take

on more risk through an insurance contract. Each agent�s risk is the probability p that the

accident occurs, which can either be high (pH) and low (pL), with pH > pL:

Conditional on all observable variables, there are three types of agents in the economy.

High-risk (type H) and Low-risk (type L) agents know that their risks are pH and pL;

respectively. Overcon�dent (type O) agents believe that their risk is low when in fact it is

high. We let � 2 (0; 1) be the fraction of low risk agents in the economy, and � 2 (0; 1) be

the fraction of overcon�dent agents, so that �+� � 1: Agents are risk averse; their expected

utility is V (W; d; p;�) = (1� p)U(W��1)+pU(W�d+�2); where U is twice di¤erentiable,

U 0 > 0 and U 00 < 0:8

The insurance market is a competitive industry of expected pro�t maximizing (risk

neutral) companies. A contract � sold to an agent with risk p yields expected pro�t

�(p;�) = (1� p)�1 � p�2: We assume that the insurance �rms cannot observe a sub-

scriber�s risk or beliefs, but they know � and �: A perfectly competitive equilibrium is a set

of contracts A such that: (i) no contract � 2 A makes strictly negative expected pro�ts,

and (ii) no contract �0 =2 A makes strictly positive pro�ts.

Remark. A perfectly competitive equilibrium may fail to exist in the Rothschild and Stiglitz

(1976) model. A set of contracts is locally competitive if the insurance �rms cannot make

positive pro�ts by introducing small changes in the contracts they already o¤er (this concept
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is formally de�ned in the appendix).9 Any perfectly competitive equilibrium is also locally

competitive, but not vice-versa. A locally competitive equilibrium always exists, and is

unique, in the Rothschild and Stiglitz (1976) model and in our model as well. A perfectly

competitive equilibrium exists in our model as long as the fraction of overcon�dent agents

is above a threshold formally de�ned in the following section.

II. Graphical Description of Equilibrium

Equilibrium in Insurance Markets without Overcon�dence For future reference,

we brie�y consider the model without overcon�dence, i.e., � = 0: Rothschild and Stiglitz

(1976) show that the equilibrium is separating. Subscribers are screened according to the

contract they choose. High-risk individuals fully insure. Their contract �H equalizes wealth

across states and lies on the intersection of the 45-degree line with the zero-pro�t line �H = 0:

Incentive compatibility requires that high-risk subscribers (weakly) prefer contract �H to

the low-risk individuals�contract �L: Hence, the contract �L lies on the intersection of the

zero-pro�t line �L = 0 with the indi¤erence curve IH (through the high-risk agents�contract

�H). The contracts (�L;�H) are a (unique) perfectly competitive equilibrium as long as

the fraction � of low-risk subscribers is su¢ ciently small. The equilibrium contracts are

illustrated in Figure 1.

Equilibrium in Insurance Markets with Overcon�dence We now describe equi-

librium with overcon�dence (i.e., � > 0): The core of our analysis is based on two intuitive

insights. The �rst one is that insurance �rms cannot screen between overcon�dent and low-

risk individuals because, at the time of purchasing insurance, both types believe that their

risk is low. Given this quali�cation, arguments analogous to the analysis of Rothschild and

Stiglitz (1976) allow us to conclude that in the unique competitive equilibrium, individuals

are separated on the basis of their beliefs. High-risk individuals purchase a contract �H ;

whereas low-risk and overcon�dent individuals choose a di¤erent contract �LO. As in the
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case without overcon�dence, high-risk individuals fully insure.

The average accident probability of overcon�dent and low-risk agents is

pLO �
�pH + �pL
�+ �

:

Perfect competition requires that the equilibrium contract �LO satis�es the zero-pro�t

condition (1 � pLO)�LO1 � pLO�LO2 = 0 (in short, �LO = 0): So, the price of insurance PLO

coincides with pLO: As the fraction of overcon�dence agents � increases, the zero-pro�t line

�LO = 0 rotates counterclockwise towards the zero-pro�t line for high-risk types, �H = 0:

This leads to the second insight. Unlike in the case without overcon�dence, incentive

compatibility need not be binding in equilibrium. As we argue below, it does not bind when

the fraction of overcon�dent individuals � is large enough relative to the fraction of low

risk agents �. In order to describe the equilibrium, we distinguish between three di¤erent

cases depending on the parameters � and �: The three signi�cant parameter regions are

characterized by the threshold functions �1(�) and �2(�); formally de�ned in the appendix.

Case 1. Small Overcon�dence. Assume that the fraction of overcon�dent agents � is

small relative to the fraction of low-risk individuals �; i.e. � � �1 (�) : Then, the locally

competitive equilibrium contracts (�LO;�H) are shown in Figure 1. The only di¤erence

from the case without overcon�dence is that the contract �LO must lie on the zero-pro�t

line �LO = 0, since it is chosen by low-risk and overcon�dent agents alike. As in Rothschild

and Stiglitz (1976), the contracts (�LO;�H) are a (unique) perfectly competitive equilibrium

if and only if the fraction � of low-risk agents is su¢ ciently small.

Case 2. Intermediate Overcon�dence. When the fraction of overcon�dent individuals

is intermediate, i.e., �1(�) < � < �2(�); there is always a unique (locally and) perfectly

competitive equilibrium. The equilibrium is represented in Figure 2. The incentive compati-

bility constraint no longer binds. To see this, let �+ be the intersection of the zero-pro�t line

�LO = 0 with the indi¤erence curve IH passing through �H . Note that the indi¤erence curve
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of low-risk agents passing through �+ is steeper than the zero-pro�t line �LO = 0 (in con-

trast, in Figure 1 it was �atter). Hence, �+ is no longer an equilibrium because any contract

lying to the right of �+ between the indi¤erence curve IL and the zero-pro�t line �LO = 0

would make strictly positive pro�ts.10 The equilibrium contract for low risk and overcon�-

dent agents, denoted by �LO; is determined by the tangency point of the indi¤erence curve

IL on the zero-pro�t line �LO = 0. Under regularity conditions, low-risk and overcon�dent

agents�utilities decrease in �:11 By revealed preferences, low-risk agents�utilities are higher

than high-risk agents�utilities which are higher than overcon�dent agents�utilities.

Case 3. Large Overcon�dence. When the fraction of overcon�dent individuals is large,

� � �2(�); the incentive compatibility constraint still does not bind. The zero-pro�t line

�LO = 0 is su¢ ciently close to the zero-pro�t line �H = 0 that it becomes �atter than

the indi¤erence curve IL that passes through the no-insurance contract 0: Hence, a corner

solution �LO = 0 is obtained. In the unique locally and perfectly competitive equilibrium,

low-risk and overcon�dent agents believe that the insurance contracts they are o¤ered are

so unfavorable that they do not insure.

III. Compulsory Insurance

Compulsory Insurance without Overcon�dence A compulsory insurance require-

ment is a contract � = (�1; �2) > 0 that makes zero pro�ts if imposed uniformly across all

agents. Each agent is required to buy contract � and is free to buy additional insurance

� (�) on top of �: Formally, let pLH � (1� �) pH + �pL be the average probability of acci-

dent in the economy. Any compulsory insurance contract � that keeps the budget balanced

must lie on the zero-pro�t line �LH = 0; i.e., (1� pLH)�1 � pLH�2 = 0:

In the Rothschild and Stiglitz (1976) model, the introduction of compulsory insurance

yields a Pareto improvement, as long as the fraction of low-risk individuals is above a thresh-

old. To see this, note that the adoption of � is equivalent to a change of endowment from

(W;W � d) to (W � �2;W � d + �1). Given this, the remainder of the analysis is qualita-
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tively unchanged. High-risk agents�contracts �H(�) fully insure. Low-risk agents�contracts

�L(�) lies in the intersection of the zero-pro�t line �L (�) = 0 and the indi¤erence curve IH

passing through �H(�) (see Figure 3).

Compulsory insurance makes high-risk individuals better o¤ because the terms of the

compulsory contract � are more favorable than the terms of the equilibrium contract �H :

Low-risk agents pay the cost of being pooled together with high-risk individuals on the

contract �: However, compulsory insurance relaxes the incentive compatibility constraint

imposed by the high-risk subscribers. This can be seen in Figure 3, as the compulsory

insurance contract � shifts the indi¤erence curve IH up. When the fraction of high-risk

subscribers is su¢ ciently small, the relaxation of incentive compatibility is large enough to

make low-risk agents better o¤.12

Compulsory Insurance with Overcon�dence Now consider the case in which the

fraction of overcon�dent agents in the economy is intermediate or large, i.e. � > �1 (�).13

Because the incentive compatibility constraint does not bind in equilibrium, result 1 below

shows that the introduction of compulsory insurance cannot improve all agents�welfare over

the laissez-faire equilibrium. Speci�cally, it makes low-risk individuals worse o¤. Unlike

the case that abstracts from overcon�dence, compulsory insurance now induces a transfer

of wealth from low-risk agents to high-risk agents without any bene�cial e¤ect on incentive

compatibility constraints.

Result 1 Suppose that the fraction of overcon�dent agents in the economy is either inter-

mediate or large (i.e., � > �1 (�)): Then, any compulsory insurance contract � > 0 makes

low risk agents strictly worse o¤.

This result may be appreciated by inspecting Figure 4. The low-risk and overcon�dent

agents�zero-pro�t line �LO = 0 lies below the low-risk agents�indi¤erence curve IL; passing

through the equilibrium contract �LO. Any budget-balanced compulsory insurance contract

� lies on the zero-pro�t line �LH = 0, which is strictly below the zero-pro�t line �LO = 0: So,
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any contract �LO (�) purchased on top of a compulsory insurance contract � also lies below

the zero-pro�t line �LO = 0 and, hence, below the indi¤erence curve IL: Thus, low-risk agents

prefer the laissez-faire contract �LO over any allocation resulting from the introduction of

compulsory insurance.

IV. Further Policy Results

General Policies We now show that the logic of Result 1 extends to any incentive-

compatible budget-balanced policy (paternalistic or not). We de�ne these policies formally

in the appendix. In contrast to the case without overcon�dence, government intervention

cannot improve all agents�welfare over the equilibrium outcome of this model.

Result 2 Suppose that the fraction of overcon�dent agents in the economy is either inter-

mediate or large (i.e., � > �1 (�)): Then, no incentive-compatible budget-balanced policy can

weakly improve the welfare of both low- and high-risk agents over the competitive equilibrium.

The intuition for Result 2 is as follows.14 The equilibrium contract �H strictly maximizes

high-risk agents�utility among contracts on the zero pro�t line �H : Because the incentive

compatibility constraint is not binding, the equilibrium contract �LO strictly maximizes low-

risk agents utility among contracts on the zero-pro�t line �LO = 0 (see Figure 4). Low-risk

and overcon�dent agents cannot be separated by any incentive-compatible policy because

they have the same beliefs. Budget-balanced government intervention cannot simultaneously

assign an allocation to high-risk agents above the zero-pro�t line �H = 0 and an allocation

to low-risk agents above the line �LO = 0: So, it cannot strictly increase the welfare of either

high-risk or low risk agents without making one of the two types strictly worse o¤.

Undercon�dence We now enrich our basic model by introducing undercon�dent agents

who perceive that their risk is high, when, in fact, it is low. We let their fraction in the econ-

omy be � � 0; and we denote the fraction of unbiased high-risk agents by � = 1����� �:
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The average risk of high-risk and undercon�dent agents is:

pHU =
�pL + �pH
� + �

:

We assume that pHU is larger than the average risk of low-risk and overcon�dent agents pLO:

In the unique (locally) competitive equilibrium, the contract �HU is purchased by high-

risk and undercon�dent agents, and the contract �LO by low-risk and overcon�dent agents.

Incentive compatibility ensures that high-risk and undercon�dent agents do not prefer �LO

to�HU : The main di¤erence with respect to the equilibrium in Section II is that high-risk and

undercon�dent agents overinsure: �HU1 + �HU2 > d: These agents are less risky, on average,

then they perceive to be: pHU < pH : Hence, they are willing to overinsure at the competitive

price PHU = pHU of contract �HU :

Result 3, below, shows that our analysis extends beyond overcon�dence. Speci�cally,

compulsory insurance fails to make all agents in our model better o¤, provided that there

are su¢ ciently many biased agents that can either be overcon�dent or undercon�dent.15

Formally, result 3 holds when the fraction of overcon�dent agents � is larger than a threshold

�� (�; �) de�ned in the appendix. Because the function �� (�; �) decreases in �; the fraction �

is larger than �� (�; �) (�� (�; �) may be zero) whenever the fraction of undercon�dent agents

� is larger than a threshold �� (�; �) :

Result 3 Unless both fractions of overcon�dent and undercon�dent agents � and � are small

(i.e. � � �� (�; �)), the government cannot weakly improve the welfare of both low- and high-

risk agents upon the perfectly competitive equilibrium
�
�HU ;�LO

�
by means of any incentive-

compatible budget-balanced policy (including compulsory insurance).

Result 3 holds because when � increases, the average risk pHU of the pool of high-risk

and undercon�dent agents decreases. So, when � increases, the low-risk and overcon�dent

agents average risk pLO also increases. As either � or � (or both) increase, pHU becomes

closer to pLO: In a competitive equilibrium, the prices PHU and PLO of the equilibrium

contracts �HU and �LO coincide with pHU and pLO; respectively. Hence, as either � or � (or
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both) increase, the price di¤erence between the contracts �HU and �LO decreases, and thus

contract �LO becomes less attractive to high-risk and undercon�dent agents. As a result,

incentive compatibility does not bind. Therefore, as in result 2, government intervention

cannot improve the welfare of all agents in our model.

Training Programs We now consider policies that reduce overcon�dence in the con-

text of driving insurance. A self-assessment training program may change overcon�dent

agents�beliefs. At cost c > 0; each overcon�dent agent becomes aware of her high risk with

probability q > 0: The other agents�beliefs are not changed by the program. This leads

to a reduction of the fraction of overcon�dent individuals in the economy. We assume that

participation to the training program is voluntary.

If the training cost c is su¢ ciently small, the equilibrium is as follows. The terms of

insurance contracts depend on attendance at the training program. Agents who do not

attend the program are o¤ered the contracts �LO and �H derived in section II. Agents

who attend the program are o¤ered �H and a contract �̂LO with a lower price than �LO;

after they complete the program. The contract �̂LO is purchased by low-risk agents and

by those agents who remain overcon�dent despite participating in the training program.

Overcon�dent agents who correct their beliefs, due to having attended the training program,

buy contract �H : Low-risk and overcon�dent agents join the training program, high-risk

agents do not. To see that this is the (unique) equilibrium, note that if the training cost c

is su¢ ciently small, the low-risk and overcon�dent agents are attracted to lower insurance

prices and join the training program.16 As a result, the fraction of overcon�dent individuals

� decreases and this results in lower insurance prices.

Low-risk agents�beliefs are not changed by the training program, but they bene�t indi-

rectly through the reduction of the insurance price. High-risk agents do not join the program

and are not a¤ected by it. So, low-risk agents are strictly better o¤with the voluntary train-

ing program, whereas high-risk agents are not harmed by it.17
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When describing welfare of overcon�dent agents, we focus on actual welfare, de�ned as

the average ex-post utility V (W; d; pH ;�) as a function of the equilibrium contract � and the

actual risk pH ; and where the wealth W is net of training costs. It is conceptually di¢ cult

to describe the e¤ect of training programs on the perceived welfare of the overcon�dent

agents who change their beliefs because of the program. However, their actual welfare

increases when c is su¢ ciently small, because they correct their beliefs and make a better

insurance choice. Agents who remain overcon�dent despite participating in the training

program improve their actual (and perceived) welfare indirectly through the reduction of

the insurance price. The above discussion is formalized in the following result.

Result 4 Assume that the fraction of overcon�dence agents in the economy is either inter-

mediate or large (i.e., � > �1 (�)): As long as bene�ts q are su¢ ciently large and costs c

are su¢ ciently low, the introduction of a voluntary training program strictly increases the

welfare of low-risk agents and the actual welfare of overcon�dent agents. It does not change

the welfare of high-risk agents.

V. Conclusion

In the Rothschild and Stiglitz (1976) model of insurance markets with asymmetric informa-

tion, compulsory insurance may make all agents better o¤, provided that agents are fully

rational. We build on this basic model of insurance, but we assume that a signi�cant frac-

tion of agents in the economy do not accurately access actual risks. In addition, we assume

that insurance companies cannot directly observe agents�beliefs. Under these assumptions,

compulsory insurance fails to make all agents better o¤ because it is detrimental to low-

risk agents. Our results do not deliver unquali�ed support for laissez-faire policies. Rather

they show that while behavioral biases may support paternalistic policies in simple decision-

theoretic models, they may also weaken asymmetric information rationales for government

intervention in fully-developed market models.

We hope that these results will motivate additional studies on the interactions between
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di¤erent reasons for government intervention in the economy and also on the functioning of

markets when agents are less than fully rational.

Footnotes

1 In fact, behavioral economists advocate only mild forms of intervention which guarantee

the possibility of opting out. See, among others, Edward D. O�Donoghue and Matthew

Rabin (2003), Richard H. Thaler and Cass Sunstein (2003) and Colin F. Camerer, Samuel

Issacharo¤, George Loewenstein, Edward D. O�Donoghue and Matthew Rabin (2003).

2 An exception is O�Donoghue and Rabin (2003).

3 According to Werner F.M. De Bondt and Richard H. Thaler (1995, p. 389), �perhaps the

most robust �nding in the psychology of judgment is that people are overcon�dent.�Among

many papers �nding evidence of overcon�dence, see Howard Kunreuther et al. (1978), Linda

Babcock and George Loewenstein (1997), Colin F. Camerer and Dan Lovallo (1999), Shlomo

Benartzi (2001), Jay Bhattacharya, Dana P. Goldmanz and Navin Sood (2004). A brief

survey of this literature is presented in our companion paper.

4 This argument, demonstrated by Charles A. Wilson (1977) and Bev G. Dahlby (1983), is

highlighted both in textbooks (e.g. Alan J. Auerbach and Martin Feldstein, 2002), and in

institutional debates (e.g. Mark V. Pauly, 1994).

5 In the context of motorist insurance, our analysis applies only to personal loss insurance,

in the forms of the Personal Injury Protection and Uninsured Motorist insurance, which

is mandatory in most US States (see the Summary of Selected State Laws published by

American Insurance Association, 1976-2003). PIP insurance covers loss when the driver is

at fault, and UM insurance covers loss caused by another driver who is at fault and not

insured. Our analysis does not apply to liability insurance, which covers the losses that a

driver can cause to others.

6 This �nding does not depend on the assumption of perfect competition, as demonstrated
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by C. Mark Armstrong (2005) in versions of our model with either a monopolistic �rm or

with imperfect competition.

7 More distently related, Paul Heidhues and Botond Koszegi (2004) provide a rationale for

price stickiness in a model with loss-averse consumers.

8 To simplify the exposition, we focus on the case in which the di¤erence between low risk

and high risk is not too small relative to the damage d: That is, we assume that

(1� pL) =pL
(1� pH) =pH

>
U 0 (W � d)
U 0(W )

:

9 In a general equilibrium model, Pradeep K. Dubey and John G. Geanakoplos (2002) show

the existence of an equilibrium that approximates the locally-competitive equilibrium. John

G. Riley (1979) shows that the locally-competitive equilibrium coincides with a �reactive�

equilibrium where �rms, before introducing new contracts, anticipate that competitors will

react by o¤ering new contracts, if they generate positive pro�ts. Charles A. Wilson (1977)

proposes an alternative reactive equilibrium where loss-making contracts are removed as a

reaction to newly-introduced contracts.

10 Any such contract � makes strictly positive pro�ts because it is purchased only by low-risk

and overcon�dent agents and its price is larger than PLO; as � lies below the zero-pro�t line

�LO = 0: Low-risk and overcon�dent agents prefer this contract � to �+; because � lies

above the indi¤erence curve IL: High-risk agents still prefer �H to the contract �; because

� lies below the indi¤erence curve IH :

11 Speci�cally, this result holds if the coe¢ cient of Relative Risk Aversion �wU 00 (w) =U 0 (w)

is smaller than the bound (W � d) =W for any wealth amount w 2 [W � d;W ]:

12 Unlike the Rothschild and Stiglitz equilibrium and the Wilson (1977) equilibrium, the

Miyazaki-Wilson-Spence equilibrium cannot be improved by compulsory insurance (see Crocker

and Snow (1985)). In this equilibrium, insurers are not pro�t maximizers: They sell loss-

making contracts to high-risk agents, subsidized with pro�t-making contracts sold to low-risk

agents.
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13 If � < �1(�), the analysis is analogous to the case without overcon�dence.

14 Result 2 subsumes result 1 because compulsory insurance is a special case of incentive-

compatible budget-balanced government policy. Thus, result 1 is demonstrated as a corollary

of result 2.

15 In our companion paper, we further explore the robustness of our results and show that

they still hold (with proper quali�cations) when there are more than two levels of risk in the

economy.

16 At the time they choose to join the training program, none of these agents believe that

they will improve their self-assessment skill. They join only because �̂LO is cheaper than the

contract �LO that they would be o¤ered if they did not attend the program.

17 In our companion paper, we show that if participation in self-assessment training programs

were compulsory, it would reduce the utility of high-risk agents.
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Figures

Figure 1: Equilibrium without overcon�dence, and with small overcon�dence.
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Figure 2: Equilibrium with Intermediate Overcon�dence.
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Figure 3: Compulsory Insurance without Overcon�dence
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Figure 4: Compulsory Insurance with Overcon�dence

4



Appendix

Equilibrium Analysis. This section formalizes the graphical equilibrium analysis of Sec-

tion II. Before presenting the analysis, we formally de�ne locally-competitive equilibrium.

A locally-competitive equilibrium is a set of contracts A such that when each contract

� 2 A is available in the market, (i) no contract � 2 A makes strictly negative expected

pro�ts, and (ii) there is an " > 0 such that any contract �0 for which jj���0jj < " for any

� 2 A; would not make strictly positive pro�ts.

The �rst step in the equilibrium analysis shows that overcon�dent and low-risk agents

pool together, and together they separate from high-risk agents. For future reference, we

de�ne the marginal rate of substitution associated to contract � and risk p; as:

M (�; p) =
(1� p)U 0(W � �1)
pU 0 (W � d+ �2)

:

Proposition .1 In the unique locally-competitive equilibrium, high-risk individuals choose

the contract �H = (pHd; (1� pH)d): Low-risk and overcon�dent individuals choose the con-

tract �LO that solves the maximization problem

max
�
V (W; d; pL;�); (.1)

subject to the non-negativity constraint � = 0; and to the incentive compatibility and zero-

pro�t conditions:

V (W; d; pH ;�
H) � V (W; d; pH ;�); (.2)

(1� pLO)�1 � pLO�2 = 0: (.3)

As long as �LO > 0; the insurance price PLO equals pLO and increases in �:

Proof. Step 1. In equilibrium, types L and O pool on the same contract �LO, type H

chooses a di¤erent contract �H .

For any contract �; bought by types H; L and O with probabilities ��H ; �
�
L; and �

�
O;

respectively, let the average risk be:

p� =
pH (��

�
O + (1� �� �)��H) + pL���L

���O + (1� �� �)��H + ���L
;

1



Consider any equilibrium contract� such that ��H � 0; and ��L+��O > 0:Hence, V (W; d; pL;�) =

V (W; d; pL;�) for any equilibrium contract � such that ��L + �
�
O > 0; and V (W; d; pH ;�) �

V (W; d; pL;�) for any contract � such that ��H > 0: Further, competition requires that

� (�) � (1� p�)�1 � p��2 = 0; or else there is a local pro�table deviation, by continuity.

Suppose by contradiction that p� > pLO: Because (1� pL) =pL > (1� pH) =pH ; it follows

that M (�; pL) > M (�; pH) : Since U is twice di¤erentiable, there is an " > 0 small enough

such that for any m 2 (M (�; pH) ;M (�; pL)) ; the contract � � " (1;m) is purchased by

all type L and O agents but not by type H agents. Hence, � � " (1;m) yields expected

pro�t (1� pLO) (�1 � ")� pLO (�2 � "m), which is strictly bigger than � (�) = 0 for " small

enough because p� > pLO: Because �� " (1;m) is a local pro�table deviation, � cannot be

an equilibrium contract.

Because p� � pLO for any equilibrium contract � such that ��L + �
�
O > 0; it follows that

(i) ��H = 0 whenever �
�
L + �

�
O > 0; and that (ii) p� = pLO for all � such that �

�
L + �

�
O > 0:

Because �(�) = 0 for all equilibrium contracts, and U 00 < 0; there are therefore at most

two equilibrium contracts �;�; with � > �; such that ��L + �
�
O > 0 and ��L + �

�
O > 0:

BecauseM(�; pH) < (1�pH)=pH < (1�pLO)=pLO; there is an " > 0 small enough such that

for any m 2 ((1� pLO)=pLO;M (�; pL)) ; the contract � � " (1;m) is purchased by all type

L and O agents but not by type H agents. The pro�t �(� � " (1;m)) is strictly positive

because m > (1 � pLO)=pLO: This concludes that types L and O must pool on the same

contract �LO: Because type H must separate from types L and O , and U is concave and

twice di¤erentiable, type H purchase a single di¤erent contract �H with probability one.

Step 2. There exists a unique locally-competitive equilibrium, characterized in the state-

ment of Proposition .1.

By Step 1, if a locally-competitive equilibrium exists, it is a pair of distinct contracts

�H ;�LO such that �LO 2 argmax� V (W; d; pL;�) s.t. � = 0; (1� pLO)�1 � pLO�2 =

0; V (W; d; pH ;�
H) � V (W; d; pH ;�); and �H 2 argmax�0 V (W; d; pH ;�

0); s.t. �0 = 0;

(1� pH)�01� pH�02 = 0; V (W; d; pL;�LO) � V (W; d; pL;�0): By construction, any other pair

2



of contracts admits local pro�table deviations. The contracts �H and �LO do not admit

local deviations � such that, respectively, ��H > 0; and �
�
L+�

�
O > 0: Because (1� pLO)�LO1 �

pLO�
LO
2 = 0; contract �LO has no local deviation � with any distribution ��:

Suppose by contradiction that the constraint V (W; d; pL;�LO) � V (W; d; pL;�H) binds

in the solution of the �H-maximization problem. Because M (�; pH) < M (�; pL) for

all � and V (W; d; pH ;�H) � V (W; d; pH ;�
LO); it follows that �H > �LO: But this and

V (W; d; pL;�
LO) = V (W; d; pL;�

H) are incompatible with (1� pLO)�LO1 � pLO�LO2 = 0 and

(1� pH)�H1 �pH�H2 = 0: Because V (W; d; pL;�LO) > V (W; d; pL;�H); the contract �H does

not admit any local pro�table deviations �: Because U is twice di¤erentiable and U 00 < 0;

the solution to the �H-maximization problem is �H = (pHd; (1 � pH)d): A solution to the

�LO-maximization problem exists and is unique because U 00 < 0 andM (�; pH) < M (�; pL)

for all �0:

Finally, we note that, because pH > pL; dpLO=d� < 0 and dpLO=d� > 0: By condition

(.3), the price PLO = �LO1 =(�LO1 + �LO2 ) equals pLO; and hence it increases in �.

The equilibrium characterization is completed in the Proposition .2 below, which also

reports our comparative statics results, and determines perfect-competitive equilibrium ex-

istence. For any parameter constellation (W; d; pH ; pL) ; the thresholds �1 and �2; functions

of �; uniquely solve respectively:

V (W; d; pH ;�) = U(W � pHd); pLO�2 = (1� pLO)�1; M (�; pL) = (1� pLO)=pLO; (.4)

M(0; pL) = (1� pLO)=pLO: (.5)

where the variables � and � are embedded in the expression pLO = (�pL + �pH) = (�+ �) :

Proposition .2 The incentive compatibility condition (.2) binds if and only if � < �1 (�) :

For �1 (�) < � < �2 (�) ; the equilibrium contract �LO satis�es the tangency condition

M(�; pLO) = (1� pLO)=pLO: (.6)

Hence V (W; d; pH ;�LO) < V (W; d; pH ;�H); and both V (W; d; pL;�LO) and V (W; d; pH ;�LO)

decrease in � and increase in �; as long as the Relative Risk Aversion coe¢ cient of U is
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bounded by (W � d) =d: For � > �2 (�) ; low-risk and overcon�dent individuals are uninsured:

�LO = 0: The locally-competitive equilibrium
�
�H ;�LO

�
is also perfectly competitive if and

only if � > �0 (�) ; where the function �0 is such that �
�1
0 < �1:

Proof. Let �� = (��1; ��2) be the contract pinned down by condition (.3) and by the

binding incentive compatibility condition (.2). Di¤erentiating these equations, we obtain:

d��1
dpLO

=
(��1 + ��2) pHU

0(W � d+ ��2)
�

> 0;
d��2
dpLO

=
(��1 + ��2) (1� pH)U 0(W � ��1)

�
> 0;

(.7)

where the quantity � = (1� pLO) pHU 0(W � d + ��2) � pLO(1 � pH)U 0(W � ��1) is positive

because U 00 < 0; ���1 > �d+ ��2 and pH > pLO: Because dpLO=d� < 0 and dpLO=d� > 0; we

obtain that d��1=d� > 0; d��1=d� < 0; d��2=d� > 0; and d��2=d� < 0:

Let � = (1� pLO)=pLO: Because

dM (��; pL) =
1� pL
pL

�
� U 00(W � ��1)
U 0 (W � d+ ��2)

d��1 �
U 00 (W � d+ ��2)U 0(W � ��1)

(U 0 (W � d+ ��2))2
d��2

�
;

we obtain: dM (��; pL) =d� > 0: Because d�=dpLO < 0 and dpLO=d� > 0; we have shown that

for any �; there is a unique threshold �1 pinned down by system (.4) and that M(��; pL) >

(<)(1 � pLO)=pLO if and only if � > (<)�1 (�) : Because d�=d� < 0; d�=dpLO < 0 and

dpLO=d� < 0, �1 is strictly increasing in � by the implicit function theorem.

Suppose that � < �1 (�) ; and that, by contradiction, condition (.2) does not bind in

equilibrium: (1� pH)U(W � �LO1 ) + pHU(W � d + �LO2 ) < U(W � pHd): Since U 00 < 0;

and both �� and �LO satisfy condition (.3), it must be that �� < �LO and hence that

M(�LO; pL) < M(��; pL) < (1 � pLO)=pLO: Because U is twice di¤erentiable, there is an

" > 0 small enough such that for any m 2 (M(�LO; pL); (1 � pLO)=pLO); the contract

�LO + " (1;m) is chosen by type L and O but not by type H; and makes strictly positive

pro�t. This concludes that for � < �1 (�) ; �LO = ��:

Suppose that � > �1 (�) ; and hence that M(��; pL) > (1 � pLO)=pLO: Suppose by

contradiction that �LO = �� in equilibrium. Note that M(��; pH) < (1 � pH)=pH <
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(1 � pLO)=pLO: Since U 00 < 0 and U is smooth, for any " > 0 small enough, and m 2

((1� pLO)=pLO;M(��; pL)); the contract ��� " (1;m) is chosen only by types L and O; and

not by type H; and yields strictly positive pro�t. This proves that condition (.2) does not

bind in equilibrium.

Since dpLO=d� > 0; for any � there is a unique threshold �2 (�) such that M(0; pL) > (<

)(1� pLO)=pLO if and only if � > (<)�2 (�) : When � > �2 (�) ; the constraint � � 0 binds

in equilibrium, whereas when �1 (�) < � < �2 (�) ; the equilibrium contract �LO is pinned

down by condition (.3) and by the tangency condition (.6). Since dpLO=d� < 0; the function

�2 is increasing in �:

Low-risk individuals�utility V (W; d; pL;�LO) decreases in pLO �hence decreasing in � and

increasing in ��by a simple revealed-preference argument. The overcon�dent agents�utility

V (W; d; pH ;�
LO) decreases in pLO if the insurance coverage �LO1 + �LO2 decreases in pLO;

because the marginal rate of substitution M
�
�LO; pH

�
is larger than M

�
�LO; pL

�
. Indeed,

we di¤erentiate conditions (.3) and (.6) with respect to the quantity �, decreasing in pLO;

and obtain:

@
�
�LO1 + �LO2

�
@�

= �LO1 � (1 + �) pL
U 0
�
W � d+ �LO2

�
+ U 00

�
W � d+ �LO2

�
�LO2

(1� pL)U 00(W � �LO1 ) + �2pLU 00 (W � d+ �LO2 )
:

This derivative is positive because U 0
�
W � d+ �LO2

�
+ U 00

�
W � d+ �LO2

�
�LO2 > 0, which

follows by the hypothesis that �U 0 (w)w=U 00 (w) < (W � d)=d:

By construction, the pair (�LO;�H) is the (unique) perfectly-competitive equilibrium if

and only if it does not admit any pooling, possibly large pro�table deviation �: Hence, it is

necessary and su¢ cient that V (W; d; pL;�LO) � V (W; d; pL;�); where pLH = �pL+(1��)pH

and

� = argmax
�
V (W; d; pL;�) s.t. pLH�2 � (1� pLH)�1; � = 0: (.8)

When � � �1 (�) ; condition (.2) does not bind in equilibrium. Thus, by revealed preferences,

V (W; d; pL;�
LO) � V (W; d; pL;�) because pLH � pLO; and hence

�
�H ;�LO

�
is the perfectly-

competitive equilibrium.
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Suppose that � < �1 (�) : The utility V (W; d; pL;�LO) decreases in � and increases in �

because dpLO=d� > 0; dpLO=d� < 0 and

@V (W; d; pL;�
LO)

@pLO
= � (1� pL)U 0(W��LO1 )

�LO1 + �LO2
1� pLO

�pLU 0(W�d+�LO2 )
�LO1 + �LO2

pLO
< 0;

after substituting in condition (.7). By revealed preferences, V (W; d; pL;�) increases in �

but it is constant in � (pLH depends only on �): Hence, there is a unique strictly-increasing

threshold �0, function of �; such that
�
�H ;�LO

�
is a perfectly-competitive equilibrium if

and only if � > �0 (�) :

Policy Recommendations This section proves our policy results 1, 2, 3, and 4. We

begin by formally stating and proving Result 2. So, we need to formally de�ne the general

mechanism design problem in our model. Because agents di¤er in actual risk p 2 fpH ; pLg

and perceived risk p̂ 2 fpH ; pLg; we let the type space be 	 = fpH ; pLg � fpH ; pLg: The

type distribution � is easily derived from the parameter � and �: An allocation is a pro�le

�� : 	! R2+, and A� = R2	+ is the set of allocations. An allocation�� is incentive compatible

if

V̂ ( ;�� ( )) � V̂ ( ;�� ( 0)) for all ( ; 0) 2 	2; (.9)

where the perceived expected utility of any type  = (p; p̂) with contract � is V̂ ( ;�) =

V (W; d; p̂;�) : The allocation �� is feasible if
P
 2	 � �( ;�

� ( )) � 0 where for any type

 = (p; p̂) ; the pro�t of a contract � 2 R2+ is ��( ;�) = (1 � p)�1 � p�2: Because of

monotonicity of individuals�utilities, we can restrict attention without loss of generality to

budget-balanced allocations �� that satisfyX
 2	

� �
�( ;�� ( )) = 0: (.10)

A mechanism designer implements an allocation �� on the basis of the information revealed

by the agents. Each individual only knows her perceived risk p̂; and she (maybe mistakenly)

believes that her actual risk p coincides with p̂: She can only communicate her perceived

ability p̂ to the mechanism-designer. Hence we restrict attention to allocations �� that are

6



constant across the actual risk p: We let �A = f�� 2 A� : �� (pL; p̂) = �� (pH ; p̂) ; for any

p̂ 2 fpH ; pLgg: We can now formally restate and prove Result 2.

Result 2 Suppose that � > �1 (�) : Then there is no allocation �� 2 �A that improves

the expected utility of both high and low risk agents with respect to the equilibrium outcome�
�H ;�LO

�
:

Proof. Any candidate allocation�� must satisfy V (W; d; pH ;�� (pH ; pH)) � V
�
W; d; pH ;�

H
�
:

In equilibrium �H 2 argmax� V (W; d; pH ;�) such that pH�2 = (1 � pH)a1: Hence, the

candidate allocation �� must satisfy pH��2 (pH ; pH) � (1 � pH)��1 (pH ; pH) : The contracts

�� (pL; pL) and �� (pH ; pL) coincide by construction. By the budget-balance condition (.10)

this constrains the terms of the contracts

pLO�
�
2 (pL; pL) � (1� pLO)��1 (pL; pL) : (.11)

But when � > �1 (�) ; in equilibrium, �LO = argmax� V (W; d; pL;�) such that pL�2 =

(1�pL)a1; by Proposition .2. Hence, the allocation �� cannot be better than �LO for agents

of type  = (pL; pL) ; i.e. V (W; d; pL;�� (pL; pL)) < V
�
W; d; pL;�

LO
�
:

Result 1 immediately follows from the proof of Result 2.

Proof of Result 1. For any compulsory insurance contract � > 0, the associ-

ated equilibrium allocation �� such that �� (pL; pL) = �� (pL; pH) = � + �LO (�) and

�� (pH ; pH) = � + �H (�) is budget balanced and incentive compatible. Furthermore,

V (W; d; pH ;�
� (pH ; pH)) > V

�
W; d; pH ;�

H
�
because �2=�1 = (1� pLH) =pLH < (1� pLO) =pLO;

and ��1 (pH ; pH)+�
�
2 (pH ; pH) = d: The proof of Result 2 thus concludes that, for � > �1 (�) ;

V (W; d; pL;�
� (pL; pL)) < V

�
W; d; pL;�

LO
�
:

In order to prove Result 3, we �rst formally describe the equilibrium of our model with

overcon�dent and undercon�dent agents.

Proposition .3 In the unique locally-competitive equilibrium, the contract of high-risk and
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undercon�dent agents is �HU such that

pHU�
HU
2 � (1� pHU)�HU1 = 0; M

�
�HU ; pH

�
= (1� pHU) =pHU (.12)

the contract of low-risk and overcon�dent agents is

�LO = max
�
V (W; d; pL;�) (.13)

s:t: � = 0; pLO�2 = (1� pLO)�1; V (W; d; pH ;�
HU) � V (W; d; pH ;�):

Proof. For any contract �; let

p� =
pH (��

�
O + ��

�
H) + pL (��

�
L + ��

�
U)

���O + ��
�
H + ��

�
L + ��

�
U

;

where ��U is the probability that U purchases �:

Arguments in the proof of Proposition .1 conclude that p� � pLO for any equilibrium �

such that ��L + �
�
O > 0: Also, p� � pHU for any equilibrium � such that ��H + �

�
U > 0; or

else the contract �+ "(1;m) with m > M(�; pH) would be a pro�table deviation for " > 0

small enough. These two results conclude that (i) ��H + �
�
U = 0 and p� = pLO whenever

��L + �
�
O > 0; and (ii) ��L + �

�
O = 0 and p� = pHU whenever ��H + �

�
U > 0: Because U is

concave and twice di¤erentiable, types L and O pool on the same contract �LO and types

H and U pool on a di¤erent contract �HU :

Arguments in the proof of Proposition .1, with obvious modi�cations, conclude that there

exists a unique locally-competitive equilibrium such that �LO is as speci�ed in program (.13)

and �H 2 argmax�0 V (W; d; pH ;�0); s.t. �0 = 0; (1� pH)�01 � pH�02 = 0: Hence �HU is

determined by equations (.12).

We can now prove Result 3.

Proof of Result 3. The proof of Proposition .2, with obvious modi�cations, concludes

that (i) the incentive compatibility constraint V (W; d; pH ;�HU) � V (W; d; pH ;�
LO) does

not bind in equilibrium if and only if � > �� (�; �) where �� solves

M (��; pL) = (1� pLO)=pLO; (.14)

pLO��2 = (1� pLO) ��1; V (W; d; pH ;�HU) = V (W; d; pH ; ��); (.15)
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and that (ii), when V (W; d; pH ;�HU) > V (W; d; pH ;�); the locally-competitive equilibrium

(�HU ;�LO) is perfectly competitive.

The general mechanism design problem de�ned above applies to our model also when � >

0: The proof of Result 2, with obvious modi�cations, shows that, when V (W; d; pH ;�HU) >

V (W; d; pH ;�); there is no incentive-compatible budget-balanced mechanism that improves

all agents�welfare upon the equilibrium
�
�HU ;�LO

�
.

We conclude the proof by showing that the function �� decreases in �: Di¤erentiating

equations .12, we obtain:

d�HU1
dpHU

= �
�
pHU

�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
��

+
�
�HU1 + �HU2

�
pH (1� pHU)U 00

�
W � d+ �HU2

��
d�HU2
dpHU

= �
�
(1� pHU)

�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
��

�
�
�HU1 + �HU2

�
pHU (1� pH)U 00

�
W � �HU1

��
where � =

�
p2HU (1� pH)U 00

�
W � �HU1

�
+ (1� pHU)2 pHU 00

�
W � d+ �HU2

���1
< 0:

Di¤erentiating the expression (.15), and then substituting for d�HU1 =dpHU and d�HU2 =dpHU ;

we obtain:

d��1
dpHU

=
pLOpHU

0(W � d+ �HU2 )d�HU2 � pLO(1� pH)U 0(W � �HU1 )d�HU1
pH (1� pLO)U 0(W � d+ ��2)� pLO(1� pH)U 0(W � ��1)

/ �pHU
0(W � d+ �HU2 )

�
�
�
�HU1 + �HU2

�
pHU (1� pH)U 00

�
W � �HU1

�
+(1� pHU)

�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
���

��(1� pH)U 0(W � �HU1 )
��
�HU1 + �HU2

�
pH (1� pHU)U 00

�
W � d+ �HU2

�
+pHU

�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
���

� 	

because pLO > 0; pH (1� pLO) > pLO(1�pH) and U 0(W�d+��2) > U 0(W���1): Remembering

that � < 0; and U 00 < 0;

	 < �pH (1� pHU)U 0(W � d+ �HU2 )
�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
��

��(1� pH)pHUU 0(W � �HU1 )
�
(1� pH)U 0

�
W � �HU1

�
+ pHU

0 �W � d+ �HU2
��

/ �
�
pH (1� pHU)U 0(W � d+ �HU2 )� pHU(1� pH)U 0(W � �HU1 )

�
< 0;
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because pH > pHU and U 0(W�d+�HU2 ) > U 0(W��HU1 ): Because dpHU=d� < 0; we conclude

that d��1=d� > 0: As d��2=dpHU = [(1� pHU)=pHU ][d��1=dpHU ]; we have d��2=d� > 0:

Di¤erentiating M (��; pL) ; we obtain

dM (��; pL) =
1� pL
pL

�
� U 00(W � ��1)
U 0 (W � d+ ��2)

d��1 �
U 00 (W � d+ ��2)U 0(W � ��1)

(U 0 (W � d+ ��2))2
d��2

�
:

Hence dM (��; pL) =d� > 0: Letting � = (1�pLO)=pLO; because d�=dpLO < 0 and dpLO=d� =

0; and because dM (��; pL) =d� > 0; d�=dpLO < 0 and dpLO=d� > 0; �� decreases in � by the

implicit function theorem.

We conclude by proving result 4.

Proof of Result 4. For any fraction �, let �LO (�) be the associated contract as

calculated in Proposition .2. Suppose that in equilibrium all low-risk and overcon�dent

agents join the program. For q large enough, �0 = (1� q)� < �2 (�) : By Proposition

.2, the low-risk agents�equilibrium utility (and the overcon�dent agents�perceived utility)

V
�
W; d; pL;�

LO (�0)
�
decreases in �0 when �0 � �2 (�) ; and it is constant in �0 for �0 � �2 (�) :

Hence, for c small enough, V (W � c; d; pL;�LO (�0)) > V
�
W; d; pL;�

LO (�)
�
: This implies

that (i) all low-risk and overcon�dent agents join the training program, hence verifying our

equilibrium imputation, and (ii) in equilibrium low-risk agents bene�t from the adoption of

voluntary training programs.

The high-risk agents�equilibrium utility V (W; d; pH ;�H) is constant in �: Because c > 0;

they choose not to join training programs. By Proposition .2, when � � �2 (�) ; the equilib-

rium overcon�dent agents�utility V (W; d; pH ;�LO) is constant in �:When � 2 [�1 (�) ; �2 (�)] ;

V (W; d; pH ;�
LO) decreases in �: For any � > �1; V (W; d; pH ;�

LO) is smaller than the

high-risk agents utility V
�
W; d; pH ;�

H
�
: For c small enough, agents who remain overcon-

�dent despite participating in the program improve their actual welfare because V (W �

c; d; pH ;�
LO (�0)) > V (W; d; pH ;�

LO (�)); as �0 < �: Overcon�dent agents who change their

beliefs improve their actual welfare because V (W � c; d; pH ;�H) > V (W; d; pH ;�LO (�)):
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