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Abstract. We examine the tradeoffs between two variants of group

strategyproofness, efficiency and budget balance in queueing models. In

general, group strategyproofness is incompatible with efficiency and bud-

get balance. Weakening budget balance to feasibility, we show that the

incompatibility persists with strong group strategyproofness. We then

identify a necessary condition for weak group strategyproofness and effi-

ciency and use it to show that these two requirements are incompatible

with budget balance unless there are exactly three agents. We also

demonstrate the compatibility when there are three agents. Finally, we

identify a class of efficient and weak group strategyproof mechanisms

that we call k-pivotal mechanisms and identify the complete subclass of

these mechanisms that are feasible.

1. Introduction

In a queueing environment, agents wish to avail of a service provided by

one or more servers, each of whom can serve the agents only sequentially.

Agents incur idiosyncratic waiting costs. Maniquet [5] notes that queueing

models capture many economic environments. Such models have been ex-

amined from both incentive and axiomatic viewpoints in a recent series of

papers.

The problem from an incentive viewpoint stems from the fact that the

information needed to ensure that agents are served efficiently—that is, the

queue should minimize the aggregate waiting cost—is not known publicly.

This information has to be elicited from the agents by providing suitable

incentives in the form of transfers. As long as we restrict our attention to

a single server problem, it is possible to achieve the first best (truth-telling

in dominant strategies, efficiency and budget balance) if waiting costs are a

linear function of time.1 In more complex setups—for instance, when there

are multiple servers—the first best is typically difficult to achieve.2

Even when the first best is achievable, the mechanisms that are obtained

are vulnerable on various counts. For instance, since truth-telling is not a

Date: April 5, 2006.
1See Mitra [6], [7] and Suijs [12].
2See Mitra [8].
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unique dominant strategy, the direct mechanism has multiple Nash equilib-

ria and one can construct examples to show that there are Nash equilibria

that are inefficient. The mechanisms are also vulnerable to manipulations

by groups of agents. The objective of this paper is to examine the trade-

offs between stronger notions of non-manipulability, efficiency and budget

balance.

We use two variants of the notion of immunity to manipulation by coali-

tions.3 Strong group strategyproofness requires that there does not exist a

deviation which makes all deviating members weakly better off and at least

one member strictly better off. In contrast, weak group strategyproofness

only requires that there does not exist a deviation which makes all deviating

members strictly better off.

We show that both variants of group strategyproofness are, in general,

incompatible with efficiency and budget balance. We therefore, weaken bud-

get balance to feasibility whereby the mechanism is allowed to run a sur-

plus but not a deficit. While strong group strategyproofness is incompatible

even with efficiency and feasibility, weak group strategyproofness yields more

positive results. We identify a necessary condition for weak group strate-

gyproofness and efficiency and use it to show that these two requirements

are incompatible with budget balance when there are four or more agents.

We also show that these requirements are incompatible with two agents;

however, they are compatible when there are three agents. Next, we iden-

tify a sufficient condition for weak group strategyproofness and efficiency.

We use this condition to identify a class of mechanisms we call k-pivotal

mechanisms and show that if a mechanism in this class is efficient, then it

is weak group strategyproof. Finally, we identify the subclass of k-pivotal

mechanisms which are also feasible.

In what follows, we setup the model in Section 2 and derive the results in

Section 3. We conclude in Section 4.

2. Model

Let N, |N | ≥ 2 be the set of agents. Each agent wants to consume a

service provided by a server. Agents can be served only sequentially and

serving any agent takes one unit of time. Each agent is identified with a

waiting cost θi ∈ ℜ+, her cost of waiting per unit of time. The waiting cost

of an agent is known only to that agent. A profile θ = (θi)i∈N is a vector of

waiting costs of all agents. The profiles θ and θ′ are S-profiles if θi = θ′i for

all i ∈ N\S. Given a profile θ and S ( N , the profile (θj)j 6∈S will usually be

3See also Bogomolnaia and Moulin [1], Moulin and Shenker [10] and Mutuswami [11].
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denoted θ−S. Sometimes, though, we will find it convenient to enumerate

the elements of S and we will adopt the notations θ−i, θ−i−j and so on.

A queue is a bijection σ : N → {1, . . . , |N |}. For notational convenience,

we will denote σ(i) as σi for all i ∈ N . If σi = k—that is, agent i occupies

position k in the queue—then her waiting cost is (k−1)θi. Let Σ(N) be the

set of all queues of agents in N . For every i ∈ N and σ ∈ Σ(N), Pi(σ) =

{j ∈ N |σj < σi} is the set of predecessors of i while P ′
i (σ) = N\(Pi(σ)∪{i})

is the set of successors. A queue σ∗ is efficient for the profile θ if it minimizes

the aggregate waiting cost: σ∗ = argminσ∈Σ(N)

∑

i∈N (σi − 1)θi. We denote

the set of efficient queues for given N and θ as Σ∗(N, θ).

A mechanism µ associates to each profile θ, a tuple (σ(θ), t(θ)) ∈ Σ(N)×

ℜN . Agent i’s outcome is denoted as (σi(θ), ti(θ)) where σi(θ) is the queue

position and ti(θ) the corresponding transfer. Let ui(σi(θ), ti(θ), θ′i) = −(σi(θ)−

1)θ′i + ti(θ) denote i’s utility when the profile θ is reported (collectively) and

her true waiting cost is θ′i.

Definition 1. A mechanism (σ, t) is strategyproof if for all i ∈ N and all

i-profiles θ, θ′, ui(σi(θ), ti(θ), θi) ≥ ui(σi(θ
′), ti(θ

′), θi).

Strategyproofness implies that truth-telling is an optimal strategy for

every agent irrespective of the announcements of other agents. Two ways of

strengthening the notion of strategyproofness to coalitions are as follows.

Definition 2. A mechanism (σ, t) is strong group strategyproof if for all

S ⊂ N and all S-profiles θ, θ′, ui(σi(θ), ti(θ), θi) ≤ ui(σi(θ
′), ti(θ

′), θi) for all

i ∈ S implies ui(σi(θ), ti(θ), θi) = ui(σi(θ
′), ti(θ

′), θi) for all i ∈ S.

Definition 3. A mechanism (σ, t) is weak group strategyproof if for all S ⊂

N and all S-profiles θ, θ′, ui(σi(θ), ti(θ), θi) ≥ ui(σi(θ
′), ti(θ

′), θi) for at least

one i ∈ S.

Strong group strategyproofness rules out all deviations by groups of agents

which leave all deviating agents weakly better off and at least one deviat-

ing agent strictly better off while weak group strategyproofness only rules

out misreporting that strictly improves the utility of each member of the

deviating coalition.

Definition 4. A mechanism (σ, t) is efficient if for all profiles θ, σ(θ) ∈

Σ∗(N, θ).

It is easy to see that efficiency implies that if θi > θj then σi < σj.

However, the efficient queue may not unique: if, for example, all agents

announce the same waiting cost then all queues are efficient. In this paper,

we only consider an efficient rule which is a single valued selection from the
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efficiency correspondence. This is done by selecting an arbitrary order ≻

on the set of agents N and using the following tie breaking rule: if i ≻ j

and θi = θj then σi < σj. This tie-breaking rule is also applied for all

queueing situations involving a subset S of the agents. In what follows, we

will sometimes use σ∗(θ) to denote the efficient queue consistent with the

above tie-breaking rule for the profile θ.

Definition 5. A mechanism (σ, t) is budget balanced if for all profiles θ,
∑n

i=1 ti(θ) = 0. The mechanism is feasible if
∑n

i=1 ti(θ) ≤ 0.

We end this section with a bit of notation. Given x ∈ ℜ, we use N(x, ǫ)

to denote the ǫ-neighbourhood of x in the usual topology.

3. Results

The following is a well-known characterization of strategyproof and effi-

cient mechanism when preferences are quasi-linear.

Lemma 1. An efficient mechanism (σ, t) is strategyproof if and only if

(1) ti(θ) = −
∑

j 6=i

(σj(θ) − 1)θj + gi(θ−i) for all i ∈ N .

Proof : Follows from Theorem 1 of Holmström [4] since the domain of pro-

files ℜN
+ is convex. �

Remark 1. The efficient mechanism with the transfers satisfying (1) is

known as the VCG mechanism.4 The function gi(θ−i) cannot depend on

either θi or σi(θ) but it can depend on the queue positions of agents in the

economy where agent i is not present.

Remark 2. The pivotal mechanism5 is the efficient mechanism for which

the functions gi are given by

(2) gi(θ−i) =
∑

j 6=i

(σ∗
j (θ−i) − 1)θj for all i ∈ N.

It follows from Lemma 1 that this mechanism is strategyproof. It can also

be verified that (2) can be written as

(3) ti(θ) = −
∑

j∈P ′

i
(σ(θ))

θj for all i ∈ N.

Lemma 2. An efficient mechanism (σ, t) is strategyproof if and only if

(4) ti(θ) = −
∑

j∈P ′

i
(σ(θ))

θj + hi(θ−i) for all i ∈ N .

4See Vickrey [13], Clarke [2] and Groves [3].
5See Clarke [2] and Moulin [9].
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Proof : Without loss of generality, substitute gi(θ−i) =
∑

j 6=i(σ
∗
j (θ−i) −

1)θj + hi(θ−i) in Lemma 1. The result then follows immediately. �

We now move to our main results. In proving these results, we will assume,

without loss of generality, that the set of agents is given by N = {1, . . . , n}.

Our first result shows that there are no efficient mechanisms which are strong

group strategyproof and feasible.

Theorem 1. There exists no efficient mechanism satisfying strong group

strategyproofness and feasibility.

Proof : Let (σ, t) be an efficient mechanism satisfying strong group strat-

egyproofness and feasibility. Let θ be a profile such that θ1 > . . . > θn

and let δ =
∑n

i=1 ti(θ). Efficiency implies that σi(θ) = i and feasibility

that δ ≤ 0. Choose δ′ > −δ and let θ′ be a {1, 2}-profile of θ such that

θ′i = θi + δ′, i = 1, 2. By efficiency, σ(θ′) = σ(θ). We show that ti(θ) = ti(θ
′)

for all i ∈ N and use the characterization in Lemma 1 to derive a contra-

diction.

Consider θ′′, a 1-profile of θ such that θ′′1 = θ′1. By efficiency, σ(θ′′) = σ(θ)

and by strategyproofness, t1(θ
′′) = t1(θ). If tj(θ

′′) 6= tj(θ) for some j 6= 1,

then the coalition {1, j} can manipulate at either θ or θ′′. Hence, ti(θ
′′) =

ti(θ) for all i ∈ N . Therefore, gi(θ
′′
−i) = gi(θ−i) for all i ∈ N .

Observe that θ′ is a 2-profile of θ′′. Since σ(θ′) = σ(θ) = σ(θ′′), strat-

egyproofness implies that t2(θ
′) = t2(θ

′′) and using the argument in the

previous paragraph, it follows that ti(θ
′) = ti(θ

′′) = ti(θ) for all i ∈ N . This

implies that gi(θ
′
−i) = gi(θ

′′
−i) = gi(θ−i) for all i ∈ N . Using (1), it follows

that 0 =
∑

i∈N (ti(θ
′) − ti(θ)) = −δ′ < 0, a contradiction. �

In view of the fact that strong group strategyproofness is a demanding

requirement—it requires that no group of agents can deviate in a manner

where only some benefit strictly—the negative result in Theorem 1 is not

surprising. We will now show that positive results can be obtained with weak

group strategyproofness. To prove these results, we need a mild technical

condition which is given below.

Definition 6. A mechanism (σ, t) is continuous if for all i, j, ti(θj, θ−j) is a

continuous function of θj except when θj = θk for some k 6= j.

Fixing the announcements of all k 6= j, we can regard ti as a function of

j’s announcement θj. Continuity requires that ti varies continuously with

θj except at profiles where j’s position in the queue changes. In an efficient

mechanism, this will occur when θj = θk for some k 6= j.

Definition 7. A mechanism (σ, t) is said to be a linearized pivotal mecha-

nism if for all profiles θ,
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(1) ti(θ) = −
∑

j∈P ′

i
(σ(θ)) θj +

∑

j 6=i αij(θ−i)θj for all i ∈ N ,

(2) αij(θ−i) ∈ {0, 1} for all i, j ∈ N, i 6= j,

(3) αij(x, θ−i−j) = αji(x, θ−i−j) for all i, j ∈ N, i 6= j and all x ∈ ℜ+.

Remark 3. Comparing the above transfers with (4), it follows that the

linearized pivotal mechanisms are a small subset of the set of efficient and

strategyproof mechanisms.

Theorem 2. An efficient mechanism (σ, t) is weak group strategyproof and

continuous only if it is a linearized pivotal mechanism.

Proof : Let (σ, t) be an efficient mechanism satisfying weak group strate-

gyproofness and continuity. Let θ be a profile such that θ1 > . . . > θn. By

efficiency, σi(θ) = i for all i ∈ N . By Lemma 2 we know that an efficient

mechanism is strategyproof if and only if the transfers are of the form

(5) ti(θ) = −
∑

j∈P ′

i
(σ(θ))

θj + hi(θ−i).

We work out the restrictions that weak group strategyproofness and conti-

nuity impose on the set of allowable transfers. Let S = {i, j} be such that

j = i + 1 and let θ′ be a S-profile of θ.

Claim 1: Suppose σk(θ
′) = σk(θ) for all k 6∈ S. Then, hi(θj, θ−S) =

αi(θj , θ−S)θj + fij(θ−S), αi(θj , θ−S) ∈ {0, 1} for i, j ∈ S, i 6= j.

Proof : We first show that continuity implies that there exists ǫ > 0 such

that

(6) either hi(x, θ−S) − x is a constant in N(θj, ǫ)

(7) or hj(y, θ−S) is a constant in N(θi, ǫ).

To see this, suppose the contrary. Then, we can choose θ′i, θ
′
j, ǫ such that

θ′i ∈ N(θi, ǫ), θ
′
j ∈ N(θj , ǫ), N(θi, ǫ) ∩ N(θj , ǫ) = ∅ and hi(θ

′
j, θ−S) − θ′j 6=

hi(θj , θ−S)−θj, hj(θ
′
i, θ−S) 6= hj(θi, θ−S). If [hi(θ

′
j , θ−S)−θ′j]− [hi(θj , θ−S)−

θj] and hj(θ
′
i, θ−S) − hj(θi, θ−S) have the same sign, then S = {i, j} ma-

nipulates at either θ or θ′. Hence, assume without loss of generality that

[hi(θ
′
j, θ−S) − θ′j] − [hi(θj, θ−S) − θj] > 0 and hj(θ

′
i, θ−S) − hj(θi, θ−S) < 0.

Consider the profiles θi = (θ′i, θj , θ−S) and θj = (θi, θ
′
j, θ−S). It follows from

strategyproofness that ti(θ
i) = ti(θ) and tj(θ

j) = tj(θ). However, since

tj(θ
i) < tj(θ) and ti(θ

j) > ti(θ) it follows that S can profitably manipulate

at θi via θj. This contradiction establishes that either (6) or (7) holds.

Next, consider the S-profile θ′′ of θ such that θ′′i = θj, θ
′′
j = θi. It is easy

to see that σk(θ
′′) = σk(θ) for all k 6∈ S, σi(θ

′′) = j, σj(θ
′′) = i. Using

the same logic as before, it follows that there exists ǫ > 0 such that either

hj(x, θ−S)−x is a constant in N(θj, ǫ) or hi(y, θ−S) is a constant in N(θj , ǫ).
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Suppose that (6) holds. If there is no ǫ such that hj(x, θ−S) − x is a

constant in N(θj , ǫ), then it must be the case that hi(x, θ−S) is a constant

in some N(θi, ǫ
′). Consider the i-profile θ̃ of θ such that θ̃i ∈ N(θj , ǫ) and

θi > θj . By strategyproofness, the transfer hi(θj, θ−S) remains unchanged

since σi(θ̃) = σi(θ). We have a contradiction since both hi(x, θ−S) − x and

hi(x, θ−S) are constant for x ∈ N(θj , ǫ) ∩ N(θi, ǫ
′). Hence, if hi(x, θ−S) −

x is a constant in some N(θj , ǫ
′) then there exists ǫ > 0 such that both

hi(x, θ−S) − x and hj(x, θ−S) are constants in N(θj, ǫ).

Alternatively, suppose (7) holds. If there is no ǫ such that hi(y, θ−S)

is a constant in N(θj , ǫ), then it must be true that hj(x, θ−S) − x is a

constant in some N(θj , ǫ
′). By taking θ̄, a j-profile of θ such that θ̄j < θi

and θ̄j ∈ N(θi, ǫ) ∩ N(θj, ǫ
′), we can get a similar contradiction as above.

Hence, it must be true that if (7) holds, then hi(y, θ−S) is a constant in some

N(θj, ǫ).

We have thus shown that: if θi > θj and σi(θ)−σj(θ) = 1 then there exists

N(θj, ǫ) where either hi(y, θ−S) − y and hj(y, θ−S) − y are both constants

or hi(y, θ−S) and hj(y, θ−S) are both constants. Therefore, fixing θ−S , the

functions hi and hj can be written as

(8) hk(y, θ−S) = αkl(y, θ−S)y + fkl(θ−S), αkl(y, θ−S) ∈ {0, 1}, k 6= l.

Note that since the hi functions are continuous, αij(y, θ−S) is constant for

all profiles θ−i, θ
′
−i such that σk(θ−i) = σk(θ

′
−i) for all k ∈ N\{i}.

We extend the argument by considering j and her successor (say k). It

follows from the above that

(9)

hl(z, θ−j−k) = αlm(z, θ−j−k)z + flm(θ−j−k), l,m = j, k, l 6= m,αlm ∈ {0, 1}.

Equating the two expressions for hj , we get

(10) αji(θi, θ−i−j)θi + fji(θ−i−j) = αjk(θk, θ−j−k)θk + fjk(θ−j−k)

Noting that the αij functions only take on the values zero or one, we can

equate the terms on either side to conclude that

(11) hj(θi, θk, θ−i−j−k) = αji(θi, θ−i−j)θi + αjk(θk, θ−j−k)θk + fj(θ−i−j−k)

Consider the profile θ′ where θ′i = θj, θ
′
j = θi and θ′l = θl for all l 6= i, j. It is

straightforward to verify that σi(θ
′) = j, σj(θ

′) = i and σl(θ
′) = σl(θ) for all

l 6= i, j. It follows that in the profile θ′, i and k are neighbours. Using the

previous arguments, it follows that

(12) hi(θk, θ−i−k) = αik(θ−i)θk + fik(θ−i−k)
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Comparing (8) and (12) and noting again that the αij functions are binary,

it follows that

(13) hi(θj , θk, θ−i−j−k) = αij(θ−i)θj + αik(θ−i)θk + fi(θ−i−j−k)

We use the above arguments recursively to compare i and j with all other

agents. It follows therefore that the functions hi must be of the form

(14) hi(θ−i) =
∑

j 6=i

αij(θ−i)θj, αij ∈ {0, 1}, i 6= j, i ∈ N.

This completes the proof. �

Observe that to derive the necessity of the linearized pivotal mechanism,

we have just considered two player deviations. However, the implication of

our necessity result is significant and is captured in the next two theorems.

Theorem 3. If n = 3, then there exists an efficient mechanism satisfying

weak group strategyproofness and budget balance.

Proof : Consider the mechanism which at any profile θ selects the efficient

order and implements the following transfers:

ti(θ) =











−θj if σi(θ) = 1, σj(θ) = 2,

0 if σi(θ) = 2,

θj if σi(θ) = 3, σj(θ) = 2.

The transfers have been derived from the linearized pivotal mechanism by

setting

αij(θj, θk) =

{

1 if σj(θj, θk) = 2

0 otherwise

for all distinct i, j, k. This mechanism is strategyproof and budget balanced

(see Mitra [6]), so we only need to show that it cannot be manipulated

by a coalition of size 2 or 3. Efficiency and budget balance implies that

the mechanism is Pareto optimal and cannot be manipulated by the grand

coalition N = {1, 2, 3}. Therefore, it suffices to consider coalitions of size 2.

Without loss of generality, suppose that θ1 ≥ θ2 ≥ θ3. Using our efficient

rule we get σi(θ) = i for all i. Suppose that a coalition S of size 2 can

manipulate at θ through θ′, a S-profile of θ. We claim that σi(θ
′) 6= 2 for

any i ∈ S. To see this, suppose σi(θ
′) = 2. If σi(θ) = 1, then i’s gain

from the deviation is θ2 − θ1 ≤ 0 and hence she does not benefit strictly. If

σi(θ) = 3, then the gain is θ3 − θ2 ≤ 0. And lastly if σi(θ) = 2, then i’s

benefit from deviation is zero.

Suppose S = {1, 3}. If σi(θ
′) = σi(θ) for all i ∈ S, then it is easy to

verify that u1(σ(θ), t(θ), θ1) = u1(σ(θ′), t(θ′), θ1) = −θ2, u3(σ(θ), t(θ), θ1) =
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u3(σ(θ′), t(θ′), θ3) = θ2 − 2θ3 and hence neither agent gains from the devi-

ation. Hence, σi(θ
′) 6= σi(θ) for some i ∈ S. Since σi(θ

′) 6= 2 for all i ∈ S,

it follows that σ1(θ
′) = 3, σ3(θ

′) = 1. Agent 1’s gain from the deviation

is θ2 − 2θ1 + θ1 ≤ 0 since θ1 ≥ θ2. This is a contradiction since we have

assumed that S can manipulate at θ by reporting θ′.

Suppose S = {1, 2}. If σ2(θ
′) = 3, then her gain in utility is θ3−2θ2+θ2 =

θ3 − θ2 ≤ 0 which shows that 2 does not gain from the deviation. Hence,

using σi(θ
′) 6= 2 for all i ∈ S, we must have σ2(θ

′) = 1, σ1(θ
′) = 3. Agent

1’s gain in utility is θ3 − 2θ1 + θ2 ≤ 0 since θ1 ≥ θ2 ≥ θ3. So, we have a

contradiction again.

Finally, suppose S = {2, 3}. If σ2(θ
′) = 1, then 2’s gain from the deviation

is −θ1 + θ2 ≤ 0. So, we must have σ2(θ
′) = 3, σ3(θ

′) = 1. Agent 3’s

gain from the deviation is −θ1 − θ2 + 2θ3 ≤ 0. Hence, we again have a

contradiction. This completes the proof that the above mechanism is group

strategyproof. �

It turns out that weak group strategyproofness, efficiency and budget

balance are compatible only when there are three agents. The following

result will be used to establish the negative result when n 6= 3.

Proposition 1. Suppose n > 2. An efficient mechanism (σ, t) is strate-

gyproof and budget balanced if and only if

(15) ti(θ) =
∑

j∈Pi(σ(θ))

(

σj(θ) − 1

n − 2

)

θj −
∑

j∈P ′

i
(σ(θ))

(

n − σj(θ)

n − 2

)

θj + γi(θ−i)

where
∑

i∈N γi(θ−i) = 0.

Proof: In condition (4) of Lemma 2 we substitute

(16) hi(θ−i) =
∑

j 6=i

(

σj(θ−i) − 1

n − 2

)

θj + γi(θ−i).

Using this substitution we get that an efficient mechanism is strategyproof if

and only if the transfer satisfies (15). Condition (15) is obtained by using the

following result in (16) which is a consequence of efficiency of the mechanism.

σj(θ−i) =

{

σj(θ) if σj(θ) < σi(θ)

σj(θ) − 1 if σj(θ) > σi(θ)

It follows that the transfer given by (15) has the property that
∑

i∈N ti(θ) =
∑

i∈N γi(θ−i).
6 If we add budget balance to (15), the result follows. �

Theorem 4. If n 6= 3, there are no efficient mechanisms satisfying continu-

ity, weak group strategyproofness and budget balance.

6See Mitra [6].
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Proof : Let (σ, t) be a mechanism satisfying all the requirements in the

hypothesis. Suppose n = 2. Let θ be a profile such that θ1 > θ2. By

efficiency, σi(θ) = i for all i. Using (1), t1(θ) = −θ2 + h1(θ2) and t2(θ) =

h2(θ1). We observe that h1 and h2 do not depend on the positions of 1

and 2 in the queue. Consider the 1-profile θ′ of θ such that θ′1 < θ2. By

efficiency, σi(θ
′) = 3− i, i = 1, 2. Again, using (1), the transfers are t1(θ

′) =

h1(θ2), t2(θ
′) = −θ′1 + h2(θ

′
1). By budget balance at θ and θ′, we have

h1(θ2)+h2(θ1)−θ2 = 0 and h1(θ2)+h2(θ
′
1)−θ′1 = 0. Hence, h2(θ

′
1)−h2(θ1) =

θ′1 − θ2. We have a contradiction because the left hand side is independent

of θ2 while the right hand side is a function of θ2.

Suppose that n = 4. Let θ be a profile such that θ1 > θ2 > θ3 > θ4.

Then, using the necessary condition for efficiency, continuity and weak group

strategyproofness in Theorem 2, we have

(17) t1(θ) = −θ2 − θ3 − θ4 +

4
∑

j=2

α1j(θ−1)θj

where α1j ∈ {0, 1} for all j 6= 1. Using the condition for strategyproofness,

efficiency and budget balance in (15), it also follows that

(18) t1(θ) = −θ2 −
θ3

2
+

4
∑

j=2

β1j(θ−1)θj

Hence comparing the two expressions above and using the fact that the

mechanism is continuous, it follows that

(19) α14(θ̃, θ2, θ3) − β14(θ̃, θ2, θ3) = 1

for all θ̃ < θ3. Consider another profile θ′ such that θ′i = θi for i = 1, 2,

θ′3 = θ4, θ
′
4 = θ3. Note that the efficient queue at θ′ involves players 3 and

4 exchanging positions. Using the two different expressions for t1 at θ′, it

follows that

(20) α14(θ̃, θ2, θ4) − β14(θ̃, θ2, θ4) =
1

2

for all θ4 < θ̃ < θ3. The above two expressions gives a contradiction at any

profile θ̄ such that θ̄i = θi for i = 1, 2, 3 and θ4 < θ̄4 < θ3.

The general case follows by considering a profile θ such that θ1 > θ2 >

θ3 > θ4 and θj < θ4 for all j 6= 1, 2, 3, 4. �

Definition 8. A mechanism (σ, t) is a k-pivotal mechanism if it is a lin-

earized pivotal mechanism and there exists k ∈ {1, . . . , n} such that for all

profiles θ,

αij(θ−i) =

{

1 if σj(θ−i) ≥ k,

0 otherwise.
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Observation: For all i ∈ N and for all θ ∈ ℜn
+, the transfers in the k-pivotal

mechanism have the following form:

ti(θ) =











−
∑

j∈X1(i,k;θ) θj if σi(θ) < k

0 if σi(θ) = k
∑

j∈X2(i,k;θ) θj if σi(θ) > k

where X1(i, k; θ) = [q ∈ N | σq(θ) ∈ {σi(θ) + 1, . . . , k}] and X2(i, k; θ) =

[q ∈ N | σq(θ) ∈ {k, . . . , σi(θ) − 1}]. An n-pivotal mechanism is the stan-

dard pivotal mechanism given by condition 3.

Theorem 5. An efficient k-pivotal mechanism is weak group strategyproof.

Proof : Let θ be a profile and without loss of generality, assume that σi(θ) =

i for all i ∈ N . Note that efficiency implies that θ1 ≥ . . . ≥ θn. We show

that there does not exist a profitable deviation for any coalition S ⊂ N .

Claim 1: Let S ⊂ N deviate at θ through the S-profile θ′. Then, σi(θ
′) 6= k

for all i ∈ S.

Proof: Suppose σi(θ
′) = k for i ∈ S. If σi(θ) = k, then ti(θ) = ti(θ

′) = 0 and

hence, i does not benefit strictly from the deviation. Suppose σi(θ) = i < k.

Then, the benefit to player i from the deviation is
∑k

l=i+1 θl − (k − i)θi ≤ 0

because θi ≥ θl for all l ≥ i + 1. Lastly, suppose σi(θ) = i > k. The

maximum benefit to player i from the deviation is (i − k)θi −
∑i−1

l=k θl ≤ 0

because θi ≤ θl for l < i. Hence, in all cases, the player moving to position

k does not benefit from the deviation. This implies that S 6= N and there

exists i 6∈ S. In particular, if σi(θ
′) = k, then i 6∈ S.

Claim 2: Let σi(θ
′) = k. Then, for all j ∈ S, if σj(θ) > i, then σj(θ

′) > k

and if σj(θ) < i then σj(θ
′) < k.

Proof: Suppose σj(θ) = j > i = σi(θ) and σj(θ
′) = j′ < k. Then, j’s

maximal profit from the deviation is ∆uj = (j−j′)θj−
∑j−1

l=k θl−(k−j′)θi ≤

0. Conversely, suppose σj(θ) = j < i = σi(θ) and σj(θ
′) = j′ > k. In this

case, j’s maximal gain from the deviation is ∆uj = −(j′−j)θj +
∑k

l=j+1 θl+

(j′ − k)θk ≤ 0.

Claim 2 implies that if σi(θ
′) = k then σi(θ) = k: indeed, since members

of the deviating coalition preserve their positions with respect to i and all

non-deviating members preserve their positions with respect to each other,

we would get a contradiction if σi(θ) 6= k. Thus, the only possible deviations

are ones where deviating members preserve their positions vis-a-vis k who

herself is not a member of the deviating coalition.

Let S = S1 ∪ S2 where S1 = {i ∈ S|σi(θ) < k} and S2 = {i ∈ S|σi(θ) >

k}. Since the transfers of agents in S1 are not affected by the waiting

costs of agents in S2 and vice versa and since the deviation by S does not
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involve agents changing their positions relative to k, we can without loss of

generality, let S1 ∩ S2 = ∅.

Suppose S1 6= ∅. If there exists i ∈ S1 such that σi(θ) < σi(θ
′), then i’s

gain from the deviation is ∆ui = −(σi(θ
′) − σi(θ))θi +

∑σi(θ
′)

l=σi(θ)+1
θl ≤ 0.

Suppose σi(θ) = σi(θ
′) for all i ∈ S1. Then, in fact σ(θ) = σ(θ

′). Let

j = argmini∈S1
σi(θi). Then, tj(θ

′) = tj(θ) and hence j does not benefit

from the deviation. Finally, suppose σj(θ
′) ≤ σj(θ) for all j ∈ S1 with at

least one strict inequality. In this case, we must in fact have σj(θ
′) < σj(θ)

for all j ∈ S1: otherwise, the agents whose queue positions are unchanged do

not benefit. Furthermore, θ′j ≥ θj for all j ∈ S1: this follows from efficiency.

(In order to move ahead of a non-deviating member i, j’s announcement has

to be higher than θi.) Since the transfers require that i pays θj if she moves

ahead of j in the queue, it follows that no i ∈ S1 can be better off.

Suppose S2 6= ∅. If there exists i ∈ S2 such that σi(θ) > σi(θ
′), then i’s

maximal benefit from the deviation is ∆ui = (σi(θ)−σi(θ
′))θi−

∑σi(θ)−1
l=σi(θ′)

θl ≤

0 because θi ≤ θl for all l < i. Suppose σi(θ) = σi(θ
′) for all i ∈ S2. Then, in

fact σ(θ) = σ(θ′). Let j = argmaxi∈S2
σi(θi). Then, tj(θ

′) = tj(θ) and hence

j does not benefit from the deviation. Finally, suppose σj(θ
′) ≥ σj(θ) for all

j ∈ S2 with at least one strict inequality. Then, we must have σj(θ
′) > σj(θ)

for all j ∈ S2: otherwise, the agents whose queue positions are unchanged do

not benefit. Furthermore, θ′j ≤ θj for all j ∈ S2: this follows from efficiency.

Since the transfers require that i receives θj if she moves behind j in the

queue, it follows that the benefits of moving behind (θj) are less than the

cost θi. �

Let [x]+ be the smallest integer value of x greater than or equal to x.

Proposition 2. An efficient k-pivotal mechanism is feasible if and only if

k ≥
[

n+1
2

]

+
.

Proof : From the definition of k-pivotal mechanism it follows that

(21)
∑

i∈N

ti(θ) = −
∑

j∈Y1(k;θ)

(σj(θ) − 1)θj +
∑

j∈Y2(k;θ)

(n − σj(θ))θj

where Y1(k; θ) = {j ∈ N | σj(θ) ≤ k} and Y2(k; θ) = {j ∈ N | σj(θ) ≥ k}.

Consider a state θ such that θ1 = . . . = θn = x > 0. Using (21) we get

(22)
∑

i∈N

ti(θ) =



−
k

∑

p=1

(p − 1) +
n

∑

q=k

(n − q)



 x =
n(n + 1 − 2k)x

2

For feasibility it is necessary that n(n+1−2k)x
2 ≤ 0 which implies that k ≥ n+1

2 .

This proves the necessity of feasibility.
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For sufficiency consider the k-th pivotal mechanism with k ≥
[

n+1
2

]

+
.

Consider any profile θ where θ(1) ≥ . . . ≥ θ(n) ≥ 0 and θ(p) is the p-th

highest waiting cost for p ∈ {1, . . . , n}. If k > n+1
2 , then from (21) we get

(23)

∑

i∈N

ti(θ) = −
n+1−k
∑

p=1

(p−1)
(

θ(p) − θ(n+1−p)

)

−
k−1
∑

q=n+1−k

(q−1)θ(q)−[2k−(n+1)]θ(k)

Since θ(p) ≥ θ(n+1−p) for all p ∈ {1, . . . , n+1−k}, θ(n) ≥ 0 and 2k > (n+1)

we get
∑

i∈N ti(θ) ≤ 0. If k = n+1
2 , then from (21) we get

(24)
∑

i∈N

ti(θ) = −
n+1−k
∑

p=1

(p − 1)
(

θ(p) − θ(n+1−p)

)

Since θ(p) ≥ θ(n+1−p) for all p ∈ {1, . . . , n + 1 − k} we get
∑

i∈N ti(θ) ≤ 0

and the prove is complete. �

Remark 4. If n = 3, then Proposition 2 shows that we can get efficiency,

weak group strategyproofness and budget balance if and only if k = 2. Thus,

the mechanism identified in Theorem 3 is essentially unique.

4. Conclusion

We have shown that, in general, group strategyproofness, efficiency and

budget balance cannot be satisfied jointly in the single server queueing

model. If we weaken budget balance to feasibility, then it is possible to

obtain positive results so long as we use the weak variant of group strate-

gyproofness. The main contribution of the paper has been to obtain nec-

essary and sufficient conditions for weak group strategyproofness and effi-

ciency. We note that the necessity condition has been obtained by consid-

ering only two player deviations and hence the ‘gap’ between our necessity

and sufficiency results is quite ‘thin.’

We have then used our sufficiency condition to identify the subclass of

mechanisms which are feasible. It is quite easy to verify that the k-pivotal

mechanism where k =

[

n + 1

2

]

+

is the ‘best’ feasible mechanism from a

welfare point of view since it minimizes the monetary loss under all possible

profiles. We have also observed that for n = 3, the ‘best’ feasible mechanism

is also budget balanced and, given our necessity result, it is also unique.

One thing that we have not done is to examine the possibility of satis-

fying individual rationality which would guarantee non-negative utility to

all agents under all profiles. It is easy to verify that the 1-pivotal mecha-

nism is compatible with efficiency, weak group strategyproofness and indi-

vidual rationality. Our guess is that, given our necessity result, the 1-pivotal
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mechanism is the only mechanism that satisfies efficiency, weak group strat-

egyproofness and individual rationality. However, we did not pursue this

line of research since the 1-pivotal mechanism is not feasible.

One interesting and challenging open problem would be to extend our

analysis to the multiple servers case.
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