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Abstract

Banks can fail because of bad economic fundamentals, and/or general panic

withdrawals by depositors who feel the bank does not have su¢ cient reserves

to meet the demand. This paper attempts to �nd the optimal reserve level and

early returns the banks should decide on.

If the reserve policy of the bank is transparent, it is found that more reserves

have to be put aside over and above the real need, and this ine¢ ciency increases

with the proportion of impatient agents. It is also found that the optimal early

return is lower than the �rst-best. The model recommends that when reserve

policy is transparent there is no need for regulation.

However, if reserve policy is not transparent, the model recommends regu-

lation for both reserves and early returns. This is because of the moral hazard

problem, the banks would keep lower reserves and o¤er higher early returns than

what maximises depositor welfare.

JEL Classi�cations: D82, G21,G28
Key Words: Optimal reserves, short term interest rate, Bank runs, global

game, Unique equilibrium.
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1 Introduction

Banks collect money from individuals as deposits, and invest in long-term projects

while keeping part of the deposits as reserves. Because banks are trying to �nance

long-term projects with short-term liabilities, they become vulnerable to bank runs.

USA went through this experience during 1890-1908 and 1929-1933 when there were

21 and 5 bank-panics respectively. Lindgren, Garcia and Saal(1996) state that 73% of

the IMF�s member countries su¤ered some form of banking crisis between 1980-1996.

More recently in the 21st century we have the crisis in Argentina and Uruguay.

Banking crises can happen because of ine¢ cient management, bad economic con-

ditions or fraud. In addition to that, banks can also fail because of general panic that

prompt the depositors to withdraw too much, forcing the banks to shutdown. There

is empirical evidence for both these causes.1

Various models have been put forward trying to explain bank runs. The Diamond

and Dybvig (1983) model, which is considered a pioneering paper in bank runs, shows

that bank runs are caused by self-ful�lling beliefs of depositors. Their model has two

equilibria: the bank-run equilibrium and the no bank-run equilibrium.

Following the Diamond and Dybvig�s sun-spot explanation given to bank runs,

there were many models that showed that bank runs were actually information-based

- i.e. they said that depositors�decision to withdraw was because of the information

they receive about expected returns:2 Theoretically and empirically it has been shown

that bank runs are caused by both self-ful�lling beliefs and information about returns.

The existence of multiple equilibria in the Diamond and Dybvig model made it

di¢ cult for useful analysis and comparison of policies. However a signi�cant break

through in this strand of literature has now been made. Goldstein and Pauzner (2005)

establish a unique equilibrium in a model based on global games introduced by Carlson

and Van Damme (1993) and extended by Morris and Shin (1998). Everything that

1Demirgue - Kunt and Detragiache (1998), Kaminsky and Reinhart (1999), Gorton (1988) have

done studies on adverse banking conditions triggering o¤ banking crises. Radlet and Sachs (1998),

having examined the characteristics of �nancial crises in Mexico-1994/5, Argentina-1995 and East

Asia-1997, note that one of the reasons was the element of self-ful�lling crisis.
2Gorton 1985 (1988), Jacklin and Bhattacharya (1988), Alonso (1996), Loewy (1998), Cooper and

Ross (1998), Bougheas (1999) are some of the main ones. Chari and Jegannathan (1988) developed

a model where the rational expectation equilibrium is a combination of fundamental bank-runs and

speculative bank runs.
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has an in�uence on the uncertain return of the long term project is captured by the

economic fundamental. If agents receive noisy signals about the economic fundamental

(as opposed to the common knowledge of the fundamental in the Diamond and Dybvig

model), a threshold fundamental exists, below which there would be a bank-run and

above which there will not be a bank-run. Bank runs continue to be driven by bad

expectations that others would withdraw, but the belief itself is uniquely determined

by the threshold value. They use this unique equilibrium to compute the probability

of bank runs and show that it increases with the proportion of impatient agents and

return given to early withdrawers.

Modelling bank runs using noisy signals allows for withdrawals to be based both

on information and self-ful�lling beliefs. It further gives a unique equilibrium which

enables us to arrive at important policy decisions. The model is closest to the Goldstein

and Pauzner (2005) set up. The crucial di¤erence is in the question it addresses. Using

the unique equilibrium this paper attempts to throw some light on two important

decisions that a bank has to make: reserves it has to keep and short term interest it

has to o¤er early withdrawers.

A bank can fail because of insolvency or illiquidity. The outcome of the economic

fundamental cannot be controlled by that bank. But the bank should try to avoid

failure due to illiquidity by keeping adequate reserves. Even though the depositors

are concerned about the bank�s pro�tability, if they feel that the bank does not have

enough liquidity, there will be a panic-run. Higher the early return, higher the incentive

for people to withdraw early. The more early withdrawals that is anticipated, the more

should be the reserves to meet the demand. Keeping reserves reduces the earning

capacity of the bank but increases the availability of money to meet the demand for

early withdrawals. Therefore it is important that a right balance is kept between

earning in the long-term and having su¢ cient liquidity to meet the demand in the

short-term.

Here, the banks face the possibility of depositors withdrawing because of genuine

liquidity shocks as well as self-ful�lling beliefs. A �xed proportion of depositors have

to withdraw early because they are hit by a liquidity shock. These depositors receive

a liquidity shock and have to de�nitely withdraw early. In addition to that, the

depositors also observe a noisy signal about the bank�s future earning potential. If

they expect to lose out by waiting, even those who are not hit by the liquidity shock

will withdraw early. The bank is a pro�t maximiser, but operating in a competitive
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environment.

We look at this problem under two scenarios: scenario 1 is when the level of

reserves that the bank keeps can be observed by the depositors and scenario 2 is when

the reserve policy of the bank is not transparent. The key di¤erence in the outcomes of

the two scenarios is that we �nd that when reserves is transparent there is no need for

regulation whereas when it is not transparent there is a need for regulation, both for

reserves and early returns. There is also support for regulation in other papers where

it is predicted that banks would not keep su¢ cient reserves if it is not observable.3

1.1 Main Results

When the reserve policy is transparent (scenario 1), because the bank is operating

in a competitive environment, the bank seeks to maximise the expected utility of the

depositors because it operates in a competitive market. The model predicts that the

bank can �nd an optimal reserve level and an early return rate to maximise expected

utility of depositors.

First we look at the �rst-best scenario where the bank can observe whether the

depositors are patient or impatient and therefore would only meet the demand of

those who are impatient. The �rst-best reserve level would be just enough to meet the

demand of the impatient agents.

In the next section, the bank cannot distinguish between the patient and impatient

depositors. It is found that the optimal level of reserves and the early return that the

bank chooses, increase with the proportion of impatient agents and reduce with the

long term earning potential. These results are quite intuitive. When the agents face

a higher probability of being hit by a liquidity shock, they will wwant a higher early

return to maximise their expected utility. In order to that, the reserve level should be

higher and also, the agents will need more reassurance of su¢ cient reserves.

An interesting result is that the early return that maximises expected utility is

always below one as long as some agents are impatient. This means that even if agents

withdraw because they are genuinely hit by a liquidity shock, they are penalised and

given less than what they invested! Comparing the results with the �rst-best scenario

3Cothren (1987), Bhattacharya and Boot (1998). According to Clouse and Dow (2002), banks

adjust their reserves to keep the probability of failure due to liquidity constant. Ringborn et al (2004)

show that the optimal reserves reduces with the earning potential of the investment and increases with

the depositors�expected need to withdraw and the correlation of liquidity shocks among depositors.
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the early return in the �rst-best scenario is higher. This is because in the �rst-best

case, the bank keeps reserves only to serve the impatient depositors and does not have

to use early return as an instrument to dissuade patient agents from withdrawing early.

Even though a higher early return provides more insurance against liquidity shocks,

it increases the risk of bank runs by providing an incentive for early withdrawal and

reducing the long-term earning potential of the bank. This paper shows that it is

optimal to actually penalise those who withdraw early even if they are genuinely

hit by a liquidity shock. This result endorses the results obtained by Goldstein and

Pauzner as well.

An important result of this paper is that the optimal choice of reserves and early

return gives a threshold such that, in the existence of impatient agents, some patient

agents would also want to withdraw early. The bank keeps reserves over and above

what is needed to meet the demand of those who are genuinely hit by the liquidity

shock. This ine¢ ciency of keeping reserves to serve patient agents increases with the

proportion of impatient agents.

The model predicts that the probability of bank runs increases with early returns,

but reduces with reserves. If early return is high, agents get higher return when they

withraw early and there is more probability that the bank would crash because of

insu¢ cient reserves. On the other hand, when reserves are high, the agents have the

con�dence that the bank will have su¢ cient reserves to survive till the next period. The

model also points out that when the expected utility of the depositors is maximised, the

bank would choose reserves and early returns where there will be a positive probability

of bank runs.

Policy makers should take note of these �ndings. If depositors can observe the

reserves and there is competition in the market, the banks would choose reserves

and early returns to maximise the depositors�expected utility. Therefore this model

suggests there is no need for regulation.

The analysis under scenario 2 when the reserve policy of the bank is not transparent

however, recommends that there is indeed a role for regulation. The results in scenario

1 was driven by the fact that the reserves kept by the bank was public knowledge. It is

a reasonable assumption that the depositors will not have this information when they

make decisions.

The results predict that the bank would then keep reserves just su¢ cient to meet

the demand of those hit by the liquidity shock. The level of reserves is lower if it

5



cannot be observed than what would be put aside if it cannot be observed. Also, if

reserves cannot be observed, the chosen level of reserves makes the expected utility

lower and the probability of bank runs higher.

Another interesting result is also obtained when the bank�s reserve policy cannot

be observed. If we allow the banks to choose the early return that is o¤ered to those

withdrawing early, the bank would choose it to be ine¢ ciently high to attract customers

in the competitive market. Early return is higher when reserves cannot be observed

than what would be chosen if the level of reserves was transparent. This is also

detrimental for the �nancial stability of the country, because the chosen early return

pushes up the probability of bank runs.

Therefore the regulators have important roles to play when level of reserves cannot

be observed. The level of reserves as well as the early return should be regulated. They

should keep a tab on the upper bound of the early return that a bank can o¤er and

the minimum level of reserves that is put aside to meet early withdrawal.

The rest of the paper is organised as follows: First we look at scenario 1 where

the level of reserves is transparent. Here the model is set up in section 2, followed by

section 3 where the unique equilibrium is established. Section 4 looks at the �rst-best

scenario and at the case where the bank cannot distinguish between the two types.

Then we look at scenario 2 where the level of reserves is not transparent. The model

is set up in section 5, followed by a discussion about the unique equilibrium. Section

7 discusses the level of reserves that is chosen, comparing when the reserves can be

observed and when it is private information. Section 8 analyses what happens if early

returns can also be chosen by the bank. Section 9 concludes.

Scenario I - Transparent Reserve Policy

2 The Model

The model has three periods ( t0; t1; t2). There is a continuum [0,1] of agents who are

the depositors, and a bank which operates in a competitive market. All the agents

have endowments of one unit at the beginning of t0. Consumption happens only in

periods t1 and t2. Agents can be of two types - either patient or impatient. They

learn their types at the beginning of t1 which is their private information. Impatient

agents can derive utility only by consuming in t1 and patient agents can derive utility
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from consuming in either t1 or t2. All agents are identical and risk averse, and each

agent�s utility function is increasing, twice continuously di¤erentiable, strictly concave

and has a relative risk aversion coe¢ cient of 0 < �cu"(c)
u0(c) < 1. More speci�cally, their

utility functions are given by u = c�1 for the impatient agents and u = (c1 + c2)
� for

the patient agents where � 2 (0; 1) and ct is the return the agent gets in period t.
Expected returns from investing in a bank are high enough such that the agents

will invest their endowments of one unit in the bank at date t0. The bank keeps

proportion � as reserves, and invests the balance (1� �) in a long term risky project.

Those agents who withdraw early in t1 will receive a return of r (early return) that

is chosen by the bank. If the demand for withdrawals in t1 exceeds the reserves �,

the bank has to liquidate the long term project at a very small value (close to zero)

and therefore will have to close down in t1 unless the bank is in the upper dominant

region, which is explained later). If the bank crashes in t1 those who waited without

withdrawing early will receive nothing.

Each unit that is invested in the long term project in t0 realizes � at date t2. The

fundamental � captures everything that will a¤ect the return of the investment such

as the economic and political environment that in�uence the success of the project

etc. In t2 everything that is available is distributed equally among all those depositors

who did not withdraw early. The bank operates in a competitive environment and

therefore its objective is to maximise the expected utility of the depositors subject to

zero pro�ts. If not, the bank will lose all the customers to banks that o¤er a slightly

better deal.

The economic fundamental � is uncertain and is drawn from a uniform distribution

on
�
�; �
�
where �= 0 and � > 0 and large. At the beginning of t1 � is realised and

each agent i observes a noisy signal �i = � + �i of the economic fundamental �. The

noise �i is uniformly and independently distributed among the depositors with support

[�e;+e] : Once the agents observe the signal, they will decide whether to withdraw in
t1 or wait till t2. This decision is based on their beliefs about � that is realised and the

number of agents who would withdraw in t1. The signal received by each agent can be

interpreted as the information about the return in t2 that is privately available to them

and their ability to interpret them. Higher the �i higher is agent i�s own expectation

of the return on the investment. In addition to that, when an agent receives a high

signal he also expects the other agents to have received a higher signal and therefore

is less likely to withdraw.
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At the beginning of t1; proportion � of the depositors receive a liquidity shock which

would require them to withdraw early, irrespective of �. This can also be understood

as each agent having � probability of being hit by a liquidity shock. There is no

aggregate uncertainty (i.e. � is �xed and known), but the bank cannot distinguish the

type of each agent individually. The bank keeps a reserve � to meet early demand in

t1. The reserves has to be at least �r to meet the demand of the impatient agents who

will de�nitely withdraw. If � turns out to be more than that, it shows ine¢ ciency.

To analyse the ine¢ ciency we can say that � = �r + (1� �)�, where � indicates the
extent of ine¢ ciency in having to keep more reserves over and above what is needed

to serve the genuinely impatient agents.

Because the bank operates in a competitive environment, it will choose r and � to

maximise the expected utility of the depositors subject to zero pro�t.

3 Unique Equilibrium

First we have to establish that a unique equilibrium �� exists, below which everyone

will withdraw and above which no one will withdraw. In keeping with the literature,

one of the conditions that is needed to get this unique equilibrium is that � should

have an upper dominant region and a lower dominant region. Explaining this further,

it should be feasible to get an extremely good signal where the return is so high that

no patient agent would want to withdraw early regardless of the behaviour of the other

agents. These signals are said to belong to the upper dominant region. There also

exists a lower dominant region where you receive an extremely bad signal and the

returns are so low that the agent would de�nitely withdraw even if no other patient

agent withdraws. A very small probability of an occurrence of these dominant regions

is su¢ cient (never the less it is needed) to drive a unique equilibrium �� so that the

patient agent i would not withdraw in t1 if and only if �i > �
� and would withdraw

regardless of his type if �i < �
�.

When only impatient agents withdraw, if an agent does not withdraw he will get a

payo¤of (1��)�+���r
1�� : This value has to be less than or equal to r for it to be worthwhile

withdrawing.. If the realisation of � was such that when only the impatient � agents

withdraw, the return he gets is (1��)�+(1��)�
1�� � r it is better to withdraw early even

if no other patient agent withdraws. For this to be true, the fundamental should be

lower than �
s

�
�
s
= (1��)(r��)

1��

�
. The lower dominant region is [�; �

s
) where everyone will
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withdraw. The di¤erence between an agent�s signal and the true value of � will not be

more than e and therefore if player i�s signal is �i < �
s
� e he will de�nitely withdraw

because he knows that � < �
s
.

Likewise the upper dominant region is (e�; �] where � is so high that even if everyone
else withdraws it is better for the patient agent not to withdraw. We assume that when

� is very high, the bank is able to obtain loans against their investments at a very high

interest rate 
: The bank will have to settle the loan before distributing the pro�t to

the depositors who waited. If everyone else withdraws the bank will need a loan of

(r � �). The bank will be able to get this loan if (1� �) �� (r � �) (1 + 
) � 0. When
� is high enough so that the bank can secure this loan, if the agent withdraws early,

he will receive r. If he does not withdraw he will receive (1� �) �� (r � �) (1 + 
).
If (1� �) �� (r � �) (1 + 
) � r the agent is better o¤ by not withdrawring even if

everyone else withdraws. This gives e� = r+(r��)(1+
)
(1��) . The agents are aware of this. If

the signal that a patient player i receives is �i > e� + e he will de�nitely not withdraw
because he knows that � > e�.
If an agent receives a signal close to a dominant region, there is a probability

that there would be some who have received signals within that dominant region

and therefore have a dominant strategy. This will ensure that this player also to

follow that strategy. This process can be iterated so that we eventually arrive at the

unique threshold point where the agent will be indi¤erent between withdrawing or not

withdrawing.

A threshold �� can be computed for cases where � = 0 and � > 0. When computing

�� we only consider the range [�� � e; �� + e] and assume that the dominant regions
are extreme enough that they will not have an in�uence over ��.

3.1 Threshold ��

Once � is realised player i observes a signal �i = � + "i. The strategy in t1 for an

impatient agent (who is hit by the liquidity shock) is to withdraw irrespective of his

signal. The strategy for the patient player is given as the map:

si :
h
�
s
� e;e� + ei! fwithdraw, not withdrawg :

We consider threshold strategies and set out the conditions for �� to be a symmetric

equilibrium.
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The threshold strategy for each player would be

si = withdraw if �i < �
�
i :

= not withdraw if �i > �
�
i :

Symmetric threshold strategy would mean ��i = �
�; for every player i.

If a patient agent i observes a signal �i > �
�, he will not withdraw. This is because

he would then believe that the return on the project is going to be high enough and

su¢ cient number of other depositors will also decide the same. If he observes �i < �
�,

he will withdraw because he believes that su¢ ciently high enough number of the other

agents would have received a signal which would prompt them to withdraw, so that if

he waited till the next period he would get nothing.

Proposition 1 There exists a unique equilibrium �� such that if agents received a

signal below that they would withdraw in t1 and if they received a signal above that they

would not withdraw in t1 unless they are hit by the liquidity shock.

The following discussion leads to the proof of proposition 1: For now, let patient

agents withdraw if they receive a signal less than b�. Agent i has received a signal
�i. Player i�s posterior distribution of the � that is realised, which we call y (= �=�i) is

uniform on [�i � e; �i + e]. 4

f(y) = 1
2e
if y 2 [�i � e; �i + e] :

= 0 if y =2 [�i � e; �i + e] :
This is true for all except those points very close to the ends. (This would not be

true for � < �
s
+ e and � > e� � e .)

For each point y 2 [�i � e; �i + e], he will believe that all the other agents would
have received independent and uniformly distributed signals [y � e; y + e] and hence
the proportion of patient agents whom he believes would withdraw (i.e. those who

received a signal less than b�) is a distribution e! (y) 2 [0; 1] given by:
e! =

8>>><>>>:
0 if y > b� + e
1 if y < b� � eb��y+e

2e
if b� � e � y � b� + e

9>>>=>>>; :
4Let b� 2 [�i � e; �i + e]
Pr
�
� = b�=�i� = 1

��� �
1
2eR �i+e

�i�e
1

��� �
1
2ed�

0 =
1
2e
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At each point of y his belief about the proportion who withdraw would be

�+ e! (y) � (1� �) :
When the depositors receive private signals about � in t1, they will withdraw if

their signal was a value less than b�: But if any player observes a value more than b�
he will withdraw only if he was impatient. Proportion � of the agents would turn out

to be impatient and withdraw early because of the liquidity shock irrespective of �:

Proportion e! out of the (1� �) patient agents would be believed to withdraw because
of the bad signal they received.

The bank keeps a reserve � (= �r + � (1� �)) : The amount �r is to cater for the
demand by the impatient agents who will de�nitely withdraw. In addition to that,

� (1� �) is kept as reserves for the patient agents who might want to withdraw early
in t1: Therefore it is rational that � 2 (�r; r) : Note that this is over and above the
reserves in the �rst-best case. If demand for withdrawals exceed the liquidity available,

the bank would crash because the assets are liquidated for a very small amount.

Let player i receive signal �i. Expected returns to the agent i who receives signal

�i if he runs is as follows:

1) If �r+(1� �) e!r < �, y > b�+e� 2e�
r
: he believes there is su¢ cient reserves to

meet the demand and therefore will receive r for sure, giving him an expected utility

of, Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy:

2) If �r + (1� �) e!r > � , y < b� + e � 2e�
r
: he believes there isn�t su¢ cient

reserves to meet the demand. Therefore he receives r with probability �
�r+(1��)e!r

giving an expected utility of,

Z b�+e� 2e�
r

�i�e

1

2e
� �

�r + (1� �) e! (y) ru (r) dy:
On the other hand, if the agent i does not run, he believes that he will not get

anything if �r + (1� �) e!r > � because the bank would have crashed in t1 itself.

However, if �r+ (1� �) e!r < �, he will expect to receive ���r�(1��)�!(y)�r+(1��)y
(1��)(1�e!(y)) in t2:

This gives him an expected utility of:
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Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�� �r � (1� �) � e! (y) � r + (1� �) y

(1� �) (1� e! (y))
�
dy:

The returns that agent i (who is patient) would get can be summarised as follows:
�r + (1� �) e!r � � �r + (1� �) e!r > �

Withdraw early r r with probability �
�r+(1��)e!r

Not withdraw early ���r�(1��)�e!�r+(1��)y
(1��)(1�e!) 0

The di¤erence in the expected utility of agent i who received signal �i between

withdrawing and not withdrawing is given by:

g
�
�i;b�� = EU(withdraw=�i)� EU(not withdraw=�i)

g (�i (r; �; �)) =

Z b�+e� 2e�
r

�i�e

1

2e
� �

�r + (1� �) e! (y) ru (r) dy +
+

Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy + (1)

�
Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�� �r � (1� �) � e! (y) � r + (1� �) y

(1� �) (1� e! (y))
�
dy:

The proof that there exists a unique point �i = �� such that g (�� (r; �; �)) = 0

where player i is indi¤erent between withdrawing and not, is found in appendix 1.

Since all agents are identical, all patient players would withdraw if the received a

signal below ��; and will not withdraw if they received a signal ��:

3.2 Comparative Statics on ��

Having higher r provides incentive for the agents to withdraw early. So, if we want to

minimise the probability of bank runs (i.e. minimise ��), we should penalise all those

who withdraw early including those who are genuinely hit by the liquidity shock.

Furthermore, depositors realise that more the early return, r, more the probability

that the reserves might not be su¢ cient to meet early demand.

On the other hand when � increases, the agents will have more con�dence that the

bank will survive till t2 and will be willing to wait. Therefore �
� will go down with �.

It is also intuitive that the threshold �� increases with the proportion of impatient

investors, �. Higher the probability of liquidity shock, higher the probability that
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patient investors will also withdraw early. This is because higher reserves need to be

kept, reducing the long-term return. When the probability of getting hit by a liquidity

shock is higher, the depositors want higher insurance in the form of a higher r. All

these factors encourage the patient agents also to withdraw early. These results are

summarised in proposition 2.

Proposition 2 The threshold �� increases with r and �, but decreases with �:

Proof. Using equation 1 that gives the di¤erence in expected utility when running
and not running so that the indi¤erent condition for the agent to withdraw early or

wait is when g (�� (r; �; �)) = 0.

g (�� (r; �; �)) =

Z ��+e� 2e�
r

���e

1

2e
� � (�; r; �)

�r + (1� �) e! (y) ru (r) dy +
Z ��+e

��+e� 2e�
r

1

2e
u (r) dy

�
Z ��+e

��+e� 2e�
r

1

2e
� u
�
(1� �) (� � e! (y)) r + (1� �) y

(1� �) (1� e! (y))
�
dy: (2)

As �� increases, more people withdraw early. For given reserves, � and early return,

r the expected return by withdrawing early is therefore less. This means the �rst two

terms go down with ��. The expected return by withdrawing late increases.

@g

@��
=
1

2e

0@ �
�
(1��)�
�r

�
u (r)� �u (r) (1� �)

R ��+e� 2e�
r

���e
dy

(�r+(1��)e!r)2
�
R ��+e
��+e� 2e�

r

�
u0(:)

2e(1��)(1�e!)2 ((1� �) y � (1� �) (1� �) r)
�
dy

1A < 0: (3)

Consider what happens to g when r is increased. If you withdraw early, you are

better o¤ if r is high. The �rst two terms in equation (2) increase with r. The return

to those who do not withdraw, given by the third term however, goes down with r.

Therefore @g
@r
> 0. By the implicit function theorem d��

dr
> 0. So, �� increases with r.

Q.E.D.

What happens to �� when � changes? The second term in g is not a¤ected by �.

In the �rst term, because �
r
< e! < 1, an increase in � will reduce the denominator

more than the numerator. Hence, the whole term will go up with �: This is because,

when there are more impatient agents, it pays to withdraw early. The last term relates

to the returns you get by not withdrawing. More the �, less the return for those who

13



wait. Therefore @g
@�
> 0. We know that @g

@�� < 0. Therefore
d��

d�
> 0: So, �� increases

with �.

Q.E.D.

Finally we look at what happens to �� when � changes.

@g

@�
= �1

r
u

 
(1� �)

�
�� + e� 2e�

r

�
(1� �)

�
1� �

r

� !
(4)

+

Z ��+e� 2e�
r

���e

1

2e

(1� �)u (r)
�r + (1� �) e! (y) rdy

�
Z ��+e

��+e� 2e�
r

1

2e
u

�
1� y
1� e!

�
dy:

@g

@�

����
�=0

= �1
r
u

�
(1� �r) (��j�=0 + e)

(1� �)

�
� u (r)

r
log (�) < 0: (5)

Note that

g (��)j�!0 =
Z ��+e

���e

1

2e
� �r

�r + (1� �) ��+y�e
2e

r
u (r) dy; (6)

Therefore ��j�=0 is very large, close to the upper dominant region. So we can say
that @g

@�

��
�=0

< 0.

@g

@�

����
�!r

! �1 < 0:

d2g

d�2
= �1

r

0@ u0(:)(1��)(���e)
r(1��

r )
2 +

+ (1��)u(r)
�r+(1��)� + u

�
1����e+ 2e�

r

1��
r

�
1A < 0: (7)

Therefore we can conclude that @g
@�
< 0. We know that @g

@�� < 0, which means
d��

d�
< 0. So, �� deccreases with �.

4 Maximising Expected Utility

4.1 First Best

As the benchmark, we look at the �rst-best scenario where the bank not only knows

that � proportion of the depositors will be a¤ected by liquidity shocks, but also knows

14



exactly who is impatient and who is patient. Therefore, the bank will be able to o¤er

a contract which promises return r in t1 only to those � proportion of agents who

are impatient. Patient agents will not be served in t1: The bank will therefore keep

reserves � = �r which is just su¢ cient to meet the demand from the impatient agents.

The patient agents will have to wait till t2 and receive
(1��)�
1��

�
= (1��r)�

1��

�
:

In this case, there will be no bank run because the patient agents will not receive

anything early. The threshold �� turns out to be equal to �. Therefore the expected

utility of an agent is:

EUFB = �u (r) + (1� �)
Z �

�

1

� � �
u

�
(1� �r) �
(1� �)

�
d�: (8)

The �rst-order condition for optimal early return r�FB;

dEUFB
dr

= �u0 (r) +
(1� �)
� � �

Z �

�

u0
�
(1� �r) �
1� �

��
���
1� �

�
d� = 0: (9)

d2EUFB
dr2

= �u00 (r) +
�2

(1� �)
�
� � �

� Z �

�

�
u00
�
(1� �r) �
(1� �)

�
�2d�

�
: (10)

Since u00 (:) < 0, d
2EUFB
dr2

< 0

We use the benchmark result to compare with the results when the bank cannot

distinguish between the two types. In bank run models agents can also withdraw

early because of self ful�lling beliefs, and therefore banks face the risk of unnecessary

failure. What is important in this exercise is to �nd the optimal level of reserves and

early return rates that will maximise the expected utility of the investors, taking into

consideration the possibility of too much early withdrawal and bankruptcy.

4.2 Expected Utility

The bank operates in a competitive environment and therefore wants to maximise the

expected utility of the agent subject to zero pro�t. When � < � < ��� e there is total
run because everyone would receive a signal that is below the threshold value. When

��+ e < � < � no one will withdraw early because all the players would receive signals

that are above ��. But when ���e < � < ��+e we have a partial run. The probability
of partial run is close to zero because noise is very small and can be ignored.
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Therefore, if � < �� everybody will withdraw early, whose demand has to be met

with the available reserves �. On the other hand, if � > ��, only those who are

impatient will withdraw early. In which case, the player has � probability of being

impatient and receives r; and he has (1� �) probability of being patient and receives�
���r+(1��)�

1��

�
.

Therefore the expected utility of each agent at the beginning of t0 can be written

as follows:

EU =

Z ��

�

1

� � �
�

r
u (r) d� + (11)

+

Z �

��

1

� � �

�
�u (r) + (1� �)u

�
�� �r + (1� �) �

1� �

��
d�:

The optimal reserve level and early return will be decided by maximising EU given

by equation (11).

4.3 Reserves

Recall that the reserves is given by � = �r + � (1� �). The amount � (1� �) is put
aside to cater to the demand of patient agents who might withdraw early because of

self ful�lling beliefs. If �� > 0, the optimal level of reserves �� > �r. This means the

bank is keeping as reserves more than what is needed to meet the demand of those who

are genuinely hit by the liquidity shock. Keeping excess reserves reduces the amount

that can be invested in pro�table projects. Higher the �, higher this ine¢ ciency.

Proposition 3 When � > 0, �� > 0 which shows there is ine¢ ciency in the optimal
level of reserves.

Proof. The �rst-order condition to choose optimal �� is @EU
@�

= 0:

@EU

@�
=

1

� � �
�

0BB@
�r+(1��)��

r
u (r) d�

�

d�
+
R ��
�

(1��)
r
u (r) d�+

�
h
�u (r) + (1� �)u

�
(1��)��+(1��r���(1��))��

1��

�i
d��

d�
+

+
R �
��

h
(1� �)u0

�
(1��)��+(1��r���(1��))�

1��

�
(1� �)

i
d�

1CCA = 0: (12)
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When � = 0;

@EU

@�

����
�=0

=
1� �
� � �

�

0@ �u
�
(1��r) ��j�=0

1��

�
� d��

d�

��
�=0

+
u(r) ��j�=0

r
+

+
R �
��j�=0

u0
�
(1��r)�
1��

�
(1� �) d�

1A : (13)

Since @��

@�

��
�=0

< 0 and ��j�=0 is large, it is obvious that @EU
@�

��
�=0

> 0. This shows that

the optimal reserve is such that �� > 0.

The next proposition says that the ine¢ ciency of keeping excess reserves, captured

by �, increases with the proportion of impatient agents � and reduces with the earning

capacity of the bank �. The ine¢ ciency of keeping excess reserves is caused by the

existence of impatient agents. Higher the �, more the reserves that should be put

aside. This not only reduces the opportunity of cost of withdrawing early to the

patient agents but also increases their risk if they do not withdraw early. Therefore

higher the � higher the probability that patient agents will panic and withdraw early

and hence higher reserves should be put aside to meet their early demand.

Though the ine¢ ciency of excess reserves increases with �, it decreases with the

earning capacity of the long term project. To capture the earning capacity, we look

at what happens when � increases. It is quite intuitive that when the expected return

from waiting is more, those who are patient are less tempted to withdraw early and

therefore reduce the need for excess reserves.

Proposition 4 The ine¢ ciency in reserves given by �� increases with � and decreases
with �:

Proof. We use the �rst-order condition for �� given by equation (12). Let

h
�
��
�
�; �
��
= @EU

@�
:

h
�
��
�
�; �
��

=
�r + (1� �)��

r
u (r)

d��

d�
+

Z ��

�

(1� �)
r

u (r) d� (14)

�
�
�u (r) + (1� �)u

�
(1� �)�� + (1� �r � �� (1� �)) ��

1� �

��
d��

d�

+

Z �

��

�
(1� �)u0

�
(1� �)�� + (1� �r � �� (1� �)) �

1� �

�
(1� �)

�
d�:

Because h = @EU
@�

and we are maximising EU , @h
@�� < 0. Moreover, we know that
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EU goes down with �: @EU
@�

< 0. The reduction in EU when � increases, also increases

when � increases. This means, @h
@�
> 0 and therefore d��

d�
> 0: So, �� increases with �.

Q.E.D.

We know that @h
@�� < 0: Moreover, we know that EU increases with �: @EU

@�
> 0.

Therefore the reduction in EU when � increases, decreases when � also increases.

Therefore @h
@�
< 0 which means, d�

�

d�
< 0. So, �� deccreases with �.

4.4 Early Return

Next we look at some results about the optimal early return r�: Higher the probability

that agents could be impatient, the more they would like to receive as early return.

Further more, when � is high, the patient depositors would like to withdraw early

because they know that more people will be withdrawing early, depleting the reserves.

Both these reasons combined result in the r� increasing with �. On the other hand,

when � is higher, the expected utility of waiting is higher, which pushes down the

required r�.

Proposition 5 The optimal level of early returns r� increases with � and decreases
with �:

Proof. We use the �rst-order condition for choosing optimal r, '
�
r�
�
�; �
��
=

@EU
@r

= 0;

'
�
r�
�
�; �
��

=
�r� + (1� �)�

r�
u (r�)

d��

dr

+

Z ��

�

�u0 (r�) +
(1� �)�
r�2

(r�u0 (r�)� u (r�)) d� (15)

�
�
�u (r�) + (1� �)u

�
(1� �)� + (1� �r� � � (1� �)) ��

1� �

��
d��

dr

+

Z �

��

 
�u0 (r�)+

(1� �)u0
�
(1��)�+(1��r���(1��))�

1��

� ����
1��
� ! d�:

Because u (r) is concave, the �rst term in the EU function (i.e. the expected utility

when the depositor will have to withdraw because his signal is below the threshold

level) is also concave. In the second part, �u (r) as well as (1� �)u
�
(1��)�+(1��r��(1��))�

1��

�
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are concave. Thereby, the whole expression of EU is concave and therefore @2EU
@r2

< 0.

This means @'
@r� < 0:

Moreover, we know that EU goes down with �: @EU
@�

< 0. The reduction in EU

when r increases, also increases when � increases. This means, @'
@�
> 0 and therefore

dr�

d�
> 0:

So, r� increases with �.

Q.E.D

Next we see how r� behaves with �:

@'

@�
= �u0 (r�) + (1� �)u0

�
(1� �)� + (1� �r� � � (1� �)) �

1� �

��
���
1� �

�
: (16)

Because � is large, @'
@�
< 0. Moreover, we know that EU increases with �: @EU

@�
> 0.

Therefore the reduction in EU when r increases, decreases when � also increases which

means @'

@�
< 0. We already know that @'

@r� < 0: Therefore,
dr�

d�
< 0: So, r� deccreases

with �.

Proposition 6 below gives an interesting result.

Proposition 6 When there are impatient agents, the optimal level of early returns
0 < r� < 1:

Proof. Recall the �rst order condition for choosing optimal r given by equation
(15),

@EU

@r

����
r=0

= (1� �)

0@ �
r2�� + u

�
� + (1��(1��))��

1��

�
d��

dr
+

�
R �
��

�
u0
�
(1��)�+(1��(1��))�

1��

� �
��
1��
��
d�

1A :
Since the �rst term goes to +1, @EU

@r

��
r=0

> 0:

@EU

@r

����
r=1

=
1

� � �
�

0BBBBB@
�+ (1� �)� d��

dr

+
R ��
�
��+ (1� �)� (�� 1) d�+

�
�
�+ (1� �)u

�
(1��)�+(1����(1��))�

1��

��
d��

dr
+

+
�R �

�� ��+ (1� �)u
0
�
(1��)�+(1����(1��))�

1��

� ����
1��
��
d�

1CCCCCA :
(17)

We can re-write the above as follows:
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@EU

@r

����
r=1

=
1

� � �
�

0BB@
� (1� �)� (1� �) ��

� (1� �) [u (� + (1� �) ��)� �] d��
dr

�
R �
�� u

0
�
(1��)�+(1����(1��))�

1��

�
��d� + ���

1CCA : (18)

It is obvious that @EU
@r

��
r=1

< 0. We know that @
2EU
@r2

< 0 and r� > 0. Therefore we

can conclude that 0 < r� < 1.

When there is a probability of being hit by a liquidity shock, high early return,

r gives an insurance to the depositors. However, if a high r is o¤ered, it will be an

incentive for those who are not hit by the liquidity shock also to withdraw early. This

is shown in proposition 2. In order to discourage them from doing so, even those who

are genuinely hit by the liquidity shock have to be penalised. This means that the

optimal choice of r does not give much in terms of insurance against the liquidity

shock. In fact, to maximise expected returns, early return should be less than the

investment. Institutional restraints compelling banks to give early returns r � 1 is a
way of ensuring better insurance. However, this has the repercussion of increasing the

probability of bank runs.

We go on to show that not only is the early return less than 1, it is also less than

the �rst best.

Proposition 7 The �rst-best early return r�FB is higher than the optimal early return
r�.

Proof. We compare the �rst order conditions for r�FB and r
�. The �rst-order

condition for r� given by equation (15) can be rearranged as follows:

u0 (r)� 1�
� � ��

� Z �

��
�u0
�
(1� �r) �
1� � + � (1� �)

�
d� (19)

=
(1� �)

h
u
�
(1��)�+(1��r��(1��))��

1��

�
� �

r
u (r)

i
d��

dr
�
R ��
�
�
�
ru0(r)�u(r)

r2

�
d�

�
�
� � ��

� :

u
�
(1��)�+(1��r��(1��))��

1��

�
> �

r
u (r). i.e. utility when no patient agent withdraws is

more than the utility when everyone withdraws. We know that d�
�

dr
> 0:We also know

that �
�
ru0(r)�u(r)

r2

�
< 0. This means that the RHS is positive.
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Therefore the LHS is also positive:

u0 (r�)� 1�
� � ��

� Z �

��
�u0
�
(1� �r�) �
1� � + � (1� �)

�
d� > 0: (20)

However the �rst order condition for r�FB given by equation (9) says that,

u0 (r�FB)�
1

� � �

Z �

�

�u0
�
(1� �r�FB) �

1� �

�
d� = 0:

In the �rst-best, no unnecessary reserves are kept and therefore more can be in-

vested long term. This means,Z �

��
�u0
�
(1� �r�) �
1� � � � (� � 1)

�
d� >

Z �

�

�u0
�
(1� �rFB) �

1� �

�
d�: (21)

. Therefore it must be that u0 (r�) > u0 (rFB) which leads to the conclusion that

r� < r�FB.

Proposition 7 above gives a similar result as shown in the Goldstein and Pauzner

model. The optimal early return r� turn out to be less than what was computed

under the �rst-best scenario. This is because in the �rst-best, the bank can observe

whether the withdrawer is truly hit by the liquidity shock. Therefore it keeps reserves

only to serve the impatient depositors and does not have to use the early return r

as an instrument to dissuade patient agents from withdrawing early. When the bank

cannot distinguish between the two types, it needs to cater to a higher proportion of

withdrawers, and therefore does not want to give them too much early return. With

higher r, the agents bene�t because of higher risk sharing. However, this increases the

reserves that are needed and reduces the long-term earning potential and increases the

probability of bank runs because it provides incentive for early withdrawal.

Scenario II - Non Transparent Reserve Policy

5 The Model

The previous scenario concluded that there is no need for regulation on the level of

reserves that a bank should keep because the banks in a competitive environment

would choose reserves and early returns to maximise expected utility of the agents.
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The results were driven by the fact that the reserves kept by the bank was public

knowledge.

The model is similar to the one in the original one except that now the level of

reserves, � (= �r + (1� �)�), the bank puts aside cannot be observed, which gives rise
to moral hazard. Hence, the bank will choose reserves to maximise its pro�t. Those

who wait till the last period receive a proportion of the pro�t.

Like before, proportion ! of the agents would receive signals that are low enough

that they withdraw early, in addition to the � proportion who would de�nitely with-

draw.

In period t2, proportion � of the pro�ts is distributed equally among the agents

who did not withdraw early. This is di¤erent to what happened in the basic model

where all the remaining returns were distributed to the agents and the objective was

to maximise the expected utility of the agents. Since the reserves cannot be observed

in this model, the objective function of the bank is to choose reserves, � to maximise

its expected pro�t, E�:

For any �; the pro�t � for the bank is given as follows:

� = �� �r � (1� �)!r + (1� �) � � (1� �) (1� !)
(1� �) (1� !)��: (22)

Rearranging equation (22),

� =
(1� �) � + (1� �) (� � !r)

(1 + �)
: (23)

To facilitate the unique equilibrium, we assume that � has upper and lower dom-

inant regions. If only the agents who are hit by the liquidity shock withdraw, an

agent is better o¤ by withdrawing early if r � � (1��)�+(1��)�
(1+�)

: For this to be true, the

fundamental should be lower than �
s

�
�
s
= (1+�)r��(1��)�

�(1��)

�
. The lower dominant region

is [�; �
s
) where everyone will withdraw and therefore if player i�s signal is �i < �

s
� e

he will de�nitely withdraw because he knows that � < �
s
.

Like before we assume that when � is very high, the bank can get a loan at a

very high interest rate 
 to meet early demand: If everyone else withdraws the bank

will need a loan of (r � �). The bank will be able to get this loan if (1� �) ��
(r � �) (1 + 
) � 0. When � is su¢ ciently high so that the bank can secure this loan,
if the agent withdraws early, he will receive r. If he does not withdraw he will receive

� (1��)�� (r��)(1+
)
(1+�)

. As long as � (1��)�� (r��)(1+
)
(1+�)

� r the agent is better o¤ by not
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withdrawing even if everyone else withdraws. This gives e� = r(1+�)+�(r��)(1+
)
�(1��) . If the

signal that a patient player i receives is �i > e� + e he will de�nitely not withdraw
because he knows that � > e�. The upper dominant region is [�

s
; �) where no patient

agent will withdraw.

6 Threshold ��

As in the basic model, we consider threshold strategies and set out the conditions for

�� to be a symmetric equilibrium. If a patient player observes �i > �� he will not

withdraw and he will will withdraw if �i < �
�.

Note that even though reserves, �, is not observable, the agents will predict it

in equilibrium, and choose �� accordingly. If the reserves is su¢ cient to meet early

demand, withdrawers in t1 receive r and the bank makes � pro�t. Those agents who

wait till t2 receive ��. However, if the reserves is not su¢ cient to meet early demand,

the bank crashes, making zero pro�t and those agents who wait get nothing. Those

who withdraw early receive r with probability �
�r+(1��)e!r : The returns that agent i

(who is patient) would get can be summarised as follows:

�r + (1� �) e!r � � �r + (1� �) e!r > �
Withdraw early r r with probability �

�r+(1��)e!r
Not withdraw early �(���r�(�r+�(1��))(��1))

(1+�)(1��)(1�e!(y)) 0

The di¤erence in the expected utility of agent i who received signal �i between

withdrawing and not withdrawing in t1 is given by:

g
�b� (�; �)� =

Z b�+e� 2e�
r

�i�e

1

2e
� �r + (1� �)�
�r + (1� �) e! (y) ru (r) dy +

+

Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy + (24)

�
Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�
((1� �)� � (1� �) � e! (y) r + (1� �) y)

(1� �) (1� e! (y)) (1 + �)
�
dy:

Proposition 8 There exists a unique point �i = �� such that g (��) = 0 where player
i is indi¤erent between withdrawing and not.
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Proof. Using equation (24), the expected utility from withdrawing is,

g1 =

Z b�+e� 2e�
r

�i�e

1

2e
� �r + (1� �)�
�r + (1� �) e! (y) ru (r) dy +

Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy; (25)

and the expected utility from not withdrawing is,

g2 =

Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�
(1� �)� � (1� �) � e! (y) r + (1� �) y

(1� �) (1� e! (y)) (1 + �)
�
dy: (26)

We need to show that there is only one point �i = �
� where g1 = g2:

First we look at the behaviour of g2, which is the function that gives the expected

utility of not withdrawing. g2 = 0 for �i � b� � 2e�
r
. When �i � b� � 2e�

r
; dg2
d�i
> 0; d

2g2
d�2i

< 0 and therefore it is an increasing concave function:

Then we look at the function that gives the expected utility of withdrawing early.

g1 (:) is �xed at
�r+(1��)�
�r+(1��)ru (r) when �i � b�� 2e�

r
. Then when b�� 2e�

r
� �i � b�+2e� 2e�

r
,

it is an increasing concave function: dg1
d�i

> 0; d
2g1
d�2i

< 0: However, it is �xed at u (r)

when �i � b� + 2e� 2e�
r
:

Therefore we can conclude that g1 = g2 only at one point and hence, there exists

a unique point �i = �� such that g (��) = 0 where player i is indi¤erent between

withdrawing and not.

Lemma 1 below which is about �� is useful to prove the subsequent propositions.

We �nd how �� changes with � and r. This is useful because even though � cannot

be observed, in equilibrium, it can be predicted what the reserves would be.

Firstly, the lemma shows the obvious, that the probability of bank run increases

with early return r. As early return increases, the agents have more incentive to

withdraw in t1.

Next it looks at what happens to the probability of bank runs at the point � = 0:

As explained earlier, � 2 [�r; r]. Therefore � � 0. What the lemma says is that

the probability of a bank run goes down with � when � = 0: Therefore to minimises

the probability of bank runs the bank needs to keep reserves over and above what

is needed to cater to those who are hit by the liquidity shock. As discussed in the

previous scenario, the existence of reserves will make the agents more con�dent that

the bank will not crash.

If there is more reserves to face the early demand, the agents are con�dent that

the bank will not crash in t1. When � = 0, the reserves are su¢ cient only to settle
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Figure 1: Threshold ��:
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the demand of those who would be hit by the liquidity shock and de�nitely withdraw.

This would make the agents very alert because even if one patient agent decides to

withdraw, the bank would crash. Therefore the probability of a bank run is very high.

Therefore as reserves get lower, getting closer to �r, the threshold �� goes towards the

upper dominant region.

Lemma 1 (1) d��

dr
> 0; (2) d��

d�

��
�=0

< 0 ; (3) Lim
�!0

�� ! e�.
Proof. (1)

g (�� (�; r; �)) =

Z ��+e� 2e�
r

���e

1

2e
� �r + (1� �)�
�r + (1� �) e! (y) ru (r) dy +

+

Z ��+e

��+e� 2e�
r

1

2e
u (r) dy + (27)

�
Z ��+e

��+e� 2e�
r

1

2e
� u
�
� (y � �r � (�r + � (1� �)) (y � 1))

(1 + �) (1� �) (1� e! (y))
�
dy:

dg

d��
=

1

2e

0BBBBBBB@

�u
�
�(��+e��r�(�r+�(1��))(��+e�1))

(1+�)(1��)

�
+

+u

�
�(��+e� 2e�

r
��r�(�r+�(1��))(��+e� 2e�

r
�1))

(1+�)(1��)(1��
r )

�
�
R ��+e� 2e�

r

���e

�
(�r+(1��)�)(1��)r
2e(�r+(1��)e!(y)r)2

�
u (r) dy

�
R ��+e
��+e� 2e�

r
u0 (:) (�(y��r�(�r+�(1��))(y�1)))(1+�)(1��)

2e((1+�)(1��)(1�e!(y)))2 dy

1CCCCCCCA
: (28)

The �rst term in equation (28) is bigger than the second because it gives the utility

at a higher value of �. Therefore on the whole dg
d�� < 0:

The �rst two terms in the function g increase with r whereas the last term goes

down. Therefore on the whole, dg
dr
> 0:

Therefore d��

dr
> 0.

Q.E.D.

(2) Next we look at how �� changes with � when � is close to zero.

dg

d�
=

1

2e

Z ��+e� 2e�
r

���e

(1� �)
�r + (1� �) e! (y) ru (r) dy (29)

�1
r
u

 
�
�
�� + e� 2e�

r
� �r � (�r + � (1� �))

�
�� + e� 2e�

r
� 1
��

(1 + �) (1� �)
�
1� �

r

� !

+
1

2e

Z ��+e

��+e� 2e�
r

u0 (:) (1� �) (y � 1)
(1 + �) (1� �) (1� e! (y))dy:
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dg

d�

����
�=0

=
1

2e

Z ��+e

���e

(1� �)
�r + (1� �) e! (y) ru (r) dy (30)

�1
r
u

�
� (�� + e� �r � �r (�� + e� 1))

(1 + �) (1� �)

�
+
1

2e

Z ��+e

��+e

u0 (:) (1� �) (y � 1)
(1 + �) (1� �) (1� e! (y))dy:

We have already shown in the �rst chapter that the �rst term in the above equation

(30) is negative. The last term is now negligible. Therefore dg
d�

��
�=0

< 0, which means
d��

d�

��
�=0

< 0.

Q.E.D.

(3) To prove this, we use the indi¤erence condition given by g(:):

Recall equation (24).

g
�b� (�; �)� =

Z b�+e� 2e�
r

�i�e

1

2e
� �r + (1� �)�
�r + (1� �) e! (y) ru (r) dy +

+

Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy +

�
Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�
((1� �)� � (1� �) � e! (y) r + (1� �) y)

(1� �) (1� e! (y)) (1 + �)
�
dy:

When � ! 0, the last term and the second term are over a small range whereas

the �rst term is over a larger range.

Therefore for g (��) = 0 to hold , �� should be large, close to e�.
7 Optimal Level of Reserves

First we look at the bench mark, where the agents can observe the reserves. This is

then compared with what the bank would choose when reserves cannot be observed

by the agents.

7.1 Benchmark when Reserves can be Observed

If the level of reserves can be observed, the agents can work out their expected utility.

Therefore, because the banks are in competition, the bank has to choose reserves to
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maximise the expected utility of the agents. When level of reserves is transparent,

reserves would then be, �t = �r + (1� �)�t.
Because noise is very small, ex ante the probability of a partial run is negligible.

If � < �� all the agents withdraw and receive r with probability �. When � > �� the

agents have � probability of being hit by a liquidity shock and receive r while there is

(1� �) probability that they receive ��
1�� .

EU =
1

� � �

 Z ��

�

�u (r) d� +

Z �

��

�
�u (r) + (1� �)u

�
��

1� �

��
d�

!
: (31)

Rearranging equation (31),

EU =
1

� � �

 Z ��

�

�u (r) d� +

Z �

��

�
�u (r) + (1� �)u

�
� (� � �r � � (� � 1))
(1� �) (1 + �)

��
d�

!
:

(32)

Proposition 9 When the level of reserves can be observed, the bank will choose �t >
�r:

Proof. We use equation (31) which gives the expected utility of an agent.

dEU

d�
=

1

� � �

0BB@
R ��
�
(1� �)u (r) d� + d��

d�
�u (r)

�d��

d�

�
�u (r) + (1� �)u

�
�(����r��(���1))

(1��)(1+�)

��
�
R �
��

�
u0 (:) �(��1)(1��)

(1+�)

�
d�

1CCA : (33)

dEU

d�

����
�=0

=
1

� � �

0BB@
�� (1� �)u (r) + d��

d�
�ru (r)

�d��

d�

�
�u (r) + (1� �)u

�
���(1��r)
(1��)(1+�)

��
�
R �
��

�
u0 (:) �(��1)(1��)

(1+�)

�
d�

1CCA : (34)

We know that d��

d�
< 0. Further, �ru (r) <

�
�u (r) + (1� �)u

�
���(1��r)
(1��)(1+�)

��
and

��j�=0 ! e�.
So we can conclude that dEU

d�

��
�=0

> 0, and therefore to maximise the expected

utility of the agents, �t > 0:

This means �t > �r:
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When reserves can be observed, we are in the same situation as in scenario 1 where

the expected utility of the agents has to be maximised. The �nding is the same as

before that the level of reserves should be over and above what is needed for those hit

by the liquidity shock to maximise depositor welfare.

7.2 When Reserves cannot be Observed

Now we come to the main part of this analysis. When level of reserves cannot be

observed, the agents cannot estimate their long term returns. Therefore when the

reserves cannot be observed, the bank chooses level of reserves, ��, to maximise its

pro�t. Further, a proportion of the �nal pro�t is distributed to those who wait till t2.

The bank�s objective is to maximise its expected pro�t, E�.

If � < �� there will be a bank run and therefore the bank gets zero pro�t.

However if � > ��; only proportion � agents withdraw and therefore it makes�
�� �r + (1� �) � � (1��)��

(1��)

�
.

� = 0 if � < ��;

=
(1� �)� + (1� �) �

1 + �
if � > ��:

Therefore the ex ante expected pro�t E� for the bank is given by,

E� =

Z �

��

1

� � �

�
(1� �)� + (1� �) �

1 + �

�
d�: (35)

Proposition 10 When the level of reserves cannot be observed, the bank will choose
optimal reserves, �� = �r, which is lower than when reserves could be observed.

Proof. The proof is very simple. Rearranging equation (34),

E� =

Z �

��

1

� � �

�
� � �r� � � (1� �) (� � 1)

1 + �

�
d�: (36)

Because � cannot be observed by the agents, �� will not be a¤ected by �.

dE�

d�
= �

Z �

��

(1� �) (� � 1)�
� � �

�
(1 + �)

d� < 0:
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Therefore the bank will choose �� = 0 to maximise pro�t - i.e. �� = �r.

According to proposition 9, when reserves could be observed, the bank would put

aside �t > �r:

Therefore, �� < �t which means when reserves cannot be observed, the bank keeps

less reserves.

When the agents cannot observe the reserves that the bank keeps, it cannot increase

the con�dence of agents through reserves. Therefore it will keep reserves as low as

possible. It will have to keep reserves to meet the demand of those hit by the liquidity

shock who would de�nitely withdraw, otherwise the bank will collapse leaving the

bank with no pro�ts at all. Therefore, the bank will keep as reserves, just su¢ cient to

meet that demand - i.e. �� = �r.

Consider the implications of this lower level of reserves on the probability of bank

runs.

Proposition 11 When reserves cannot be observed, the probability of bank runs is
higher.

Proof. The agents will choose �� knowing that �� = 0:
According to lemma 1 ��j�=0 will be close to the upper dominant region and

d��

d�
< 0.

Therefore ��j��=0 > ��j�t>0 which means the probability of bank runs is higher
when reserves cannot be observed.

Not only is the probability of bank runs higher, but obviously the expected utility

of the agents is lower because the bank�s objective is to maximise the expected utility.

This �nding has policy implications. If the level of reserves cannot be observed,

or if the agents are not informed to understand what is revealed, the regulators have

a role to play. They can set reserve requirements that takes into consideration the

welfare of the agents and make the agents aware that they are thus regulating. In

countries where agents are able to comprehend such information, the regulators can

make it a statutory requirement to make the level of reserves transparent.

8 Early Return

In this section we look at what happens if early return, r is a choice variable. The

bank is set in a competitive environment and since early return is observable, r has
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to be chosen to maximise expected utility of depositors. When reserves cannot be

observed, the bank would choose early return, r�, given � = 0. Is it any di¤erent from

the early return that would be chosen if reserves was transparent, rt?

Proposition 12 Early return when reserves cannot be observed, is higher than the
early return when reserves is transparent. i.e. r� > rt.

Proof. Let the bank choose early return r� and rt when reserves are not trans-
parent and transparent respectively. In both the cases, the early return is observable

and the bank is in competition. Therefore it will choose early return to maximise the

expected utility of the agents, EU .

Recall equation (32), giving EU ,

EU =
1

� � �

 Z ��

�

�u (r) d� +

Z �

��

�
�u (r) + (1� �)u

�
� (� � �r � � (� � 1))
(1� �) (1 + �)

��
d�

!
:

dEU

dr
=

1

� � �

0BBBBB@
d��

dr
(�r + (1� �)�)u (r)

+
R ��
�
(�u (r) + (�r + (1� �)�)u0 (r)) d�

+d��

dr

�
�u (r)� (1� �)u

�
�(����r�(�r+�(1��))(���1))

(1��)(1+�)

��
+
R �
��

�
�u0 (r)�

�
���
(1+�)

�
u0
�
�(����r�(�r+�(1��))(���1))

(1��)(1+�)

��
d�

1CCCCCA : (37)

When reserves cannot be observed, the bank will choose �� = 0.

dEU

dr

����
�=0

=
1

� � �

0BB@
R ��
�
(�u (r) + �ru0 (r)) d�+

� (1� �) d��
dr
u
�
���(1��r)
(1��)(1+�)

�
+
R �
��

�
�u0 (r)�

�
���
(1+�)

�
u0
�

��(1��r)
(1��)(1+�)

��
d�

1CCA : (38)

According to lemma 1, ��=�=0 ! e�. Therefore the last term in equation (16) is

negligible. The �rst term is signi�cant. The second term is the late return at one

point, �� whereas the �rst term is over the whole range (�; ��) : When �� is large, d�
�

dr

will be small (threshold �� cannot increase more than e� which makes d��
dr
negligible).
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Further, we prove below that r� > 1.

dEU

dr

����
�=0;r=1

=
1

� � �

0BB@
R ��
�
2�d�+

� (1� �) d��
dr
u
�

���

(1+�)

�
+��

R �
��

�
1�

�
��

(1+�)

���
d�

1CCA : (39)

�� > u (��), �� > u
�

���

(1+�)

�
, 2��� > (1� �)u

�
���

(1+�)

�
, 2��� > (1� �) d��

dr
u
�

���

(1+�)

�
:

If we �x �= 0;R ��
�
2�d� + ��

R �
��

�
1�

�
��

(1+�)

���
d� > (1� �) d��

dr
u
�

���

(1+�)

�
:

Therefore dEU
dr

��
�=0;r=1

> 0 which means r� > 1.

Now we look at the bench mark model where reserves can be observed and � and

r are chosen to maximise the EU: When reserves can be observed, the bank would

choose �t > 0:

dEU

dr

����
r=1

=
1

� � �

0BB@
d��

dr
(1� �)

�
�u
�
�(�����(�+�(1��))(���1))

(1��)(1+�)

�
+ �
�

+(�� (1� �) + � (1 + �)) (�� � �)
�
R �
��

�
��+ u0 (:)

�
����

(1+�)

��
d�

1CCA : (40)

The �rst and last terms are negative. Only the second term is positive, which is

negligible compared to the others.

Therefore dEU
dr

��
�>0;r=1

< 0 so that we can conclude that rt < 1:

This means that if the level of reserves was transparent, the bank will choose an

early return that is less than one, which is lower than what it would choose when

reserves cannot be observed.

The bank, which operates in a competitive environment chooses an early return,

which is observable, that is high in order to attract customers. It is also noteworthy

that according to lemma 1, because d��

dr
> 0, when reserves cannot be observed, the

banks would choose an early return that increases the probability of bank runs, com-

pared to when the level of reserves was transparent. As in the case of optimal reserves,

this also gives a lower expected utility.

Therefore when level of reseres cannot be observed, the regulators have another

role to play, which is to control the early return r that the banks o¤er.
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9 Conclusion

We have a model of bank runs using a global game framework in an attempt to �nd

out how much reserves a bank should keep and what is the early return it should o¤er

to maximise the expected utility of the depositors. The analysis was done under two

scenarios, namely, when the level of reserves could be observed by the depositors, and

when it could not be.

Under the �rst situation, it is found that both the optimal reserves and early returns

should be increasing with the proportion of impatient agents and decreasing with the

earning capacity of the bank. It is also found that compared to the �rst-best case, the

optimal early return is lower. Another interesting result is that in addition to those

who are hit by the liquidity shock, others also might withdraw early, and therefore

reserves was found to be more than what was needed to cater to the impatient agents.

This ine¢ ciency increases with the proportion of impatient agents. We also �nd that

maximum expected utility to depositors requires a positive probability of bank runs.

Policy makers should take note that if banks are operating in a competitive en-

vironment where the agents can observe reserves, the bank would voluntarily choose

reserves to maximise the expected utility of depositors. Therefore there is no need

for reserve requirements, however it should be ensured that reserves are made known

and there is a competitive environment. Giving insurance to early withdrawers is not

healthy.

The second scenario looked at whether there would be a need for regulation if the

level of reserves was not transparent. The answer was found to be in the a¢ rmative.

It was found that when the level of reserves cannot be observed, the bank chooses

a level of reserves that is too low and chooses early return that is too high. This

not only lowers the welfare of the depositors but also creates �nancial instability by

increasing the probability of bank runs. Therefore when the level of reserves cannot be

observed, the regulators do have a role to play in �xing minimum reserve requirement

and maximum early return that the banks could choose.
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A Appendix

A.1 Proof of Proposition 1

Recall equation 1 which gives the di¤erence in the expected utility of agent i who

received signal �i between withdrawing and not withdrawing.

g (�i (r; �; �)) =

Z b�+e� 2e�
r

�i�e

1

2e
� �

�r + (1� �) e! (y) ru (r) dy
+

Z �i+e

b�+e� 2e�
r

1

2e
u (r) dy + (41)

�
Z �i+e

b�+e� 2e�
r

1

2e
� u
�
�� �r � (1� �) � e! (y) � r + (1� �) y

(1� �) (1� e! (y))
�
dy:

g : R! R .

Because of the lower dominant region, Lim
�i!�

g (�i) > 0 so that if an agent receives a

signal �, he will withdraw. On the other hand, because of the upper dominant region,

Lim
�i!�

g (�i) < 0 so that an agent who receives a signal � will not withdraw. This is

because the expected return from not withdrawing is very high.

Therefore, as long as the function is continuous a value exists for �i such that

g
�
��;b�� = 0. Because of symmetry, all agents are indi¤erent between withdrawing

early and not doing so when they receive a signal ��.

The expected utility of withdrawing early is continuous. When �i � b��2e, e! (y) =
1 8 y. This means we have a constant expected utility,

�
�+ (1� �) �

r

�
u (r). When

�i � b� + 2e, e! (y) = 0 8 y giving a constant expected utility of u(r). In between the
expected utility continuously increases.

The expected utility of not withdrawing early is zero for �i � b� � 2e�
r
. After that,

it increases continuously. Therefore the function g(:) is continuous in �i.

Now we show that the point where g
�
��;b�� = 0 is unique.

Please refer to �gures at the end.

For the range �i � b� � 2e, e! (y) = 1 8 y. The expected utility of not running is
zero. This means we have a constant g(:)j(�i�b��2e) = �

�r+(1��)ru (r) > 0:
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For the range b� � 2e � �i � b� � 2e�
r
, e! is high enough that you receive nothing by

waiting.

g(:)j(b��2e��i�b�� 2e�
r )

=

Z b��e
�i�e

1

2e
� �

�r + (1� �) ru (r) dy +

+

Z �i+e

b��e
1

2e
� �

�r + (1� �) e! (y) ru (r) dy: (42)

It is clear that g(:)j(b��2e��i�b�� 2e�
r )
> 0:

Furthermore in this range, as �i increases, the expected proportion of those wanting

to withdraw goes down. i.e. the expected utility of running continuously increases with

�i.

dg(:)

d�i
=(b��2e��i�b�� 2e�

r )
=
1

2e

0@ �

�r + (1� �)
�b���i+2e

2e

�
r
� �

�r + (1� �) r

1Au (r) : (43)
We know that

b���i+2e
2e

< 1:Therefore dg(:)
d�i

���
(b��2e��i�b�� 2e�

r )
> 0.

For the range, b� + 2e � 2e�
r
� �i � b� + 2e, e! (y) � �

r
.8 y. Therefore the bank

is expected not to crash 8 y. Those who withdraw early will receive r for sure. By
waiting the agent i�s expected utility is

R �i+e
�i�e

1
2e

�
u
�
� + (1��)y

(1��)(1�e!(y))
��
dy:

g(:)j(b�+2e� 2e�
r
��i�b�+2e) = u (r)�

Z �i+e

�i�e

1

2e

�
u

�
� +

(1� �) y
(1� �) (1� e! (y))

��
dy: (44)

In this range bank will not crash. i.e. r is low enough to make the reserves su¢ cient

to cater to early demand. If early withdrawal is better than not withdrawing, everyone

will de�nitely withdraw prompting the bank to crash. The fact that the bank does

not crash in the range tells us that when b� + 2e � 2e�
r
� �i � b� + 2e, we have

u (r) �
R �i+e
�i�e

1
2e

�
u
�
(1��)(��!)+(1��)y
(1��)(1�!(y))

��
dy.

Therefore g(:)=(b�+2e� 2e�
r
��i�b�+2e) < 0:

Also note that in this range, when �i increases, the expected utility of running does

not change, but remains at u (r). However the expected utility of waiting increases
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with �i.

dg(:)

d�i
=(b�+2e� 2e�

r
��i�b�+2e) = � 12e

0BBBB@
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(1��)
�
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b���i
2e

�
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� + (1��)(�i�e)

(1��)
�
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b���i+2e
2e

�
!
1CCCCA : (45)

It is obvious that the utility when y = �i + e is greater than the utility when

y = �i � e:

Therefore dg(:)
d�i

���
(b�+2e� 2e�

r
��i�b�+2e) < 0:

For the range, �i � b� + 2e, e! (y) = 0 8 y. This means,
g(:)j(�i�b�+2e) = u (r)�

Z �i+e

�i�e

1

2e

�
u

�
� +

(1� �) y
1� �

��
dy: (46)

R �i+e
�i�e

1
2e
u
�
� + (1��)y

1��

�
dy > u (r) when �i � b� + 2e. Therefore g(:)=�i>b�+2e < 0:

Furthermore
dg(:)

d�i

����
�i�b�+2e = �u(� +

(1� �) (�i + e)
1� � ) + u(� +

(1� �) (�i � e)
1� � ): (47)

dg(:)
d�i

���
�i�b�+2e < 0 because u(� +

(1��)(�i+e)
1�� ) > u(� + (1��)(�i�e)

1�� ):

We can now conclude that, if there is a point at which g(:) = 0, it will be in the

range b� � 2e�
r
� �i � b� + 2e� 2e�

r
:

We have to check there is only one such point.

This is so if in this range the function g(:) is concave. In this range the function

g(:) can be split into two parts: b� � 2e�
r
� �i � b� and b� � �i � b� + 2e� 2e�

r
.

In the range b� � 2e�
r
� �i � b�, where

g(:)j(b�� 2e�
r
��i�b�) =

Z b��e
�i�e

1

2e
�
�
�+ (1� �) �

r

�
u (r) dy +

+

Z b�� 2e�
r

b��e
1

2e
� �

� � r + (1� �) � e! (y) � ru (r) dy
+

Z �i+e

b�� 2e�
r

1

2e
u (r) dy (48)

�
Z �i+e

b�� 2e�
r

1

2e
� u
�
� +

(1� �) (� � !) + (1� �) y
(1� �) (1� e!)

�
dy:
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dg

d�i

����b�� 2e�
r
��i�b� =

1

2e

0BB@
u (r) (1� �)

�
1� �

r

�
�u
 
� +

(1��)
�
��

b���i
2e

r

�
+(1��)(�i+e)

(1��)
�
1�

b���i
2e

�
! 1CCA : (49)

d2g

d�2i
=b�� 2e�

r
��i�b� = � 12eu0 (:)

(1� �)
�
r��
2e

�
+ (1� �)

(1� �)
�
1�b���i
2e

�2 < 0: (50)

Therefore in the range b� � 2e�
r
� �i � b�, g(:) is concave.

In the range b� � �i � b� + 2e� 2e�
r
, where

g(:)j(b���i�b�+2e� 2e�
r )

=

Z b�+e� 2e�
r

�i�e

1

2e
� �

�r + (1� �) e!ru (r) dy
+

Z �i+e

b�+e� 2e�
r

1

2e
� u (r) dy (51)

�
Z �i+e

b�+e� 2e�
r

1

2e
� u
�
� +

(1� �) (� � e!) + (1� �) y
(1� �) (1� e!)

�
dy:

dg

d�i

����
(b���i�b�+2e� 2e�

r )
=

1

2e

0@ (1� �)
�b���i

2e
r + r � �

�
�r + (1� �)

�b���i
2e
+ 1
�
r

1Au (r)
� 1
2e
u

0@� + (1� �)
�
� � b���i

2e
r
�
+ (1� �) (�i + e)

(1� �)
�
1� b���i

2e

�
1A :(52)

In this range, as �i increases, the expected returns from running increases with �i
which is given by the �rst term.. This is because now the range over which you surely

receive r increases and the probability of receiving r increases. Let this term be A. This

increases at a decreasing rate: The second term refers to the expected returns from

not running which increases with �i. Let this be B. This increase is at an increasing

rate.

d2g

d�2i

����
(b���i�b�+2e� 2e�

r )
=
dA

d�i
� dB
d�i

< 0:
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Figure 2: EU of running and not running with �i

Therefore we can conclude that there exists a unique �� such that above which,

g < 0 and below which, g > 0 and thereby a patient agent would not withdraw if

�i > �
� and would withdraw if �i < �

�.

Q.E.D.
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Figure 3: Threshold ��:
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