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Abstract

We analyze situations where a player must contract with the monopoly
supplier of an essential input in order to play an action in a strategic
form game. Supplier monopoly power does not distort the equilibrium
distribution over player actions under private contracting, but may
dramatically affect the equilibrium actions under public contracting.
When a player randomizes between actions, suppliers for the different
actions behave as though they are producing perfect substitutes when
contracts are private; when contracts are public, it is as though they
are producing perfect complements.
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1 Introduction

This paper belongs to the intersection of monopoly price theory and game
theory. Monopoly or oligopoly price theory traditionally assumes that buy-
ers are not engaged in any strategic interaction. Given the prices quoted
by competing sellers, a buyer solves a simple decision problem, choosing the
product that maximizes her utility. When preferences and costs are com-
mon knowledge, the prediction of the theory is also straightforward. First,
monopoly power does not distort decisions, as compared to the competitive
benchmark – if the buyer seeks to purchase one of several competing goods,
price competition between the sellers will ensure that she chooses the option
or product that maximizes social surplus (the difference between her valu-
ation and the cost of production). Second, the seller of this product earns
profits that equal his marginal contribution to social welfare, that is the dif-
ference the between social surplus from the consumption of this product, and
that arising from the consumption of the next best option.

Buyers are often engaged in strategic interaction, and the utilities of the
different options are not fixed, but depend upon the actions of other agents.
This is especially true in the market for intermediate goods, where the buyer
is often a firm that is engaged in strategic interaction with other firms. For
example, for a firm that is considering buying advertising services, the payoff
to advertising may also depend upon whether or not a competing firm also
advertises. This paper investigates how the two main insights above – no
distortion, and profits equal marginal contribution — generalize when the
agent is involved in a game.

The paper may also be seen as addressing a lacuna in economic applica-
tions of game theory, where it is standard to treat a game in isolation from
the wider economic environment in which it is played. In most economic
contexts a player has to transact with another party in order to take some
action in the game. For instance, a firm that invests in order to deter entry
will normally have to purchase one or more investment goods (from a supplier
of investment goods) in order to make this investment. Treating the game
in isolation from the wider economic environment is well justified when this
environment is perfectly competitive, for in this case, the prices that must
be paid by a player for any inputs required to take an action may be treated
as exogenous. Thus payoffs associated with any action profile are therefore
fixed. However, if supplier of an input required for an action possesses mar-
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ket power, then he will typically have some leeway in setting the prices. The
consequences are two fold. First, the terms of contract dictated by suppliers
will affect players’ payoffs, and will therefore potentially affect the outcome
of the game. Second, the action profile played will have payoff consequences
for suppliers, who will in turn seek to influence these actions.

In this paper we analyze situations where players have to contract with
suppliers in order to take actions in a strategic form game. We model this
as an extensive form game where suppliers quote prices, and then players
choose actions simultaneously – we call this a game played in a contracting
environment. Our focus is on the competition between suppliers who provide
inputs for distinct actions. To this end we assume that any supplier is in-
volved with at most one action, for a single player.1 Contracts can either be
public (i.e. observed by all the players in the game) or private (observed only
by contracting parties). In the case of private contracts, we provide a sharp
characterization of equilibrium outcomes. Our main finding is that supplier
market power does not alter the equilibrium distribution over player actions,
as compared to a situation where market power is absent and inputs are
supplied competitively. Furthermore, any supplier earns his marginal contri-
bution to a player’s payoff. We therefore find that with private contracts, the
basic insights from non-strategic case, where the buyer solves a single person
decision problem, generalize to the strategic context.

Our results in the case of public contracts are very different, since sup-
plier competition has subtle and complex effects. Take for example the case
where the underlying game (i.e. when prices equal cost) is the prisoners’
dilemma, with a unique pure strategy equilibrium. We find that supplier
monopoly power may result in very different outcomes, where the players
randomize across different actions. These phenomena arise since a supplier
to a player may be able to influence his opponent’s behavior by the choice
of price. In games where players play mixed strategies, competing suppliers
for the same player may act partially as though they are producing comple-
mentary goods, and in part as though they are producing substitutes. This
contrasts sharply with mixed equilibria in the private contracting case, where
competition between suppliers is intense.

This paper may be seen as a contribution to the literature on multi-party
contracting, which includes the literature on common agency (Bernheim and

1In contrast, the literature on strategic delegation assumes that a single supplier (the
principal) has monopoly power over the entire action set of the player (the agent).
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Whinston, [2]), and vertical contracting between a single principal and many
agents (Hart and Tirole, [8], McAfee and Schwartz, [12], Segal [14]). Its
connections are closest to the case where there are many agents as well as
principals, as in Prat and Rustichini, [13], or Jackson and Wilkie [9], where
players in the game may make side payments to other players). However,
while these papers allow general forms of contracting between principals and
agents, and focus on the question of whether contracting ensures efficiency,
the “principals” in our context have rather more limited power, since they
may only demand transfers in the event that the player chooses to take the
action over which they have monopoly power. Furthermore, in our context
the actions taken by the “agents” have no direct payoff consequences for prin-
cipals, which is not the case in common agency models. As such, our focus is
on how equilibrium outcomes in the presence of competing monopolists differ
from equilibrium outcomes under perfect competition. It is also related to
the literature on strategic delegation (Fershtman and Judd [4], Sklivas [17],
Vickers [18], Fershtman et. al. [5]), which emphasizes that delegation with
public contracts allowed a principal to secure favorable outcomes. Katz [10],
Fershtman and Kalai [6] and Kockesen and Ok [11] examine the implications
of private contracting in this context. In the strategic delegation context, an
agent requires to contract with the principal to take any action in the game,
the principal effectively has monopoly power over all the actions. In contrast,
we have focus on the situation where any supplier has monopoly power over
only a single action, and thus supplier competition plays an important role.

The remainder of this paper is organized as follows. Section 2 sets out
the basic model of a game played in a contracting environment. Section
3 analyzes private contracting, while section 4 focuses on public contracts.
Section 5 discusses the robustness of our results and possible extensions, and
the final section concludes.

2 The Model

A game played in a contracting environment is defined as follows. We will use
the term player for someone who plays the game in question, and the term
supplier to denote someone with whom a player may need to contract with
in order to be able to adopt some strategy in the game. Let I = {1, 2, ..., n}
be the set of players and let each player i have a finite action set Ai, whose
generic element will also be denoted by aj

i or ai. Let A = ×i∈IAi be the set of
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action profiles, and let gi : A → R be the gross payoff of player i. These gross
payoffs at the profile a = (ai)i∈I will in general differ from the usual (net)
payoffs of a player since she may have to contract with a supplier in order
to be able to play the action ai. Let Āi ⊂ Ai be the set of actions for which
the player needs a supplier. We shall assume that for any player i and any
action aj

i ∈ Āi , there exists exactly one supplier, λ(aij). We may identify
this supplier with the action, and with a slight abuse of terminology, call
him supplier aj

i or supplier ij. Λi = {λ(aij)}j∈Āi
denotes the set of suppliers

for player i. Let pj
i denote the price which is charged by supplier λ(aij) for

enabling the action aj
i , and let pi = (pj

i )j∈Āi
. If aj

i /∈ Āi we set the price of

this action, pj
i , to zero. The net payoff at the profile a = (aj

i , a−i) where a−i

is the vector of actions of players h �= i, is given by

ui(a, pi) = gi(a
j
i , a−i) − pj

i . (1)

If player i plays action j and aj
i ∈ Āi , the payoff to supplier ij is given by

pj
i − cj

i , where cj
i is the cost of supplying this action. If the player does not

play action aj
i , the payoff to the supplier is zero. Let us normalize prices and

gross payoffs by measuring them net of cost, so that a zero price corresponds
to pricing at cost. Henceforth, the gross payoff gi(ai, a−i) will denote the
payoff when player pays the cost of action ai. We extend, in the usual way,
the gross payoff function gi to mixed action profiles: gi(αi, α−i) is the payoff
to αi ∈ ∆(Ai) when α−i ∈ ×h �=i∆(Ah) is the vector of (mixed) actions played
by the other players.

In comparison with common agency models [2] or games played through
agents (Prat and Rustichini [13]), our formulation differs in two respects.
First, the actions taken by the players have no payoff consequences for sup-
pliers whereas principals directly care about the actions taken by agents in
common agency models. This implies that the suppliers in our setting have
no reason to make transfers to the agents. Their monopoly power allows
them to demand transfers, but this power is only relevant in the event that a
player takes the monopolized action. In contrast, in common agency models,
principals are assumed to have no direct monopoly power – the agent can
always take any action without making any payment to any principal. One
assumption in our formulation deserves comment. The payment to supplier
λ(aj

i ) is contingent only on whether the action aj
i has been played or not. In

particular, it cannot be made contingent upon the entire action profile that
is played. This reflects the assumption that in the relation between player i
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and supplier λ(aj
i ), it is verifiable whether action aj

i has been enabled by the
latter or not – in particular, some physical good may need to be delivered
by λ(aj

i ) in order to enable aj
i . On the other hand, the action profile that

is played is assumed not to be verifiable, preventing transfers from being
conditioned on the profile.

A point of reference, before we proceed to analysis of the extensive form
games, is the normal form game G =< I,A, g >, i.e. where all actions
are supplied at cost, and players net payoffs equal their gross payoffs. The
payoffs we write down, in the various examples, will be of the game G. Let
EG denote the set of Nash equilibria of G. Let α = (aj

i , a−i) ∈ EG, where
player i plays the pure action aj

i . Define δi(α) = gi(α)−maxk �=j gi(a
k
i , a

j
−i) as

player i’s deviation loss from his pure action at α. If player i plays a mixed
action at α, δi(α) = 0. If a supplier is needed in order to take action aj

i , δi(α)
may be thought of as the marginal contribution made by (active) supplier ij
to player i’s gross payoff at the profile α. These marginal contributions will
play an important role in our characterization results.

We have two possible extensive forms to analyze: private contracts and
public contracts. The contracting game with private contracts, Γpvt, is as
follows:

1. Each supplier in Λ = ∪i∈IΛi quotes a price for each input that he
supplies.

2. Each player i observes the price vector pi (but not the prices quoted
to other players), and players simultaneously choose actions ai ∈ Ai.

3. Players receive the net payoffs as defined above, and suppliers receive
their payoffs.

If we replace (2) above so that every player observes (pi)i∈I , the prices
quoted to all, we have a game with public contracts, which we can call Γpub.

In either game, a (pure) strategy for a supplier is a price, i.e. a real
number. In the game with private contracts, a pure strategy for player i is
a function si : Rmi → Ai, where mi is the cardinality of Λi.In the game with
public contracts, a pure strategy is a map si : ×jR

mj → Ai. Both these games
are an instance of a continuum extensive form game, in the terminology of
Simon and Stinchcombe [15].We will restrict attention to perfect Bayesian
equilibria of these extensive form games. In the case of public contracts, these
are the same as subgame perfect equilibria. In addition, we want to rule out
“unreasonable equilibria”, where inactive suppliers (i.e. those who do not
make a sale) choose strictly negative prices. Such equilibria are sometimes
called cautious, and can be ruled out by considerations of trembling hand
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perfection.2 So henceforth, by “equilibrium” we mean a cautious perfect
Bayesian equilibrium where all supplier prices are non-negative.

3 Private Contracts

We make explicit our assumptions on the relation between players and sup-
pliers. First, we assume that each supplier is a monopolist in the market
for the action that he enables. This assumption is easily relaxed. Our other
assumptions are as follows.

Assumption A1. (No Complementary Inputs): For any player i and any
action aj

i , no more than one supplier is required.
Assumption A2: Each player has at least two actions
If a player was to have only one action, the supplier enabling that action

would have completely inelastic demand.
Assumption A3. A supplier supplies at most one player, i.e. Λi and Λj

are disjoint if i �= j.
This assumption plays an essential role in our analysis of private contracts,

since it ensures that the beliefs of player i regarding the actions chosen by
other players do not vary with the prices that player i is quoted by her
supplier.

Assumption A4. A supplier supplies at most one action of any player,
i.e. if j �= k, λ(aj

i ) �= λ(ak
i ).

This assumption is less essential for our results and is made mainly for
expositional convenience.

Restricting attention to deterministic price choices by suppliers,3 a strat-
egy profile in Γpvt consists of a pair (p̂, σ), where p̂ is the vector of prices
chosen by all suppliers, and for each player i, σi : Rmi → ∆(Ai). The (mixed)
action profile which is played under this strategy profile is σ(p̂) = (σi(p̂i))i∈I ,
and is called the action outcome of this profile. Clearly, the set of action

2More precisely, we can discretize the price space, and consider trembling hand perfect
equilibria of the discretized game. We may restrict attention to equilibria of the continuum
game which are limit points of a sequence of trembling hand equilibria of discrete games
as the grid of prices becomes increasingly finer. It is easy to see that any equilibrium with
negative prices will not be a limit of such trembling hand perfect equilibria.

3This assumption does not appear to be essential for our results in the case of private
contracts, but simplifies notation and exposition. However, in the case of public contracts,
supplier randomization enlarges strategic possibilities significantly by enabling players to
correlate their actions.
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outcomes of Γpvt coincide with the set of mixed action profiles in G, i.e.
σ(p̂) ∈ ×i∆(Ai). Let ΩΓpvt

denote the set of equilibrium action outcomes of
Γpvt. Let σ−i(p̂) ∈ ×h �=i∆(Ah) denote the beliefs of player i regarding the
actions taken by the other players. By assumption A3, the beliefs of player i
regarding the actions of other players do not vary if the prices that he faces,
pi, change. Also, for player i, only the prices he faces (pi) and the actions of
other players are payoff relevant. The prices paid by other players are payoff
irrelevant.

The following theorem is the main result of this section.

Theorem 1 ΩΓpvt
= EG, the equilibrium action outcomes of Γpvt and the

equilibria of G coincide. Let (p̂, σ) be an equilibrium of Γpvt with action out-
come α. If αi assigns probability one to action aj

i , then p̂ij = δi(α). If αi

assigns positive probability to more than one action, then p̂ij = 0 for every
active supplier ij.

Proof. See Appendix.
If we allowed for equilibria with negative prices, the only difference that

is that when i plays a pure action, p̂ij could be any number in the interval
[0, δi(α)].

Although the monopoly power of suppliers allow them to charge non-
negative prices, thereby causing net payoffs to differ from gross payoffs, the
theorem shows that this does not alter the equilibrium distribution over ac-
tion profiles in Γpvt. Furthermore, when the profile α is played at an equilib-
rium of Γpvt, supplier ij gets a payoff which equals his marginal contribution
to player i’s gross payoff at α. A supplier’s marginal contribution is gener-
ically positive when a pure action is played, but equals zero for any mixed
action.

L H
L 1, 1 0, 0
H 0, 0 2, 2

Fig. 1: A Coordination Game

The example in Fig. 1, a coordination game, will illustrate our results.
Let us consider an equilibrium where (L,L) is played. The equilibrium prices
faced by a player, say the row player, must satisfy p(L) = 1 and p(H) =
0.Thus the prices (which equal profits) of the supplier 1L to the row player
equals 1. The net payoff of the row player is therefore zero. Note that prices

8



are such that H weakly dominates L. Nevertheless, this equilibrium is a limit
of perfect equilibria of the discretized version of the game — with discrete
prices, equilibrium prices will be such that each player has a strict incentive to
play L.4 If we consider any equilibrium where the players randomize between
their two actions, then all prices must equal zero, and hence the each player
must play his first action with probability 2

3
. The net payoffs of the players

equals 2
3
, and hence the players benefit by “not-coordinating” and playing

the mixed equilibrium of G, since this improves their position vis-a-vis the
supplier.

We have established that if player i randomizes between any two actions,
say j and k, in an equilibrium of Γpvt, then the prices paid to these suppliers
is zero. Suppliers of different actions act as though there are producing
goods which are perfect substitutes. We call this condition a generalized
indifference principle for mixed strategies with private contracts, since the
suppliers as well as the player are indifferent between his choice of actions. On
the other hand, when player i plays action aj

i in a pure strategy equilibrium
(p̂, σ), supplier ij will in general make positive profits. The profits that ij
makes equal δi(a

j), which will generically be strictly positive. When we
consider more complicated extensive form games, this distinction between
the incentive constraints faced by a supplier at a pure action profile and the
constraints faced at a mixed action profile has subtle effects. In particular,
it implies that supplier incentives may be qualitatively different at player
action profiles that are arbitrarily close together. The implications of this are
explored in a companion paper (Bhaskar [3]). This paper shows that shows
that imperfect observability generates a failure of lower-hemicontinuity of
equilibrium outcomes in extensive games that are played in a contracting
environment.

4Simon and Stinchcombe [15] develop a theory of equilibrium refinement for infinite
normal form games, and argue that a minimal condition for reasonableness in such games
is limit admissibility, i.e. that equilibrium strategies should be limits of admissible (un-
dominated) strategies. In our contracting extensive form game, limit admissibility in con-
junction with sequentiality precludes existence. Although the coordination game example
possesses a limit admissible equilibrium, where the mixed strategy equilibrium is played,
this will not be the case in general, as can be seen from the example of the prisoner’s
dilemma (see Fig. 2, subsection 4.1), where � > g1 and � > g2.
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4 Public Contracts

We now consider public contracts. Recall that with public contracts, a (pure)
strategy for a supplier is a price, i.e. a real number. A mixed strategy
for a player is a map si : ×jR

mj → ∆(Ai). We focus on subgame perfect
equilibrium. As before, we may require additionally that prices are non-
negative even for inactive suppliers. Let Γpub denote the game with public
contracts, and let ΩΓpub

denote the set of equilibrium action outcomes.
Our first concern is to ensure existence of equilibrium. Assumption A2 is

no longer sufficient to ensure existence of equilibrium. We therefore replace
it with the following:

Assumption A5. For every player i there exists an action a0
i such that no

input is required to play this action.
This assumption ensures that the minimum payoff that any player in I can

receive is bounded and given by mina−i
gi(a

0
i , a−i).

5Therefore the maximum
price that any supplier ij can charge and possibly make a sale is no greater
than maxa−i

gi(a
j
i , a−i) − mina−i

gi(a
0
i , a−i). Hence the strategy set for any

supplier is in effect compact, since higher prices cannot be optimal. Let us
now assume that there exists a public signal which is uniformly distributed
on [0, 1]. We assume that suppliers cannot observe the realization of this
random variable while choosing prices, but that players observe this before
choosing their actions. It is easily verified that players’ payoffs as well as
supplier payoffs are continuous in the strategies. By the results of Simon and
Zame [16] and Harris, Reny and Robson [7], there exists a subgame perfect
equilibrium of this game. 6

With public contracts, equilibrium outcomes are surprisingly complex,
even in simple games such as the prisoners’ dilemma. Our focus is on the
question, under what conditions is an equilibrium of G an equilibrium action
outcome of Γpub. When G has multiple equilibria, these conditions are easy
to satisfy. The question is more interesting when G has a unique equilib-
rium. We therefore consider, in turn, games G with a unique pure strategy
equilibrium, then those with a unique mixed equilibrium, and finally games

5We are unable to establish boundedness in the absence of A5 – the mixed strategy
example in section 4.2 may help clarify why this is the case, although in fact A5 is not
required for existence in this specific example.

6In the examples we consider in this paper, we do not have invoke a public randomiza-
tion device in order to ensure existence.
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with multiple equilibria.

4.1 Games with a unique pure strategy equilibrium

Let us consider first as an example, the prisoners’ dilemma game below,
where for each player, playing D requires a contracting with a supplier, but
playing C does not. This simple game, when played in a public contracting
context, displays a surprising complexity of equilibrium behavior.

C D
C 1, 1 −�, 1 + g2

D 1 + g1,−� 0, 0

Fig. 2: Prisoners’ Dilemma: g1, g2, � > 0

Recall that theorem 1 ensures that in Γpvt, the game with private con-
tracting, (D,D) must be played and each active supplier earns �, his marginal
contribution at (D,D). We now show that if g1 > � and g2 < �, then there
does not exist any equilibrium of Γpub where (D,D) is played. To see this,
let suppose that (D,D) is played with probability one in an equilibrium. We
must have pi ≤ � for i ∈ {1, 2}, since otherwise playing D is not optimal. We
now show that p2 = � if (D,D) is played. If p2 < �, supplier 2 can increase his
price, while still keeping it less than �. In the induced subgame, player 1 finds
it strictly optimal to play D if player 2 plays C, and is indifferent between
C and D if player 2 plays D. Thus 1 can only play C if two plays D with
probability one. Therefore, if two plays D with probability less than one,
one must play D with probability one, in which case playing D is optimal
for two. Thus in any equilibrium of induced subgame, two continues to play
D with probability one, making supplier 2’s price increase profitable.

We conclude therefore that any candidate equilibrium where (D,D) is
played, we must have p2 = �. However, if p2 = �, supplier 1 has a profitable
deviation. If he chooses p1 ∈ (�, g1), then (D,D) is no longer an equilibrium.
Indeed, in induced subgame, action D is weakly dominated for player 2, and
in any equilibrium, player 1 must play D with probability one, while player
2 plays C with sufficiently high probability in order to make this optimal
(since � > p1 > g1). Thus supplier 1 has a profitable price increase, since he
can increase his price above � without reducing the probability of a sale. We
have therefore demonstrated that there does not exist an equilibrium where
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(D,D) is played with probability one. Indeed, since no other action profile
is a Nash equilibrium of G, there does not exist an equilibrium where any
pure action profile is played.

We now show that there exists an equilibrium where sellers randomize
between prices, inducing a correlated distribution over action profiles. First,
notice that if seller 2 chooses the price �, then seller 1 can choose a higher
price, at g1 or arbitrarily close to g1, and in the resulting subgame, seller
2 makes a sale with probability arbitrarily close to zero. Seller 2’s best
response is therefore to choose a price of g1, which ensures a sale for sure.
On the other hand, if seller 2 chooses g1, seller 1’s cannot make a sale by
choosing a price higher than �; his best response is to choose �, which ensures
a sale with probability one. Each seller can achieve a payoff arbitrarily close
to min{�, gi} by choosing a price below this number, and therefore in any
equilibrium, D must be played with positive probability by each player. We
now show that there exists an equilibrium in mixed strategies, where both
each seller randomizes between two prices, � and gi. The table in Fig. 3
specifies equilibrium actions by the two players for each price profile. Let πi

denote the probability that supplier i chooses �. If π2 = �
g1

and π1 = g2

�
, then

each two supplier is indifferent between the two prices.7

g2 �
� D,D D,D
g1 C,D D,C

Fig. 3: Actions as a function of supplier prices

Although the prisoners’ dilemma game G has a unique equilibrium (D,D),
we find that this is not an equilibrium action outcome of Γpub. Indeed, equi-
librium action outcome is a correlated distribution over the set of action pro-

7It is easy to verify that supplier prices other than gi and � are not optimal at this
equilibirum. Since no player will play D if pi > max{gi, �}, and will play D for sure if
pi < min{gi, �}, prices outside the interval are sub-optimal (notice is that if pi = min{gi, �},
then D is played for sure in the equilibrium, regardless of the realization of pj). Suppose
that supplier 1 chooses a price p1 ∈ (�, g1). If supplier 2 chooses g2, then it is easily verified
that D is weakly dominant for player 2, and that D cannot be played by player 1 in any
equilibrium of this subgame. Thus p1 and � yield the same payoff of zero in this event.
On the other hand, if supplier 2 chooses �, then D must be played with probability one in
this subgame, and therefore the price of � yields more profits than any lower price in this
event. Similar reasoning verifies that intermediate prices between g2 and � are dominated
for supplier 2 as well.

12



files, since under this distribution all profiles other than (C,D) have strictly
positive probability.

We now set out the conditions that must be satisfied for an unique pure
equilibrium of G to be played in the game Γpub. Let a∗ be a pure strategy
Nash equilibrium of G. We say that the marginal contribution of supplier a∗

i

is maximal at a∗ if

a∗
−i ∈ arg max

a−i∈A−i

{
gi(a

∗
i , a−i) − max

ai �=a∗
i

gi(ai, a−i)

}
.

Similarly, the marginal contribution of supplier a∗
i is minimal at a∗ if

a∗
−i ∈ arg min

a−i∈A−i

{
gi(a

∗
i , a−i) − max

ai �=a∗
i

gi(ai, a−i)

}
.

In our prisoners’ dilemma example, the marginal contribution of supplier
1 is maximal at (D,D) if � ≥ g1, and it is minimal if � ≤ g1. Note that these
definitions also apply when the player does not require to contract with any
supplier in order to take action a∗

i . The following theorems provides sufficient
conditions under which a pure strategy equilibrium of G is played in Γpub.

Theorem 2 Let a∗ be a pure strategy equilibrium of G, such that either
i) for every player i, the marginal contribution of supplier λ(a∗

i ) is maximal
at a∗, or ii) for every player i, the marginal contribution of supplier λ(a∗

i )
is minimal at a∗. Then there exists an equilibrium of Γpub with outcome a∗,
where each active supplier earns his marginal contribution δi(a

∗).

Proof. See Appendix.
In the prisoners’ dilemma, (D,D) is an equilibrium action outcome of

Γpub when either � ≥ max{g1, g2} or � ≤ max{g1, g2}. In the former case,
the marginal contribution of each active supplier is minimal at (D,D), and
the unique subgame perfect equilibrium has each active supplier earning his
marginal contribution, �. In the latter case, the marginal contribution of
each active supplier is maximal at (D,D); consequently, there exist equilibria
where active suppliers earn their marginal contribution �, but there also exist
equilibria where they earn payoffs in the interval [gi, �].

8

8For any p̄i ∈ [gi, � ], there exists an equilibrium where supplier i chooses p̄i and (D,D)
is played with probability one on the equilibrium path. A player chooses D as long as
p1 ≤ p̄1 and p2 ≤ p̄2. If either supplier deviates by choosing a higher price, both players
play (C,C).
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The sufficient conditions required for the theorem are rather strong, since
they require either that the marginal contributions of active suppliers are
maximal for all suppliers, or that they are all minimal. Our prisoners’
dilemma example shows why rather strong assumptions are required if a
pure strategy equilibrium of G is to continue to be an equilibrium outcome
of Γpub. Even if a profile a∗ is a pure strategy equilibrium of G, there may
be a supplier for action a∗

i who may be able to secure a higher payoff than
his marginal contribution δi(a

∗) by inducing some other player j to play a
different action.

4.2 Games with a unique mixed equilibrium

Let us now consider the properties of equilibria of Γpubwhere a player ran-
domizes between different actions, aj

i and ak
i . In the private contracts case,

we saw that this lead to intense competition between the suppliers, ij and
ik. This is very much as though these suppliers were supplying perfectly sub-
stitutable goods. In the case of public contracts, we show that things are
dramatically different – it is as though the two suppliers are supplying com-
plementary goods. To see this, let us consider the game in Fig. 4, matching
pennies game where the row player has an outside option, OUT. We assume
that 0 < b < a/2 so that the game G has a unique mixed equilibrium where
the player 1 (the row player) plays T and B each with probability one-half,
while player 2 chooses both her actions with equal probability. In the cor-
responding game with public contracts, player 2 does not have to contract
with anyone to play either L or R, so that net payoffs equal her gross payoffs.
Player faces a single supplier in the case of action T and also in the case of
action B, but can play OUT without contracting with anyone.

L R
T a, 0 0, 1
B 0, 1 a, 0
OUT b, 0 b, 0

Fig. 4: Matching Pennies with an Outside Option: 0 < 2b < a.

We will discuss two different parameter configurations. First, we assume
that b ≥ 0, so that the outside option bites (b ≥ 0). In this case, it is as
though the two suppliers, of T and B, are producing a complementary inputs
for single good – the randomization that mixes these two actions equally. Let
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x, y denote the prices to be paid for playing T and B respectively. Let us
exclude OUT from consideration for the moment. Now given this restricted
subgame, given y, supplier T can make a sale for sure by choosing x = y−a−ε,
and can therefore get a payoff arbitrarily close to y − a. Alternatively, T can
also choose a price in the interval (y−a, y +a), in which case the (restricted)
subgame has a completely mixed equilibrium where T and B are played with
equal probability and the column player plays L with probability π = 1

2
+ x−y

2a
.

The expected payoff to row in this equilibrium equals a−(x+y)
2

. This must be
greater than b or else OUT will be better for row. Now, the probability with
which T is played equals one-half, independent of the value of x or y, so long
as |x − y| ≤ a. This is so because this probability is such that column is kept
indifferent between his two actions, and hence it does not depend upon the
prices row pays. Hence supplier T seeks to choose x to maximize x

2
subject

to the constraint a−(x+y)
2

≥ b, and supplier B seeks to choose y to maximize
y
2
, also subject to the same constraint. Hence the equilibria are non-negative

values of x, y such that

x + y = a − 2b > 0. (2)

Thus we have a continuum of equilibria, where x and y satisfy the above
equation, where x and y are subject to the further constraint that the payoff
of each supplier is greater in this equilibrium than from making a sale for
sure. Notice that for supplier T, the highest price for y in any such candidate
equilibrium is y = a − 2b, at which supplier T makes a profit of zero at
x = 0 by sharing the market. By undercutting, he can earn y − a, i.e.
−2b, and therefore as long as b ≥ 0, each element of this continuum is an
equilibrium. To conclude, we have demonstrated that as long as b ≥ 0,
we have a continuum of equilibria x, y ∈ [0, a − 2b] , where the probability
with which L is played varies between 0 and 1. This is very similar to the
situation where there are two monopoly producers of perfect complementary
goods – equilibrium prices must sum to the value to the consumer of the
composite good. This example also illustrates that action profiles which are
not an equilibrium of G may be sustained as equilibrium outcomes of Γpub.
Let x = y = a − 2b. In this case, the resulting subgame has an equilibrium
where row plays OUT and column chooses any mixed action. Each supplier
chooses a high price since the price of the other supplier is so high that only
a zero price can ensure a sale. This is an example of a inefficiency due to
excessively high pricing by producers of complementary goods, in the mixed
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strategy context.
Let us now consider the second case, where the value to the outside

option, b, is sufficiently negative that it becomes irrelevant. For expositional
simplicity, let us assume that it no longer exists, i.e. b = −∞. In this case,
it is as though the goods offered by the two suppliers are partly complements
but also partly substitutes. We show first that this game does not have an
equilibrium where supplier prices are deterministic. To see this, note that
supplier T can ensure himself a payoff arbitrarily close to a/2, by choosing
a price equal to a − ε, since in this event play of T is not dominated, and
T must be played with probability at least one-half. So in any deterministic
price equilibrium, T and B must be played with probability one-half. But in
this case, any ε-optimal best response for T is x = y + a − ε, and similarly
y = x + a − ε, so that each supplier wants to price higher than his rival. So
there cannot be a deterministic price equilibrium.

Let us now consider mixed price equilibria. Consider a symmetric mixed
equilibrium where the price chosen by each supplier, x has support [x, x̄],
and continuous distribution F. The payoff to a supplier from choosing x is
given by

U(x, F ) = x[1 − F (x + a)] +
x

2
[F (x + a) − F (x − a)]. (3)

∂U

∂x
= 2− [F (x+a)+F (x−a)]−x[F ′(x+a)+F ′(x−a)] = 0, x ∈ [x, x̄]. (4)

The solution to this differential equation is given by

F (x + a) + F (x − a) = 2 +
k

x
, x ∈ [x, x̄]. (5)

We show first that x and x̄ must satisfy some inequality constraints. Let y
denote my opponent’s price. Since y ≥ 0, the best response to it is either
x = y + a (if y ≤ 3a) or y − a (if y ≥ 3a). Hence any rationalizable strategy
must satisfy x ≥ a. Thus x ≥ a.

Turning now to x̄, we know that the payoff from x̄ equals x̄
2
[1−F (x̄−a)].

But the payoff from x̄−2a is no less than (x̄−2a)[1−F (x̄−a)], so we must
have x̄

2
≥ x̄−2a, or x̄ ≤ 4a. Finally we must have x̄−x ≥ 2a, since otherwise

at the midpoint of the support, the payoff will be strictly increasing in x, and
thus this cannot be optimal. Note that we have shown that x̄− x ∈ [2a, 3a].
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We now construct an equilibrium based on equation (5). Let x > a, and
let x̄ = x + 2a. For x ∈ [x, x + a], (5) implies that

F (x) = 1 − x + a

x + a
, x ∈ [x, x + a]. (6)

For [x + a, x̄], (5) implies that

F (x) = 2 − x + a

x − a
, x ∈ [x + a, x̄]. (7)

Since (7) and (6) must yield the same value for F (x + a), we deduce that

1 − x + a

x + 2a
= 2 − x + a

x
. (8)

This implies that

x = a
√

2. (9)

The payoff of the supplier in the equilibrium is given by

x + a

2
=

a(1 +
√

2)

2
. (10)

.
This completes the construction of the equilibrium. That is, we have an

equilibrium with support [a
√

2, a(
√

2 + 2)], with the associated distribution
given by equations (6) and (7). Indeed, we have also demonstrated that any
equilibrium where x̄ − x = 2a coincides with our construction.

Note that the action outcome of this equilibrium is not the same as the
mixed equilibrium of G. Indeed, it corresponds to a correlated distribution
over action profiles in G. To see this, note that there is positive probability
that the difference in prices between supplier T and supplier B is greater
than a, in which case (B,L) is played. Similarly, the probability that this
difference is less than −a is also the same, in which case (T,R) is played.
Finally, in the case that the difference lies between −a and a, a mixed action
profile is played, where the T and B are always played with probability one-
half, while the probability of L depends upon the two prices.

We now show that this equilibrium is essentially unique within this class.
Suppose that x̄ = x + 2a + ε where ε ∈ (0, a] (we have already shown that
x̄− x ≤ 3a). Consider y ∈ (x + a, x + a + ε). We will show that equation (5)
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implies two different values for F (y), and therefore a contradiction. Consider
first the indifference condition at y − a. By equation (5) we must have

F (y) = 2 +
k

y − a
. (11)

On the other hand, the indifference condition at y + a implies

F (y) = 1 +
k

y + a
. (12)

Thus we must have

k

y + a
= 1 +

k

y − a
,∀y ∈ (x + a, x + a + ε). (13)

This implies that y2 − a2 + 2ak = 0 for an interval of values y, which is
clearly impossible.

To summarize, we have considered the case where G is a simple matching
pennies game with an outside option, that has a unique mixed equilibrium.
We find that equilibria in Γpub show interesting and complex behavior. When
the outside option bites, the suppliers of the two actions act as though they
are producing complementary goods that combine to form a single compos-
ite good, that must compete with the outside option. This gives rise to
multiplicity of pricing equilibria and consequently, a continuum of equilib-
rium distributions over action profiles. In the case where the outside option
does not bite, we see that suppliers act partially as though they are pro-
ducing complementary goods, but also partially as producers of substitute
goods. This arises since one supplier’s price may be so high that it becomes
profitable for the other to undercut this price sufficiently to take the entire
market, i.e. make a sale with probability one. This mix between substitutes
and complements precludes existence of a deterministic price equilibrium.
We show that a mixed equilibrium exists where the distribution over prices
is continuous.

Finally, let us consider the interaction between suppliers of different play-
ers in the context of this example. Assume now that there is a single supplier
for T for the row player, and a single supplier for L for the column player,
the other actions not requiring any contracting. Assume also that b = −∞,
i.e. the action OUT is not available for the row player. Let p be the price
chosen by the supplier for T and q be the price for L. As long as p < a and
q < 1, the resulting subgame has a unique mixed equilibrium, where row
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plays T with probability 1−q
2

, and column plays L with probability a+p
2a

. That
is, the probability with which T is played does not depend upon the price
of that action p, as long as it is less than a. Similarly, the supplier of B also
faces completely inelastic demand as long as q ≤ 1. We must therefore have
p = a, q = 1, so that the resulting subgame is given by Fig. 5.

L R
T 0,−1 −a, 1
B 0, 0 a, 0
OUT b, 0 b, 0

Fig. 5

To complete the description of subgame perfect equilibrium, (B,L) is
played at this subgame. Notice that seller T does not make a sale; however,
if he reduces price below a, then (B,R) is played, making any price reduction
unprofitable. Thus we see that a pure profile (B,L) is played although this
is not an equilibrium of the original game.

To summarize: we have considered a classic matching pennies type game
and shown that supplier competition can yield complex results under public
contracts. Specifically, suppliers of different actions taken by the same player
act as though they are producing complements; this can be combined with
elements of Bertrand style competition if one supplier’s price is very high.

4.3 Games with multiple equilibria

If the game G has multiple equilibria, it is rather easy to ensure that any
such equilibrium is played in a subgame perfect equilibrium of Γpub. For
example, in the coordination game of Fig. 1, one can support the play of
(L,L) at any arbitrary price pi(L) ≤ 1 (for i = 1, 2) by pricing strategies
where p(H) < 2 (for i = 1, 2), where players choose (L,L) as long as neither
L supplier has deviated, but switch to playing (H,H) in the event of a
deviation. Similarly, the mixed equilibrium can be played if equilibrium
prices are pi(L) = pi(H) = k,(for i = 1, 2) where k is some constant. If
say one of the L supplier deviates, the players respond by choosing (H,H).
The same logic allows one to support a wide range of prices, and therefore
mixed action profiles that are not equilibria of the normal form game G. We
therefore have the following result:
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Theorem 3 Let aj and α be distinct equilibria of G, where aj is pure and
α is such that for every i, aj

i is not in the support of αi.There exists an
equilibrium (p̂, σ) of Γpub, with σ(p̂) = aj, with p̂j

i ∈ [0, δi(a
j)] for every

active supplier.

Proof. See Appendix.

5 Robustness and Extensions

We now consider how our results would be modified if our assumptions were
changed. Since our strongest characterization results are for the case of
private contracting, we focus our discussion mainly on this case.

5.1 Competition among suppliers

We have assumed throughout each supplier has monopoly power over the
action that he is needed for. Let us assume that there is more than one source
from which the player may obtain the input required for an action, aj

i . Let
Λij be the set of suppliers for input ij, each of whom (indexed ijk) produces a
product which is perfectly substitutable with any other. Let ij1 be the least
cost supplier. Define the gross payoff function so that the gi(a

j
i , a−i) is the

utility to player i minus the cost to ij1 of supplying action aj
i and measure

prices of the suppliers in Λij net of the cost to ij1. Cautious equilibria are
now such that no supplier prices below cost. It is clear that basic point of
theorem 1 is unaltered in this case, i.e. the equilibrium action outcomes
Γpvt continue to coincide with equilibria of G. In the case of pure strategy
equilibria, the prices paid to supplier ij1 must now satisfy an additional
constraint, of being lower than the cost of the next best supplier in Λij. In
the case of mixed strategy equilibria of G, nothing is altered at all, and the
generalized indifference principle continues to apply.

5.2 Complementary Inputs

Assumption A1, that there are no complementary inputs necessary for tak-
ing an action, is essential for our main result. In its absence, coordination
failures can enlarge the set of equilibria, so that action profiles which are not
equilibria of G can be sustained as equilibrium outcomes of Γpvt. To see this
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consider a one player game, where it is efficient for the player to consume a
composite good, which yields utility one, whereas the outside option of the
player yields zero. Assume that two inputs are required in order to make
up the composite good, that there is a monopoly supplier for each of these
inputs. Now if each supplier chooses a price of 1 (or greater), it is strictly
optimal to take the outside option. No supplier can benefit by reducing price,
since he must choose a price of zero (or lower) to ensure a sale.

The generalized indifference principle for mixed equilibria must also be
modified in this case. Let us consider the coordination game in Fig. 1, and
let us assume that for both players, no inputs are required for action L and
that two inputs are required playing H. Let the supplier of the first input
to row choose a price equal to one, while the supplier of the second input
randomizes, choosing a price of zero with probability 1

2
, and a price of one

with probability 1
2
. Each player chooses to play H if and only if the total price

is less than equal to one. It can be verified that this is an equilibrium, with
action outcome different from the mixed equilibrium of G. The supplier of
the first input makes positive profits at this equilibrium while the supplier of
the second input makes zero profits. The generalized indifference principle in
this context implies that at least one of the producers of the complementary
goods is indifferent between making a sale or not.

5.3 Sequential Move Games

Our analysis has focused entirely on the case where the underlying game G is
a simultaneous move game, where we find that private contracting and public
contracting yield very different results. Consider a two player sequential
move game where one player (the leader) moves first, and the follower moves
after observing the leader’s action. To embed this in a contracting setting,
assume that suppliers of the leader choose prices first, while the suppliers
of the follower choose prices after observing the leader’s chosen action. The
distinction between private and public contracting becomes irrelevant in this
context – since the prices chosen by the leader’s suppliers are payoff irrelevant
to the follower it makes little difference whether they are observed or not by
the follower or her suppliers. More generally, one might conjecture that when
the underlying game is one of perfect information with generic gross payoffs
(no ties at any terminal nodes), private and public contracting yield the same
outcomes.

We believe that the conclusion – that the form of contracting makes no
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difference — is too strong, even in this very special context. Following Bag-
well [1], one may ask, are the equilibrium outcomes of perfect information
games robust to small imperfections in observation? If one modifies the se-
quential move game in a contracting environment, so that the follower (and
his supplier) have noisy observations of the leader’s choice, and restricts at-
tention to pure strategy equilibria, then it is as though we are analyzing a
simultaneous move game. On the other hand, one may consider mixed equi-
libria of the game with noisy observation in a contracting environment, where
the leader randomizes between different actions. In this case, the analysis of
the present paper indicates that one is likely to obtain very different results
depending upon whether one has private or public contracting. Specifically,
with public contracting, it will be as though the suppliers of the different
actions are producing complements, whereas with private contracting, it is
as though they are producing perfect substitutes. 9

6 Conclusion

We have analyzed games where players have to contract with other suppliers
in order to take actions. As in the literature on principal-multi agent games,
we find that it is important whether contracts are public (i.e. observed by all
the players in the game) or private (observed only by contracting parties).
We also find that there is a major difference between mixed equilibrium in the
game, where players randomize between their actions, and pure equilibria.
In particular, the incentive constraints which apply to mixed equilibria are
dramatically different from incentive constraints which apply to pure equi-
libria. This can have important consequences, as we show in a companion
paper (Bhaskar, [3]).

7 Appendix

Proof of Theorem 1:
We first prove the following lemma:

9Bhaskar [3] examines some of these issues in the private contracting case, and shows
that the set of equilibrium payoffs with almost perfect observation can be disjoint from
the set of equilibrium outcomes with perfect observation.
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Lemma 4 (p̂, σ) is an equilibrium of Γpvt if and only for every player i and
any action aj

i in the support of σi(p̂i): (i) gi(a
j
i , σ−i(p̂))−pj

i ≥ gi(a
k
i , a

∗
−i)−pk

i

for any k. (ii) If ij ∈ Λi, there exists an action ak
i , k �= j such that gi(a

∗) −
pj

i = gi(a
k
i , a

∗
−i) − pk

i , with pk
i ≤ 0 (iii)pj

i ≥ 0.

Proof. We prove the necessity of these conditions first. Condition (i) follows
from individual optimization by player i. Condition (ii) follows from Bertrand
competition between suppliers ij and ik. By assumption A3 player i’s gross
payoff, as a function of his own action, does not vary with the prices pj

i

or pk
i . If the inequality in (i) was to be strict for every k, then supplier j

could increase his price, so this must hold with equality for some k. Given
this equality, this supplier (k) can ensure purchase by decreasing his price
slightly, so such a price reduction must not be profitable, i.e. pk

i ≤ 0. Finally,
condition (iii) ensures that supplier j does not make a loss.

Turning to the proof of the theorem, to prove only if, note that α = (αi)i∈I

is an equilibrium of the game G if for any player i and any action aj
i which

is assigned positive probability by αi,

gi(a
j
i , α−i) ≥ gi(a

k
i , α−i)∀k. (14)

In particular, if two actions aj
i and ak

i are both assigned positive proba-
bility under αi, then:

gi(a
j
i , α−i) = gi(a

k
i , α−i). (15)

We now show that σ(p̂) satisfies the same conditions. Let aj
i be an action

which is played with positive probability at p̂i, and suppose that there ex-
ists some k such that gi(a

j
i , σ−i(p̂)) < gi(a

k
i , σ−i(p̂)). Now pk

i must be strictly
positive since otherwise by condition (iii) of theorem 1, gi(a

j
i , σ−i(p̂)) + pj

i <
gi(a

k
i , σ−i(p̂)) + pk

i , and σi(p̂)i cannot be optimal for player i. Since supplier
k sells with a probability strictly less than one, he can do better by choosing
a price pκ

i = gi(a
k
i , α−i) − gi(a

j
i , α−i) + p̂j

i − ε (ε small and positive), then he
can ensure that i chooses action k with probability one. We conclude that
gi(a

j
i , σ−i(p̂)) ≥ gi(a

k
i , σ−i(p̂)). This implies also that if both aj

i and ak
i are

assigned positive probability at p̂i, then gi(a
j
i , σ−i(p̂)) = gi(a

k
i , σ−i(p̂)). Since

this is true for every i, this proves (i).
To prove (ii), let α be an equilibrium of G, and let σi(p̂i) = αi. If αi

randomizes across two or more actions, let p̂k
i = 0 ∀k. If αi assigns probability

one to a single action, aj
i , let p̂k

i = 0 ∀k �= j, and let p̂k
i = gi(a

j
i , α−i) −

maxk �=j gi(a
k
i , α−i).
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Proof of Theorem 2:
For each i, let any active supplier λ(a∗

i ) choose his price equal to δi(a
∗),

and let every other supplier choose a price of zero. In the resulting subgame,
it is clearly an equilibrium for each player to choose a∗

i . It remains to spec-
ify behavior after a deviation by any one seller, and to verify that such a
deviation is not profitable.

Suppose that condition (i) holds. Let players play an arbitrary equilib-
rium in any other subgame that results after different prices. It is clear that
no active supplier can do better by choosing a different price, since at any
profile, the maximum that he can earn is his marginal contribution, which
by assumption is smaller than δi(a

∗)
Suppose ii) holds. If active supplier λ(a∗

i ) deviates by choosing a higher
price, then all players j �= i continue to choose action a∗

j , while player i
chooses the action

a′
i ∈ arg max

ai �=a∗
i

gi(ai, a
∗
−i). (16)

This response by player i makes a price increase for the supplier unprofitable.
It remains to verify that the continuation play constitutes a Nash equilibrium
in the subgame. For player i, choosing a′

i rather than a∗
i is clearly preferable

since the price chosen by supplier λ(a∗
i ) is greater than δi(a

∗). For every player
j different from i, continuing to play a∗

j is a best response since the marginal
contribution at any profile (a∗

j , a−j) is greater than the price δj(a
∗).

Proof of Theorem 3:
Let p̂i be such that p̂j

i ∈ [0, δi(a
j)] and p̂k

i = 0 for k �= j. If the chosen
price vector is p̂, the players play aj; this is clearly optimal since p̂j

i ≤ δi(a
j).

If supplier ij deviates and chooses a higher price, the players play α, so that
ij gets zero. Since α is an equilibrium of G, this is an equilibrium in this
subgame since only the payoff to action aj

i , which is not in the support of
αi, has been reduced. Clearly no other supplier ik can benefit by raising his
price, if the players continue to play aj after this deviation.
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