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Abstract. In the past, specification of languages and data structures has 
traditionally been formally achieved using mathematical notations. This is very 
precise and unambiguous, however it does not map easily to modern 
programming languages and many engineers are put off by mathematical 
notation. Recent developments in graphical specification of structures, drawing 
from Object-Oriented programming languages, has lead to the development of 
Class Diagrams as a well-used means to define data structures. We show in this 
paper that there are strong parallels between the two techniques, but that also 
there are some surprising differences! 

1 Introduction 
 
Computer Science originally 

evolved as a branch of mathematics. It 
could well be argued that maybe it 
should always have stayed a branch of 
mathematics because then our 
programs would be ‘proved’ to work 
before being executed. However, the 
set of programs for which we can 
‘prove’ things is much smaller than 
the set of programs that we actually 
want to write, and more importantly, 
smaller than the set we want to use. 

If mathematics were the language of programming, either there would be a much 
larger number of mathematicians in the world or computers and software would 
simply not have permeated our culture as much as they have. The traditional 
mathematical approach to writing algorithms is declarative, whereas the typical 
programming approach is imperative. This, in our opinion, is one of the most 
significant differences between mathematics and programming. A consequence of this 
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difference is an increase in the semantic complexity in traditional programming 
languages compared to the semantic simplicity of declarative languages. 

The complexity of the programs we write naturally leads us to the need for 
modelling. Modelling is an old discipline, possibly as old as engineering in general. 
The actual age of modelling is dependant on what one takes as the definition of 
modelling. Physical sculpture as modelling is pre-historic, mankind has be fashioning 
models of things in the real world for as far back in his history as he can look. 

 Modelling as an engineering discipline is also a significantly old discipline; any 
engineering project involves construction of a model, for small projects this may only 
be a ‘mental model’ but for any project of significant size or complexity, especially if 
it involves multiple engineers, a more concrete, real world, model is created in order 
to aid communication and exploration of the problems and specification of the final 
product. Models strive to efficiently communicate the important abstract properties of 
the problem being modelled. 

Mathematics has traditionally been used as a tool for constructing such models. 
Mathematical models of the stock market, of the weather system, of the forces 
involved in sending a rocket to the moon, they are all essential to mankind’s 
understanding and ability to interact with, build, or predict things about, the 
environment in which he lives. Programming, on the other hand, is simply a tool. It is, 
at the simplest level, a set of instructions for a machine to execute in order that the 
machine performs some useful task (though in some cases the actual usefulness is 
dubious). The complexity and the variety of the tasks to which we want to put our 
machines are increasing astonishingly quickly, thus it becomes more and more 
essential for us to be able to understand, predict and communicate about the programs 
that are written; hence the use of models. 

Models, in the sense of the Unified Modelling Language (UML) [1, 2], have 
evolved as the non-mathematician, software engineer’s tool for facilitating 
communication and analysis of the complex programs that they build. A huge part of 
the modelling languages developed for this purpose focus on the structural elements 
of the program rather than the behaviour, which after all is the main purpose of the 
program. This split between structure and behaviour, is in itself a very interesting 
topic for discussion, however, although we may touch on it in this paper it is not the 
primary focus. 

Techniques and languages for modelling software have changed over the years to 
reflect the programming languages in common use. Early modelling approaches of 
flow charts, structure diagrams, data flow modelling, have been replaced with the 
current favoured approach of Object-Oriented modelling. Although the UML consists 
of multiple different modelling languages with different modelling features for 
example: state based modelling, component based modelling, and activity flow based 
modelling. The core and most widely accepted and used part of the UML is the 
humble Class Diagram. This diagram type is fundamentally based on the notions of 
object-orientation: composition, abstraction, inheritance, modularity, polymorphism 
and encapsulation. 

The UML Class Diagram language arose towards the end of the 1990’s, as a result 
of the coming together of (initially) three different languages that had been separately 
developed for a very similar purpose. Booch’s development focussed approach 
(Booch method) closely related to OO programming; Rumbaugh’s Object Modelling 



Technique (OMT) coming from the Relational Database world; and Jacobson’s Use 
Case based approach, OOSE. 

The primary case study carried out and published as part of the definition of the 
“new” Unified Modelling Language was the definition of itself! Thus right from the 
very start, the UML (predominantly class diagrams) has been used as a language to 
model languages. Such a model of a language has come to be known as a metamodel 
(a model of a model). 

The use of UML as a means to model languages has been part of the fuel for the 
recent advances in the OO modelling community, and in particular Model Driven 
Development (MDD [3-5]) research, which has inspired a new interest in language 
specification. This new interest comes under the title of Domain Specific Languages 
(DSL [6-10]). As a result, numerous languages are being defined, and in particular, 
numerous metamodels for those languages. 

Prior to UML alternative (traditional) modelling techniques were employed to 
significant effect in order to define languages. Set theory, logic, and other branches of 
mathematics were used to give precise and formal definitions of languages including 
their semantics. These languages were predominantly text based and Backaus-Naur-
Form (BNF) is used to define the language syntax. It is useful at this point to note a 
significant difference, to a language specification reader, between a BNF grammar 
and a UML class diagram. In BNF, the syntax is presented in an entirely text based 
format and although complete and theoretically fit for purpose, it presents a possible 
conceptual barrier to the ease of understanding for a typical human reader. Further, 
BNF is overly specific regarding the nature of the syntax whereas the graphical based 
format of UML primarily introduces the abstract concepts in an easily accessible and 
pictorial manner. Recent works such as [11, 12] explore the relationships between 
BNF based definitions of syntax and metamodels. 

Mathematical modelling of algorithms has evolved to a very high degree. 
Denotational semantics [13, 14] allows a detailed analysis of algorithms to be made 
and conclusions to be drawn regarding their behaviour and efficiency. However, the 
very mathematical nature of Denotational Semantics makes it highly inaccessible to 
traditional programmers and therefore its practical uptake has been limited. 
Alternatively, many practical logics have been developed for specific problem 
domains and theorem proving tools designed [15-17] to help verify and validate 
software systems. Again however problems associated with the complexity of such 
systems has limited their practical employment and in some cases has actively 
hindered the verification process due to errors introduced by human operators within 
the program validation stage [18]. 

The primary aim of the paper is to investigate the use of the graphical Object-
Oriented approach of metamodelling in contrast to traditional approaches for the 
specification of languages. It seeks to compare the practical issues related to clear and 
precise modelling offered by the mathematical techniques with the human 
accessibility and, by implication, practical utility, offered by the graphical approach. 
To achieve this aim, three contrasting examples are discussed in the following 
sections. Section 2 introduces the simplistic nation of a Directed Graph. Subsequently 
section 3 enhances the discussion to Petri-Nets and Section 4 addresses a significantly 
different example in the form of the Lambda Calculus. The paper then draws 
conclusions based on the relative merits of the proposals in Section 5. 



2 Modelling Directed Graphs 
One of the most common structures used in both mathematics and computing is 

that of a directed graph. A graph G=(N,E) is a pair of sets; N is a finite set of nodes or 
vertices and E is a set of pairs of elements of N. In depiction of graphs, nodes are 
points in some space and edges form connections from one node to another. 

A very simple mathematical model of such a graph is shown in Table 1. This 
specifies the concept of a directed graph as a pair of sets. One set being a set of 
nodes, which for simplicity are represented by integers. The other set, representing the 
edges in the graph, is a set of pairs (tuples); each of the pairs containing two integers 
representing the nodes which are connected by the edge.  
G = (N, E) 
N ⊆ { n | n ∈ Z }  // where N is finite 
E ⊆ { (n1,n2) | n1,n2 ∈ N } 

Table 1 Mathematical Model of a Directed Graph 

To model the same kind of structure using OO modelling, Class Diagrams, we 
would typically define classes DirectedGraph, Node and Edge, and then define 
associations between the classes that indicate the relationships between nodes and 
edges and the graph as a whole. This is illustrated in the simplest form by Figure 1. 

DirectedGraph 

Node Edge 
start 
[1] 

[*]     nodes 

label : Integer 

[*]    edges 

finish 
[1]  

Figure 1 Typical OO Model of a Directed Graph 

Interestingly, even with this simple graph structure, there are significant 
differences between the mathematical and OO forms of model. If we interpret each 
class in the typical OO programming context, then there is an implicit property of 
each class/object (equitable to the memory location of the object representation) that 
defines the objects identity. In the case of the Node class, a ‘label’ property has been 
given, but there is nothing in the model that specifies that this property defines the 
identity of Node objects. 

In the mathematics, the identity of the nodes (N) are made explicit by defining a 
node as an integer; however, neither graph (G) nor edge (E) have an explicit identity 
other than the implicit identity of the tuple and set on which they are defined. 

With respect to the OO model the question arises as to whether two edge objects 
that refer to the same two nodes are a single edge or two separate edges. In the 
mathematics, the definitions of identity for tuples clearly indicates that, not only are 
two pairs of the same two nodes, the same edge, but that a graph cannot have two 
edges between the same two nodes (something can only appear once in a set.) 

Another difference is that the mathematical model specifies that the two ends of an 
edge are members of the set of nodes. The OO model does not make this restriction; 



the edges in this model may be node objects that do not appear in the set of nodes for 
the graph. 

So is our mathematical model wrong, or is it the OO model that is incorrect? 
Neither, they just happen to model two different structures. A mathematical model of 
the same structure as defined by the OO model of Figure 1 is shown in Table 2. 
Graph = (id, nodes, edges ) 
    id ∈ Z 
    nodes ⊆ { (id, label) | id, label ∈ Z } 
    edges ⊆ { (id, n1, n2) | id ∈ Z, n1 ∈ Node, n2 ∈ Node } 

Table 2 Mathematical version of OO Model of a Directed Graph 

In this structure we have explicit modelled the ‘memory location’ identity as an 
Integer, and we define edges to reference two elements of the set of all Node objects 
as opposed to two elements from the set of nodes in the graph. 

An OO model that provides a slightly better match to the original mathematical 
definition from Table 1 is illustrated in Figure 2. 

start 
[1] 

DirectedGraph 

Integer 

[*]     nodes 

Edge 

finish 
[1] 

[*]    edges 

 
Figure 2 Another OO Model of a Directed Graph 

This second OO model directly models the nodes of a graph as a set of integers. 
However, using this simple class diagram language, there is no way to provide a 
completely equivalent model: 

1. We have no means to define the identity of classes/objects. In the case of 
an Integer, one has to assume that its value is its identity, but for the 
Graph and Edge classes, there is the implicit notion of ‘memory location’ 
identity which we have no means to override. Ideally we would define the 
identity of an edge as being equivalent to the set of its ends. 

2. We also have no way to define that the ends of an edge must be a subset 
of the nodes in the graph. 

To enable the precision of specification easily achieved with the mathematical 
approach, we must add a means for defining/overriding the identity of objects and a 
way to add constraints. 

Both of these things have been addressed (to an extent) by the designers of the 
UML. Additional constraints can be added to a model using the OCL, and there is a 
basic mechanism for defining that certain properties of a class define its identity1. 
Using this extended language of class diagrams we can now give an equivalent 

                                                           
1 We extend the official UML facility slightly, allowing us to mark multiple properties as 

jointly defining an object’s identity and allowing those properties to be association ends as 
well as attributes. 



structural specification of our original mathematical definition of a graph, shown in 
Figure 3. 

DirectedGraph 

Integer 
[*]     nodes [*]    edges 

nodes->includesAll( 
     edges.start.union(edges.finish) ) 

start {id} 
[1] Edge 

finish {id} 
[1]  

Figure 3 OO version of Mathematical model of a Directed Graph 

This OO model of a directed graph is a much more precise specification. However, 
even though it does match the mathematical definition, it seems somewhat clumsy 
with the need for the additional constraint. Also the use of the Integer class directly 
for modelling nodes does not seem quite like the OO approach to modelling. 

If we make use of bi-directional associations and extend the use the UML 2.0 
notion of subsetting2 we can construct a new model as illustrated in Figure 4. In this 
model: 

• Node objects are identified by their label – the label property is marked as an 
identifying property. 

• Edges are identified by the nodes they connect – the start and finish properties 
are marked as identifying 

• The ends of an edge are constrained to be nodes in the same graph – the start 
and finish properties are constrained to be subsets of the nodes in the graph.  

In addition the model provides bi-directional navigation between Node objects and 
the edges that connect them, which although non-essential is likely to be very useful. 

start {subsets graph.nodes } 
[1] 

DirectedGraph 

Node Edge 

[*]     nodes 

label : Integer {id} 

[*]    edges 

finish {subsets graph.nodes } 
[1] 

graph 
[1] 

graph 
[1] 

outgoing 
[*] 

incoming 
[*] 

 
Figure 4 Better OO model of Directed Graph 

This final OO model of directed graphs is, in our opinion, by far the most effective 
model. The initial OO model, although simple and intuitive, was not precisely correct. 
By looking at the traditional mathematical model it becomes apparent that the notion 

                                                           
2 Officially, association ends should only subset other associations ends with the same source 

object. 



if identity is important, as is a mechanism for constraining the ends of edge objects to 
be part of the same graph as the edge itself. 

There are mechanisms designed into the UML language of class diagrams that 
nearly enable us to model as precisely as the traditional maths, however these notions 
are not quite sufficient, and more importantly are seen as ‘additions’ to an OO model 
rather than primary things to consider. 

This example has looked solely at models of structure (a graph has no behaviour). 
In the next two sections we look at modelling more complex structures (languages) 
and at specifying some aspects of the semantic behaviour implied by those structures. 

3 Petri-Nets 
A more interesting example than simple graphs is that of Petri-nets [19].  A Petri-

net is directed, weighted, bipartite graph, together with an initial state called the initial 
marking, M0. Petri-net graphs consist of two types of nodes, called places and 
transitions, whereas edges are either from places to transitions or from transitions to 
places. If there is an arc from a place p to a transition t, we say p is an input place of t, 
and t is an output transition of p.  Places are depicted as circles and transitions as 
rectangles. Arcs are labelled with positive integers, called weight. A marking of a 
Petri-net assigns a non-negative number, known as the number of tokens, to each 
place. A marking M is in effect an integer valued vector of dimension m, where m is 
the number of places. Hence, each coordinate of M denotes the number of the number 
of tokens in the corresponding place. Table 3 presents a formal definition of a Petri-
net, taken from [19]. 

 
PN = (P, T, F, W, M0) 
P = {p1,p2…pm} is finite set of Places 
T = {t1,t2,…tn} is a finite set of transitions 
F  ⊆  (P×T) ∪ (T×P) is a set of arcs 
W: F → {1,2,3,…} is a weighting function 
M: P → {0,1,2, …} is a marking.  
M0 is the initial marking. 

Table 4 Mathematical definition of a Petrinet 

An OO model would be more likely to define Petri-nets as illustrated in Figure 5. 
A Petri-net being a containing class for Place, Transition and Arc objects. There being 
two kinds of Arc, Place->Transition Arcs and Transition->Place Arcs. The additional 
definition of Markings is as shown in Figure 6. 



PetriNet 

Place Transition 

src  [1]   {subsets net.places} 

[*]  
places 

[*]    transitions 

PTArc 
TPArc 

dst [1] 
{subsets net.transitions} 

Arc 

[*]     arcs 

Transition Place 

{subsets net.transitions} [1] src 

dst [1]   {subsets net.places} 

weight : Integer 

net 
[1] 

net 
[1] 

net  [1] 

 
Figure 5 OO (Meta) Model of Petri-Nets 

As with the directed graph definition, it is necessary to augment the class diagram 
with additional constraints, which in the mathematical model are unnecessary. In this 
case the constraints ensure that the ends of the arcs are members of the sets of places 
and transitions in the pertri-net. 

The other major difference between these two specifications is the explicit 
definition of types for Arcs in the OO model, which in the maths specification are 
defined jointly as the union of tuples (place,transition) and (transition,place). 

3.1 Semantics 
With the definition of a language, in this case Petri-nets, we can go a step further 

than we did with the graph model. The runtime semantics of Petri nets are defined 
using the traditional mathematical specification approach. In the OO modelling world 
this is less often defined; however, it is perfectly feasible to do so, using the standard 
UML/OCL language facilities. 

Semantics of a Petri net can be interpreted as a labelled transition system, in which 
each state of the Petri is a marking of the Petri net. Change of one state of a Petri net 
to another state is governed by the firing rules:       

1) A transition t is called enabled if for each of its input places p has at least 
w(p,t) tokens, where w(p,t)  is the weight of the arc from p to t.    

2) An enabled transition t may fire, in which case w(p , t) tokens are removed 
from each input place p of the transition t  and w(t , p’) tokens are added to 
the each output place p’ of t.   

Firing of an enabled transition t under a marking M resulting in new marking M’ is 
denoted by M [t> M’.  A Reachable marking (state) of a Petri net is a marking Mk  



such that there are marking M1, M2, …, MK+1 and transition t1, t2, …, tk satisfying the 
following 

 
M0 [t1> M1 [t2>  M2 [t3> … [t K+1> MK+1 [t K> MK

 
In this case the sequence of transitions t1 t2 …tk  is called a run. 

To add this semantics to the OO model of Petri-nets we can define operations on 
the classes that provide the firing behaviour, the body of the operations can be given 
using OCL expressions3. To facilitate more concise OCL expressions, we would also 
adapt the OO model making more use of bi-directional associations. Figure 6 shows 
an evolved specification of the model from Figure 5, including the specification of 
Markings and use of bi-directional associations. (The constraints have been left out 
for clarity.) 

PetriNet 

Place 

Transition 

incoming 
[*] 

[*]     places 

[*]    transitions 

PTArc 

TPArc 

dst dst 

src 

Marking 

Mark 

tokens : Integer 

initialMarking 

[*]      

[*] 
outgoing 

[*]  outgoing
incoming 
[*] 

src 
fire(c:Marking):Marking 
isEnabled(c:Marking):Boolean 

 
Figure 6 OO (Meta) Model of PetrNets 

Given this specification of the model of a Petri-net, we can define the behaviour of 
the operations as shown in Table 5. 
context Transition::isEnabled(current:Marking) : Boolean 
body: incoming->forAll( arc | 
        let mark = current.mark->any(m|m.place=arc.src) in 
        mark.tokens >= arc.weight 
      ) 

context Transition::fire(current:Marking) : Marking 
body: let 
  unaffected = current.mark->reject( m | 
                 incoming.src->union(outgoing.dst)->includes(m.place) ), 
  lost = incoming.src->collect( arc | 
                 let mark = current.mark->any(m|m.place=arc.src) in 
                 Mark { place = arc.src, 
                        tokens = mark.tokens-arc.weight } ), 
  gained = outgoing.dst->collect( arc | 
                 let mark = current.mark->any(m|m.place=arc.src) in 

                                                           
3 We find it necessary to use an extension of OCL that allows us to create instances of user 

model objects. Creation of such objects is similar to the creation of tuples in standard OCL. 



                 Mark { place = arc.dst, 
                        tokens = mark.tokens+arc.weight } ), 
in 
 Marking { 
   mark = unaffected.union(lost).union(gained) 
 } 

Table 5 Definitions for Petri-net behaviour 

Using these definitions we could define further operations that would simulate 
execution of the Petri-net, or search the reachable Markings. One could even go so far 
as to build various model-checking operations. 

It can be seen from these specifications that a graphical OO definition of the 
language can be as precise as the more traditional definition. It is also possible, using 
the OO approach, to define operations that aid the semantic interpretation of the 
language. 

One distinct advantage of the OO definition, over the traditional, is that the MDD 
and code generation techniques ([20, 21]) enable this definition of the language to be 
used to automatically produce an executable version of the model that can be used as 
a first cut evaluator for the language. 

Another, more subjective, observation is that the graphical specification of the 
concepts of Place, Transition and Arcs conveys more information to the reader about 
the structure of expressions in the language than does the text based more traditional 
specification. 

4 Untyped Lambda Calculus 
The third example we will look at is one of the fundamental languages of computer 

science - lambda calculus. The definition of this language (taken from [22]) is given 
as a grammar shown in Table 6. The definition of this language differs from the 
previous two examples, in that the language definition is given using its syntax, in 
BNF, rather than being a set theory based definition. 

expr = ID 
     | 'λ' ID '.' expr 
     | expr expr 
     ; 

Table 6 Grammar for Lambda Calculus 

Further definition of the language is then given using text definitions and 
illustrated by examples. The semantic of the language are given by defining the 
notions of substitution (α-conversion) and β-reduction. These definitions are shown 
in Table 7, taken directly from [22]. 
The substitution of f for the free occurrences of x in e, written e[f/x] is defined thus. 

• x[f/x] ≠df f and for a variable y Î x, y[f/x] ≠df y 
• For applications, we substitute the two parts: 

(e1 e2)[t/x] ≠df (e1[t/x] e2[t/x]) 
• If e ≠ λx.g then e[f/x] ≠df e. If y is a variable distinct from x, and e ≠ λy.g then 

- if y does not appear free in f, e[f/x] ≠df λy.g[f/x]. 



- if y does appear free in f, e[f/x] ≠df λz.(g[z/y][f/x]) 
• In general, it is easy to see that if x is not free in e then e[f/x] is e. 

The rule of  β-reduction states that, for all x, e and f, we can reduce a function 
application by substituting the argument for the bound variable 

• (λx.e) f  fβ e[f/x] 
And if e fβ e' then  

• (f e) fβ (f e') 
• (e g) fβ (e' g) 
• λy.e fβ λy.e' 

Table 7 Definitions of substitution and reduction 

Using OO modelling techniques we can provide equivalent definitions, but using a 
metamodel of the lambda calculus concepts, and OCL to define the substitution and 
reduction functions. A mapping can be given from a concrete syntax to the 
metamodel, but the details of this are not in the scope of this paper. A metamodel for 
the Lambda calculus is given in Figure 7. It shows an abstract Expr type which is 
realised by the three kinds of expression that can be formed, a function Application, a 
Variable, and a function Abstraction. 
 

 

name : String{id} 

Expr 

Variable Abstraction 

expr [1] 

param [1] 

Application 

hasFree(v:Variable) : Boolean 
substitute(v:Variable,w:Expr) : Expr 
reduce() : Expr 
createVariable() : Variable 
 

[0..1] 

 

arg [1] 

func [1] 

Figure 7 OO (Meta) Model of Lambda Calculus 

Based on this metamodel, the notion of substitution can be defined as an operation 
that returns a new Expr. The behaviour of such an operation needs to be defined on 
each kind of expression and these definitions are given in Table 8. 
context Variable::hasFree(v:Variable) : Boolean 
body: self==v 

context Application::hasFree(v:Variable) : Boolean 
body: func.hasFree(v) and arg.hasFree(v) 

context Abstraction::hasFree(v:Variable) : Boolean 
body: param <> v and expr.isFree(v) 



context Variable::substitute(v:Variable, w:Expr) : Expr 
body: if self==v then w else self endif 

context Application::substitute(v:Variable, w:Expr) : Expr 
body: Application { func = func.substitute(v,w), 
                    arg = arg.substitute(v,w) } 

context Abstraction::substitute(v:Variable, w:Expr) : Expr 
body: if w.hasFree(param) then 
        let z = createVariable() in 
        Abstraction { param = z, 
                      expr  = expr.substitute(param,z).substitute(v,w) } 
      else 
        Abstraction { param = param, 
                      expr  = expr.substitute(v,w) } 
      endif 

Table 8 OCL Definitions for substitution (α-conversion) 

Reduction is the expansion of a function application, substituting the argument for 
the function parameter. This also can be defined by operations on the Expr sub-
classes, as shown in Table 9. 
context Variable::reduce() : Expr 
body: self 

context Abstraction::reduce() : Expr 
body: self 

context Application::reduce() : Expr 
body: if func.oclIsKindOf(Abstraction) then 
           func.substitute(func.oclAsType(Abstraction).param,arg) 
      else 
         self 
      endif 

Table 9 OCL Definition for β-reduction 

Further concepts such as equivalence, normalization or η-reduction can be defined 
as additional operations that make use of the reduction and substitution functions. It is 
interesting to note that the addition of a transitive closure operation within OCL 
would ease the definition of some of these additional operations. 

It is of course a very subjective issue as to whether the traditional BNF based 
specification of this language is better or worse than the OO version. Your preference 
as a reader of the definition probably depends largely on your background and 
previous experience of specifications. However, as is the case with the Petri-net 
example, this definition can be used to generate an executable model of the language. 
It is also interesting to see the difference between basing the language definition on 
the syntax or the concepts. The traditional approach defines the syntax of the 
language and uses this on which to base the definition of the semantic functions. In 
contrast the metamodel defines only the concepts of the language (potentially 
enabling multiple syntaxes), but still provides precise definition of the semantic 
substitute and reduction functions. 

5 Conclusion 
The paper has employed Object-Oriented graphical specification techniques to 

model three separate well-known languages or data structures. These examples are 



initially specified using traditional mathematical techniques and it has been shown 
that these may equally well be expressed using the O-O graphical methods. Further, 
the paper has sought to demonstrate the increased ease of comprehension of the O-O 
graphical techniques by contrasting the two alternative specification techniques. 

The major observations may be summarised as follows:-. 
• It is surprising that OO modelling seems to have forgotten the importance 

of identity. Notions of identity, naturally assumed in mathematical 
specifications are not the same as the default notions in OO models. 
Relational modelling, itself an ancestor of UML, in contrast, makes this 
importance clear via primary keys. 

• An important advantage of the OO graphical approach may be deduced by 
the assumption that mental pictures will be created by a reader when 
digesting a specification. When reading mathematical or text based 
specifications, the mental picture is constructed by the reader. In contrast, 
by explicitly giving the picture as part of the specification (class diagram) 
this helps the specification writer ensure that his own mental picture is 
better communicated to the reader. This significantly improves the ability 
to mentally communicate and/or interpret the abstract concepts involved. 

• By modelling languages using class diagrams we gain the added 
advantage of being able to automatically generate tool support for the 
newly created language. The Model Driven Development (MDD) and 
code generation techniques developed for aiding rapid development of 
general software systems can be readily employed as part of the Domain 
Specific Languages (DSL) or grammarware engineering [23] discipline 
supporting the rapid development of tools to support new or new versions 
of a language. Such support is not generally available if given a 
specification in a traditional mathematical formalism, other than perhaps 
that given by compiler compilers. 

• OO Modelling gives a more complex set of basic concepts for producing 
models, whereas mathematics uses a much simpler set. For example, 
notions of extensibility in OO techniques are not generally primitive 
concepts in traditional specification techniques. Due to the simplicity of 
the primitives used within the mathematical models, the expressions tend 
to be more precise and unambiguous.  

• Ironically, the ease of comprehension possessed by OO graphical 
techniques means that a human reader is likely to infer fewer ambiguities 
in this presentational style than would be the case for the mathematical 
techniques, even though the mathematical techniques will actually contain 
fewer ambiguities. 

Metamodelling is a practical engineering approach to modelling a language whose 
primary goal is to aid the designer in producing a working solution to a problem. In 
contrast, the mathematical approach is primarily driven by the need for precision and 
accuracy rather than practical utility. Although metamodelling can be as precise as a 
mathematical approach, some of the underlying concepts do not encourage this 
precision.    

So, is metamodelling reinventing the wheel? Yes, but the wheel is a different 
colour! Specifically, many of the same concepts are available but their utility is 



improved by the improved accessibility of the concepts concerned. I.e. this colour of 
wheel is easier on the eye!  
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