
Maths vs (Meta)Modelling :
Are we reinventing the Wheel?

D.H.Akehurst1, W.G.J.Howells1, B.Bordbar2, K.D.Mcdonald-Maier3

1University of Kent, Canterbury, UK
{D.H.Akehurst, W.G.J.Howells}@kent.ac.uk

http://www.kent.ac.uk
2University of Birmingham, UK
B.Bordbar@cs.bham.ac.uk

http://www.cs.bham.ac.uk
3University of Essex, UK
kdm@essex.ac.uk

http://www.cs.essex.ac.uk

Abstract. In the past, specification of languages and data structures has
traditionally been formally achieved using mathematical notations. This is very
precise and unambiguous, however it does not map easily to modern
programming languages and many engineers are put off by mathematical
notation. Recent developments in graphical specification of structures, drawing
from Object-Oriented programming languages, has lead to the development of
Class Diagrams as a well-used means to define data structures. We show in this
paper that there are strong parallels between the two techniques, but that also
there are some surprising differences!

1 Introduction

Computer Science originally

evolved as a branch of mathematics. It
could well be argued that maybe it
should always have stayed a branch of
mathematics because then our
programs would be ‘proved’ to work
before being executed. However, the
set of programs for which we can
‘prove’ things is much smaller than
the set of programs that we actually
want to write, and more importantly,
smaller than the set we want to use.

If mathematics were the language of programming, either there would be a much
larger number of mathematicians in the world or computers and software would
simply not have permeated our culture as much as they have. The traditional
mathematical approach to writing algorithms is declarative, whereas the typical
programming approach is imperative. This, in our opinion, is one of the most
significant differences between mathematics and programming. A consequence of this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74369248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

difference is an increase in the semantic complexity in traditional programming
languages compared to the semantic simplicity of declarative languages.

The complexity of the programs we write naturally leads us to the need for
modelling. Modelling is an old discipline, possibly as old as engineering in general.
The actual age of modelling is dependant on what one takes as the definition of
modelling. Physical sculpture as modelling is pre-historic, mankind has be fashioning
models of things in the real world for as far back in his history as he can look.

 Modelling as an engineering discipline is also a significantly old discipline; any
engineering project involves construction of a model, for small projects this may only
be a ‘mental model’ but for any project of significant size or complexity, especially if
it involves multiple engineers, a more concrete, real world, model is created in order
to aid communication and exploration of the problems and specification of the final
product. Models strive to efficiently communicate the important abstract properties of
the problem being modelled.

Mathematics has traditionally been used as a tool for constructing such models.
Mathematical models of the stock market, of the weather system, of the forces
involved in sending a rocket to the moon, they are all essential to mankind’s
understanding and ability to interact with, build, or predict things about, the
environment in which he lives. Programming, on the other hand, is simply a tool. It is,
at the simplest level, a set of instructions for a machine to execute in order that the
machine performs some useful task (though in some cases the actual usefulness is
dubious). The complexity and the variety of the tasks to which we want to put our
machines are increasing astonishingly quickly, thus it becomes more and more
essential for us to be able to understand, predict and communicate about the programs
that are written; hence the use of models.

Models, in the sense of the Unified Modelling Language (UML) [1, 2], have
evolved as the non-mathematician, software engineer’s tool for facilitating
communication and analysis of the complex programs that they build. A huge part of
the modelling languages developed for this purpose focus on the structural elements
of the program rather than the behaviour, which after all is the main purpose of the
program. This split between structure and behaviour, is in itself a very interesting
topic for discussion, however, although we may touch on it in this paper it is not the
primary focus.

Techniques and languages for modelling software have changed over the years to
reflect the programming languages in common use. Early modelling approaches of
flow charts, structure diagrams, data flow modelling, have been replaced with the
current favoured approach of Object-Oriented modelling. Although the UML consists
of multiple different modelling languages with different modelling features for
example: state based modelling, component based modelling, and activity flow based
modelling. The core and most widely accepted and used part of the UML is the
humble Class Diagram. This diagram type is fundamentally based on the notions of
object-orientation: composition, abstraction, inheritance, modularity, polymorphism
and encapsulation.

The UML Class Diagram language arose towards the end of the 1990’s, as a result
of the coming together of (initially) three different languages that had been separately
developed for a very similar purpose. Booch’s development focussed approach
(Booch method) closely related to OO programming; Rumbaugh’s Object Modelling

Technique (OMT) coming from the Relational Database world; and Jacobson’s Use
Case based approach, OOSE.

The primary case study carried out and published as part of the definition of the
“new” Unified Modelling Language was the definition of itself! Thus right from the
very start, the UML (predominantly class diagrams) has been used as a language to
model languages. Such a model of a language has come to be known as a metamodel
(a model of a model).

The use of UML as a means to model languages has been part of the fuel for the
recent advances in the OO modelling community, and in particular Model Driven
Development (MDD [3-5]) research, which has inspired a new interest in language
specification. This new interest comes under the title of Domain Specific Languages
(DSL [6-10]). As a result, numerous languages are being defined, and in particular,
numerous metamodels for those languages.

Prior to UML alternative (traditional) modelling techniques were employed to
significant effect in order to define languages. Set theory, logic, and other branches of
mathematics were used to give precise and formal definitions of languages including
their semantics. These languages were predominantly text based and Backaus-Naur-
Form (BNF) is used to define the language syntax. It is useful at this point to note a
significant difference, to a language specification reader, between a BNF grammar
and a UML class diagram. In BNF, the syntax is presented in an entirely text based
format and although complete and theoretically fit for purpose, it presents a possible
conceptual barrier to the ease of understanding for a typical human reader. Further,
BNF is overly specific regarding the nature of the syntax whereas the graphical based
format of UML primarily introduces the abstract concepts in an easily accessible and
pictorial manner. Recent works such as [11, 12] explore the relationships between
BNF based definitions of syntax and metamodels.

Mathematical modelling of algorithms has evolved to a very high degree.
Denotational semantics [13, 14] allows a detailed analysis of algorithms to be made
and conclusions to be drawn regarding their behaviour and efficiency. However, the
very mathematical nature of Denotational Semantics makes it highly inaccessible to
traditional programmers and therefore its practical uptake has been limited.
Alternatively, many practical logics have been developed for specific problem
domains and theorem proving tools designed [15-17] to help verify and validate
software systems. Again however problems associated with the complexity of such
systems has limited their practical employment and in some cases has actively
hindered the verification process due to errors introduced by human operators within
the program validation stage [18].

The primary aim of the paper is to investigate the use of the graphical Object-
Oriented approach of metamodelling in contrast to traditional approaches for the
specification of languages. It seeks to compare the practical issues related to clear and
precise modelling offered by the mathematical techniques with the human
accessibility and, by implication, practical utility, offered by the graphical approach.
To achieve this aim, three contrasting examples are discussed in the following
sections. Section 2 introduces the simplistic nation of a Directed Graph. Subsequently
section 3 enhances the discussion to Petri-Nets and Section 4 addresses a significantly
different example in the form of the Lambda Calculus. The paper then draws
conclusions based on the relative merits of the proposals in Section 5.

2 Modelling Directed Graphs
One of the most common structures used in both mathematics and computing is

that of a directed graph. A graph G=(N,E) is a pair of sets; N is a finite set of nodes or
vertices and E is a set of pairs of elements of N. In depiction of graphs, nodes are
points in some space and edges form connections from one node to another.

A very simple mathematical model of such a graph is shown in Table 1. This
specifies the concept of a directed graph as a pair of sets. One set being a set of
nodes, which for simplicity are represented by integers. The other set, representing the
edges in the graph, is a set of pairs (tuples); each of the pairs containing two integers
representing the nodes which are connected by the edge.
G = (N, E)
N ⊆ { n | n ∈ Z } // where N is finite
E ⊆ { (n1,n2) | n1,n2 ∈ N }

Table 1 Mathematical Model of a Directed Graph

To model the same kind of structure using OO modelling, Class Diagrams, we
would typically define classes DirectedGraph, Node and Edge, and then define
associations between the classes that indicate the relationships between nodes and
edges and the graph as a whole. This is illustrated in the simplest form by Figure 1.

DirectedGraph

Node Edge
start
[1]

[*] nodes

label : Integer

[*] edges

finish
[1]

Figure 1 Typical OO Model of a Directed Graph

Interestingly, even with this simple graph structure, there are significant
differences between the mathematical and OO forms of model. If we interpret each
class in the typical OO programming context, then there is an implicit property of
each class/object (equitable to the memory location of the object representation) that
defines the objects identity. In the case of the Node class, a ‘label’ property has been
given, but there is nothing in the model that specifies that this property defines the
identity of Node objects.

In the mathematics, the identity of the nodes (N) are made explicit by defining a
node as an integer; however, neither graph (G) nor edge (E) have an explicit identity
other than the implicit identity of the tuple and set on which they are defined.

With respect to the OO model the question arises as to whether two edge objects
that refer to the same two nodes are a single edge or two separate edges. In the
mathematics, the definitions of identity for tuples clearly indicates that, not only are
two pairs of the same two nodes, the same edge, but that a graph cannot have two
edges between the same two nodes (something can only appear once in a set.)

Another difference is that the mathematical model specifies that the two ends of an
edge are members of the set of nodes. The OO model does not make this restriction;

the edges in this model may be node objects that do not appear in the set of nodes for
the graph.

So is our mathematical model wrong, or is it the OO model that is incorrect?
Neither, they just happen to model two different structures. A mathematical model of
the same structure as defined by the OO model of Figure 1 is shown in Table 2.
Graph = (id, nodes, edges)
 id ∈ Z
 nodes ⊆ { (id, label) | id, label ∈ Z }
 edges ⊆ { (id, n1, n2) | id ∈ Z, n1 ∈ Node, n2 ∈ Node }

Table 2 Mathematical version of OO Model of a Directed Graph

In this structure we have explicit modelled the ‘memory location’ identity as an
Integer, and we define edges to reference two elements of the set of all Node objects
as opposed to two elements from the set of nodes in the graph.

An OO model that provides a slightly better match to the original mathematical
definition from Table 1 is illustrated in Figure 2.

start
[1]

DirectedGraph

Integer

[*] nodes

Edge

finish
[1]

[*] edges

Figure 2 Another OO Model of a Directed Graph

This second OO model directly models the nodes of a graph as a set of integers.
However, using this simple class diagram language, there is no way to provide a
completely equivalent model:

1. We have no means to define the identity of classes/objects. In the case of
an Integer, one has to assume that its value is its identity, but for the
Graph and Edge classes, there is the implicit notion of ‘memory location’
identity which we have no means to override. Ideally we would define the
identity of an edge as being equivalent to the set of its ends.

2. We also have no way to define that the ends of an edge must be a subset
of the nodes in the graph.

To enable the precision of specification easily achieved with the mathematical
approach, we must add a means for defining/overriding the identity of objects and a
way to add constraints.

Both of these things have been addressed (to an extent) by the designers of the
UML. Additional constraints can be added to a model using the OCL, and there is a
basic mechanism for defining that certain properties of a class define its identity1.
Using this extended language of class diagrams we can now give an equivalent

1 We extend the official UML facility slightly, allowing us to mark multiple properties as

jointly defining an object’s identity and allowing those properties to be association ends as
well as attributes.

structural specification of our original mathematical definition of a graph, shown in
Figure 3.

DirectedGraph

Integer
[*] nodes [*] edges

nodes->includesAll(
 edges.start.union(edges.finish))

start {id}
[1] Edge

finish {id}
[1]

Figure 3 OO version of Mathematical model of a Directed Graph

This OO model of a directed graph is a much more precise specification. However,
even though it does match the mathematical definition, it seems somewhat clumsy
with the need for the additional constraint. Also the use of the Integer class directly
for modelling nodes does not seem quite like the OO approach to modelling.

If we make use of bi-directional associations and extend the use the UML 2.0
notion of subsetting2 we can construct a new model as illustrated in Figure 4. In this
model:

• Node objects are identified by their label – the label property is marked as an
identifying property.

• Edges are identified by the nodes they connect – the start and finish properties
are marked as identifying

• The ends of an edge are constrained to be nodes in the same graph – the start
and finish properties are constrained to be subsets of the nodes in the graph.

In addition the model provides bi-directional navigation between Node objects and
the edges that connect them, which although non-essential is likely to be very useful.

start {subsets graph.nodes }
[1]

DirectedGraph

Node Edge

[*] nodes

label : Integer {id}

[*] edges

finish {subsets graph.nodes }
[1]

graph
[1]

graph
[1]

outgoing
[*]

incoming
[*]

Figure 4 Better OO model of Directed Graph

This final OO model of directed graphs is, in our opinion, by far the most effective
model. The initial OO model, although simple and intuitive, was not precisely correct.
By looking at the traditional mathematical model it becomes apparent that the notion

2 Officially, association ends should only subset other associations ends with the same source

object.

if identity is important, as is a mechanism for constraining the ends of edge objects to
be part of the same graph as the edge itself.

There are mechanisms designed into the UML language of class diagrams that
nearly enable us to model as precisely as the traditional maths, however these notions
are not quite sufficient, and more importantly are seen as ‘additions’ to an OO model
rather than primary things to consider.

This example has looked solely at models of structure (a graph has no behaviour).
In the next two sections we look at modelling more complex structures (languages)
and at specifying some aspects of the semantic behaviour implied by those structures.

3 Petri-Nets
A more interesting example than simple graphs is that of Petri-nets [19]. A Petri-

net is directed, weighted, bipartite graph, together with an initial state called the initial
marking, M0. Petri-net graphs consist of two types of nodes, called places and
transitions, whereas edges are either from places to transitions or from transitions to
places. If there is an arc from a place p to a transition t, we say p is an input place of t,
and t is an output transition of p. Places are depicted as circles and transitions as
rectangles. Arcs are labelled with positive integers, called weight. A marking of a
Petri-net assigns a non-negative number, known as the number of tokens, to each
place. A marking M is in effect an integer valued vector of dimension m, where m is
the number of places. Hence, each coordinate of M denotes the number of the number
of tokens in the corresponding place. Table 3 presents a formal definition of a Petri-
net, taken from [19].

PN = (P, T, F, W, M0)
P = {p1,p2…pm} is finite set of Places
T = {t1,t2,…tn} is a finite set of transitions
F ⊆ (P×T) ∪ (T×P) is a set of arcs
W: F → {1,2,3,…} is a weighting function
M: P → {0,1,2, …} is a marking.
M0 is the initial marking.

Table 4 Mathematical definition of a Petrinet

An OO model would be more likely to define Petri-nets as illustrated in Figure 5.
A Petri-net being a containing class for Place, Transition and Arc objects. There being
two kinds of Arc, Place->Transition Arcs and Transition->Place Arcs. The additional
definition of Markings is as shown in Figure 6.

PetriNet

Place Transition

src [1] {subsets net.places}

[*]
places

[*] transitions

PTArc
TPArc

dst [1]
{subsets net.transitions}

Arc

[*] arcs

Transition Place

{subsets net.transitions} [1] src

dst [1] {subsets net.places}

weight : Integer

net
[1]

net
[1]

net [1]

Figure 5 OO (Meta) Model of Petri-Nets

As with the directed graph definition, it is necessary to augment the class diagram
with additional constraints, which in the mathematical model are unnecessary. In this
case the constraints ensure that the ends of the arcs are members of the sets of places
and transitions in the pertri-net.

The other major difference between these two specifications is the explicit
definition of types for Arcs in the OO model, which in the maths specification are
defined jointly as the union of tuples (place,transition) and (transition,place).

3.1 Semantics
With the definition of a language, in this case Petri-nets, we can go a step further

than we did with the graph model. The runtime semantics of Petri nets are defined
using the traditional mathematical specification approach. In the OO modelling world
this is less often defined; however, it is perfectly feasible to do so, using the standard
UML/OCL language facilities.

Semantics of a Petri net can be interpreted as a labelled transition system, in which
each state of the Petri is a marking of the Petri net. Change of one state of a Petri net
to another state is governed by the firing rules:

1) A transition t is called enabled if for each of its input places p has at least
w(p,t) tokens, where w(p,t) is the weight of the arc from p to t.

2) An enabled transition t may fire, in which case w(p , t) tokens are removed
from each input place p of the transition t and w(t , p’) tokens are added to
the each output place p’ of t.

Firing of an enabled transition t under a marking M resulting in new marking M’ is
denoted by M [t> M’. A Reachable marking (state) of a Petri net is a marking Mk

such that there are marking M1, M2, …, MK+1 and transition t1, t2, …, tk satisfying the
following

M0 [t1> M1 [t2> M2 [t3> … [t K+1> MK+1 [t K> MK

In this case the sequence of transitions t1 t2 …tk is called a run.

To add this semantics to the OO model of Petri-nets we can define operations on
the classes that provide the firing behaviour, the body of the operations can be given
using OCL expressions3. To facilitate more concise OCL expressions, we would also
adapt the OO model making more use of bi-directional associations. Figure 6 shows
an evolved specification of the model from Figure 5, including the specification of
Markings and use of bi-directional associations. (The constraints have been left out
for clarity.)

PetriNet

Place

Transition

incoming
[*]

[*] places

[*] transitions

PTArc

TPArc

dst dst

src

Marking

Mark

tokens : Integer

initialMarking

[*]

[*]
outgoing

[*] outgoing
incoming
[*]

src
fire(c:Marking):Marking
isEnabled(c:Marking):Boolean

Figure 6 OO (Meta) Model of PetrNets

Given this specification of the model of a Petri-net, we can define the behaviour of
the operations as shown in Table 5.
context Transition::isEnabled(current:Marking) : Boolean
body: incoming->forAll(arc |
 let mark = current.mark->any(m|m.place=arc.src) in
 mark.tokens >= arc.weight
)

context Transition::fire(current:Marking) : Marking
body: let
 unaffected = current.mark->reject(m |
 incoming.src->union(outgoing.dst)->includes(m.place)),
 lost = incoming.src->collect(arc |
 let mark = current.mark->any(m|m.place=arc.src) in
 Mark { place = arc.src,
 tokens = mark.tokens-arc.weight }),
 gained = outgoing.dst->collect(arc |
 let mark = current.mark->any(m|m.place=arc.src) in

3 We find it necessary to use an extension of OCL that allows us to create instances of user

model objects. Creation of such objects is similar to the creation of tuples in standard OCL.

 Mark { place = arc.dst,
 tokens = mark.tokens+arc.weight }),
in
 Marking {
 mark = unaffected.union(lost).union(gained)
 }

Table 5 Definitions for Petri-net behaviour

Using these definitions we could define further operations that would simulate
execution of the Petri-net, or search the reachable Markings. One could even go so far
as to build various model-checking operations.

It can be seen from these specifications that a graphical OO definition of the
language can be as precise as the more traditional definition. It is also possible, using
the OO approach, to define operations that aid the semantic interpretation of the
language.

One distinct advantage of the OO definition, over the traditional, is that the MDD
and code generation techniques ([20, 21]) enable this definition of the language to be
used to automatically produce an executable version of the model that can be used as
a first cut evaluator for the language.

Another, more subjective, observation is that the graphical specification of the
concepts of Place, Transition and Arcs conveys more information to the reader about
the structure of expressions in the language than does the text based more traditional
specification.

4 Untyped Lambda Calculus
The third example we will look at is one of the fundamental languages of computer

science - lambda calculus. The definition of this language (taken from [22]) is given
as a grammar shown in Table 6. The definition of this language differs from the
previous two examples, in that the language definition is given using its syntax, in
BNF, rather than being a set theory based definition.

expr = ID
 | 'λ' ID '.' expr
 | expr expr
 ;

Table 6 Grammar for Lambda Calculus

Further definition of the language is then given using text definitions and
illustrated by examples. The semantic of the language are given by defining the
notions of substitution (α-conversion) and β-reduction. These definitions are shown
in Table 7, taken directly from [22].
The substitution of f for the free occurrences of x in e, written e[f/x] is defined thus.

• x[f/x] ≠df f and for a variable y Î x, y[f/x] ≠df y
• For applications, we substitute the two parts:

(e1 e2)[t/x] ≠df (e1[t/x] e2[t/x])
• If e ≠ λx.g then e[f/x] ≠df e. If y is a variable distinct from x, and e ≠ λy.g then

- if y does not appear free in f, e[f/x] ≠df λy.g[f/x].

- if y does appear free in f, e[f/x] ≠df λz.(g[z/y][f/x])
• In general, it is easy to see that if x is not free in e then e[f/x] is e.

The rule of β-reduction states that, for all x, e and f, we can reduce a function
application by substituting the argument for the bound variable

• (λx.e) f fβ e[f/x]
And if e fβ e' then

• (f e) fβ (f e')
• (e g) fβ (e' g)
• λy.e fβ λy.e'

Table 7 Definitions of substitution and reduction

Using OO modelling techniques we can provide equivalent definitions, but using a
metamodel of the lambda calculus concepts, and OCL to define the substitution and
reduction functions. A mapping can be given from a concrete syntax to the
metamodel, but the details of this are not in the scope of this paper. A metamodel for
the Lambda calculus is given in Figure 7. It shows an abstract Expr type which is
realised by the three kinds of expression that can be formed, a function Application, a
Variable, and a function Abstraction.

name : String{id}

Expr

Variable Abstraction

expr [1]

param [1]

Application

hasFree(v:Variable) : Boolean
substitute(v:Variable,w:Expr) : Expr
reduce() : Expr
createVariable() : Variable

[0..1]

arg [1]

func [1]

Figure 7 OO (Meta) Model of Lambda Calculus

Based on this metamodel, the notion of substitution can be defined as an operation
that returns a new Expr. The behaviour of such an operation needs to be defined on
each kind of expression and these definitions are given in Table 8.
context Variable::hasFree(v:Variable) : Boolean
body: self==v

context Application::hasFree(v:Variable) : Boolean
body: func.hasFree(v) and arg.hasFree(v)

context Abstraction::hasFree(v:Variable) : Boolean
body: param <> v and expr.isFree(v)

context Variable::substitute(v:Variable, w:Expr) : Expr
body: if self==v then w else self endif

context Application::substitute(v:Variable, w:Expr) : Expr
body: Application { func = func.substitute(v,w),
 arg = arg.substitute(v,w) }

context Abstraction::substitute(v:Variable, w:Expr) : Expr
body: if w.hasFree(param) then
 let z = createVariable() in
 Abstraction { param = z,
 expr = expr.substitute(param,z).substitute(v,w) }
 else
 Abstraction { param = param,
 expr = expr.substitute(v,w) }
 endif

Table 8 OCL Definitions for substitution (α-conversion)

Reduction is the expansion of a function application, substituting the argument for
the function parameter. This also can be defined by operations on the Expr sub-
classes, as shown in Table 9.
context Variable::reduce() : Expr
body: self

context Abstraction::reduce() : Expr
body: self

context Application::reduce() : Expr
body: if func.oclIsKindOf(Abstraction) then
 func.substitute(func.oclAsType(Abstraction).param,arg)
 else
 self
 endif

Table 9 OCL Definition for β-reduction

Further concepts such as equivalence, normalization or η-reduction can be defined
as additional operations that make use of the reduction and substitution functions. It is
interesting to note that the addition of a transitive closure operation within OCL
would ease the definition of some of these additional operations.

It is of course a very subjective issue as to whether the traditional BNF based
specification of this language is better or worse than the OO version. Your preference
as a reader of the definition probably depends largely on your background and
previous experience of specifications. However, as is the case with the Petri-net
example, this definition can be used to generate an executable model of the language.
It is also interesting to see the difference between basing the language definition on
the syntax or the concepts. The traditional approach defines the syntax of the
language and uses this on which to base the definition of the semantic functions. In
contrast the metamodel defines only the concepts of the language (potentially
enabling multiple syntaxes), but still provides precise definition of the semantic
substitute and reduction functions.

5 Conclusion
The paper has employed Object-Oriented graphical specification techniques to

model three separate well-known languages or data structures. These examples are

initially specified using traditional mathematical techniques and it has been shown
that these may equally well be expressed using the O-O graphical methods. Further,
the paper has sought to demonstrate the increased ease of comprehension of the O-O
graphical techniques by contrasting the two alternative specification techniques.

The major observations may be summarised as follows:-.
• It is surprising that OO modelling seems to have forgotten the importance

of identity. Notions of identity, naturally assumed in mathematical
specifications are not the same as the default notions in OO models.
Relational modelling, itself an ancestor of UML, in contrast, makes this
importance clear via primary keys.

• An important advantage of the OO graphical approach may be deduced by
the assumption that mental pictures will be created by a reader when
digesting a specification. When reading mathematical or text based
specifications, the mental picture is constructed by the reader. In contrast,
by explicitly giving the picture as part of the specification (class diagram)
this helps the specification writer ensure that his own mental picture is
better communicated to the reader. This significantly improves the ability
to mentally communicate and/or interpret the abstract concepts involved.

• By modelling languages using class diagrams we gain the added
advantage of being able to automatically generate tool support for the
newly created language. The Model Driven Development (MDD) and
code generation techniques developed for aiding rapid development of
general software systems can be readily employed as part of the Domain
Specific Languages (DSL) or grammarware engineering [23] discipline
supporting the rapid development of tools to support new or new versions
of a language. Such support is not generally available if given a
specification in a traditional mathematical formalism, other than perhaps
that given by compiler compilers.

• OO Modelling gives a more complex set of basic concepts for producing
models, whereas mathematics uses a much simpler set. For example,
notions of extensibility in OO techniques are not generally primitive
concepts in traditional specification techniques. Due to the simplicity of
the primitives used within the mathematical models, the expressions tend
to be more precise and unambiguous.

• Ironically, the ease of comprehension possessed by OO graphical
techniques means that a human reader is likely to infer fewer ambiguities
in this presentational style than would be the case for the mathematical
techniques, even though the mathematical techniques will actually contain
fewer ambiguities.

Metamodelling is a practical engineering approach to modelling a language whose
primary goal is to aid the designer in producing a working solution to a problem. In
contrast, the mathematical approach is primarily driven by the need for precision and
accuracy rather than practical utility. Although metamodelling can be as precise as a
mathematical approach, some of the underlying concepts do not encourage this
precision.

So, is metamodelling reinventing the wheel? Yes, but the wheel is a different
colour! Specifically, many of the same concepts are available but their utility is

improved by the improved accessibility of the concepts concerned. I.e. this colour of
wheel is easier on the eye!

References
[1] OMG, "UML 2.0 Infrastructure Specification," Object Management Group

ptc/03-09-15, September 2003 2003.
[2] OMG, "UML 2.0 Superstructure Specification," Object Management Group

ptc/03-08-02, August 2003 2003.
[3] C. Atkinson and T. Kuhne, "Model-driven development: a metamodeling

foundation," Software, IEEE, vol. 20, pp. 36-41, 2003.
[4] A. G. Kleppe, J. B. Warmer, W. Bast, and A. Watson, MDA Explained: The

Model Driven Architecture: Practice and Promise: Addison-Wesley
Professional, 2003.

[5] B. Selic, "The pragmatics of model-driven development," Software, IEEE,
vol. 20, pp. 19-25, 2003.

[6] K. Chen, J. Sztipanovits, and S. Neema, "Toward a semantic anchoring
infrastructure for domain-specific modeling languages," Proceedings of the
5th ACM international conference on Embedded software, pp. 35-43, 2005.

[7] J. Greenfield and K. Short, Software factories: assembling applications with
patterns, models, frameworks and tools: ACM Press New York, NY, USA,
2003.

[8] A. van Deursen, P. Klint, and J. Visser, "Domain-specific languages: an
annotated bibliography," ACM SIGPLAN Notices, vol. 35, pp. 26-36, 2000.

[9] M. Vokac and J. M. Glattetre, "Using a domain-specific language and
custom tools to model a multi-tier service-oriented application-: Experiences
and challenges," Lecture notes in computer science, pp. 492-506.

[10] D. Wile, "Supporting the DSL Spectrum," Journal of Computing and
Information Technology, vol. 9, pp. 263-287, 2001.

[11] M. Alanen and I. Porres, A Relation Between Context-free Grammars and
Meta Object Facility Metamodels: Turku Centre for Computer Science,
2004.

[12] M. Wimmer and G. Kramler, "Bridging grammarware and modelware,"
Satellite Events at the MoDELS 2005 Conference: MoDELS, pp. 159–168,
2005.

[13] V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor, Mathematical theory
of domains: Cambridge University Press New York, NY, USA, 1994.

[14] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory: MIT Press Cambridge, MA, USA, 1977.

[15] F. K. Hanna and N. Daeche, "Dependent Types and Formal Synthesis,"
Philosophical Transactions: Physical Sciences and Engineering, vol. 339,
pp. 121-135, 1992.

[16] F. K. Hanna, N. Daeche, and G. Howells, "Implementation of the Veritas
Design Logic," Proc. of the International Conference on Theorem Provers in
Circuit Design: Theory, Practice and Experience, pp. 77-94, 1992.

[17] F. K. Hanna, N. Daeche, and M. Longley, "Specification and verification
using dependent types," IEEE Transactions on Software Engineering, vol.
16, pp. 949-964, 1990.

[18] A. Cohn, "The notion of proof in hardware verification," Journal of
Automated Reasoning, vol. 5, pp. 127-139, 1989.

[19] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings
of the IEEE, vol. 77, pp. 541-580, 1989.

[20] D. Akehurst, G. Howells, and K. McDonald-Maier, "Implementing
associations: UML 2.0 to Java 5," Software and Systems Modeling, vol. 6,
pp. 3-35, 2007.

[21] F. Budinsky, Eclipse Modeling Framework: A Developer's Guide: Addison-
Wesley, 2003.

[22] S. Thompson, Type theory and functional programming: Addison-Wesley
Wokingham, England, 1991.

[23] P. Klint, R. Lämmel, and C. Verhoef, "Toward an engineering discipline for
grammarware," ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 14, pp. 331-380, 2005.

	Introduction
	2 Modelling Directed Graphs
	3 Petri-Nets
	3.1 Semantics

	4 Untyped Lambda Calculus
	5 Conclusion
	References

