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Abstract of Research 

The project started with studying the unique characteristics of the zwitterionic drug 

(norfloxacin), considered as an example of very slightly water soluble drug. The 

study focused on the effects of its chemical structure on its interaction with 

surfactants (PEG200 and Synperonic TM PE/L-61) in liquisolid systems and, 

consequently, on its release into water dissolution medium.  

The next stage was an approach to solve the problems of the dissolution, 

compressibility and flowability of norfloxacin liquisolid formulations through adding 

water as a liquid binder to make wet granulated liquisolid formulations. The water 

in the liquisolid formulations works as a liquid binder to the carrier and coating 

particles, creating a wider space inside their structure, which allows the amount of 

the liquid vehicle (PEG200 and Synperonic TM PE/L-61) to increase inside the 

formulations. This feature reflects positively on the flowability (decreasing the 

angle of the slide), compressibility (increasing the load factor) and the dissolution 

behaviour of norfloxacin (increasing drug release to more than 20%).  

Another liquid binder (PVP) was used in the wet granulations and a comparison 

was made between PVP solutions, water and classical liquisolid formulations in 

terms of dissolutions, flowability, compressibility, DSC thermographs and FTIR 

spectra.  

The successful application of wet granulation techniques with liquisolid 

formulations was tested with a very hydrophobic drug (cinnarizine). Due to its 

hydrophobicity, traditional mixing of surfactants and the drug particles did not 

improve its dissolution in water medium, although the solubility was relatively high.  
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The methodology was again applied to investigate how the dissolution of 

cinnarizine altered with several different types of surfactants. The results lead to a 

change from traditional mixing to a self-nano emulsifying drug delivery system 

(SNEDD). Optimization to select a suitable oil (Capmul® MCM EP), surfactant 

(Kolliphor® RH40) and co-surfactant (PEG400) was found to depend initially on the 

solubility of cinnarizine. Further optimisation identified the relative percentages 

(66.6:16.6:16.6 for oil, surfactant and co-surfactant, respectively) and the drug 

concentration required for the SNEDD (6.0% w/w) was found to depend on the 

mixture experimental design, using dissolution trends as an indicator.  

Finally, the selected SNEDD system was converted to a liquisolid system using 

the water granulation technique to make tablets with acceptable compressibility 

and flowability. Due to the negative effect of coating material (Cab-O-Sil® M-5P) on 

the dissolution behaviour, a new method was developed to determine the 

compressibility load factor using a central composite design and response surface 

methodology. The predicted model was validated and the accuracy was over 95%, 

allowing it to be used for preparation of the SNEDDs. The new preparations were 

compared to tablets from the commercial sources. The new formulations show 

significant enhancement in the percentage of the drug releases in distilled water 

dissolution medium.  
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1.1. General Introduction 

The most appropriate and frequently employed route among drug delivery systems 

is oral delivery administration, due to its cost effectiveness, lowest sterility 

restrictions during manufacturing, ease of administration and flexibility of 

formulation design. Consequently, many pharmaceutical companies select 

bioequivalent oral drug production preferentially [1]. 

The common challenges with oral tablet formulations as a drug delivery system 

are related to solving the problem of poor bioavailability. The factors that affect 

oral bioavailability vary from dissolution rate to aqueous solubility and caused by a 

variety of reasons, such as to drug permeability, first-pass metabolism and the 

effect of efflux mechanisms. 

Regarding dissolution, there is an established concept that the dissolution of active 

ingredients in oral dosage forms is an essential step before absorption can take 

place from the gastrointestinal tract to the blood circulation system. The two steps 

relate to each other in such a way that the rate of drug absorption is affected by 

the drug dissolution rate [2]. The classification of active ingredients generated by 

the Food Drug Administration (FDA) shows that most hydrophobic drugs have a 

tendency to provide erratic and poor dissolution profiles, which consequently leads 

to unpredictable bioavailability and highly dangerous probability of therapeutic in-

equivalence [3]. 

Oral compacts containing poor water soluble drugs usually involve high doses in 

order to increase the plasma concentration to a therapeutic level after oral 

administration, as a low level of solubility does not help to attain therapeutic levels. 
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Thus, it is considered as a major problem facing any formulation design for both 

new chemical entities and generic development [3] . 

According to the biopharmaceutics classification system (BCS) (see Table 1-1), 

more than 40% of drugs are poorly water soluble. These drugs have slow 

absorption into the plasma, leading to not only low and inadequate bioavailability, 

but also raised toxicity to the gastrointestinal mucosa due to its accumulation in 

the GI tract. As a result, the improvement of drug solubility and dissolution is a 

major goal to enhance oral bioavailability [4]. 

Table 1-1: The biopharmaceutical classifications system (BCS) and the relative drug needing in order 
to reach to the optimum level in the Class I [5] . 

Classes Solubility Permeability Needs 

I High High Optimum  

II Low High Formulation design 

III High Low Chemical structure optimization 

IV Low Low Chemical structure optimization 

 

Several pharmaceutical techniques have been developed to solve the problem of 

poor dissolution profiles of hydrophobic drugs in oral dosage forms. A group of 

these techniques uses the advantages of incorporating liquid surfactants into oral 

solid formulations. They can interact with hydrophobic drugs on one side and with 

the polar molecules of the relative dissolution medium on the other side. As these 

surfactants have liquid physical properties, special excipients with carrier and 

coating properties are needed to convert them into a dry powder admixture. Using 

these excipients together creates a new realm of limits to achieve the best 

dissolution improvement with acceptable compressibility and flowability 

characteristics, putting the theory of liquisolid systems onto real ground. Therefore, 

the definition of liquisolid systems is "they are compacts with acceptable flowing 
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and compressible powdered forms of liquid medications, which represents oily 

liquid drugs and solutions or suspensions of water insoluble solid drugs carried in 

suitable non-volatile solvent systems termed the liquid vehicles" [6]. 

1.2. Liquisolid Mathematical principles: 

The concept of the liquisolid technique determines liquid medications, which are a 

combination of the active ingredient/s and the selected non-volatile liquid vehicle/s, 

at a limit of acceptable flowing and compressible powdered forms. In other words, 

lipophilic drugs or water-insoluble solid active ingredients, dissolved in selected 

non-volatile liquid vehicles, have the possibility to convert to dry free flowing 

powders with acceptable compressibility, using suitable powder excipients as the 

carrier, such as various grades of microcrystalline or amorphous cellulose, and the 

coating materials, such as very fine particle size silica powders. The capacity of 

the carrier and coating materials in term of retaining a certain amount of liquid 

vehicle should be taken into consideration mathematically via specific methods 

and models to achieve optimization of the quantities of these materials in order to 

maintain acceptability of both the flowability and compressibility of the liquisolid 

powdered admixture.   

Mathematically, the concept of a liquisolid system stands on two fundamental 

terms; the flowable Ø value and compressible ψ number liquid retention potentials. 

The Ø value defines an acceptable level of powder flowability when adding the 

maximum amount of a given non-volatile liquid, whereas the ψ number specifies 

an acceptable level of powder compressibility when adding the maximum amount 

of the non-volatile liquid. 
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Spireas et al. determined two methods to predict the two terms [6]. The ψ number 

and Ø values are determined by applying liquisolid compressibility (LSC) and 

liquisolid flowability (LSF) tests, respectively. 

For the LSF test, several powder systems are prepared, each containing different 

values of excipient ratio (R) where R=Q/q; Q represents the weight of a carrier 

excipient and q represents the weight of a coating excipient. Each mixture 

contains an increased amount of non-volatile liquid which will be used in the 

liquisolid preparation. The flowability of each prepared mixture is assessed by flow 

meter, angle of slide, angle of repose or any suitable flowability test to specify the 

flowable liquid load factor ØLf of each powder system. The ØLf can be given by 

the following equation: 

ØLf = W/Q 

where W is the weight of the liquid vehicle and Q is the weight of the carrier 

material. 

Finally, the Ø value of a powder (carrier or coating excipient) is determined by 

plotting ØLf against the reciprocal excipient ratio (1/R), where the slope represents 

the Ø value of the carrier and the intercept indicates the Ø value of the coating. 

In the liquisolid compressibility (LSC) test, the same liquid/ powder admixture 

prepared in the previous test is used to assess the maximum crushing strength of 

the compacts that can be obtained by applying a plateau compression force. The 

average of the crushing strength of each admixture will be divided by the average 

of the weight of the compacted tablets in order to determine the pactisity Ω value. 

Determination of the net liquid/solid weight composition (CW) of the crushed 
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tablets is used to indicate the intrinsic pactisity (Ωo) and sponge index (σi)by 

plotting log Ω versus CW to give a log-linear equation:  

log Ω = log Ωo - σi * CW 

The compressible liquid retention potential of the powder system (ψmix) can be 

given by the following equation:  

ψmix = (log Ωo – log 20)/ σi, 

where the fixed value of the logarithm of twenty comes from applying plateau force 

pressures to achieve the maximum crushing strength, which gives a pactisity Ω 

=20 kg/g. 

Finally, the compressible liquid load factor (ψLf) of the powder system can be 

determined from the following equation: 

ψLf = ψmix (1+1/R) 

Plotting the ψLf for each admixture against the reciprocal excipient ratio (1/R) will 

give a linear equation with a slope equals to compressible liquid-retention potential 

(ψ number) of the carrier and the intercept is the compressible liquid-retention 

potential (ψ number) of the coating.  

The optimum load factor (Lo), which is used to determine the optimum quantities 

of the carrier and coating excipients, indicates an acceptable flowing and 

compressible liquisolid system. This term is given as follows: 

Lo= ØLf if ØLf < ψLf 

or 
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Lo= ψ Lf if ØLf > ψLf 

where ØLf =Øca +Øco *(1/R) and  

ψLf =ψca +ψco *(1/R). 

The optimum quantity of the carrier Qo is given from this equation:  

Qo = Wo/ Lo 

where Wo = optimum weight of non-volatile liquid. 

Finally, the optimum quantity of the coating material qo is given as follows: 

qo= Qo/R.  

All of these mathematical calculations are described in the literature [6]. 

1.3. Liquisolid formulation preparation: 

The calculated amount of a drug and a non-volatile liquid are mixed together, 

either with or without heating to form a liquid medication solution or suspension. 

Then, the mixture is transferred to a mortar and the optimum amount of carrier and 

coating excipients, determined by the liquisolid flowability test or liquisolid 

compressibility test, are added to the mortar and mixed with the liquid medication 

for few minutes. The resulting admixture is spread on the mortar surface for 

approximately five minutes to allow the liquid medication particles to be absorbed 

completely into the interior powder particles and to allow coating particles to cover 

any excess liquid particles that are not absorbed into the internal framework of 

carrier particles. 

The liquid/powder admixture formed represents a liquisolid system with suitable 

flowability and compressibility characteristics. Finally, a small amount of a 
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disintegrant (about 5% weight formulation) and a lubricant (about 1% of weight 

formulation) can be added to the liquisolid system to enhance the powder 

characteristics, such as decreasing the disintegrant time of the tablets and 

preventing the sticking of the powder to the compression machine. 

A non-volatile solvent should be selected to be inert and with a high boiling point, 

preferably water miscible and not a highly viscous organic solvent, which could 

lead to fairly distribution to the drug inside the admixture and affect negatively on 

the drug content tests. The carrier excipient should be porous in nature and have 

sufficient absorption features. Finally, the coating excipient should be a substance 

with adsorptive properties and a small size (fine particles) [6]. Figure 1-1 

summarizes the steps of liquisolid system formation. 

 

Figure 1-1: Schematic representation of liquisolid systems [7]. 
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1.4. Mechanism of liquisolid action inside the dissolution medium:  

Several mechanisms have been suggested that try to describe the action of the 

liquisolid system inside the dissolution medium leading to enhanced hydrophobic 

drug release. They can be summarized in three points;  

1. Increase of the surface area of the drug available for release into the dissolution 

medium 

2. Increase of the solubility of the drug in the liquid vehicle 

3. Improvement of the wettability of the drug, or the formation of a complex 

between the drug and excipients (suspension or solution), which can be detected 

by DSC instrument. 

Regarding the first point, the location of a drug inside a powder excipient system in 

the form of a molecular dispersion, makes the surface area of the drug for release 

greater than the drug particles in directly compressed compacts [8] & [9].  

The theory behind increasing drug solubility in a liquisolid formulation assumes 

that, although the quantity of liquid vehicle in the liquisolid compacts is not 

sufficient by itself to increase the overall solubility of the drug in the dissolution 

medium, the microenvironment of the solid-liquid interface between a single 

liquisolid particle and the dissolution medium helps the diffusion of drug particles 

out of the liquisolid compacts into the release medium. This phenomenon can only 

be explained if the liquid vehicle works as a co-solvent [8] & [9]. 

The presence of surface active agents in liquisolid formulations improves the 

wettability of liquisolid particles, compared to conventional tablets, due to low 
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surface tension. Such a phenomenon is demonstrated by the determination of 

lower contact angles and shorter water rising time tests [9] & [10]. 

1.5. Optimization of liquisolid formulations with enhanced drug release: 

It is known that the main limitation of liquisolid formulation is the small amount of 

active ingredient included in such compacts, because increasing the weight of 

pure drug leads to an increase in the weight of liquid vehicle, which consequently 

leads to an increase in the amount of carrier and coating substances. Thus, a 

large tablet would be formed which is difficult to swallow. 

Several attempts aimed to solve this problem, focusing on making different 

formulations. The principle aim was to select a suitable liquid vehicle. The criterion 

of such a selection was the drug solubilisation. However, other factors such as 

viscosity, polarity, chemical structure and lipophilicity, could also participate in 

selecting good vehicles for the formulations [8] & [11] . 

To increase the loading factor with decreasing tablet weight can also be achieved 

using high specific surface area carrier and coating, or adding poly vinyl 

pyrrolidone (PVP) to liquisolid formulations. An example of a high specific surface 

area excipient is microcrystalline cellulose (MCC), compared to other excipients, 

such as lactose, starch and sorbitol. MCC has a specific surface of1.18 m2/g, 

whereas lactose, starch and sorbitol have specific surface areas less than 1 m2/g. 

As a consequence, MCC enhances drug release into the dissolution medium 

through its higher liquid adsorption capacity, raising the amount of the liquid load 

factor [12]. 
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On the other hand, PVP has an ability to prevent drug retention in the cavities of 

porous excipients, which enhances the release of drug into dissolution medium 

[13]. 

The optimization of liquisolid formulations does not stop at the type of carrier and 

coating materials, even though the percentage of each has an important role in 

improving drug release. Increasing the excipient ratio (R) also increases the 

wicking and decreases the disintegration time of compacts. This phenomenon is 

frequently demonstrated when using MCC as the carrier and silica as the coating 

excipient [14]. On the other hand, decreasing the R value, i.e. increasing the 

amount of silica in the formulation, affects negatively on drug release, due to the 

hydrophobicity of silica, which can retard drug release if it is added in a high 

amount [15]. 

The possibility of re-crystallization and precipitation of the drug increases when the 

amount of silica increases. This problem could be solved by the possibility of 

adding more amount of liquid vehicle in order to overcome the probability of drug 

precipitation. However, increasing the amount of silica would lead to a higher 

loading factor, so that the ability of the drug to diffuse out into the dissolution 

medium becomes more effective as a consequence of adding more liquid vehicle 

[16] & [17]. 

Finally, adding carmellose sodium or sodium starch glycolate, which act as super-

disintegrants, improves drug dissolution, because such excipients can assure the 

drug release and it would not be affected by a slow disintegration from the dosage 

form [18]. 
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1.6. Poly vinyl pyrrolidone (PVP) as a liquid binder: 

The structure of poly vinyl pyrrolidone (PVP) or poly-[1-(2-oxo-1-pyrrolidinyl) 

ethylene] at a specific molecular weight can be synthesized by polymerization of 

vinyl pyrrolidone with a mass range from 2500 to 3000000 Da. The classification of 

PVP depends on the K-value that can be calculated form Fickentscher’s equation, 

where the logarithm of the relative viscosity between the solution and the solvent 

is directly proportional to the concentration of the solute in the solution (%w/v) [12]. 

PVPs with longer chain length and higher molecular weight have higher K-values. 

 The two features that distinguish PVP are its good water solubility and its 

enhancement of wettability. These two characteristics lead to improvement of the 

rate of dissolution from a tablet dosage form if PVP is used as a solvent for 

hydrophobic drugs in solid dispersion. On the other hand, the length of the chain of 

PVP affects the dissolution rate; an increase in the length of such a chain causes 

increased viscosity at the adjacent diffusion boundary layer of the dispersed 

system, decreasing the rate of drug particle transport from the solid dispersive 

matrix into the dissolution medium, although the feature of water solubility and 

wettability of PVP still exists. An example of this was reported in a study of the 

dissolution of indomethacin (a hydrophobic drug) in different solid dispersion tablet 

formulations.  A slightly slower dissolution was noticed in the tablets containing 

PVP K-90 compared to the formulation containing PVP K-17, reaching a general 

conclusion that the longer the PVP chain length, the poorer the dissolution rate 

[19]. 

In addition to the length of the PVP chain, wettability and water solubility, another 

aspect that should be considered is the ratio of PVP to the drug. The quantity of 
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the PVP inside the solid dispersion affects the drug release in the dissolution 

medium, so that the higher proportional PVP formulations show better water 

solubility and drug release. For example, in-vivo studies of the release of 

furosemide from PVP solid dispersion formulations were carried out, where the 

relationship between the degree of drug crystallinity, detected by X-ray diffraction, 

and the ratio of PVP/ drug were investigated. The dispersion of the drug was 

amorphous at a higher percentage of PVP and showed a significant increase in 

the bioavailability of the drug, whereas there was some degree of crystallinity at 

lower percentages of the carrier, affecting negatively on the human bioavailability 

of furosemide [20].  

1.7. Pharmaceutical wet granulation process: 

Granulation can be defined as the process of particles agglomeration to form 

larger semi-permanent granules, keeping the ability to distinguish the original 

particles. In wet granulation processes, the design of particles can be achieved by 

connecting particles together via a liquid binder that creates viscous and capillary 

forces, forming permanent forces after drying or sintering [21]. 

In the wet granulation process, three sets of process can be recognized (see 

Figure 1-2); first, wetting and nucleation, where the bed of dry powder contacts 

with the liquid binder, leading to distribution of the liquid inside the bed and the 

formation of nuclei granules. The second process is named consolidation and 

granule growth, where collision among granules themselves, granules with the 

equipment and granules with feeding powder, which leads in total to granule 

growth. Thirdly, there is breakage to wet granules or attrition to dry granules due to 
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impact or compact in the granulator or subsequent processes, such as sieving [21] 

& [22]. 

 

Figure 1-2: A summary of granulation process, which includes wetting and nucleation, granule growth 
and consolidation, breakage [21].  

Regarding nucleation process, it can be recognized from a term called wetting 

zone. It is the area that the liquid binder initially contacts the surface of the powder 

and forms the nuclei. The important processes in this zone are nuclei formation, 

which happens where the contact angle between the liquid binder and the solid 

powder, the spreading coefficient where the liquid and solid phases spread over 

each other and the powder-binder dispersion where the quality of the mixing has a 

strong effect on the binder delivery method. These three processes are considered 

as the main mechanical terms that used to describe the wetting zone [23]. 

Considering the wetting zone thermodynamically, there is a relationship between 

the contact angle and the particle size; when the former increases (i.e. the 
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wettability of the powder mixture decreased), the latter decreases. This 

relationship can be specifically identified when formulations contain a hydrophobic 

drug [24].  In the same field, the nucleation and wetting can be described in terms 

of surface free energy via the spreading coefficient, explained by the solid and 

liquid spreading over each other, related to the work differences between the 

cohesion and adhesion processes. If the coefficient is positive, spontaneous 

spreading occurs and there is two possibilities: the binder forms a film over the 

surface of the powder and liquid bridges between powder particles, leading to form 

a strong granule, or binders form bonds only where liquid and solid contact  

initially, leading to no film formation and giving a weaker granule [25]. 

On the other hand, granule dispersion is strongly affected by binder delivery 

methods, of which there are mainly three ways; pouring, spraying and melting. 

Focusing only on the pouring method, as it is the only way used in the prepared 

formulations of the current work, the initial stage shows poor liquid distribution and 

the probability of forming coarse granules is high, compared with other methods. 

This is probably due to the creation of local patches of high moisture content [26] 

& [27]. 

In the stage of granular growth and consolidation, the granules colloid to each 

other, reducing the porosity and squeezing out the entrapped air, as well as 

squeezing out the liquid binder to the surface of the solid powder. This could 

enhance and accelerate the consolidation process [25]. 

Two main factors affect the stages of granules development and formation: binder 

content and binder viscosity. It was found that increasing the amount of a low 

viscosity binder, such as water, may help to increase particle mobility, leading to 
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greater rearrangement into more compact configurations [28]. On the other hand, 

an increase in the amount of a high viscosity binder could increase or decrease 

the rate of the consolidation. For example, PEG6000 increases the rate of the 

granular growth; with a viscosity of approximately 1100 mPa s, it increases 

consolidation in a high shear mixer [29]. In contrast, increasing the amount of a 

high viscosity binder (e.g. glycerol) led to a decrease in the rate of granule growth. 

This was attributed to the dominancy of the liquid viscous forces over the inter-

particular friction forces [30]. 

1.8. Wet granulation and liquisolid tablets: 

The inclusion of an extra additive to liquisolid systems, in order to enhance and 

control the hydrophobic release in dissolution media, started when using PVP to 

increase the capacity of the carrier/coating bed powder in order to load the liquid 

vehicle (i.e. increase the value of the flowability load factor (ØLf). The results 

showed an increase of the flowability load factor to reach 0.42 when 10% PVP-

K25 was used as additive in different ratios of MCC to silica powder mixture in the 

presence of PEG200 as liquid vehicle in a 50% w/w mixture with carbamazepine, 

a hydrophobic drug. The percentage of drug release was the best with the PVP 

additive, compared with other additives, such as HPMC and PEG3500 [16]. 

However, there was no consideration of the compressibility of the load factor (ψ 

Lf), keeping the hardness of the tablet between 5.7and 7.1 KgF for all tablets. This 

degree of hardness is less than the acceptable level of compressibility determined 

by Spireas et al. [6], which should have been, in this case, 14.7 KgF. This means 

that, although the direct addition of solubilizing agents to the liquisolid systems 

enhances drug release and flowability, it does not overcome the problem of the 

compressibility. After that, there was an attempt to use the benefits of PVP 
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characteristics in liquisolid systems using the wet granulation technique. In this 

work, glibenclamide was the hydrophobic drug, prepared with PEG400, 

Synperonic TM PE/L-44 or Cremophor® ELP at 10 %w/w, using a flowable load 

factor. This study showed a significant enhancement in the dissolution profile 

compared with traditional liquisolids, yet it depended on the calculated flowable 

load factor of each liquid vehicle [31]. In other words, there is an assumption that 

the value of the calculated liquid factor does not change when adding a liquid 

binder, although there is an enhancement in flowability and compressibility of the 

designed formulations. As a result, the crushing forces for PEG400, Synperonic TM 

PE/L-44 and Cremophor® ELP were still less than an acceptable level of 

compressibility, which in this case were 6.16 KgF, 4.20 KgF and 2.56 KgF, 

respectively. 

1.9. The Self-Emulsifying Drug Delivery System (SEDDS) and its relative 

components: 

Self-emulsifying drug delivery systems (SEDDS) are defined as an isotropic 

mixture of oils, surfactants and hydrophilic co-solvents or co-surfactants that, when 

mixed together gently, form a homogenous mixture, and can emulsify or micro-

emulsify in aqueous media [32] & [33]. The oil can be considered the most 

important part of the SEDDS, as it has the ability to dissolve a marked amount of 

hydrophobic drug, cause self-emulsification, and enhance the transportation of 

lipophilic drug through the intestinal lymphatic system, so that it increases 

absorption via the GI tract [34]. Several long and medium chain triglycerides are 

used for making self-emulsifying drug delivery systems. In particular, modified and 

hydrolysed vegetable oils have been used extensively in SEDDS due to their 

ability to form good emulsification systems in corporation with a large number of 
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surfactants used for oral administration. Furthermore, they have several 

advantages in terms of their physiological degradation that have similarity to the 

end products of the GI tract [35]. 

 Examples of vegetable oils used in SEDDS include olive and peanut oils. While 

the first one was used with cyclosporin A (10%) in the presence of polyglycolyzed 

glycerides (HLB between 3 and 4) as surfactants and ethanol as co-solvent, the 

second was used with medium chain mono- and diglycerides, Tween 80, PEG25 

glyceryl trioleate, and polyglycolyzed glycerides (HLB = 6-14) as a group of 

surfactants in order to enhance the absorption of a naphthalene derivative with no 

need for co-solvents [36] & [37]. 

In relation to the role of surfactants, those most commonly recommended are the 

so-called non-ionic surfactants with relatively high HLB values for easier 

dispersion inside the aqueous media. The most famous examples are Tween 80 

and Cremophor® EL or RH40. The recommendation comes from their higher 

safety compared with ionic surfactants, although they have in some cases a 

reversible permeability at intestinal lumen level [38]. The high HLB value of 

surfactants helps immediate release formulations to spread rapidly as oil/water 

emulsion droplets in an aqueous medium. They also inhibit the precipitation of the 

drug in the GI tract and they help the drug particles to be solubilized for a long time 

at the site of absorption [39]. 

The relationship between the droplet sizes and the concentration of the surfactants 

used can vary depending on the type of hydrophobic drugs and the dissolution 

medium. In some cases, an increase of the surfactant concentration could result in 

a decrease in the droplet size of the emulsion. An example of this is Labrafac CM-
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10, which consists of a mixture of polyglycolized glycerides at a saturated level 

that works at the interfacial layer between oil and water [40]. 

On the contrary, an increase of the surfactant concentration could lead in some 

cases to an increase in the droplet size of the emulsion. This could happen when 

the water droplets penetrate the emulsion system, so that they disrupt the 

interfacial layer between the oil and aqueous medium. An example of this 

phenomenon is seen when using Cremophor® EL with paclitaxel in either I.V. or 

oral administration forms [41]. 

Finally, the permeability of hydrophobic drug through the lipid bilayer of the 

epithelial cell membrane could increase in the presence of surfactants, as they 

work to enhance the absorption via the passive transcellular route [42]. 

Furthermore, surfactants work to disrupt the arrangement of the lipid bilayer on the 

cell membrane, leading to increased permeability of the drug, in addition to their 

role in dissolution rate improvements [43].   

The role of co-solvent is to produce an optimum SEDDS through enhancing the 

dissolution of a large amount of hydrophilic surfactant or drug in an oil phase. 

These materials could act as co-solvents, such as ethanol and other alcoholic 

solvents, or as co-surfactants at the micro-emulsion level, such as polyethylene 

glycol (PEG) or propylene glycol (PG). However, the limitation of such co-solvents 

is their probability to evaporate from the wall of the capsule when SEDDS is filled 

into hard, soft or sealed gelatine capsules, which results in drug precipitation [44]. 
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1.10. SEDDS mechanism of action: 

The action of the self-emulsification has been suggested to take place when the 

required energy for changing the surface area of the dispersion is less than the 

change in the entropy of the dispersion. The relationship between the free energy 

of emulsion formation and the energy required to form a new surface between the 

oil and water phases is a direct function. The free energy will reduce with time as a 

result of the oil and water phases’ separation, so that they create a new interfacial 

surface. At this level, the emulsifying agents play an important role in reducing the 

interfacial energy via creating a monolayer surrounding the emulsion droplets, 

which helps to stabilize the system and decrease the incidence of coalescence 

between droplets [44] & [45]. However, spontaneous emulsification can occur at 

low interfacial tension so that the interfacial structure does not have resistance 

against surface shearing and the free energy of the dispersion is at low level. This 

change in the entropy energy should be distinguished from the micellar formation 

and its relative energy considerations [44] & [45].  

When seeing the mechanism of action of SEDDS from the formation of a lyotropic 

liquid crystal perspective, the ease of self-emulsification can be identified as the 

water droplets penetrate into the lyotropic liquid crystal phase. The addition of 

oil/surfactant mixtures to aqueous phase increases the interface between the oil 

and water phases. The continuous penetration of water droplets inside the oil 

phase will move the solubilisation to the interface limit and form the lyotropic liquid 

crystal dispersed phase. At this level, the concentration of the surfactant will 

determine the ease of penetration of water droplets into the lyotropic liquid crystal 

phase; with gentle agitation, the interface disrupt, and SEDDS becomes resistant 

to coalescence [32].  
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1.11. SEDDS classification and the relative pharmaceutical challenges: 

The classification can be considered  to depend upon the percentage of the 

SEDDS components and it can be divided into 4 groups; the first (Type I) consists 

of 100% oil or a mixture of oils, which are usually triglycerides or mixed glycerides. 

The next group (Type II) consists of 40-80% oils and 20- 60% surfactants. These 

surfactants usually have an HLB value less than 12. The third group (Type III) is 

divided into two subgroups; Type IIIA consists of 40- 80 % oils, 20-40% 

surfactants (HLB > 11) and 0-40% hydrophilic co-solvents, and Type IIIB, which 

usually consists of less than 20% oils, from 20 to 50% surfactants (HLB > 11 ) and 

from 20 to 50% co-solvent [46]. The fourth group (Type IV) consists of 0-20% 

water-insoluble surfactant (HLB < 12) instead of including oils, 30- 80% water-

soluble surfactant (HLB > 12) and 0-50% hydrophilic co-solvents [5]. 

The best SEDDS formulations take the importance of the unit dose of a drug into 

consideration. The required dose depends on the presence of solvent capacity in 

the formulation, so that it allows good administration of the drug in the gut. 

However, the type of drug is still the most important factor in forming the SEDDS, 

because some drugs are classified as difficult drugs due to their limited solubility in 

both water and lipids (when the value of log P is approximately 2.0) [46].  

Regarding the classification of SEDDS, the drug should be selected among any 

type, provided that it is sufficiently soluble in the selected type, it does not cause 

any precipitation, and it provides a rapid absorption. Types II and III have 

superiority over Type I system, as they have rapid gastric emptying, thus their 

colloidal formation will be faster than Type I [46].  
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The effect of the SEDDS droplet size has been investigated on the rate of 

cyclosporin A absorption, where it increases with two finer emulsion compared 

with the relative coarse ones [47]. However, the case of droplet size effect is still 

difficult to assign, especially when a small amount of lipid is dissolved in the upper 

part of the small intestine form the capsule shell. Here, other factors could have 

more important effects than the droplet size. Nevertheless, the susceptibility to 

digest as mixed micelles of bile salts remains denoting the importance of droplet 

size of SEDDS in the GI tract [47]. 

On the other hand, changing the percentages of the SEDDS components have an 

effect on the rule of droplet size. For example, when decreasing the percentage of 

oil and increasing the percentage of surfactant and co-solvent, the droplet size 

becomes less sensitive to digestion mixtures. Thus, the approach used to make 

SEDDS at the beginning affects the production of colloidal dispersion and, 

consequently, the self- emulsification of the system [48]. 

Regarding the SEDDS classification, Type IIIB, and to some extent Type II, 

produce systems with droplet sizes at the nano level (ranging between 100 nm 

and 250 nm), which could be due to the role of the water-soluble surfactants and 

co-solvents in the SEDDS [44] & [46]. 

The risk of drug precipitation comes from the fact that the solvent capacity of 

hydrophilic co-solvents, such as poly ethylene glycol (PEG) or propylene glycol 

(PG), falls logarithmically when the SEDDS is dispersed in water, leading to 

separation of such co-solvents from the oil formulations and forming micelles in 

the continuous phase [49]. However, there are some questions about lowering the 
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solvent capacity of the drug if this phenomenon happens. In other words, what 

other factors could control drug precipitation? 

In fact, two factors should be considered here; the first one is the log P of the drug 

and the second one is the contribution of the selected surfactant in the role of 

solubilisation. Furthermore, several attempts were made to anticipate the risk of 

drug precipitation from SEDDS. A recent one used the determination of equilibrium 

saturated solubility and mole fraction solubility for SEDDS and its relative 

individual components with a range of temperatures (22 o C to 47 o C).  

Also, it tried benefit from Apelblat’s model to predict and evaluate the 

thermodynamic behaviours of the hydrophobic drug (indomethacin) in the form of 

SEDDS [50].  

1.12. Solid SEDDDS and the selection of the relative powder excipients: 

The term of “solid SEDDS” is used for the engineered treatment of self-emulsifying 

mixtures in order to form different types of solid powder, such as tablets, granules, 

pellets and microspheres. It is one of the treatment methods, including dry 

emulsion and silica-lipid hybrid (SLH), that is aimed to convert the lipid-based 

formulations to oral solid states [51]. 

The corner stone in the solid SEDDS is the use of a suitable porous powder in 

order to adsorb the relative large quantity of the liquid SEDDS mixture. Several 

studies depended on materials having a large specific surface area or a high 

porosity. The commonly used porous powder was silica, which was either 

introduced to the liquid SEDDS mixture via a simple blending process or 

incorporated into a dispersion of lipid droplets after a drying process. A screening 
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study aimed to investigate the effect of different types of silica on the tabletability, 

using six different types of silica, namely; Aerosil 200, Spirnat 22, Sylysia 350, 

Zeopham 600, Neusilin US2 and Neusilin CFL2 in combination with 20% 

microcrystalline cellulose [52]. The study showed that, without the addition of any 

liquid, the tensile strength of the Aerosil 200, Spirnat 22, Sylysia 350 formulations 

did not reach 1 MPa, whereas there was no possibility to make tablets when 

incorporating a SEDDS mixture at a ratio 1:1 w/w with the silica. In comparison, 

Zeopham 600, Neusilin US2 and Neusilin CFL2 formulations showed tensile 

strength above 1 MPa without the addition of liquid. Nevertheless, only Neusilin 

US2 showed acceptable tensile strength when adding the liquid at 1:1 w/w ratio. 

The expected reason for this was explained from the images captured by a 

scanning electron microscopy (SEM). In the case of the failed coating materials, it 

is the liquid that is adsorbed at the surface of the silica particles, whereas, in the 

case of Neusilin US2, the liquid adsorbed inside the pores of the coating structure 

[52]. The good physicochemical properties of aluminium magnesium metasilicate 

(Neusilin US2) make it the first choice when making solid SEDDS tablets (Figure 

1-3). Its high specific surface area (approximately 300 m2/g) allows the adsorption 

of oils approximately three times its weight [51]. It was used alone as a carrier 

material with the HIV protease inhibitor darunavir [53] in its SEDDS mixture and 

with microcrystalline cellulose as a carrier material in order to adsorb cyclosporin A 

[54] and Probucol [55] dissolved in their SEDDS mixtures. The adsorption capacity 

or the flowable load factor that is used in the case of darunavir SEDDS liquid 

medication reaches 0.82% w/w for 55.5% MCM C8, Tween 80 and Transcutol® P 

SEDDS mixture. The Carr’s compressibility index and Hausner’s ratio in this case 

indicated good flowability behaviour with approximately 18.6% and 1.18%, 
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respectively. However, there was no mention about the crushing force in this study 

[53].  

 

Figure 1-3: Molecular structure and scanning electron microscopic image of Neusilin® magnesium 
aluminium metasilicate [51] . 

Moreover, the adsorbing ratio that was used in the case of Probucol SEDDS 

mixture, which includes Capmul® MCM, Captex 355 and Cremophor® EL, was 1:1 

w/w in the presence of microcrystalline cellulose at 20%. The flowability was 

evaluated by the same techniques and the compressibility index ranged between 

11 and 17, indicating good powder characteristics. The tabletability of these 

mixtures was studied via determination of the tensile strength of the prepared 

formulations at a range of compression pressures from 45 MPa to 135 MPa. The 

results showed similarity in the behaviours of the tensile strengths. The plateau 

level for the selected solid SEDDS mixture was between 1 MPa to 2 MPa 

approximately. However, the tensile strength starts decreasing over 135 MPa and 

the explanation for this referred to squeezing the liquid outside the admixture [55]. 

A second example of the addition of microcrystalline cellulose as a carrier with 
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Neusilin US2 succeeded in keeping the flowable liquid load factor at a high level, 

but the crushing force was still under the Spireas’ criteria [6]. In the case of 

cyclosporin A SEDDS mixture, the oil was a combination between Maisine 35-1 

and Lauroglycol FCC in 1:1 w/w ratio, and the surfactant and co-solvents were 

PEG-35 castor oil and PEG400, respectively. Where Hausner’s Ratio=1.243 and 

Carr's Index=19.565%, indicating a good flowability behaviour, the hardness was 

5.18 KgF and the tensile strength 0.47 MPa for a tablet weight of 651 mg [54]. 

Apart from using aluminium magnesium metasilicate, granulated silica is also used 

as a solid mixture with diluents. A study used Labrafil®, Tween 80 and Transcutol® 

HP at a ratio (10:60:30) and granulated silicon dioxide (Aeroperl® 300) in a mixture 

with Avicel® or Starch 1500 in order to enhance the oral bioavailability of 

simvastatin. The compressibility index ranged between 12% and 25%, depending 

on the content of each formulation and the solid ratio used, which was either 5 or 

10. The friability test, however, was between 0.32% and 0.98%, which is 

considered near to the acceptable BP limits [56], although the flowability load 

factor was only 0.2 and the concentration of liquid medication was 12.5% w/w at 

10 mg drug for all formulations. As a consequence, the crushing forces did not 

exceed a range between 4.26 KgF and 6.67 KgF for approximate tablet weights 

equal to 500 mg [57].  

The effect of carrier type on the solid SEDDS was studied by screening several 

types of microcrystalline cellulose. A study used Vitamin A (15 mg) in order to 

carry out in vivo and in vitro evaluations via using SEDDS mixture consisting of 

soybean oil, Cremophor® EL and Capmul® MCM-C8. The liquid medication 

concentration was approximately 20% w/w, the weight of different grades of 
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Avicel® (PH 101, PH 102, PH 105, PH 112, PH 113 and PH 200) was 750 mg and 

4% of talc powder was added to enhance the flowability. Avicel® PH 200 recorded 

the lowest compressibility index value (22%), whereas the highest one (39%) was 

when using Avicel® PH 103 or Avicel® PH 105. The flowability results were directly 

proportional to the crushing force values, where the formulae containing Avicel® 

PH 200 was recorded the highest value with 15.22 KgF and the one containing 

Avicel® PH 105 was 8.8 KgF [58]. 

The method of determining the critical responses and the main factors that help to 

find the optimum percentages for the SEDDS mixtures and, consequently, the best 

SEDDS tablets was investigated via a quality by design approach in order to 

enhance the oral bioavailability of irbesartan [59]. This approach included a full 

factorial design, consisting of three levels and two factors: the concentration of oil 

(X1) and the surfactant to co-surfactant ratio (X2). These two factors met many 

responses, indicating globule size, emulsification time, polydispersibility index, 

zeta potential, refractive index, the percentage of transmittance, and the 

percentage of drug content. Applying principle component analysis (PCA), a 

second quality-by-design approach managed to reduce these selected responses 

to only two; globule size and emulsification time. Using ANOVA helped to reduce 

the coefficient regressions of the fitted polynomial models so that it increased the 

accuracy of them. Although these approaches helped to optimize the percentage 

of the SEDDS components, the screening of carrier and coating materials still 

depended on the traditional method for selecting the type of materials. The 

flowable liquid retention potential was used to select Neusilin US2 as a carrier 

material and Aerosil 200 as a coating material. As a consequence, the 
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compressibility index was 18.45%, indicating a good flowability, but the hardness 

was approximately 4.0 KgF for a tablet weight of 767 mg [59].  

1.13. Aims and Objectives 

The first aim of this project is to study the unique characteristics of the zwitterionic 

drug (norfloxacin) and how its chemical structure affects its interaction with 

surfactants in liquisolid systems and consequently in its release in aqueous 

dissolution medium.  The second aim is to study the effect of adding wet 

granulation process to liquisolid tablet production in order to enhance the 

compactibility, flowability and the drug release in aqueous dissolution medium. 

The last aim is to optimize and predict a statistical model, combining Self 

Emulsifying Drug Delivery System (SEDDS), wet granulation and liquisolid 

techniques in order to enhance the dissolution behaviour of cinnarizine in distilled 

water using statistical mixture designs, central composite design and surface 

response methodologies. SEDDS was replaced with the classical liquid medication 

preparation due to the very hydrophobicity nature of cinnarizine in the aqueous 

dissolution media.  

The objectives of this research are as follows: 

 Preparation of classical liquisolid tablets of norfloxacin as a model of 

hydrophobic drug tablets. 

 Determination of Synperonic TM PE/ L-61 compressibility liquid load factor 

and then use as an optimum load factor in order to prepare liquisolid 

tablets. 

 Exploring the unique behavior of norfloxacin with non-volatile liquid vehicles 

(PEG200 and Synperonic TM PE/L-61) in distilled water as a dissolution 
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medium, via studying the aqueous dissolution behaviors of the liquid 

medication of norfloxacin and analyzing the products via FTIR.  

 Apply in vitro dissolution studies to examine the differences in the 

percentage of norfloxacin release inside different dissolution media (acetate 

buffer (pH=4.0 and distilled water (pH=6.1). 

 Studying the solubility of norfloxacin in several surfactants with different 

HLB values. 

 Investigating the combination of liquisolid and wet granulation 

pharmaceutical processes in terms of compressibility and flowability. 

 Applying the findings of the combination of wet granulation and liquisolid on 

two liquid vehicles (PEG200 and Synperonic TM PE/L61) in term of in vitro 

dissolution of norfloxacin, a drug with sparing water solubility.  

 Comparing two liquid binders (water and 10% w/w PVP-K17 solution), in 

terms of compressibility, flowability and in vitro dissolution test, when 

combining wet granulation and liquisolid pharmaceutical processes. 

 Enhancing the solubility and aqueous dissolution profiles of cinnarizine as a 

water-insoluble drug model, using self-emulsifying drug delivery systems 

(SEDDS). 

 Combining SEDDS, wet granulation and liquisolid pharmaceutical 

processes in order to enhance the drug release of cinnarizine from tablets 

in aqueous medium, using different statistical approaches.  
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Chapter Two:  Materials and 

Methods
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2.1. Materials: 

Pure norfloxacin and pure cinnarizine were obtained from Sigma–Aldrich, UK, 

whereas the 15 mg commercial tablets of cinnarizine (Stugeron®) were obtained 

from the local market. Other powder excipients used to prepare the formulations 

include microcrystalline cellulose (Avicel® PH 101), (FMC Biopolymer Corp., 

Philadelphia, USA); colloidal silicon dioxide (Cab-O-Sil ® M-5P and Cab-O-Sil® M-

5DP), (Cabot GmbH, Werk Rheinfelden, Germany); Croscarmellose sodium 

USP/NF/EP (Vivasol®), (CHP Carbohydrate Pirna GmbH & Co. KG, Pirna, 

Germany); magnesium stearate (MEDEX, Morthants).  

The oils, surfactants and co-solvents/ co-surfactants that were used in solubility or 

dissolution tests are Propylene Glycol (Sigma- Aldrich, Germany); Sorbitan 

Monooleate (Span 80)(Sigma-Aldrich, Germany); Polyethylene Glycol 200 (Sigma-

Aldrich, USA); Sorbitan Monolaurate (Span 20) (Sigma-Aldrich, South Korea); 

Synperonic TM PE/L61 (ICI surfactants, Everberg, Belgium); Polyethylene Glycol 

400 (Sigma-Aldrich, Belgium); Cremophor® EL (poly-oxy-35-castor oil), Solutol® 

HS 15 and Cremophor® RH40 form BASF, Germany; Pluronic® L-35 (Sigma-

Aldrich, USA); Polyethylene Glycol 300  (Sigma-Aldrich, Germany); Tween 80 

viscous liquid ( Sigma-Aldrich, UK); Tween 20 viscous liquid (sigma-Aldrich, 

France),Kolliphor® RH40 (Sigma-Aldrich, UK), Poly vinyl pyrrolidone (PVP  K-17) 

(Sigma-Aldrich, UK)(It is also used for wet granulation), Birji® S100 (Sigma-Aldrich, 

UK), Capryol™ 90 (Gattefossé, France),Capmul® MCM EP( Abitec, USA), 

Diethylene glycol mono ethyl ether (Transcutol® P)(Sigma-Aldrich, UK), Isopropyl 

myristate (IPM) (Sigma-Aldrich, UK) and Pharmaceutical Lactose Standard 

(Lactochem®) from BoRculo Whey Products U.K. Ltd., UK.  Acetic acid (Sigma- 

Aldrich, UK) with Sodium Hydroxide pellets (Sigma-Aldrich, UK) were used for 
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acetate buffer solution (pH=4.0) preparation. Orthophosphoric acid HPLC 

electrochemical grade (Fisher Scientific, UK) with Acetonitrile HPLC grade (Fisher 

Scientific, UK) were used together in the norfloxacin content uniformity test, 

whereas the same Acetonitrile HPLC grade and 0.1 M Hydrochloric acid (0.1 M 

HCl) from Fisher Scientific, UK were used in cinnarizine calibration curve, stock 

solution preparation and solubility tests.  

Finally, buffer tablets pH= 4.0(BDH Chemical Ltd., England) and Buffer tablets 

pH=7.0 (Asons Laboratory reagent, UK) are used for calibrating Jenway 3505 pH 

meter that used to measure the dissolution media. All materials were of 

pharmacological or analytical grade. 

2.2. Pre-formulation studies: 

2.2.1. Calibration curve and solubility studies (Norfloxacin): 

2.2.1.1. Solvent preparation (500 ml of acetate buffer solution at pH=4.0): 

Pure sodium hydroxide was weighed (5.0 g) in a small beaker and then dissolved 

in 10 ml distilled water to make 50% w/v sodium hydroxide solution. According to 

British Pharmacopoeia [56], approximately 450 ml of distilled water was poured in 

a 500ml beaker. Then, acetic acid (1.43 ml) was added to the beaker with mixing. 

Slowly adding about 0.25 ml of the sodium hydroxide solution made a mixture with 

continues stirring.  Finally, distilled water  was added until 500 ml with adjusting 

the pH of the solution to reach to pH= 4.0. The pH meter was calibrated using two 

different solvents at pH= 7.0 and pH=4.0 before each measurement. 
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2.2.1.2. Preparation of stock solutions: 

Norfloxacin was weighed (20.0 mg) and dissolved in 100 ml of either the acetate 

buffer solution pH=4.0,   distilled water or acetonitrile in 100 ml volumetric flask to 

make a concentration equals to 200 mg/l.  The stock solution was mixed until the 

drug completely dissolved (i.e. after 30 min for the acetate buffer solution, 1 hour 

for acetonitrile, or 6 hours for distilled water). By applying a suitable dilution, the 

three different solutions were scanned between 250 nm and 400 nm wavelengths 

with a bandwidth equals to 1.5 nm by a double beam UV/Vis spectrophotometer 

(Nicolet Evolution 300, Thermo electron corporation with Vision pro version 2.03 

software) to indicate the suitable drug wavelength peaks for each stock solution. 

The norfloxacin peak wavelength was 318 nm for acetonitrile solution, 321 nm for 

distilled water and 315 nm for acetate buffer solution (pH=4). The reason of the 

drug wavelength shifting is the difference in the polarity of each solvent [60]. 

2.2.1.3. Serial dilution preparation: 

Serial dilution was prepared by taking 7.5 ml, 5 ml, 2.5 ml, 1.25 ml, 0.5 ml and 

0.05 ml from the stock solution and added them to 42.5 ml, 45 ml, 47.5 ml, 48.75 

ml, 49.5 ml and 49.95 ml of the solvent used to prepare the stock solution in 50 ml 

volumetric flask to give solutions with concentrations 30 mg/l, 20 mg/l, 10 mg/l, 5 

mg/l, 2 mg/l and 0.2 mg/l, respectively. The calibration curve construction was 

repeated three times.  

2.2.1.4. Solubility studies: 

The solubility of norfloxacin in several surfactants, which are PEG200, PEG300, 

PEG400, Span 20, Span 80, Tween 20, Tween 80, Synperonic TM PE/L61, 
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Pluronic L-35, Propylene Glycol and Cremophor® EL as well as distilled water, was 

performed to evaluate the solubility of the non-volatile liquid vehicles as solvent 

and suspending agents for norfloxacin. Saturated solutions were prepared by 

adding excess amount of norfloxacin into 1 mL of each liquid vehicle. The resulting 

solutions were sealed and kept at room temperature (21 o C) and body 

temperature (37 o C) for 72 h. After this period, the solutions were centrifuged 

using a centrifuge rotor (Mikro 12-24, Hettich, Germany) for 10 min, at 4000 rpm. 

The supernatants were transferred to 1 ml Eppendorf tubes and re-centrifuged 

until no drug particles precipitate. The drug concentration in each supernatant was 

determined using a single beam UV/Vis spectrophotometer (Model M501, 

Camspec LTD, Cambridge, UK) at 318 nm after dilution in acetonitrile as 

appropriate. The concentration of norfloxacin in each liquid vehicle was calculated 

based on the calibration curve of norfloxacin that constructed according to the 

procedures mentioned in section 2.2.1.3, by substituting y values in the following 

equation with the obtained absorbance in order to calculate the concentration in 

mg/L.   

𝑦 = 0.0398 𝑥 − 0.0032 

2.2.2. Calibration curve and solubility studies (Cinnarizine): 

2.2.2.1. Preparation of stock solutions: 

Cinnarizine pure powder (15.0 mg) was weighed and dissolved in 100 ml of 0.1 M 

Hydrochloric acid or acetonitrile solutions.  The stock solution was sonicated for 15 

minutes (0.1M HCl) or 30 minutes (acetonitrile) until the drug completely dissolved.  

By applying a suitable dilution, the solution was scanned between 200 nm and 400 

nm wavelengths with a bandwidth equals 1.0 nm by a UV/Vis spectrophotometer 
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(Model M501, Camspec Ltd., Cambridge, UK) to determine the maximum 

wavelength peaks for the stock solution. The peak wavelength was 253 nm for HCl 

stock solution and 249 nm for acetonitrile stock solution. The solubility of the drug 

in the solvent was checked by measuring the absorbance at the relevant 

wavelengths. 

2.2.2.2. Serial dilution preparation: 

 Serial dilution was prepared by taking 6 ml, 5 ml, 2.5 ml, 1 ml, 0.25 ml and 0.05 ml 

from the stock solutions and add them to 44 ml, 45 ml, 47.5 ml, 49 ml, 49.75 ml 

and 49.95 ml of the relevant solvent in 50 ml volumetric flask to give solutions with 

concentration 18 mg/l, 15 mg/l, 7.5 mg/l, 3 mg/l, 0.75 mg/l and 0.15 mg/l, 

respectively. The calibration curve construction was repeated three times.  

.  

2.2.2.3. Solubility studies: 

Cinnarizine as pure powder were dissolved in several surfactants, co-solvents and 

fatty acids, which are PEG200, PEG300, PEG400, Span 20, Span 80, Tween 20, 

Tween 80, Synperonic TM PE/L61, Pluronic® L-35, Propylene Glycol (PG), 

Cremophor® EL, Kolliphor® RH40, Isopropyl myristate (IPM), Transcutol® P, 

Capmul® MCM EP and Capryol™ 90, in order to study the drug solubility. 

Saturated solutions were prepared by adding excess amount of cinnarizine into 1 

ml of either surfactant or fatty acid. The resulting liquids were sealed and kept at 

room temperature (21 °C) and at 37 o C for 72 h. After this period, the solutions 

were centrifuged using a centrifuge rotor (Mikro 12–24, Hettich, Germany) for 10 

min, at 4000 rpm. The supernatants were transferred to 1 ml Eppendorf tubes and 
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re-centrifuged until no drug particles precipitate. The drug concentration in each 

supernatant was determined using a single beam UV/Vis spectrophotometer 

(Model M501, Camspec LTD, Cambridge, UK) at 249 nm after dilution in 

acetonitrile as appropriate. The concentration of cinnarizine in each liquid vehicle 

was calculated based on the calibration curve of cinnarizine dissolved in 

acetonitrile. 

2.2.3. Flowability studies and determination of optimal flowable liquid-

retention potential (ϕ-value): 

2.2.3.1. Classical liquisolid formulations (Chapter 3): 

The angle of slide measurement was used to determine the optimal flowable 

liquid-retention potential (ϕ-value) of each powder excipient (Avicel® PH 101 and 

Cab-O-Sil® M-5DP) with Synperonic TM PE/L61 and PEG200.  Each powder 

excipient (2.5 g) was mixed with increasing amount of the two non-volatile liquid 

vehicles, and the resulting admixture was placed on an edge of a polished metal 

plate, tilted gradually until the admixture starts to slide. The angle of the plate with 

the horizontal surface is defined the angle of slide. The ϕ-value of Avicel® PH 101 

and Cab-O-Sil® M-5DP in different concentrations of liquid vehicles is calculated 

based on the following equation: 

ϕ-value = weight of the liquid vehicle/weight of solid 

The calculated ϕ-values against the resulting angle of slides were plotted to select 

the optimum ϕ-value of the powder excipient in the corresponding liquid vehicle at 

33o. However, all corresponding angles were less than 33o, so the nearly highest 
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angle was selected to represent the optimum flowability number [14].  The results 

are summarized in Table 2-2, Figure 2-1 and Figure 2-2. 

 

Figure 2-1: The optimum flowability value for PEG200 and Avicel® PH 101 admixture (0.2) and PEG200 
with Cab-O-Sil® M-5DP admixture (0.2). 

 
 

 

Figure 2-2: The optimum flowability value for Synperonic TM PE/L-61 and Avicel® PH 101 
admixture (0.3) and Synperonic TM PE/L-61 with Cab-O-Sil® M-5DP admixture (0.2) 
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2.2.3.2. Wet granulated liquisolid formulations (Chapter 4 &Chapter 5): 

Specific amount of  distilled water or 10% w/w PVP solution (i.e. 1 g of the PVP 

powder to 9 g of water and keep the solution in the water bath at 60 o C until the 

powder completely dissolved, the evaporated water was calculated and add to the 

mixture in order to obtain an accurate concentration) were added to powder 

systems consisting of Avicel® PH 101and Cab-O-Sil® M-5P at specific R-values, 

which is equal to weight of carrier on weight of coating, so that the weight of water 

or the PVP solution is equal to the half weight of the powder system. Then, liquid 

vehicle (PEG200 or Synperonic TM PE/L-61) was added to the wet mass system, 

depending on the CW (w/w) values, which is the amount of liquid vehicle divided 

by the amount of the solid materials( in the case of PVP granulation, the amount of 

PVP powder was added to the total amount of the solid materials) . After weighing 

the ingredients, they are mixed in a mortar and pestle for 3 minutes and then 

sieved with a mesh size sieve of 1000 micrometres. After that, the wet granulated 

powder is put inside the oven at 80 o C (+/- 5 o C) for 120 minutes. The dried 

granules are passed through a sieve with mesh size of 710 micrometres. Finally, 

angle of slide was used to evaluate the flowability of the prepared mixtures in term 

of the increasing the amount of CW (w/w). The level of acceptable flowability was 

determined at 330. The powdered systems after preparation are placed on a 

polished metal plate. The plate was tilted gradually until the powder was about to 

slide. Then, the angle that was formed between the plate and the horizontal 

surface was known to be the “angle of slide (θ)”. Each powder system 

measurement was repeated three times in order to record the averages and 

standard deviations [61]. 
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2.2.4. Compressibility studies and determination of optimal compressibility 

liquid-retention potential (ΨLf): 

2.2.4.1. Classical liquisolid formulations (Chapter 3): 

Powder systems consisting of Avicel® PH 101 and Cab-O-Sil® M-5DP at different 

excipient ratios; R= 10  and R=20; where R equals to the weight of Avicel® PH 

101divided by  weight of Cab-O-Sil® M-5DP were prepared with increasing amount 

of Synperonic TM  PE/L-61  . Firstly, the mixtures without the liquid vehicle were 

compressed by Manesty Type F3 single punch compactor at a fixed die volume 

and a compression force to give the maximum tablet hardness, which are 

measured by Schleuniger-2E hardness tester. Then, the liquid vehicle was added 

gradually to give different liquid/solid weight compositions (CW). The pactisity (Ω) 

of each admixture is calculated by dividing the average hardness of tablets (KgF) 

on the average weight of the crushed tablets (g). By determining the average liquid 

content of the crushed compacts and calculating the net liquid/solid weight 

composition (CW) of the crushed liquid/powder admixture, a plot of CW against 

log-pactisity to determine the characteristic intrinsic pactisity (Ωo) as an intercept 

and sponge index (𝜎0) of the powder system, where  

log Ω = log Ωo −  𝜎0 ∗ CW 

The compressible liquid retention potential (Ψ-number) of the powder system 

(Ψmix) was calculated according to the following equation: 

Ψmix =
log Ωo − log 20

𝜎0
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Finally, by calculating the Ψmix value for each powder system, the compressible 

liquid-load factor (ΨLf) of the mixture of Synperonic TM PE/L-61 with powder 

excipient (Avicel® PH 101 and Cab-O-Sil® M-5DP) at specific excipient ratios (R) 

was determined according to the following equation: 

𝛹𝐿𝑓 =  Ψmix (1 +
1

R
) 

This method was applied simulating Liquisolid Compressibility (LSC) Test [6]. 

2.2.4.2. Water granulated liquisolid formulations (chapter 4): 

The water granulation formulations were prepared by the same method mentioned 

in the section of flowability studies. The methodology that is used for calculating 

the average pactisity is used here as well so that it is possible to compare the 

changes in the Log pactisity values with the change of CW for both liquid vehicles 

(PEG200 and Synperonic TM PE/L-61) in the case of water granulation. The plot of 

the reciprocal R values with compressible liquid-load factor (ΨLf) is applied in 

order to obtain a liner equation so that it is possible to calculate the amount of 

carrier and coating at any R value in the range of the equation. 

2.2.4.3. PVP-K17 granulated liquisolid formulations (chapter 5): 

The effect of PVP concentration on the pactisity values was studied by preparing 

wet granulation formulations at a specific R and CW values with changing in the 

PVP solution concentrations for the both liquid vehicles (PEG200 and Synperonic 

TM PE/L-61). The method that is used for preparing wet granulation formulation 

and the one is used for calculating the average pactisity do not change. Then, a 

comparison between the effect of water and PVP-K17 at 10% w/w on the pactisity 
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when changing the CW between the amount of PEG200 and the amount of solid 

materials at R = 6.59 and R =15. Finally, the plot of the reciprocal R values with 

compressible liquid-load factor (ΨLf) is applied in order to obtain a liner equation 

so that it is possible to calculate the amount of carrier and coating at any R value 

in the range of the equation when using PEG200 as a liquid vehicle and 10 % w/w 

PVP-K17 solution as a liquid binder. 

2.2.5. Construction of ternary phase diagram to screening SEDDS systems: 

The purpose of this study is to find out the best self-emulsifying drug delivery 

system (SEDDS) that provides the highest percentage of the drug release in an 

aqueous dissolution medium. The existences of SEDDS were identified by using a 

simplex ternary phase mixture design for formulae containing oil, surfactant and 

co-solvent; each one of them represents an apex of the triangle. Three ternary 

phase diagrams were constructed with different types of the compositions; 

Capryol™ 90, Kolliphor® RH40 and Transcutol® P for the first one, IPM, Kolliphor® 

RH40 and Transcutol® P for the second one and Capmul® MCM EP, Kolliphor® 

RH40 and PEG400 for the third one. For each diagram, ten ternary systems, 

represented in Table 2-5 (from formulation F35 to F41 and from F48 to F51 plus 

F27, F30 and F31), and in Table 2-6 (from formulations F1 to F10) with a fixed 

liquid medication concentration (3.0% w/w for 15 mg active ingredient of 

cinnarizine) of oil, surfactant and co-solvent were prepared so that any formulae 

were always added to 100% for its components (Figure 2-3). Each formula was 

prepared by weighing the relative amount of the components and then was mixed 

with a gentle heating at 40 o C to make a homogeneous mixture. After that, the 

weighed amount of the drug powder dissolved with the mixture system by mixing 

and heating at 60 o C until it is completely dissolved.  
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Figure 2-3: Ternary phase diagram plot shows the position of the prepared formulae 
according to simplex mixture design with ten points. 

2.2.6. Experimental Design: 

In order to find the best set of values, statistical central composite design was 

selected so that it is possible to build a mathematical approach in order to find the 

optimum response according to a set of factors and levels. Multiple linear 

regression analysis was used to develop the polynomial model, depending on the 

statistical significance of the variables (X) and their interactions on the response 

(Y). This allows predicting the response of log pactisity (KgF/g) (Y) in terms of the 

factor CW (w/w) (X1) and the percentage of water as a liquid binder (Water (w/w)) 

(X2) for SEDDS wet granulated liquisolid tablets. As there are two factors, the 

design is built to make thirteen runs as follows; 

 The cube points (2 k points, where k is the number of factors), which are located 

at the corner of the cube. These points evaluate the estimation of linearity and 

interaction effects. However, they are not used for estimation of curvature. 
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The centre point, which is located in the middle of the cube and it is repeated 4 

times. These points are to check the presence of the curvature. However, they do 

not for quadratic estimation. 

The axial points, which are the points that lay outside the surface of the cube 

coming from the centre point with a distance (α =√2). They are usually used to 

determine the quadratic terms. 

All points and their distributions are represented in Figure 2-4. 

 

Figure 2-4: Central composite design for two factors and the distribution of its runs (Z1 and 
Z2 are normalized random variables of X1 and X2, respectively). 

The independent factors, their levels and the analysed dependent response are 

shown in Table 2-1. The selected levels are within practical use and were chosen 

to have a measurable effect on the response.  The statistical experimental design 

was generated, evaluated for the quality of fit of the model and the constant and 

α 
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regression coefficients were calculated using the Minitab software (Version 

17.2.1). 

 

Table 2-1: Variables in central composite design and the true values of the levels. 

Variables name Used levels 

Independent variables −√2 -1 0 +1 +√2 

X1 : CW (w/w) 0.209 0.250 0.350 0.450 0.491 

X2: Water (w/w)  0.217 0.300 0.500 0.700 0.783 

Dependent variable      

Y: Log pactisity (KgF/g)      

 

Finally, the details about the components of the formulations is mentioned in Table 

2-6 from formula F17 to F29, and the details about the formulations were used for 

model validation in Table 2-6 from formula F30 to F33. 

2.3. Liquisolid formulations and compacts preparations: 

2.3.1. Classical liquisolid formulations (chapter 3): 

The calculated amounts of both carrier and coating materials in each liquisolid 

formula were determined according to the flowability numbers for the formulations 

containing PEG200 and compressibility liquid load factor for the Synperonic TM 

PE/L-61 formulations. The reason for choosing the compressibility liquid load 

factor in these formulations is the lower value obtained comparing with flowability 

liquid load factor for the same formulations. However, this is not applied for 

PEG200 formulations due to the ability to compress the powder at flowability liquid 

load factor and obtain acceptable compressibility compacts, which means it is less 
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than the corresponding compressibility liquid load factor for the same formulations 

[6]. 

The equation used to calculate the flowability liquid load factor is: 

𝛷𝐿𝑓 = 𝜙𝑐𝑎𝑟 + 𝜙𝑐𝑜 (
1

𝑅
) , where 𝜙𝑐𝑎𝑟 𝑎𝑛𝑑 𝜙𝑐𝑜 are the flowability number of the carrier 

and coating, respectively, which are determined from the highest angle of slide 

under 330. 

The excipient ratio (R) was chosen to be either 10 or 20 for all liquisolid 

formulations. Moreover, 20 mg of norfloxacin active ingredient was selected to be 

in each tablet. As a result, the required amount of liquid medication (W) is 

calculated depending on drug concentration in the liquid medication (i.e. 20% w/w 

or 40% w/w). After determining the liquid load factor, the desired amount of carrier 

can be calculated by applying the following equation: 𝐿𝑓 =
𝑊

𝑄
  and the specific 

amount of coating is from R= Q/q. Liquisolid and conventional formulations are 

summarised in Table 2-2. 

The detailed procedure for liquisolid formulation preparation is as follows; firstly, 

pure norfloxacin was dispersed in the liquid vehicle (PEG200 or Synperonic TM 

PE/L61) to form a liquid medication. Then, the carrier (Avicel® PH 101) and the 

coating (Cab-O-Sil® M-5DP) excipients were added to the liquid medication with 

continuous mixing by mortar and pestle until obtaining a dry powder mixture.  

Carmellose sodium disintegrant (5% w/w of the unit dose) and magnesium 

stearate lubricant (1% w/w of the unit dose) were added to the liquisolid mixture 

with continuous mixing until reach to homogeneous mixture. 
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Finally, all formulae were compacted into tablets using the single punch tablet 

press with acceptable level of hardness. For high unit dose weight, each sample 

unit was divided into 2 or 4 tablets so that they contain 20 mg of norfloxacin. The 

reason for this is to ensure that each tablet is within a reasonable size and 

hardness. 

By using mortar and pestle, the conventional norfloxacin tablets were prepared by 

mixing carrier and coating (R=20) with 20 mg of the drug and with the same 

percentages of lubricant and disintegrant. The resulting powder mixture was 

directly compressed into tablets through the single punch compactor. 
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Table 2-2: Components of the liquisolid formulations that used in chapter 3. 

Formula 

non-
volatile 
liquid 

vehicle 

Liquid 
medication 

(%w/w) 

 

R 
value 

liquid 
vehicle 
(mg) 

Drug 

(mg) 
Carrier(mg) 

coating 
(mg) 

liquid 
load 

factor 

Disintegrant 
mg (~ %5) 

lubricant 
(mg) 

(~%1) 

unit 
dose 

(mg) 

F1 PEG 200 20 10 80 20 454.6 45.45 0.22 31.91 6.38 638.3 

F2 PEG 200 20 20 80 20 476.2 23.81 0.21 31.91 6.38 638.3 

F3 PEG 200 40 10 30 20 227.3 22.73 0.22 15.96 3.19 319.2 

F4 PEG 200 40 20 30 20 238.1 11.90 0.21 15.96 3.19 319.2 

F5 S-L-61* 20 10 80 20 716.9 71.69 0.14 47.27 9.45 945.4 

F6 S-L-61* 20 20 80 20 962.6 48.13 0.10 59.08 11.82 1181.7 

F7 S-L-61* 40 10 30 20 358.5 35.85 0.14 23.63 4.73 472.7 

F8 S-L-61* 40 20 30 20 481.3 24.07 0.10 29.54 5.91 590.8 

conventional - - - - 20 254.5 25.50 - 16.00 3.20 319.2 

 

*Synperonic TM PE/L-61
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2.3.2. Wet granulated liquisolid formulations (chapter 4 and 5): 

Norfloxacin wet granulated liquisolid formulations were prepared using PEG200 or 

Synperonic TM PE/L61 as liquid vehicles, with 40% or 20 % w/w liquid medication 

concentrations. To prepare one tablet, the first step was to weigh 20mg of 

norfloxacin and dispersed in the liquid vehicle (PEG 200 or Synperonic TM PE/L61) 

with continuous mixing using pestle and mortar. The mixing process was 

performed until drug particles dispersed completely. After that, the calculated 

amount of liquid binder (water or 10%w/w PVP-K17 solution) is added to the liquid 

medication with continuous mixing. This is then followed by the gradual addition of 

the appropriate amount of carrier which was Avicel® PH 101.Following this, the 

Silica, which acts as a coating material, is added to convert the wet mixture into 

dry powder under continuous mixing. The carrier and coating materials can be 

calculated from the equation of excipient ratios (R) and the equation of the load 

factor, which is in the case of water granulation, the following equations were 

used: 

𝛹𝐿𝑓 = 0.5343 ×  
1

𝑅
+ 0.3737  for PEG200 water granulated formulations, and  

𝛹𝐿𝑓 = 0.4139 ×  
1

𝑅
+ 0.2868 for Synperonic TM PE/L-61 water granulated 

formulations. 

When 10 % w/w PVP-K17 solution was used as a liquid binder, the following 

equation was used: 

𝛹𝐿𝑓 = 0.8904 ×  
1

𝑅
+ 0.3247  For PEG200 PVP-K17 granulated formulations. 
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The amount of the binder solution is equal to the sum of the weight of the carrier 

and coating divided by two. Then, 5% w/w carmellose sodium and 1% w/w of 

magnesium stearate are added into the admixture. The mixing will continue for 3 

minutes before the powder system is sieved on a 1000 µm mesh size sieve. After 

that, the wet granulated liquisolid formulations are put inside the oven at 80 o C (+/- 

5 o C) for 120 minutes. Then, the dried granules are passed through another sieve 

(710 µm). Finally, all formulations were compacted into tablets using the single 

punch tablet press with acceptable level of hardness. For high unit dose weight, 

each sample unit was divided into smaller tablet weight so that they contain 20 mg 

of norfloxacin. The reason for this is to ensure that each tablet is within a 

reasonable size and hardness.  

Table 2-3 and Table 2-4 represent all the formulations that are used in chapter 4 

and chapter 5, respectively.  When the liquid binder solution weight is equal to 0, 

this means that the formulation is prepared in a classical methodology (Table 2-2), 

whereas when the PVP- K17 powder weight is equal to 0, this means that water 

was used as a liquid binder (Table 2-3). Some formulations were used the load 

factor of the classical formulations to prepare wet granulated ones. The aim of this 

is to see the effect of the changing the amount of carrier and coating on the 

dissolution rate.
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Table 2-3: Components of the liquisolid formulations that used in chapter 4. 

Formula 
non-volatile 

liquid 
vehicle 

Liquid 
medication 

(%w/w) 

           
R 

value 

liquid 
vehicle 
(mg) 

Drug 
(mg) 

carrier 
(mg) 

coating 
(mg) 

liquid 
load 

factor  

Disintegrant 
(mg) (~ %5) 

Lubricant 
(mg) 

(~%1) 

Liquid 
binder 

solution 
weight  
(mg) 

unit 
dose 
(mg) 

F1 PEG200 20 10 80 20 454.6 45.45 0.2200 31.91 6.38 0.00 638.30 

F2 PEG200 20 20 80 20 476.2 23.81 0.2100 31.91 6.38 0.00 638.30 

F3 PEG 200 40 10 30 20 227.3 22.73 0.2200 15.96 3.19 0.00 319.15  

F4 PEG 200 40 20 30 20 238.1 11.90 0.2100 15.96 3.19 0.00 319.15 

F5 PEG200 20 10 80 20 454.6 45.45 0.2200 31.91 6.38 250 638.30 

F6 PEG200 20 20 80 20 476.2 23.81 0.2100 31.91 6.38 250 638.30 

F7 PEG 200 40 10 30 20 227.3 22.73 0.2200 15.96 3.19 125 319.15 

F8 PEG 200 40 20 30 20 238.1 11.90 0.2100 15.96 3.19 125 319.15 

F9 PEG 200 20 10 80 20 234.0 23.40 0.4271 19.00 3.8 129 380.20 

F10 PEG 200 20 20 80 20 250.0 12.50 0.4000 19.28 3.85 131 385.63 

F11 PEG 200 40 10 30 20 117.0 11.70 0.4271 9.50 1.9 64.4 190.10 

F12 PEG 200 40 20 30 20 125.0 6.250 0.4000 9.64 1.93 65.6 192.82 

F13 S-L-61 20 10 80 20 716.9 71.69 0.1394 47.27 9.45 0.00 945.35 

F14 S-L-61 20 20 80 20 962.6 48.13 0.1038 59.08 11.82 0.00 1181.7 

F15 S-L-61 40 10 30 20 358.5 35.85 0.1394 23.63 4.73 0.00 472.67 

F16 S-L-61 40 20 30 20 481.3 24.07 0.1038 29.54 5.91 0.00 590.84 

F17 S-L-61 20 10 80 20 716.9 71.69 0.1394 47.27 9.45 394 945.35 

F18 S-L-61 20 20 80 20 962.6 48.13 0.1038 59.08 11.82 505 1181.7 

F19 S-L-61 40 10 30 20 358.5 35.85 0.1394 23.63 4.73 376 472.67 

F20 S-L-61 40 20 30 20 481.3 24.07 0.1038 29.54 5.91 253 590.84 

F21 S-L-61 20 10 80 20 335.2 33.50 0.2984* 24.93 4.99 184 498.59 

F22 S-L-61 20 20 80 20 341.5 17.00 0.2929* 24.39 4.88 179 487.77 

F23 S-L-61 40 10 30 20 167.6 16.76 0.2984* 12.46 2.49 92.2 249.30 

F24 S-L-61 40 20 30 20 170.7 8.535 0.2929* 12.20 2.44 89.6 243.80 

*The load factor in these formulations is substituted with the value of the compressibility mixture due to the sensitivity of Synperonic TM PE/L61 to the 

reciprocal excipient ratio factor as a decreasing variable of the value of the dry powder.
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Table 2-4: Components of the liquisolid formulations that used in chapter 5. 

Formula 
liquid 

vehicle 

Liquid 
Medication 

(%w/w) 

              

R 
value 

liquid 
vehicle 
(mg) 

Drug 
(mg) 

carrier 
(mg) 

coating 
(mg) 

liquid 
load 

factor 

Disintegrant 
mg (~ %5) 

Lubricant 
(mg) 

(~%1) 

PVP K17 
Powder 
weight 
(mg) 

Liquid 
Binder 
solution 
weight 
(mg) 

unit dose 
(mg) 

F1 PEG 200 20 10 80 20 241.7 24.17 0.414 20.16 4.03 13.29 132.9 403.34 

F2 PEG 200 20 20 80 20 270.8 13.5 0.369 21.20 4.24 14.2 142.2 423.98 

F3 PEG 200 40 10 30 20 120.9 12.085 0.414 10.08 2.01 6.65 66.47 201.68 

F4 PEG 200 40 20 30 20 135.4 6.771 0.369 10.60 2.12 7.10 71.01 212.01 

F5 PEG 200 20 10 80 20 454.6 45.45 0.220 33.20 6.65 25.0 250.0 664.85 

F6 PEG 200 20 20 80 20 476.2 23.81 0.210 33.20 6.65 25.0 250.0 664.85 

F7 PEG 200 40 10 30 20 227.3 22.73 0.220 16.60 3.40 12.5 125.0 332.50 

F8 PEG 200 40 20 30 20 238.1 11.90 0.210 16.60 3.40 12.5 125.0 332.50 

F9 PEG 200 20 10 80 20 234.0 23.4 0.427 19.00 3.80 0.00 128.7 380.20 

F10 PEG 200 20 20 80 20 250.0 12.5 0.400 19.28 3.85 0.00 131.3 385.63 

F11 PEG 200 40 10 30 20 117.0 11.7 0.427 9.50 1.90 0.00 64.35 190.10 

F12 PEG 200 40 20 30 20 125.0 6.25 0.400 9.64 1.93 0.00 65.63 192.82 

F13 PEG 200 20 10 80 20 454.6 45.45 0.220 31.91 6.38 0.00 250.0 638.30 

F14 PEG 200 20 20 80 20 476.2 23.81 0.210 31.91 6.38 0.00 250.0 638.30 

F15 PEG 200 40 10 30 20 227.3 22.73 0.220 15.96 3.19 0.00 125.0 319.15 

F16 PEG 200 40 20 30 20 238.1 11.90 0.210 15.96 3.19 0.00 125.0 319.15 
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2.4. Pre-compression studies: 

2.4.1. Determination of flow property: 

Assessing the flowability of prepared powders depends on Carr’s Compressibility 

Index (CI%) and Hausner’s ratio (H ratio). They are calculated from determination 

of the relative poured bulk density (𝑃𝑏) and the tapped density (𝑃𝑡) of each powder 

formulation. The weight of each powder formulation was recorded and then the 

powder was poured into a 250 mL cylinder on a tap volumeter (JV1000, Copley 

Scientific, UK). Both poured bulk volume (𝑉𝑏) and tapped volume (𝑉𝑡), which is the 

constant volume obtained after application of a sufficient number of taps (usually 

after 500 taps x 3 times), are recorded. The densities are determined from dividing 

each weight of the powder on the relative volumes. Finally, CI% and H-ratio are 

calculated and evaluated depending on the criteria in the British Pharmacopoeia 

[56]. The equations that are used to calculate the values of CI% and H-ratio are: 

𝐶𝑙% = 100 × (𝑃𝑡 − 𝑃𝑏)/𝑃𝑡  

𝐻 − 𝑟𝑎𝑡𝑖𝑜 =  
𝑃𝑡

𝑃𝑏
 

2.4.2. Differential Scanning Calorimetry (DSC): 

Pure drugs and the prepared formulation powders were exposed to DSC scan via 

DSC Refrigerated Cooling System (Model Q1000, TA Instruments, UK). Each 

sample contained about 2.5-12 mg. Then, it was hermitically sealed in an 

aluminium pan before analysis. Two samples of Indium at the beginning and at the 

end of each run were used to validate the accuracy of the instrument. The 
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investigation of the thermal behaviour of each sample was at a scanning rate 10 o 

C/min, from 0 o C to 300 o C. 

2.4.3. Fourier Transform Infrared Spectroscopy (FTIR): 

Infrared spectra were acquired for all relative materials and prepared formulations 

using Spectrum BX FTIR Spectrophotometer (Perkin–Elmer, Cambridge, UK). 

Small amount of each sample was directly loaded into the instrument without any 

treatments. The frequency ranged from 4000 cm-1 to 650 cm-1 at 1.0 cm-1 

resolution. The data was obtained by Spectrum BX series software version 5.3.1. 

For further investigation of the unique behaviour of norfloxacin, IR spectra were 

collected for wet powder of norfloxacin, which prepared by adding one drop of 

distilled water (pH= 6.1) to norfloxacin powder and then compared with the dry 

powder, PEG200, Synperonic TM PE/L-61, the interfacial layer consisting from 

liquid medication of norfloxacin with either PEG200 or Synperonic TM PE/L-61 at 20 

% w/w concentration for 20 mg active ingredient. The interfacial layer was 

collected after running the dissolution tester for 30 minutes in 750 ml of distilled 

water (pH=6.1) with a paddle speed 50 rpm in apparatus II at 37 o C. The samples 

directly uploaded to the FTIR spectrophotometer without any pre-treatment. The 

spectra were presented in chapter 3. 

Moreover, infrared spectra were acquired for pure cinnarizine, the blank and the 

sample of formula F45 (Table 2-5), and the crystals that formed after one hour 

dissolution test, which were collected by pouring the content of the vessel on a 

125 µm sieve and dried for one hour in an oven at 65 o C, and then collected to a 

filter paper by a brush. The data presented in chapter 6. 



54 

 

2.4.4. Emulsion droplet size analysis: 

Formulations from F25 to F41 (Table 2-5) and formulations from F1 to F10 in 

Table 2-6 were prepared and then diluted to a concentration equals 15 mg/L, 

using distilled water (pH=6.1) in 100 ml flask. The droplet size analysis of the 

resulting emulsions was performed using dynamic light scattering analyser 

(Brookhaven Instrument Corporation, USA) at 21 o C and a 90° angle. The data 

are expressed as effective mean diameter and plotted using MATLAB. 

2.5. Evaluation of liquisolid tablets: 

2.5.1. Drug content uniformity, tablet dimensions, hardness, friability, 

disintegration and tensile strength tests: 

2.5.1.1. Content uniformity test:  

Tablets containing 20 mg of norfloxacin were weighed and crushed by mortar and 

pestle in order to determine the drug content in classical liquisolid, wet granulated 

liquisolid (water or PVP) and conventional tablets. Then, the crushed powder was 

dissolved in 1 L acetate buffer solution at pH=4. The solution were mixed for 1 

hour and filtered. Finally, the samples were analysed for determining the drug 

concentration using UV spectrophotometer at 315 nm. The percentage of drug 

content with respect the theoretical amount was determined. 

Regarding cinnarizine tablets, the same procedure of norfloxacin was applied 

except that the solvent is 1 L of 0.1 M hydrochloric acid, mixing for 20 minutes, 

and the used UV spectroscopy wavelength is 253 nm. The tablet that contains the 

MCM EP SEEDS mixture as a liquid vehicle was diluted by acetonitrile with a 

dilution factor equals 2.0. 
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2.5.1.2. Friability test: 

Tablets friability was measured using a Comply FRV 1000 friability device. Ten 

tablets for every formula were weighed accurately and then rotated in the tester for 

100 rounds at a speed 25 rpm. Then the tablets were de-dusted and the weight 

after applying the test was measured. The percentage of the friability was 

calculated according to the following equation: 

%Friability = (
weight before the test − weight after the test

weight before the test
) × 100% 

2.5.1.3. Disintegration test: 

Using Comply DTG200 disintegration tester, the disintegration test was performed 

where six tablets were placed individually in the baskets then the time for each 

tablet to disintegrate completely was recorded. The test was performed at 37°C in 

the dissolution media (distilled water). 

2.5.1.4. Tensile strength, Hardness and tablet dimensions: 

Ten tablet thickness and diameter were determined by micrometre (Moor and 

Wright, England).Tensile strengths of tablets were calculated by applying the 

following equation: 

𝑆 =
2𝑃 

𝛱 𝑥 𝑑𝑥 𝑡
 

Where S (MPa) is the tensile strength, P (N) is the crushing force which 

determined by Schleniger-2E hardness tester, d (m) is the diameter of the tablet 

and t (m) is the tablet thickness. 
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2.5.2. In vitro dissolution studies: 

In vitro dissolution studies were executed for pure norfloxacin, conventional and all 

liquisolid tablet formulations presented in Table 2-2, Table 2-3 and Table 2-4 by 

using USP dissolution apparatus II (Caleva 8ST Ltd., Dorset, UK). Two different 

dissolution media were used for all liquisolid and conventional tablets; distilled 

water (pH= 6.1) and the acetate buffer solution (pH=4.0). Both dissolution media 

volumes were 750 ml with a paddle speed 50 rpm maintained at 37 o C according 

to BP specifications [56]. 10 ml sample was withdrawn at time intervals of 5, 10, 

15, 20, 25, 30, 45, 60 and 90 min, and the withdrawn samples were replaced with 

equal volumes of the dissolution medium. The drug content in each withdrawn 

sample was determined using UV/Vis spectrophotometer (Model M501, Camspec 

Ltd., Cambridge, UK) at 315 nm for acetate buffer solution and 321 nm for distilled 

water dissolution medium. The reported data are an average of three samples with 

the relevant standard deviation and the calibration curve was used to calculate the 

relative drug concentrations. Each sample included a number of tablets so that it 

contains 20 mg of the active ingredient. This idea was taken from a similar study 

[62].  

Regarding in vitro dissolution studies of cinnarizine, the screening tests mentioned 

in chapter 6 and Table 2-5 were executed for the first 24 formulations. According 

to the relevant formulations, three different dissolution media were used; distilled 

water (pH= 6.1), 0.1 M hydrochloric acid (pH= 1.0) and phosphate buffer solution 

at pH = 7.2. The phosphate buffer solution was made by mixing 17.7954 g of 

KH2PO4 and 47.6968 g Na2HPO4 with distilled water in order to make 7000 ml 

buffer solution.  Both dissolution media volumes were 1000 ml with a paddle 

speed 50 rpm maintained at 37 o C. The withdrawn sample system is similar to the 
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one applied in the case of norfloxacin. The drug content in each withdrawn sample 

was determined using UV/Vis spectrophotometer (Model M501, Camspec Ltd., 

Cambridge, UK) at 253 nm for the both dissolution media. The calibration curve 

was used to calculate the relative drug concentration. When the drug shows an 

interference with formulations, such as formulations from F35 to F41 and from F47 

to F51 in Table 2-5 and all formulations mentioned in Table 2-6, two millilitres of 

the withdrawn samples were diluted with 2 ml of acetonitrile. The blank for the 

relevant formulations show no absorbance at 253 nm wavelength. Also, a 

standard solution consisting of 15 mg cinnarizine powder dissolved in 100 ml 

acetonitrile: distilled water (pH=6.1) in a percentage of (50:50), sonicated for 30 

minutes and then 5 ml was taken to 50 ml of the same solvent, the maximum 

wavelength records at 253 nm and the average of the absorbance was 0.855, 

which is the same absorbance value that can be obtained from the calibration 

equation of the cinnarizine dissolved in 0.1 M HCl solution. 

The similarity factor (f2) was used as a statistical technique to compare between 

the dissolution profiles. 

𝑓2 = 50 × 𝑙𝑜𝑔 {[1 + (
1

𝑛
) ∑ (𝑅𝑡 − 𝑇𝑡)2𝑛

𝑡=1 ]
−0.5

 × 100}, where 𝑅𝑡  is the reference data, 

𝑇𝑡 is the test data, n is the number of samples. If the percentage is over 50%, this 

means the two groups of data are similar; otherwise it is not significantly similar 

[63]. 
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Table 2-5: The components of cinarizine formulations, presented in chapter 6. 

Formula surfactants surfactant 
weight  (mg) 

Components and preparations 

F1 PEG200 60 PEG200 alone =59.8 mg ; PEG200 + drug =(60.7 + 15.0) mg 

F2 Synperonic TM PE/L61 60 Synperonic TM PE/L-61 alone =59.7 mg / Synperonic TM PE/L-61 + drug =(60.4 + 15.0) mg 

F3 Tween 20 60 Tween 20 alone =60.0 mg / Tween 20 + drug =(60.1 + 15.0) mg 

F4 PG 60 PG alone =60.2 mg / PG+ drug =(60.6 + 15.1) mg 

F5 PEG400 60 PEG400 alone =60.2 mg / PEG400+ drug =(60.6 + 15.0) mg 

F6 Cremophor® RH40 60 Cremophor® RH40 alone =60.1 mg / Cremophor® RH40+ drug =(60.9 + 15.1) mg 

F7 Solutol® HS 15 60 

 

Solutol® HS15 alone =60.9 mg / Solutol® HS15+drug  =(60.9 + 15.2) mg with heating (60 o C) until 

the drug particles disappear completely 
 

F8 Cremophor® RH40 60 
Cremophor® RH40 alone=60.5 mg/ Cremophor® RH40 + drug = (60.9+15.4) mg with heating (60 o 

C) 
 

F9 
Cremophor® RH40/ 

Cremophor EL 
30 + 30 

Cremophor® RH40 + Cremophor® EL alone=30.2 + 29.4 mg/ Cremophor® RH40 + Cremophor® EL 

+ drug = (29.3+30+14.9) mg with heating (60 o C) 

F10 
Cremophor® EL/ 

Solutol® HS 15 
30 + 30 

Cremophor® EL+ Solutol® HS15 alone =30.2+30.3=60.5 mg / Cremophor® EL+ Solutol® HS15+ 

drug =(30.3 + 29.6+15.0) mg with heating (60 o C) 

F11 
Cremophor® RH40/ 

Solutol® HS 15 
30 +30 

Cremophor® RH40+ Solutol® HS15 alone =29.6+29.7=59.3 mg / Cremophor® RH40+ Solutol® 

HS15+ drug =(29.6 + 29.9+15.1) mg with heating (60 o C) 

F12 

Cremophor® RH40/ 

Solutol® HS 15/ 

Cremophor EL 

20 + 20 + 20 

Cremophor®RH40+ Solutol® HS15 + Cremophor® EL alone =20.7+20.8+19.8=60.8 mg / 

Cremophor® RH40+ Solutol® HS15+ Cremophor® EL+ drug =(20.8 + 19.1+20.8+14.8) mg with 

heating (60 o C) 
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F13 Solutol® HS 15 60 Preparation of Solutol and cinnarizine at 20% w/w : Lf= 0.21/// drug: 15.0 mg, Solutol: 60 mg, lactose 
: 357 mg, Cab-O-Sil® M-5P: 18 mg, Croscarmellose sodium: 24 mg and Mg stearate: 4.7 mg/// 

practically: drug; 14.9 mg , Solutol 59.5 mg , lactose: 357.2 mg , Cab-O-Sil® M-5P 17.8 mg, 

Croscarmellose sodium = 24.3 mg  and Mg stearate: 3.7 mg///  Blank  preparation; drug : 0 mg, 

Solutol : 59.4 mg , lactose: 358.2 mg, Cab-O-Sil® M-5P : 18 mg, Croscarmellose sodium : 23.6 mg, 

Mg stearate 4.0 (practically) with heating at (60 o C). The dissolution test conditions: phosphate 
buffer at pH=7.2 (1 L) at 50 rpm speed and (37 o C).  

F14 Cremophor® RH40 60 Preparation of Cremophor® RH40 and cinnarizine at 20% w/w : Lf= 0.21/// drug: 15.0 mg, 

Cremophor® RH40: 60 mg, lactose 357: mg Cab-O-Sil: 18 mg,  Croscarmellose sodium: 24 mg and 

Mg stearate :4.7// practically: Drug: 15.0 mg , Solutol® HS 15: 60.4 mg , lactose: 358.8 mg , Cab-O-

Sil: 18.6 mg, Croscarmellose sodium : 24.2 mg  and Mg stearate: 4.1 mg /// Blank : Drug ; 0 mg, 

Cremophor® RH40 : 60.8 mg , lactose: 359.2 mg, Cab-O-Sil® M-5P : 17.8 mg, Croscarmellose 

sodium : 24.7mg, Mg stearate: 5.7(practically) with heating at (60 o C) and in phosphate buffer 
dissolution media at pH =7.2 ( 1 L) with 50 rpm and (37 o C). 
 

F15 PEG 200 60 Preparation of PEG200 and cinnarizine at 20% w/w : Lf= 0.21 with heating at (60 o C) /// drug: 15.0 
mg, PEG200: 60 mg, lactose: 357 mg, Cab-O-Sil: 18 mg,  dis 24 mg and lubricant 4.7 practically: AI ; 

14.9 mg , Solutol® HS 15: 61.5 mg , lactose: 359.8mg , Cab-O-Sil® M-5P: 17.6 mg, Croscarmellose 

sodium: 25 mg  and Mg stearate: 4.4 mg /// Blank : no need as the PEG200 does not have 
absorbance at 253 nm wavelength/// dissolution test: phosphate buffer dissolution media at pH = 7.2, 
50 rpm and (37 o C). 
 

F16 Cremophor® RH 40 120 
Cremophor® RH40+ drug=120.6+15.0 mg / Cremophor® RH40 alone = 119.8 mg in phosphate buffer 

solution at pH = 7.2 with heating at (60 o C) 

F17 Cremophor® RH 40 200 
Cremophor® RH40+ drug=200.4+15.0 mg / Cremophor® RH40 alone = 200.0 mg with heating at 60 o 

C and in phosphate buffer solution ( pH= 7.2) 

F18 Cremophor® RH 40 400 
Cremophor® RH40+ drug=400.3+15.0 mg / Cremophor® RH40 alone = 400.6 mg with heating at 60 o 

C and in phosphate buffer solution ( pH= 7.2) 

F19 Cremophor® RH 40 120 
Cremophor® RH40+ drug=120.2+15.1 mg / Cremophor® RH40 alone = 120.2 mg with heating at 60 o 

C and in distilled water  ( pH= 6.1) 

F20 Cremophor® RH 40 200 
Cremophor® RH40+ drug=199.8 +15.1 mg / Cremophor® RH40 alone = 199.9 mg with heating at 60 
o C and in distilled water  ( pH= 6.1) 

F21 Cremophor® RH 40 400 
Cremophor® RH40+ drug=400.1 +15.1 mg / Cremophor® RH40 alone = 400.1 mg with heating at 60 
o C and in distilled water  ( pH= 6.1) 

F22 Brji® S 100 200 
Brji® S 100+ drug=201.2 +15.0 mg / Brji® S 100 alone = 202.3 mg with heating at (60 o C) and in 
distilled water ( pH= 6.1) 
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F23 
PVP/ Cremophor® 

RH40 
10 + 200 

PVP-K17 + Cremophor® RH40 + drug=10.3 + 200.8+ 15.0 mg / PVP-K17 + Cremophor® RH40  = 

10.7  + 200 mg with heating at (60 o C) and in distilled water ( pH =6.1) 

F24 Cremophor RH 40 200 

Blank: drug:0 mg ,Cremophor® RH40:200.6 mg, Avicel® PH 101: 997.2 mg, Cab-O-Sil® M-5P :48.3 

mg , Croscarmellose sodium: 65.6 mg , Mg stearate: 13.3 mg/// practically: drug:15.0 mg 

,Cremophor® RH40: 200.1 mg, Avicel® PH 101: 966.5 mg, Cab-O-Sil: 49.7 mg , Croscarmellose 

sodium: 65.2 mg, Mg stearate: 13 mg with heating at (60 o C) and in distilled water at pH =6.1 
dissolution medium 

F25 Capryol™ 90 500 Drug/ liquid medication = 15.1 mg / 499.5 mg ; blank =484.5 mg 

F26 
Capryol™ 90/ 

Transcutol® P 
500 Drug/liquid medication (50:50) = 14.9 mg / 500.2 mg; blank = 486.8 mg 

F27 Kolliphor® RH40 500 Drug / liquid medication = 15.1 mg /501.5 mg ; blank = 483.8 mg 

F28 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

500 Drug/  liquid medication(16.66:16.66:66.67) =  15.0 mg /499.5 mg; blank = 483.5 mg 

F29 
Capryol™ 90/ 

Kolliphor® RH40 
500 Drug /  liquid medication (50:50) = 14.9 mg/ 499.3 mg ; blank = 485.6 mg 

F30 
Kolliphor® RH40/ 

Transcutol® P 
500 Drug / liquid medication (50: 50) = 15.0 mg / 503.3 mg; blank = 486.0 mg 

F31 Transcutol® P 500 Drug/ liquid medication = 15.1 mg / 500.0 mg ; blank = 484.4 mg 

F32 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

500 Drug/  liquid medication(16.66:66.67:16.66) =  14.9 mg /501.2 mg; blank = 485.6 mg 

F33 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

500 Drug/  liquid medication(66.67:16.66:16.66) =  15.0 mg /500.4 mg; blank = 485.3 mg 

F34 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

500 Drug/  liquid medication(33.33:33.33:33.33) =  14.8 mg /501.2 mg; blank = 487.0 mg 
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F35 

 

IPM 500 

 

Drug/ liquid medication = 14.8 mg / 499.8 mg ; blank=484.1 mg 

F36 IPM/ Transcutol® P 500 Drug /  liquid medication (50:50) = 15.0 mg/ 500.4 mg ; blank = 484.7 mg 

F37 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
500 Drug/  liquid medication(66.67:16.66:16.66) =  14.8 mg /500.2 mg; blank = 485.4 mg 

F38 IPM/ Kolliphor® RH40 500 Drug /  liquid medication (50:50) = 15.0 mg/ 498.7 mg ; blank = 484.7 mg 

F39 
IPM/ Cremophor® 

RH40/ Transcutol® P 
500 Drug/  liquid medication(16.66:66.67:16.66) =  15.3 mg /503.2 mg; blank = 485.1 mg 

F40 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
500 Drug/  liquid medication(16.66:16.66:66.67) =  14.9 mg /501.2 mg; blank = 485.5 mg 

F41 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
500 Drug/  liquid medication(33.33:33.33:33.33) =  15.0 mg /500.4 mg; blank = 484.7 mg 

F42 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

100 Drug/  liquid medication(70:15:15) =  15.0 mg /100.1 mg; blank = 85.0 mg 

F43 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

200 Drug/  liquid medication(70:15:15) =  15.1 mg /200.5 mg; blank = 185.9 mg 

F44 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

300 Drug/  liquid medication(70:15:15) =  15.1 mg /300.0 mg; blank = 285.5 mg 

F45 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

400 Drug/  liquid medication(70:15:15) =  15.0 mg /398.8 mg; blank = 385.6 mg 

F46 

Capryol™ 90/ 

Kolliphor® RH40/ 

Transcutol® P 

500 Drug/  liquid medication(70:15:15) =  15.2 mg /501.7 mg; blank = 486.4 mg 
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F47 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
100 Drug/  liquid medication(35:35:30) =  15.2 mg /100.1 mg; blank = 85.0 mg 

F48 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
200 Drug/  liquid medication(35:35:30) =  15.0 mg /200.5 mg; blank = 184.5 mg 

F49 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
300 Drug/  liquid medication(35:35:30) =  15.1 mg /300.6 mg; blank = 284.9 mg 

F50 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
400 Drug/  liquid medication(35:35:30) =  15.1 mg /400.3 mg; blank = 385.3 mg 

F51 
IPM/ Kolliphor® RH40/ 

Transcutol® P 
500 Drug/  liquid medication(35:35:30) =  14.8 mg /500.4 mg; blank = 485.0 mg 
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Table 2-6: the components of cinnarizine formulations, presented in chapter 7 

Formula Surfactants surfactant weight  
(mg) 

Components and preparations 

F1 

 

Capmul® MCM EP 500 Drug /  liquid medication = 14.9 mg/ 500.0 mg ; blank = 485.0 mg 

F2 Capmul® MCM EP/ PEG400 500 Drug/  liquid medication(50:50) =  15.0 mg /500.3 mg; blank = 486.4 mg 

F3 Kolliphor® RH40 500 Drug / liquid medication = 15.1 mg /501.5 mg ; blank = 483.8 mg 

F4 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

500 Drug/  liquid medication(16.7:16.7:66.6) =  15.0 mg /499.9 mg; blank = 

485.5 mg 

F5 Capmul® MCM EP/ Kolliphor® 

RH40 

500 Drug/  liquid medication(50:50) =  15.2 mg /500.4 mg; blank = 485.3 mg 

F6 Kolliphor® RH40/ PEG400 500 Drug/  liquid medication(50:50) =  15.1 mg /500.1 mg; blank = 484.1 mg 

F7 PEG400 500 Drug/  liquid medication=  14.9 mg /500.2 mg; blank = 485.0 mg 

F8 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

500 Drug/  liquid medication(16.7:66.6:16.7) =  14.9 mg /499.8 mg; blank = 

484.1 mg 

F9 

 

Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

500 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /499.8 mg; blank = 

485.1 mg 

F10 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

500 Drug/  liquid medication(33.3:33.3:33.3) =  15.0 mg /485.7 mg; blank = 

484.9 mg 

 

F11 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

200 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /200.8 mg 
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F12 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

250 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /250.5 mg 

F13 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

300 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /299.4 mg 

F14 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

350 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /350.8 mg 

F15 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

400 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /400.4 mg 

F16 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

450 Drug/  liquid medication(66.6:16.7:16.7) =  15.0 mg /450.0 mg 

F17 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

749.6 Liquid medication = 0.7496 g, Avicel® PH 101 = 3.0006 g , water = 

0.9004 g ;(CW/Water%= 0.25/0.3) 

F18 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1350.0 Liquid medication = 1.3500 g, Avicel® PH 101 = 3.0008 g , water = 

0.8994 g;(CW/Water%= 0.45/0.3) 

F19 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

750.4 Liquid medication = 0.7504 g, Avicel® PH 101 = 2.9995 g , water = 

2.1015 g;(CW/Water%= 0.25/0.7) 

F20 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1350.0 Liquid medication = 1.3500 g, Avicel® PH 101 = 3.0003 g , water = 

2.0992 g;(CW/Water%= 0.45/0.7) 

F21 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

628.0 Liquid medication = 0.6280 g, Avicel® PH 101 = 3.0018 g , water = 

1.5000 g;(CW/Water%= 0.209/0.5) 

F22 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1475.3 Liquid medication = 1.4753 g, Avicel® PH 101 = 3.0007 g , water = 

1.5030 g;(CW/Water%= 0.491/0.5) 

F23 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1049.9 Liquid medication = 1.0499 g, Avicel® PH 101 = 2.9990 g , water = 

1.5008 g;(CW/Water%= 0.35/0.217) 

F24 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1049.6 Liquid medication = 1.0496 g, Avicel® PH 101 = 2.9995 g , water = 

2.3507 g;(CW/Water%= 0.35/0.783) 

F25 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1050.4 Liquid medication = 1.0504 g, Avicel® PH 101 = 3.0014 g , water = 

1.5005 g;(CW/Water%= 0.35/0.5) 



65 

 

F26 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1049.8 Liquid medication = 1.0498 g, Avicel® PH 101 = 3.0012 g , water = 

1.5024 g;(CW/Water%= 0.35/0.5) 

F27 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1049.8 Liquid medication = 1.04980 g, Avicel® PH 101 = 3.0021 g , water 

=1.5007 g;(CW/Water%= 0.35/0.5) 

F28 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1049.7 Liquid medication = 1.0497 g, Avicel® PH 101 = 3.0002 g , water = 

1.5004 g;(CW/Water%= 0.35/0.5) 

F29 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1050.1 Liquid medication = 1.0501 g, Avicel® PH 101 = 3.0005 g , water = 

1.5001 g;(CW/Water%= 0.35/0.5) 

F30 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

749.6 Liquid medication = 0.7496 g, Avicel® PH 101 = 2.9998 g , water = 

1.2024 g;(CW/Water%= 0.25/0.4) 

F31 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

750.4 Liquid medication = 0.7504 g, Avicel® PH 101 = 3.0005 g , water = 

1.8001 g;(CW/Water%= 0.25/0.6) 

F32 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

1350.3 Liquid medication = 1.3503 g, Avicel® PH 101 = 3.0005 g , water = 

1.1995 g;(CW/Water%= 0.45/0.4) 

F33 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

900.0 Liquid medication = 0.9000 g, Avicel® PH 101 = 3.0015 g , water = 

1.8002 g;(CW/Water%= 0.30/0.6) 

F34 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

235 Drug = 15 mg, liquid vehicle= 235 mg; Avicel® PH 101(carrier)= 744 mg; 

croscaremellose sodium (disintegrant) = 52 mg ; water (for granulation) 

= 447 mg (total= 1046 mg / 5 tablets)  

F35 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

168.67 Drug = 10 mg, liquid vehicle= 156.67 mg; Avicel® PH 101(carrier)= 496 

mg; croscaremellose sodium (disintegrant) = 34.67 mg ; water (for 

granulation) = 298 mg (total= 697.3 mg / 4 tablets) 

F36 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

78.3 Drug = 5 mg, liquid vehicle= 78.33 mg; Avicel® PH 101(carrier)= 248 

mg; croscaremellose sodium (disintegrant) = 17.3 mg ; water (for 

granulation) = 149 mg (total= 348.6 mg / 2 tablets) 

F37 Capmul® MCM EP/ Kolliphor® 

RH40/ PEG400 

185 Drug = 15 mg, liquid vehicle= 185 mg; Avicel® PH 101(carrier)= 595.24 

mg; Croscaremellose sodium (disintegrant) = 41.85 mg ; water (for 

granulation) = 357.144 mg (total= 837.09 mg / 3 tablets) 
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2.5.3. Kinetic model analysis of drug release: 

In order to inspect the mechanism of norfloxacin release from the classical 

liquisolid, wet granulated liquisolid and conventional tablets, several kinetic release 

models were applied on data obtained from dissolution tests. These models are; 

zero order, first order, Higuchi and Hixson-Crowell kinetic models. Regarding zero 

order model, it can be described as a system that all drug particles transfer 

process to dissolution medium is confided to the surface area of the system. The 

data of the cumulative percentage of the drug release can be plotted against the 

time [64]. In terms of first order, the drug release is related to the drug 

concentration and it can be applied by plotting logarithm of the cumulative 

percentage release of the remaining drug versus the time [64]. Moreover, in 

Higuchi model, plotting the cumulative percentage of the drug release against the 

square root of time should be linear if the drug release from the tablet a controlled 

diffusion [65]. Furthermore, Hixson-Crowell model depends on the theory that 

particle area is proportional to the cubic root of its volume. As a result, the plotting 

data is the cubic root of the drug remaining in the tablet versus the time [66]. The 

highest square of correlation coefficient (R2 value) was selected to indicate the 

most appropriate model to represent the norfloxacin release from liquisolid 

formulation [64]. Statistically, Paired t-tests were used to determine whether there 

is a significant difference between the models, regardless the differences in the 

type of formulations. Due to dealing with model predictions, the significant 

probability was selected to be more robust at 0.1 levels. 
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2.6. Stability studies: 

The stability of the prepared tablets containing norfloxacin was performed in a 

stability room chamber with an accelerated condition at dark, 21 0C and 75 % 

humidity for either three months period time for conventional, classical liquisolid 

and wet granulated liquisolid (PVP) tablet formulations, and for 6 months for the 

water granulated liquisolid tablet formulations. 

For the tablet formulations containing cinnarizine (i.e. formulations form F34 to F37 

in Table 2-6), the same conditions were applied for 3 months.  

Content uniformity tests, in vitro dissolution tests in distilled water condition 

(pH=6.1), DSC and FTIR analysis were applied at time zero and the after the 

storage periods and the result were compared and evaluated using paired t-test. 

2.7. Statistical analysis: 

In the tests of evaluation norfloxacin tablet test (flowability, friability, hardness, 

tensile strength, content uniformity and disintegration tests), Paired t-test was used 

to compare between the PEG200 classical liquisolid tablets and Synperonic TM 

PE/L-61 classical liquisolid tablets, classical liquisolid and water granulated 

liquisolid for each liquid vehicle and wet granulated (water and PVP) liquisolid 

tablets. One sample t-test was used to compare between liquisolid tablets in 

general, PEG200 liquisolid tablets and Synperonic TM PE/L-61 liquisolid tablets in 

one side and conventional tablet from the another side. All the data results were 

quoted as significant where P < 0.05. Finally, F-test is used to compare the 

variations of the tensile strength values among classical liquid formulations (i.e. 

PEG200 vs. Synperonic™ PE/L-61). 
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Chapter Three:  Classical 

liquisolid preparations with 

norfloxacin



 

 

3.1. Introduction: 

Recent synthesized drugs show an increase in the number of hydrophobic groups, 

which have difficulties in oral delivery due to their poor solubility and bioavailability. 

An example of these drugs is norfloxacin. It is used to treat urinary tract infections 

because it works as a chemotherapeutic antibacterial agent. Only 30-40 % of 

norfloxacin can be absorbed through passive diffusion [67]. Moreover, in vitro 

tests, using either non-everted intestinal sacs or caco-2 cells, recorded low 

percentage permeability, confirming norfloxacin classification as a poorly 

permeable compound [68]. 

In addition to this, norfloxacin can be classified as a zwitterionic molecule. It 

represents a U-shaped profile in term of pH-solubility studies - a high solubility 

when pH is less than 5, low solubility in neutral region, and a high again when pH 

is over 10. As a result, it is classified as a low water soluble drug [69]. 

One method used to enhance both solubility and dissolution of hydrophobic drugs 

is liquisolid pharmaceutical technique. The definition of liquisolid systems is "they 

are compacts with acceptable flowing and compressible powdered forms of liquid 

medications, which represents oily liquid drugs and solutions or suspensions of 

water insoluble solid drugs carried in suitable non-volatile solvent systems termed 

the liquid vehicles" [6]. According to this definition, liquisolid method can be 

selected to improve the water solubility of norfloxacin.  

A range of surfactants have been selected, in this study, for liquisolid preparations. 

The selection stands on covering a wide range of Hydrophobic Lipophilic Balance 

(HLB) values.  For example, poly ethylene glycol 200 (PEG 200), which has HLB 

value= 18.1 and poloxamer 181 copolymer (Synperonic TM PE/L-61) with HLB =3.  

69 
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Regarding PEG200, it is a stable –hydrophilic water-miscible surfactant. It can be 

used as a suspending agent to form liquid medication with a hydrophobic drug that 

allows miscibility in water. A wider view to polyethylene glycol determines an 

advantage for the low molecular weight group, which increase the rate of the drug 

release from liquid medication. On the other hand, the higher molecular weight, 

more enhancement of the effectiveness of compact binder, even though when the 

concentration is over 5%, it could prolong the disintegration.  In general, PEGs are 

stable in both air and solution. However, the low molecular weight of PEG 

demonstrate a level of hygroscopicity. In conclusion, PEGs can be considered as 

a good solvent to prepare immediate release liquisolid formulations [70]. 

Another example is Poloxamer 181, which represents the group of low HBL value 

liquid vehicles. The chemical structure consists of three synthetic blocks, 

representing hydrophilic and lipophilic parts. The first and the third blocks are two 

poly (oxyethylene) groups from each side, while the middle block is thirty poly 

(oxypropylene) groups. This structure allows the surfactant to be more 

hydrophobic with HLB value = 3. The general use of poloxamers is as binders or 

coaters in tablet production. However, the physical properties and viscosity of 

these surfactants change depending on the length chain of hydrophobic and 

hydrophilic blocks. Also, poloxamers are stable if they present in acids, alkaline or 

metal ions. They are classified as non-toxic and non-irritant substances. As a 

result, the physicochemical properties make them good candidates to be used in 

liquisolid formulations [70]. 

Therefore, the aim of this study is to explore the behaviour of norfloxacin with non-

volatile liquid vehicle (PEG200 and Synperonic TM PE/L-61) in aqueous dissolution 
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medium, via preparing liquisolid formulations after determining their relative 

optimum liquid load factors.  

3.2. Pre-compression studies and characterization of powder 

admixtures: 

3.2.1. Calibration Curve and solubility studies: 

 

Figure 3-1: Norfloxacin calibration curve, the repeatability n =3. 

Table 3-1 : The solubility of norfloxacin in a range of surfactants and distilled water at room 
temperature (24 o C). 

Surfactants Average of solubility (mg/ml) Standard deviation 

PEG200 2.507 0.066 

Span 80 1.997 0.266 

PG 1.734 0.239 

PEG300 1.547 0.132 

Tween 20 1.085 0.056 

Tween 80 0.954 0.251 

Span 20 0.6374 0.033 

PEG400 0.428 0.131 

Cremophor® EL 0.366 0.113 

Pluronic L-35 0.35 0.194 

Distilled water 0.34 0.03 

Synperonic TM PE/L-61 0.167 0.006 
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All solubility calculation depends on the calibration equation in Figure 3-1. From 

Table 3-1, norfloxacin has the highest solubility value in PEG200, whereas the 

lowest one is in Synperonic TM PE/L-61. It can be noticed that with the increase in 

the molecular weight of the PEGs, the solubility of norfloxacin decreases. 

Moreover, the drug has low solubilises with the both types of poloxamers 

(Synperonic TM PE/L-61 and Pluronic L-35), although they have different HLB 

values, i.e. Pluronic L-35 is > 20 and Synperonic TM PE/L-61 is 3. The solubility of 

the drug in distilled water is 0.34 mg/ml, allowing the drug to be classified as a 

very slightly water soluble one. The highest and the lowest solubility values were 

chosen to be used in the liquisolid formulation to investigate the effect of the 

solubility on the percentage of the drug release in the dissolution tests.  

3.2.2. Determination of flow property: 

The importance of powder flowability in tablet production comes from its effect on 

the consistency of tablet weight and drug content. One of the methods to 

determine the powder flowability is Carr’s compressibility index (CI%), where the 

percentage of the differences between bulk powder density before and after 

tapping divides by the tapped density. This law was used to determine the 

flowability of the all liquisolid and conventional formulations.  The results are 

summarized in Table 3-2, and the criteria depends on British Pharmacopoeia, 

indicating that any formulation has CI% below 25 represent better flow properties 

[56]. The statistical analysis shows that there is a significant differences between 

liquisolid formulations and conventional powder (P= 0.002 < 0.05). This 

differences comes mainly from the difference between the Synperonic TM PE/L-61 

formulations and conventional powder (P= 0.047 < 0.05). In general, all liquisolid 

formulations recorded CI% over 20% and no significant differences between 
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PEG200 liquisolid formulations and Synperonic TM PE/L-61 liquisolid formulations 

(P=0.406 > 0.05). 

According to Spireas et al., the amount of carrier and coating materials in the 

liquisolid formulations determines its flowability as they play an important role in 

adsorbing the liquid vehicle on the surface of the carrier materials, allowing coating 

particles specifying a certain amount of retained liquid vehicle with an acceptable 

level of flowability [61]. Consequently, the increasing amount of the liquid in the 

formulation leads to increase the carrier and coating particles which enhances the 

powder flowability and reduces the CI%. This clearly appears in both PEG200 and 

Synperonic TM PE/L-61 liquisolid formulations, wherever there is a high percentage 

of the liquid, there is an increase in the amount of carrier and coating. However, 

the low percentage of the liquid vehicle leads to less amount of carrier and coating 

materials and produces either poorly or very poorly flowable formulations.  

Table 3-2: Flow properties of conventional and classical liquisolid powder mixtures. 

Formulations* CI% position 

F1 22.22 Passable 

F2 23.64 Passable 

F3 29.03 Poor 

F4 39.29 Very poor 

conventional 17.39 Good 

F5 24.11 Passable 

F6 21.21 Passable 

F7 31.03 Poor 

F8 35.38 poor 

*For more information about the Formulation composition, see Table 2-2. 
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3.2.3. Differential scanning calorimetry (DSC): 

Figure 3-2 and Figure 3-3 represent a comparison between all thermograms of the 

liquisolid and conventional formulations with and without the thermogram of pure 

norfloxacin. 

It is clear that norfloxacin pure drug has a sharp endothermic peak at melting 

temperature (222.36 o C) with relatively high enthalpy value (107.7 J/g). This sharp 

peak indicates the crystallinity of the drug and the melting of the sample, referring 

the end of the thermogram to the decomposition of norfloxacin [71]. Moreover, the 

sharp endothermic peak disappears in all liquisolid formulations (PEG200 and 

Synperonic TM PE/L-61), indicating a change in the amorphous state of the drug. 

Furthermore, the percentage of R value seems to have effects on the liquisolid 

thermograms. This integrates with the type and the percentage of the liquid 

vehicles. In the case of PEG200 liquisolid formulations, a boarder peak appears 

when the percentage of the weight of norfloxacin to the weight of PEG200 is 40% 

w/w at 139.04 o C with a small amount of enthalpy capacity equals to 27.92 J/g 

(F3) and when the liquid medication is 20% w/w (F1). Although this indicates that 

the drug is not completely dissolved or dispersed in PEG200, the reduction in 

melting temperature point improves that there is a certain of reaction happened 

(H-bond formation) between the vehicle and the drug. Complementarily with this, 

the broad small peak disappeared completely when increasing the amount of 

PEG200 vehicle in the liquisolid formulations (F2 and F4). In conclusion, at R =10, 

a small peak appears, whereas at R=20, the peak disappears. Thus, the 

incorporation of PRG200 as a liquid vehicle leads to reduce or disappear the 
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endothermic peak of norfloxacin depending on the amount of the carrier in the 

formulations.  

Guyot et al. reached to a similar conclusion in terms of disappearance of the 

endothermic norfloxacin peak at 222 o C when incorporating co-surfactant, such as 

PEG. However, due to using co-surfactant (PEG6000) with higher molecular 

weight and changing the pharmaceutical preparation to solid dispersion technique, 

another peak appeared at 62 o C when the percentage of the surfactant exceeds 

50% with the drug [71]. 

 

Figure 3-2: Differential scanning calorimetery for norfloxacin pure powder, conventional and 
all liquisolid formulations (for more information about the formulation components, see 
Table 2-2). 

On the other hand, very tiny peaks were indicated at the same melting 

temperature of norfloxacin with very small enthalpy capacities, which ranges from 

0.045 J/g to 0.24 J/g. This is accompanied with one or two degrees of temperature 

decrease (220 -221 o C). The probable reason for this is that less degree of 

solubility of norfloxacin in the vehicle (0.167 mg/ml). However, this does not give a 

negative effect on the dissolution profile. On contrary, it enhances the percentage 

of the drug release comparing with PEG200 liquisolid formulations as whole. 
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 Finally, the sharp endothermic peak appears clearly in the case of the 

conventional powder, where there is no added liquid vehicle to the formulations. It 

appears at 221.37 o C with enthalpy equals to 0.9524 J/g, indicating a slightly 

change in drug crystallinity comparing with the liquisolid formulations. 

 

 

Figure 3-3: Differential Scanning Calorimetry for conventional and all PEG200 liquisolid 
formulations (upper part) and all Synperonic TM PE/L-61 liquisolid formulations (lower part) 
(for more information about the formulation components, see Table 2-2). 
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3.2.4. Fourier Transform infra-red spectroscopy (FTIR): 

From Figure 3-4 to Figure 3-9, the FTIR spectra provide information about of pure 

norfloxacin (Figure 3-4), the carrier and the coating (Figure 3-5), lubricant and 

disintegrant (Figure 3-6), the liquid vehicles (Figure 3-7), the PEG200 liquisolid 

formulations (Figure 3-8) and the Synperonic TM PE/L-61 liquisolid formulations 

(Figure 3-9). The last two figures provide a comparison between the classical 

liquisolid formulations (see Table 2-2), conventional powder and pure norfloxacin 

powder. 

From Figure 3-8 and Figure 3-9, it is obvious that characteristic fingerprint FTIR 

peaks of norfloxacin between 1700 cm-1 to1250 cm-1 faced massive changes in the 

IR spectra related to liquisolid formulations. These changes are expressed in 

several ways, such as reduced in the intensity of signal, shift or disappearance of 

the whole peaks, suggesting that there is interaction between the drug and the 

excipients. 

Supporting the presence of hydrogen bonds is the disappearance of sharp 

vibrations between 1650 cm-1 and 1550 cm-1 in all mentioned liquisolid 

formulations (PEG200 and Synperonic TM PE/L-61) compared with pure 

norfloxacin. This region denotes the bending vibration of the secondary amine 

functional group (R2NH). This indicates that there is hydrogen bond between N-H 

functional group in norfloxacin and the hydrogen molecule in hydroxyl group in the 

vehicle. Consequently, the formation of hydrogen bonds between the drug and the 

vehicle contributes in increasing the solubility of the drug in the vehicle, which 

reflects mainly on the dissolution profiles [60]. 
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As a result, FTIR spectra analysis complies with DSC results, indicating a 

solubilisation of norfloxacin crystals in the liquid vehicles, decreasing the 

crystallinity of norfloxacin. 

 

Figure 3-4: FTIR spectrum of pure norfloxacin powder (%T is % transmittance). 
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Figure 3-5: FTIR spectra for pure excipients (Avicel® PH 101 and Cab-O-Sil® M-5DP). 

 

 

Figure 3-6: FTIR spectra for pure excipients (carmellose sodium and magnesium stearate). 
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Figure 3-7: FTIR spectra for liquid vehicles (PEG200 and Synperonic TM PE/L-61). 

 

Figure 3-8: FTIR spectra for pure norfloxacin, conventional powder, and the all classical 
PEG200 liquisolid formulations (for more information about the formulation components, 
see Table 2-2). 
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Figure 3-9: FTIR spectra for pure norfloxacin, conventional powder, and the all classical 
Synperonic TM PE/L-61 liquisolid formulations (for more information about the formulation 
components, see Table 2-2). 

3.3. Evaluation of classical liquisolid tablets: 

3.3.1. Drug content uniformity, tablet dimensions, hardness, tensile 

strength, friability and disintegration tests: 

A summary of results expressed by the average and the standard deviations of 

tablet hardness, tensile strengths, friability, disintegration and drug content for all 

liquisolid (PEG200 and Synperonic TM PE/L-61) and conventional tablets is 

presented in the Table 3-3. 

British Pharmacopoeia specifies the accepted limits of the percentage of the active 

ingredient in tablets between 85% and 115% [56]. According to this, all liquisolid 

(PEG200 and Synperonic TM PE/L-61) and conventional formulations are in this 
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range. Moreover, the statistical analysis for the drug contents indicated that there 

is no significant differences between either conventional and PEG200 formulations 

(P=0.430), conventional and Synperonic TM PE/L-61 formulations (P=0.437) or 

PEG200 and Synperonic TM PE/L-61 formulations (P=0.293).The reason of this 

could be referred to the high percentage of the carrier excipient in the unit dose of 

the PEG200 tablets ( ranged between 71.2 % and 74.6%), the Synperonic TM 

PE/L-61 tablets ( from 75.83% to 78.41%) and the conventional tablet(79.73%). 

This leads to increase in the surface area that absorbs the liquid medication into 

the internal part of the carrier framework, allowing a homogeneous distribution 

throughout the bed powder of the batches [61]. As a result of this, all drug 

percentages are ranged between over 90% and less 105%. 

The reason for variations in the tablet thickness can be explained in terms of the 

variation in the weights of the tablets, which are determined to allow sufficient 

tablet hardness with an appropriate disintegration time (usually less than 5 

minutes). 

Table 3-3: Tablet hardness,  tensile strengths, disintegration time, friability and content 
uniformity for conventional and the all liquisolid tablets (average +/- standard deviation) (for 
more information about the formulation components, see Table 2-2). 

Formulations Hardness (N) 
Tensile 
strength 

(MPa) 

Disintegration 
time 
(sec.) 

Friability 
(%) 

Content 
uniformity     

(%) 

F1 51.97 +/- 3.75 0.880 +/-0.189 275.6 +/- 61.5 0.474 94.83 +/-1.6 

F2 91.93 +/- 21.5 1.508 +/-0.368  192.8 +/- 70.0 0.405 104.7 +/- 5.1 

F3 46.75 +/- 4.50 0.789 +/-0.093 148.2 +/- 72.8 0.842 94.90 +/- 3.1 

F4 45.60 +/- 7.18 0.707 +/- 0.085 91.70 +/- 11.4 0.724 96.74 +/- 7.5 

conventional 47.56 +/- 5.63 0.754 +/- 0.119   62.50 +/- 9.50 0.864 99.94 +/- 0.5 

F5 46.85 +/- 3.01 1.172 +/- 0.083 49.20 +/- 6.90 0.304 98.62 +/- 5.6 

F6 57.75 +/- 3.58 1.097 +/- 0.067 39.80 +/- 11.3 0.275 100.9 +/- 5.1 

F7 48.27 +/- 2.90 1.206 +/- 0.064 40.30 +/- 4.40 0.167 100.5 +/- 1.7 

F8 58.25 +/- 2.40 1.059 +/- 0.043 30.30 +/- 1.50 0.338 102.9 +/- 2.3 
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The tensile strength of the Synperonic TM PE/L-61 formulations show more 

consistency (i.e. less variations) compared with the PEG200 formulations. This is 

expressed by F-test which determines a significant difference between the 

Symphonic PE/L-61 and PEG200 formulations when taking the range of all 

recorded data in the test (P-value < 0.001). This is probably due to the fact that 

Synperonic TM PE/L-61 formulations were prepared using compactible liquisolid 

test which allow preparing the formulations at a plateau compression forces with 

an optimum pactisity value (20 Kg/g). As a result of this, it determines lesser 

tensile strengths compared with the PEG200 formulations, which were prepared 

depending on the acceptable flowability value for both carrier and coating 

materials by angle of slide test, not allowing a sufficient control in the compression 

forces. 

From the industrial perspective, it is important to balance between disintegration 

time and tablet hardness. Moreover, there is a relationship between tablet 

hardness and its porosity. Decreasing the porosity among the particles in the 

tablets is due to increasing the compression forces and the hardness of the 

tablets. Consequently, there is a decrease in the intermolecular distance, 

promoting more formation of solid bridges among the tablet particles [14]. 

In this study, the range of hardness is between 45.60 N and 91.94 N (Table 3-3). 

Using microcrystalline cellulose (Avicel® PH 101) as a carrier with high 

percentages leads to cover the surface and increase solid bridges among 

particles. This is due to the ability of the carrier to exhibit plasticity which explains 

the deformation of particles undergoing non-reversible changes of shape as a 

response to applied compression forces [18]. 
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The investigation of the percentages of weight loss in friability tests demonstrates 

that the all formulations passed the BP specifications [56]. In other words, no 

formulations lost more than 1% from tablet weights, with no markedly cracked or 

broken tablets during the test. Consequently, liquisolid tablets have the ability to 

resist the expected abrasions when applying further manufacturing processes. 

For disintegration data, the averages of the time of the PEG200 formulations is 

over 90 seconds, whereas the average of the Synperonic TM PE/L-61 formulations 

records a time less than 50 seconds. Table 3-3 presents the range of the time of 

the PEG200 formulations between 91.6 and 275.6 seconds, while the time of the 

Synperonic TM PE/L-61 formulations is between 30.3 and 49.2 seconds. There are 

fewer variations in the case of the Synperonic TM PE/L-61 liquisolid formulations 

compared with the PEG200 liquisolid formulations. Also, the statistical analysis 

showed no significant differences between the PEG200 and the conventional 

formulations (P=0.06 > 0.05), whereas there is a significant difference (P=0.01< 

0.05) in the case of the comparison between the time of disintegration of the 

Synperonic TM PE/L-61 and the conventional tablets. To sum up, all liquisolid 

formulations recorded disintegration times less than 5 minutes, although the 

PEG200 formulations recorded longer time than the Synperonic TM PE/L-61 

formulations. Nevertheless, all of them meet the BP specification, which is less 

than 15 minutes in the case of uncoated tablets [56]. 

Seeing rapid disintegration times through improving tablet dissolution profiles is 

important due to the fast division that is provided into surface fragments, reaching 

to higher surface areas for dissolution processes. Mentioning this would drive 

toward specifying the reasons of the fast disintegration, which relates to presenting 

both microcrystalline cellulose and carmellose sodium in high quantities in the 
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tablet dosage forms. In the same direction, PEG200 is demonstrated slightly 

longer disintegration time, which can be referred to the lower percentages of 

microcrystalline cellulose in the formulations. 

In summary, the type of liquid vehicles, the quantity of the carrier and the quantity 

of the disintegrants are said to be the main factors controlling the time of the 

liquisolid tablet disintegration. 

3.3.2. In vitro dissolution: 

It is clear that the percentage of norfloxacin release in the acetate buffer 

dissolution medium is significantly higher than in the distilled water (f2 < 26% for 

all comparisons between each liquisolid and conventional formulations in the two 

dissolution media). The percentage of the drug release was over 85% in all 

liquisolid and conventional tablets after 90 minutes, whereas it was no more than 

63% in distilled water dissolution medium. 

Figure 3-10 shows the all classical PEG200 liquisolid tablets with conventional 

tablet in distilled water. In this profile, the conventional tablet shows the highest 

percentage of drug release comparing with the other liquisolid tablets. However, at 

the first 20 minutes, tablets with 40% w/w norfloxacin: PEG200 liquid medication 

with the both excipient ratios (R=10 and 20) record higher percentage norfloxacin 

release comparing with the conventional one. Then, the conventional dissolution 

profile continues raising over the both liquisolid tablets. On the other hand, when 

the percentage of norfloxacin: PEG200 liquid medication decreases, the 

dissolution profiles decrease significantly (f2 < 35% when comparing the PEG200 

formulations 20% w/w and 40% w/w in Distilled water), reaching to only 30% after 

90 minutes.  
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In Figure 3-11, all PEG200 liquisolid and conventional tablets record similar 

dissolution profiles with over 85% drug release in the first 30 minutes. 

In the case of Synperonic TM PE/L-61 dissolution profiles (Figure 3-12 and Figure 

3-13), the drug release from conventional tablet is still higher than most of the 

Synperonic TM PE/L-61 liquisolid tablets, except a slight increase in one dissolution 

profile, which drug: liquid medication percentage is at 40%w/w and the excipient 

ratio equals to 10, nevertheless it is not a significant increase in the drug release 

(f2= 61.41%). The liquisolid tablet (20%w/w, R=20) shows a significant decrease 

in comparison with the conventional tablet (f2=44.7%). In general, the all 

Synperonic TM PE/L-61 profiles keep the same order of the PEG200 dissolution 

profiles, when comparing the liquisolid with the conventional tablets in both 

dissolution media (Figure 3-12 and Figure 3-13).  

Finally, the comparisons between the dissolution profiles of the Synperonic TM 

PE/L-61 liquisolid tablets and the PEG200 liquisolid tablets having the same 

composition determines that there is no significant differences in the all 

formulations, except the tablets having drug: liquid medication percentage equals 

to 20% w/w and R=10, where the Synperonic TM PE/L-61 tablet has a significantly 

higher norfloxacin release (f2= 44.04% in distilled water and 40.98% in acetate 

buffer).  

From the dissolution profiles, many points can be concluded. First of all, the 

enhancement of norfloxacin in two liquisolid formulations( 40% w/w norfloxacin: 

PEG200 liquid medication, R=10 and R=20 (F3 and F4))  compared with the 

conventional tablets in distilled water dissolution medium can probably be 

explained by Noyes-Whitney equation : 
𝑑𝑐

𝑑𝑡
=

𝐷𝑆(𝐶𝑠−𝐶)

ℎ
 where dc/dt is the dissolution 
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rate of the drug particles,  S is the surface area of the interface between the 

dissolving substance and the solvent, D is the  diffusion coefficient, h is the 

thickness of the boundary layer of the solvent at the surface of the dissolving 

substance, Cs is the mass concentration of the substance on the surface and C is 

the  mass concentration of the substance in the bulk of the solvent. 

From this equation, only two factors could affect the enhancement of the drug 

release, which they are the drug concentration gradient in the diffusion layer (Cs-

C) and the surface area of the interface between the dissolving substance and the 

solvent (S). This is due to the speed of the paddle is constant (50 rpm) and the 

dissolution medium (distilled water) that is the same for all the comparative tablet 

dissolution profiles. As a result, the thickness of the boundary layer (h) and the 

diffusion coefficient (D) are not included in this situation. 

Regarding the surface area of the interface (S), it is directly proportional to the 

dissolution rate of the drug. Consequently, the drug dissolves in a water miscible 

liquid vehicle in the liquisolid tablets, which has good wettability. This enhances 

the wetting characteristics of norfloxacin particles, increasing the surface area of 

the interface between the liquid medication and the dissolution medium comparing 

with the surface area of the drug particles alone and the dissolution medium in the 

case of the conventional tablets, which leads to the increasing in the rate of 

norfloxacin release [72] & [11]. 

The second reason relates to the saturation solubility (Cs). At micro-environment, 

there is a high possibility that an infinite amount of liquid-vehicle is to diffuse away 

with norfloxacin molecule from liquisolid particles, since the liquid vehicle works as 
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co-solvent in order to improve the solubility of the drug, leading to increase the 

concentration gradient and the percentage of the drug release [6]. 

 The third reason is the solubility of norfloxacin in PEG200, which is higher than 

the solubility of the drug in either Synperonic TM PE/L-61 or distilled water. Thus, a 

certain amount of PEG200 added to liquisolid tablet would increase the dissolution 

rate of the drug [14].  

To sum up, three main factors are able to participate in enhancing the two 

PEG200 liquisolid formulations over the conventional in distilled water; the 

increase in the surface area of the interface between the dissolving liquid 

medication and distilled water, the increase of the saturation concentration at 

molecular level and the higher solubility of norfloxacin in PEG200 liquid vehicle 

compared with the solubility in distilled water and Synperonic TM PE/L-61 liquid 

vehicle. 

An interesting point can be noticed from dissolution profiles is that the percentage 

of drug release of the conventional tablets are higher than most liquisolid tablets. 

This could be referred to the nature of norfloxacin solid particles. This drug has a 

unique solid structure that allows the pharmaceutical hydrate form to be more 

water soluble from the anhydrous form. 
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Figure 3-10: Percentage drug released from PEG200 liquisolid and conventional tablets in distilled 

water dissolution medium (for more information about the formulation components, see Table 
2-2). 

 

 

Figure 3-11: Percentage drug released from PEG200 liquisolid and conventional tablets in acetate 

buffer (pH=4) dissolution medium (for more information about the formulation components, see 
Table 2-2). 
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Figure 3-12: Percentage drug released from Synperonic TM PE/L-61 liquisolid and conventional tablets 

in distilled water dissolution medium (for more information about the formulation components, 
see Table 2-2). 
 
 

 

Figure 3-13: Percentage drug released from Synperonic TM PE/L-61 liquisolid and conventional tablets 

in acetate buffer (pH=4) dissolution medium (for more information about the formulation 
components, see Table 2-2). 
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In general, the existence of water molecules in the solid state of drugs can 

decrease the solubility of the drug, because water molecules act to increase the 

thermodynamic stabilization of the solid structure by polar interaction. However, 

norfloxacin is an exception to this rule. This is due to that the hydrate formation of 

norfloxacin can occur in the anhydrous state [73]. In addition, the hydration can 

change the interactions between norfloxacin molecules from hydrogen bonding to 

ionic bonding by proton transfer process from the COOH group to the NH group in 

the solid state [73]. In other words, water molecules convert the drug from its 

neutral state to its zwitterionic state, which increases the percentage of ionization 

of the drug and the percentage of dissolution rate (Figure 3-14). Therefore, the 

tablet dissolution behaviour was adversely affected by the lower humidity.  As a 

result, this phenomenon can explain the improvement of the conventional tablet 

dissolution profile over liquisolid tablet profiles because the drug particles in the 

conventional tablet are more exposed to water molecules in the liquisolid tablets.  

 

Figure 3-14: Equilibrium state when norfloxacin forms hydrogen bonds in the presence and 
absent of water molecules [71]. 
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To support this conclusion, dissolution tests were applied to liquid medications 

consisting of either norfloxacin: PEG200 or norfloxacin: Synperonic TM PE/L-61 

alone without adding powder excipients. The same concentration of drug in the 

liquid vehicles that was used to prepare the liquisolid formulation was used in 

these tests. Also, the same dissolution conditions were applied, i.e. 750 ml distilled 

water maintained at 37 o C with a paddle speed of 50 rpm. The samples were 

measured at 15 and 30 minutes and the differences between the percentages of 

the drug release at the withdrawn time were calculated. The results are 

summarised in Table 3-4 and supported with images taken after 30 min of the 

beginning of the dissolution test Figure 3-15. 

 

Figure 3-15: (a) Norfloxacin: PEG200 liquid medication (20%/w/w) after 30min in the mock 
dissolution test. (b) Norfloxacin: PEG200 liquid medication (40%/w/w) after 30min in the 
mock dissolution test. (c) Norfloxacin: Synperonic TM PE/L-61 liquid medication (40%/w/w). 
(d) Norfloxacin: Synperonic TM PE/L-61 liquid medication (20%/w/w). 
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Table 3-4: The percentage of drug release from the dissolution tests without powder 
excipients and the difference between them at 15 and 30 minutes. 

Surfactant 
name 

20%w/w (drug: liquid medication) 
 

40%w/w (drug: liquid medication) 

 
abs1 %R 2 abs %R difference3 abs %R abs %R difference 

PEG200 

15 
min 

15  
min 

30 
min 

30  
min  

15 
min 

15  
min 

30 
min 

30 
 min  

0.352 33.531 0.410 39.056 5.525 0.407 38.770 0.454 43.247 4.477 

0.431 41.056 0.495 47.153 6.097 0.457 43.533 0.570 54.297 10.764 

0.346 32.959 0.445 42.390 9.431 0.509 48.487 0.600 57.155 8.669 

   
Average= 7.017 

    
7.970 

   ST DEV4 = 2.109   
  

3.201 

           
 

Synperonic 

TM PE/L-

61 

0.590 56.203 0.741 70.587 14.384 0.467 44.486 0.757 72.111 27.625 

0.379 36.103 0.575 54.774 18.671 0.586 55.822 0.832 79.255 23.434 

0.538 51.249 0.800 76.207 24.958 0.470 44.772 0.730 69.539 24.767 

   
Average= 19.338 

    
25.275 

   
ST DEV = 5.318 

    
2.141 

 

 

 

Figure 3-16: Dissolution profile of pure norfloxacin powder (20mg) in distilled water 
(pH=6.1). 

                                            

1 abs: absorbance at 321 nm wavelength 

2 %R : percentage of norfloxacin release in DW medium 

3 Difference: differences between the %R at 15 and 30 minutes. 

4 ST DEV: standard deviation of the difference 
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Table 3-4 and Figure 3-15 show clearly that there is a strong interaction between 

norfloxacin particles and PEG200, preventing water molecules to enter the solid 

framework of the drug particles, and reducing the percentage of norfloxacin 

released in dissolution medium from liquid medication compared to the 

conventional anhydrous form. This strong interacting layer is not seen in the case 

of the Synperonic TM PE/L-61 liquid medication (40% w/w), and a fragile layer, 

instead, was seen at concentration (20% w/w). As a result, the increased volume 

of liquid vehicle decreases the percentage of norfloxacin release, as the 

constituted interacting layer prevents water molecules to enter the liquid 

medication and induces the drug molecules to form ionic bonds like the case of the 

hydrated norfloxacin. Instead of this, hydrogen bonds are formed between the 

norfloxacin molecules themselves and the PEG200 and to some extent with 

Synperonic TM PE/L-61. One important point should be mentioned that the pure 

norfloxacin powder dissolution profile shows almost complete drug release in 

distilled water after 90 minutes (Figure 3-16); because the quantity of the drug is in 

sink condition and no liquid vehicles retard its dissolution.   

The zwitterionic behaviour of the drug and the formation of interacting layers were 

confirmed by a FTIR investigation (see section 2.4.3). Figure 3-17 compares wet 

and dry norfloxacin powder FTIR spectra. In this figure, the assigned peaks of dry 

norfloxacin (anhydrous form) were similar to the previous work [74]. The wet 

norfloxacin spectrum shows a large broad peak at 3352 cm-1, representing the 

hydroxyl group of water molecules. This peak is not identified in the dry norfloxacin 

powder.  Another interesting peak that can be assigned is at 1576 cm-1, which 

could represent the bend of R2NH2
+ in the structure of norfloxacin. It can be 

assigned in the both wet and dry IR spectra. The simultaneous  appearance of two 
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bending vibration peaks (between 2700 cm-1-2250 cm-1 and between 1600-1500 

cm-1) in the wet norfloxacin spectrum probably helps to confirm the existence of 

R2NH2
+

  as a result of the proton transfer in the case of hydrated norfloxacin [60] & 

[73]. Moreover, the peak at 1730 cm-1 in the spectrum of the anhydrous form, 

which represents the C=O functional group in the anhydrous norfloxacin, moves to 

approximately 1630 cm-1 in the hydrated norfloxacin and become near to the peak 

at 1614 cm-1. This phenomenon was assigned when norfloxacin forms a complex 

with metal ions [75]. One explanation is that the conjugated system results in the 

movement of electrons across the system from the lone pair of the nitrogen group 

on the same ring (see Figure 3-18). The electrons of the lone pair are shared in 

two ways. 

Firstly they resonate into the ketone group and improve the electron density on the 

oxygen atom, strengthening the hydrogen bond to the hydrogen atom of the OH 

group (see the red arrows in Figure 3-18). This can be seen when the two FTIR 

peaks at 1630 cm-1 and 1614 cm-1 become nearer to each other (see the green 

line in Figure 3-17). 

Secondly, the electrons can resonate with the (C=O) part of the carboxylic acid on 

the same ring (see the blue arrows in Figure 3-18), although this is not observed 

specifically on the IR spectrum.  All in all, the presence of norfloxacin particles in 

water will lead to the formation of an ionic bond when the electron density on the 

ketone group increases, which interacts with the NH group of the next molecule 

via an incorporated water molecule between two norfloxacin atoms. Thus, the IR 

evidence supports proton transfer from the COOH group to NH group to form the 

zwitterion in the case of hydrated norfloxacin. 
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Figure 3-17:  The upper part is a comparison between FTIR spectrum of norfloxacin dry powder (the 
blue line) and norfloxacin powder in distilled water (pH=6.1) (the green line), the bottom part is the 
maximization of the same spectra from wavelength 1730 cm-1 to 750 cm-1. 
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Figure 3-18: Chemical structure of norfloxacin with the possible conjugated systems. 

Examining the spectra in Figure 3-19 helps to explain the formation of the 

interacting layer inside the DW dissolution medium, where the liquid medication 

consists of norfloxacin and the PEG200 liquid vehicle (20% w/w). The first 

assignment is that the peak at 2886 cm-1 in the PEG200 spectrum (green line, 

Figure 3-19) has disappeared in wet norfloxacin (black) and the liquid medication 

spectrum (red line, Figure 3-19). This can be used as evidence for the presence of 

an interaction between the drug and the liquid vehicle. Such an interaction is 

strong enough to resist the force of water flow in the dissolution vessel. Moreover, 

the large peak (3200-3500 cm-1) decreased in the case of the liquid medication 

spectrum to represent a similar one in the PEG200 spectrum, suggesting that the 

content inside the interfacial layer is only norfloxacin and the surfactant and the 

water remain outside this layer. 

The mixture of Synperonic TM PE/L-61 with norfloxacin at 20% w/w made little 

change to the IR spectra of both components (Figure 3-20). The notable changes 
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were the reduction of the broad OH absorbance at 3200 cm-1 to 3300 cm-1 and the 

increasing of the fingerprint region peaks, which is consistent with the formation of 

an interfacial layer of Synperonic TM molecules between the norfloxacin molecules. 

This slight change maintains the FTIR characteristic peaks of Synperonic TM PE/L-

61 in the spectrum of the mixture. The lack of change in the intense C-O 

absorbance at 1092 cm-1 of both Synperonic TM EP/L-61 (red line, Figure 3-20) and 

the mixture with norfloxacin (green line, Figure 3-20) confirms the minimal role of 

C-O in the interaction. In conclusion, the formation of such a layer decreases the 

release of norfloxacin in the dissolution medium.      

 

Figure 3-19: Comparison between wet norfloxacin (the black line), PEG200 (the green line) 
and the liquid medication consisting of norfloxacin and PEG200 at a concentration 20% w/w 
for 20 mg drug (the red line). 
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Figure 3-20: Comparison between wet norfloxacin (the black line), Synperonic TM PE/L-61 
(the red line) and the liquid medication consisting of norfloxacin and Synperonic  TM PE/L-61 
at a concentration 20% w/w for 20 mg drug (the green line). 

Moreover, all liquisolid and conventional tablets show a percentage of drug 

release less than 65% in distilled water. The reason of this in addition to the low 

percentage of norfloxacin ionization in distilled water is that the drug particles 

could precipitate inside the cavities of the porous carrier on contact with liquid 

medication with the release medium [13] . As a consequence of this, the drug 

release would retain. This can be noticed when the increase of the excipient ratio 

(R= 20). The higher percentage of Avicel® PH 101 leads to the lower percentage 

of the drug released in the dissolution medium. To overcome this problem, poly 

vinyl pyrrolidone (PVP) can be used as a crystallization inhibitor. Furthermore, 

PVP can also work as binder during compaction, which leads to an increase of the 

liquid load factor [13]. 

Finally, these factors affecting the percentage of drug release (e.g. Figure 3-10 

and Figure 3-12) may enhance the oral bioavailability of these formulations. For 
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example, a solid dispersion formulation prepared at ratio (20:80) norfloxacin: 

PEG6000 presents better relative bioavailability (67%) when it is compared with 

powder of pure norfloxacin (49%) [76].  In the same study, which was carried out 

on male albinos' rabbits, the solid dispersion formulation showed maximum 

plasma concentration closer to the plasma concentration of norfloxacin acetic acid 

solution (pH = 4.5), which was recorded as 100% relative bioavailability [76], led to 

conclude that in our study, the liquisolid formulations of norfloxacin prepared with 

PEG200 are expected to enhance the drug oral bioavailability. Additionally, it is 

reported that aqueous solubility and the in vitro dissolution profile are not the 

unique explanation of the behaviour of the oral bioavailability of norfloxacin, 

although they help in indicating the physicochemical properties of the drug [76]. 

3.3.3. Kinetic model analysis of drug release: 

Table 3-5 presents the values of the squared correlation coefficients for liquisolid 

and conventional tablets, using zero order, first order, Higuchi and Hixson-Crowell 

kinetic release models. Broader reporting, the highest R2 values were recorded 

when applying Higuchi or Hixson-Crowell models for all types of tablets. Moreover, 

all liquisolid tablets containing Synperonic TM PE/L-61 have higher R2 values than 

those including PEG200. In addition to this, the data which is considered to build 

the models are between 5 to 15 minutes, whereas the rest of the points (i.e. from 

20 to 90 minutes) are excluded as the dissolution profiles reached to the steady 

state where the drug release gives a straight parallel line to the time axis. Paired t-

test shows there is a slightly significant difference between R2 values of both 

Hixson-Crowell and Higuchi models (P=0.0051< 0.05), where Hixson-Crowell 

recorded a slightly higher accuracy than Higuchi model. This situation is applied 

on all types of tablets, where all of them recorded R2 values higher than 0.90. 
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Regarding Higuchi model, Fick's law consists of a fundamental diffusion 

background on which the release of norfloxacin into dissolution medium depends. 

This law states that a driving forces coming from a concentration gradient between 

the tablet and the bulk solution (C-Cs) diffuses the drug particles from tablet 

towards the dissolution medium [65]. As a consequence of this hypothesis, the 

dispersion of norfloxacin molecules in the liquid vehicles (PEG200 or Synperonic 

TM PE/L-61) would affect the increasing of the saturation solubility (Cs) and the 

relative concentration gradient (Cs-C) at different grades, allowing dissolving of the 

drug particles in the dissolution medium [14]. 

On the contrary, Hixson-Crowell release model does not take Fick's law in its 

assumptions. In other words, the diffusion of the drug particles from the tablet is 

not included here. Hixson-Crowell model states that there is a same effect of liquid 

agitation on the all parts of the surface, and no need to assume any particular 

shape of the drug crystal because the model consider all of them have a spherical 

shape through the solution. Consequently, the differences in the dissolution rate 

from different faces of the tablet are negligible, and the main effects of controlling 

the speed of the particle transformation are limited only to the proportional change 

of the surface with the time and the agitation. Therefore, the persistency of the 

drug particles to change its shape assumption as a cubic root relationship with the 

time gives the quantitative verification to the release model [66]. To some extent, 

the squared correlation coefficient values translate this assumption by dividing the 

tablets into two main groups; the first one includes all PEG200 liquisolid tablets 

which are less accurate, and the second includes the Symphonic PE/L-61 

liquisolid and conventional tablets which are more accurate. As a result, the 

dispersion of the drug in the liquid vehicle may have the main effect in determining 
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the changing of the crystal shape during the dissolution test. Paired t-test signifies 

the difference in the accuracy of the Hixson-Crowell model when comparing with 

Higuchi model (P=0.0036< 0.05). This gives a further support to the Higuchi’s 

assumption and explanations. 

 

 

 

Table 3-5: Release parameters of norfloxacin liquisolid formulations (for more information 
about the formulation components, see Table 2-2).   

Tablets/models Liquid 
Vehicle 

Zero First Higuchi Hixson-
Crowell 

F1 PEG200 0.918725 0.926744 0.955216 0.924083 

F2 PEG200 0.879475 0.885682 0.924325 0.883605 

F3 PEG200 0.852812 0.863184 0.902309 0.859682 

F4 PEG200 0.938769 0.953674 0.969966 0.948831 

Conventional - 0.999766 0.999173 0.996338 0.999802 

F5 Synperonic PE/L-61 0.964378 0.971783 0.987057 0.969386 

F6 Synperonic PE/L-61 0.997624 0.999196 0.999266 0.998764 

F7 Synperonic PE/L-61 0.954916 0.968043 0.98105 0.963841 

F8 Synperonic PE/L-61 0.984698 0.990493 0.997683 0.988700 

 

3.4. Stability studies: 

3.4.1. Content uniformity tests: 

Table 3-6 represents a comparison between the percentage of norfloxacin in 

liquisolid and conventional tablets at the moment of making and after three months 

storage at 21 o C and 76% relative humidity. The all formulations show a high 

percentage of drug content (above 95%), indicating that there is no observed 

effect on the integrity of the drug. Moreover, comparison between the calculated 

values of the t-test for comparison of an experimental mean with a known value 
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shows that there is no significant difference between the average of the fresh and 

stored samples for each formulation at 99% confidence intervals (i.e. all absolute 

calculated t-test values are less than 9.92, which is the critical value of the t-test at 

99% confidence intervals and degree of freedom =2). 

 

 

Table 3-6: Averages , standard deviations and calculated T-test with degee of freedom (d.f 
=2) of the  percentage of the fresh and stored norfloxacin content in the PEG200 and 
Synperonic TM PE/L-61 liquisolid tablets and conventional tablets. 

Formula 

Drug content uniformity (%) (number of replicates = 3) 

Average % of 
Fresh samples 

Standard 
deviations of % 

of fresh 
samples 

% drug 
content 
after 3 
months 

Calculated values 
of T-test 

(d.f= 2) 

F1 94.83 1.592 100.17 -5.809 

F2 104.73 5.097 100.60 1.402 

F3 94.90 3.164 104.72 -5.374 

F4 96.74 7.510 96.39 0.080 

F5 98.62 0.524 100.11 -0.557 

F6 100.91 5.616 95.55 0.946 

F7 100.49 5.052 98.31 0.891 

F8 102.90 1.697 107.56 -7.218 

Conventional tablet 99.94 2.279 101.55 1.027 
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3.4.2. Dissolution tests:  

 

Figure 3-21: PEG200 and conventional tablets dissolution tests after 3 months in disilled 
water (pH=6.1). 

The comparison between the dissolution profiles of the PEG200 liquisolid 

formulations at the moment of preparation (Figure 3-10) and after the storage 

(Figure 3-21) shows that there is no significant differences among them (similarity 

factor is always over 50% in these cases). However, the slight significant higher 

percentages over the conventional dissolution profile, which is noted in the fresh 

samples for the formulations R=10 and R= 20 at 40% w/w, disappears in the aging 

profiles. The similarity factor between the two liquisolid formulations and the 

conventional formulation is over than 50%. Nevertheless, the significant 

differences between the liquisolid formulations at 20% w/w and conventional and 

liquisolid formulations at 40% w/w remain the same after three month storage. 
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Figure 3-22: Synperonic TM PE/L-61 and conventional tablets dissolution tests after 3 months 
in distilled water (pH=6.1) . 

Regarding the stability studies of the Synperonic TM PE/L-61 liquisolid formulation 

dissolution profiles (Figure 3-22); there is a significant decrease in the drug 

release after 3 months storage. All Synperonic TM PE/L-61 dissolution profiles 

recorded a percentage of norfloxacin release of less than 45%, whereas at the 

initial time, they ranged between 40% and 60% drug release [77]. The calculated 

similarity factors, comparing the initial trends (Figure 3-12) and after storage for 

the all classical Synperonic TM PE/L-61 liquisolid formulations, show values less 

than 50%, showing significant decrease for all of these test samples. However, 

they keep the same arrangement comparing with the arrangement in the fresh 

samples (Figure 3-12).  

The dissolution trends of the 40 %w/w of the Synperonic TM PE/L-61 formulations 

were better than trends of the 20 %w/w of the Synperonic TM PE/L-61 formulations 

both at time is zero and after three months. In conclusion, there is a significant 

negative effect of the presence of Synperonic TM PE/L-61 in the liquisolid 
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formulation affecting the percentage of norfloxacin release in the DW dissolution 

medium. 

3.4.3. Differential Scanning Calorimeter (DSC): 

 

Figure 3-23: DSC thermographs for stored PEG200 liquisolid and conventional formulations. 

Figure 3-23 represents all thermograms of the PEG200 liquisolid and conventional 

formulations after 3 months storage. The broaden peaks between 100 o C and 150 

o C is clearer in the stored thermograms for all PEG200 liquisolid formulations. 

Moreover, small peaks can be noticed in the case of 40% w/w formulations at 

191.6 o C, which completely disappears in the same fresh formulations (Figure 

3-2). This may because the smaller amount of PEG200 in the formulation leads up 

to greater re-crystallization of the drug in the stored samples. Nevertheless, the 

effect of the PEG200 as a liquid vehicle on the crystalline nature of norfloxacin still 

can be indicated when comparing the conventional formulation with the liquisolid 

ones, regardless of the effect of the aging on the thermograms. For example, the 
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sharp endothermic peak at 218.51o C in the conventional formulation, which 

represents the changing in the crystallinity of norfloxacin at its melting point, can 

be assigned in the both fresh and stored samples (Figure 3-2 and Figure 3-23). In 

general, PEG200 as a liquid vehicle keeps the liquisolid formulation stable 

thermally for at least three months. 

 

Figure 3-24: DSC thermographs for storage the Synperonic TM liquisolid and conventional 
formulations. 

The broaden peaks that appears in PEG200 liquisolid formulations (Figure 3-23) 

can be also noted in Synperonic TM PE/L-61 liquisolid formulations in the both 

situations (Figure 3-24). However, these peaks have higher enthalpy values in the 

case of stored thermographs comparing with the fresh ones. In more details, the 

Synperonic TM PE/L-61 20% w/w has 49.13 J/g at R=10 and 66.57 J/g at R=20 

with a temperature between 131 o C and 137 o C. Moreover, there is a decrease in 

the recorded temperature when the Synperonic TM PE/L-61 amount decreased to 

reach to 123.8 o C (85.97 J/g) at 40% w/w and R=10 and 112.2 o C (94.75 J/g) at 

the same amount of the liquid vehicle with R=20. In addition to this, tiny peaks 

were indicated at 219 o C in all classical liquisolid Synperonic TM PE/L-61 and 
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conventional stored formulations, which can be only assigned in the conventional 

fresh formulation, indicating partial interaction between the liquid vehicle and the 

drug affecting to some extent the dissolution. Finally, the enthalpy values of the 

endothermic peak at 221 o C are 2.107, 1.031, 2.625 and 2.847 J/g for the 

formulations from F5 to F8, respectively. These values indicated a slightly increase 

compared with the values for fresh formulations, which are 0.507, 0.6172, 1.110 

and 1.024 J/g, respectively. This increase determines more crystallinity of the drug 

in the case of aged samples compared with the fresh ones.    

3.4.4. Fourier Transform Infrared (FTIR) analysis: 

The studying of the all FTIR spectra before and after storage (Figure 3-25) shows 

that there is no difference in IR spectra between fresh and stored PEG200 

liquisolid and conventional formulations. The differences in the value of the 

transmittance, noted in the spectra of the stored samples, could be referred to the 

contact between the sample and the beam in the device rather than recording any 

significant changes in the structure of the powder formulation due to the storage of 

the samples. These results correlate with the results of the content uniformity tests 

that show high percentages of the drug content in the stored samples.  
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Figure 3-25: Comparison between the fresh and storage conventional and liquisolid 
(PEG200 and Synperonic TM PE/L-61) formulations in terms of FTIR spectra. 
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3.5. Conclusion: 

Norfloxacin releasing from the liquisolid tablets is not necessarily faster than 

conventional counterpart tablet. The chemical structure of the hydrophobic drug 

and its interaction with the liquid vehicle determines to large extent the dissolution 

behavior of the drug. Furthermore, this research represents that the solubility of 

the drug in the liquid vehicle is not necessarily considered as a main effect in 

liquisolid dissolution process. 

On the other hand, using compressibility liquisolid test to indicate the optimum 

load factor in the case of Synperonic TM PE/L-61 liquisolid formulations provide 

more consistent tablets comparing with PEG200 liquisolid tablets, which was 

prepared depending on the flowability liquid load potential of Avicel® PH 101 and 

Cab-O-Sil® M-5DP using angle of slide test, although the weight of the unite dose 

is lesser in the case of the PEG200 liquisolid formulations. Moreover, both DSC 

thermograms and the vibrational spectra of FTIR reflected the state of the 

crystallinity of the norfloxacin, which disappeared in liquisolid formulations, and the 

possible of hydrogen bond formation with liquid vehicle, respectively. Finally, it can 

be suggested that making further studies on using wet granulation in combination 

with  liquisolid formulations so that it can work to enhance the flowability , 

compressibility and  increase the percentage of norfloxacin release in distilled 

water dissolution. 
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Chapter Four:  Water 

granulation for liquisolid 

tablets 
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4.1. Introduction: 

 
The efficiency of the liquisolid technology comes from providing low-cost 

formulations, simulating production capability of conventional tablets, leading to 

enhancing the dissolution rate of hydrophobic drugs.  However, these advantages 

could be restricted when the large amount of liquid vehicle needs to be applied or 

when using liquid vehicle with very low load factor (< 0.15) [77]. In these cases, 

the large amount of carrier and coating materials will be needed to reach to the 

dry, free flowing powders. An example of this problem was the liquid medication of 

norfloxacin with Synperonic TM PE/L-61, where the load factor was small and the 

amount of carrier/ coating system was high to prepare one unit dose.  

Several studies suggested including extra additives in the liquisolid systems that 

not only increase the load factor, but also enhance and control the percentage 

release of hydrophobic drugs in aqueous dissolution medium. However, these 

works could only solve the problem related to improve the flowability behaviour of 

the liquisolid powder but they could not solve the problem related the tabletability 

so that it can reach to liquisolid tablets with acceptable crushing forces [16] & [31]. 

The present work aims to investigate the realm of combination between liquisolid 

technology and water granulation processes by calculating a new optimum load 

factor that provides acceptable compressibility, flowability and better dissolution 

profiles. Moreover, it compares between the classical (see chapter 3) and the new 

methods in order to determine the significant enhancement via this technology. 

Also, the study is supplemented with DSC, FTIR, stability and other quality control 

tests (content uniformity, friability, disintegration time and tensile strength tests) in 
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order to provide a comprehensive view about the water granulated liquisolid 

technology, compared with a classical liquisolid system. 

4.2. Pre-formulation studies and characterisation of powder admixture: 

4.2.1. Compressibility studies and determination of the new optimal 

compressibility load factor: 

 

Figure 4-1: Log pactisity versus the (CW) in order to compare between classical and water 
granulated PEG200 liquisolid systems. 

Figure 4-1 represents the relationship between Log pactisity, which is the 

logarithm of dividing the hardness of the tablet (KgF) by its weight (g), and the 

CW, which is the weight ratio of the liquid vehicle divided by the weight of the 

carrier and coating materials. Figure 4-1 also makes a comparison between water 

granulated liquisolid and classical liquisolid systems in term of using PEG200 as a 

liquid vehicle. It is clear that there is a significant difference between the classical 

liquisolid and water granulated liquisolid tablets (the probability of t-paired test is 

0.00058 < 0.05), although the decreasing trend of the log pactisity values with 

increasing amount of liquid vehicle does not change in the case of water 

granulation. Furthermore, it can be noted that when increasing the amount of 
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PEG200, the pactisity of the water granulation is more resistant to decrease than 

the classical formulations. A possible reason for this could be the ability of 

granulation to retain more liquid compared to the space provided from the same 

solid particles in the classical liquisolid formulations. 

 

Figure 4-2: Log pactisity versus the CW in order to compare between classical and water 
granulated Synperonic TM PE/L-61 liquisolid systems. 

Similarly, Figure 4-2 represents the same comparison between the classical and 

the water granulated liquisolids,  but using Synperonic TM PE/L-61 as a liquid 

vehicle,  and reflects the same conclusion compared with the PEG200 

formulations  (the probability of t-paired test is  0.0139 < 0.05), although it is a 

hydrophobic surfactant. This means that the water as a liquid binder does not 

affect the liquid vehicle. It only works on the solid particles in order to help form the 

granules, and hence it creates more capacity and space for the liquid vehicle. 

However, because of the chemical nature of the Synperonic TM PE/L-61, the solid 

particles cannot accept as high an amount as PEG200, even though the water 

granulation powder system shows a significantly higher capacity. 
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In conclusion, the water granulation process provides a higher pactisity compared 

to the traditional process, and this improvement is seen regardless of the nature 

and the type of the liquid vehicle.  

 

Figure 4-3: Linear models between the compressibility load factor (ΨLf) and reciprocal 
excipient ratio (1/R) for water granulated PEG200 liquisolid systems (left) and water 
granulated Synperonic TM PE/L-61  liquisolid systems (right). 

Figure 4-3 shows the linear relationship between the compressibility load factor 

and the reciprocal R value of the water granulated PEG200 (left) and Synperonic 

TM PE/L-61 (right) liquisolid powder systems. The compressibility load factor keeps 

its linearity with the reciprocal R value in water granulation liquisolid systems. In 

other words, the increased amounts of coating materials still results in increasing 

amounts of liquid vehicle retained inside the liquisolid system, whether PEG200 or 

Synperonic TM PE/L-61 is used. The highest compressible load factor for PEG200 

is approximately 0.454 at the minimum used R value, which equates to 6.59 in this 

example. The counterpart of the compressibility load factor for the same R values 

but in the traditional liquisolid is 0.309. This shows a significant improvement 

which is contributed by the water granulation process. Also, the load factor of 

Synperonic TM PE/L-61 at R=10 is 0.33, whereas for the classical Synperonic TM 
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PE/L-61it equals 0.139. This means that the enhancement due to the water 

granulation process is more than double [77]. The probable explanation could be 

that there is a contribution between the carrier and the coating particles for making 

strong granules with higher resistance to crushing forces. This could be added to 

the factor of the formation of granulated carrier particles, which increases the 

capacity in order to retain the liquid vehicle inside its space.  

From Figure 4-3, the slope of the linear equation for the PEG200 formulation is 

higher than the slope for the Synperonic TM PE/L-61 linear equation. This means 

that the PEG200 formulations have more susceptibility towards change in the 

value of the coating materials comparing with the Synperonic TM PE/L-61. This is 

particularly important for the industrial large scale production, because the ability 

to control the formation of the Synperonic TM PE/L-61 batches is more difficult than 

the PEG200 liquisolid batches. In addition, as the Synperonic TM PE/L-61 does not 

have the same binder properties compared with the PEG200, it could reach the 

compressibility acceptable plateau before the PEG200 formulations, meaning that 

the increase in punch forces will not increase the crushing strength. This 

phenomenon could not be detected in the classical liquisolid formulations, as the 

quantity of the solid powder system is high and so the single unit dose is divided 

into several smaller tablets. It is only noticed in the case of the Synperonic TM 

PE/L-61 water granulated liquisolid system because the quantities of the solid 

particles have been reduced. 

4.2.2. Flowability studies and the determination of angle of slide: 

The angle of slide method was used to evaluate the flowability of the water 

granulated liquisolid systems. Figure 4-4 represents the average and the standard 



118 

 

deviations for a comparison between CW (w/w) and the relative angle of slide for 

the both liquid vehicles (PEG200 and Synperonic TM PE/L-61) in the classical 

liquisolid and the water granulated liquisolid powder systems. 

 

Figure 4-4: Comparison between water granulation and classical liquisolid systems in terms 
of angle of slide at different CW (w/w). 

As expected, the significant decrease in the value of the angle of the slide is 

recorded with the water granulated liquisolid systems whether it contains PEG200 

or Synperonic TM PE/L-61, compared with the classical ones (Figure 4-4). This 

improvement can be expressed statistically through the probability of the t-paired 

test, which is 0.0029 < 0.05 in the case of the PEG200 formulations and 0.0047 < 

0.05 in the case of the Synperonic TM PE/L-61 formulations.   
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Figure 4-5: Comparison between water granulated PEG200 liquisolid systems (left) and 
water granulated Synperonic TM PE/L-61 liquisolid systems (right) at different R values in 
term of angle of slide with CW (w/w). 

In addition, investigation of the R effect according to the relative CW values leads 

to the conclusion that, in the case of PEG200 water granulated liquisolid systems, 

there is a slight increase in the values of the angle of the slide when the R value 

increases, whereas this increase cannot be detected in the case of Synperonic TM 

PE/L-61 water granulated liquisolid systems (Figure 4-5). This means that the 

percentage of the carrier to coating materials cannot change the angle of the slide 

because the spherical shape of the formed granules gives near the angle values 

with small variations compared to the classical formulations. Therefore, the linear 

correlation between the flowability load factor and the reciprocal R is not detected 

in the range of the optimum compressible load factor. In other words, the liquisolid 

systems may need larger quantity of liquid until the linear horizontal line between 

the CW and the angle of the slide becomes exponential (i.e. the angle value 

equals to 33o or more). At this level, the relationship between the flowability load 

factor and 1/R could become linear to some extent [78]. However, the tablets will 

not be compacted at that amount of liquid vehicle.  
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4.2.3. Differential scanning calorimetry (DSC):  

 
 
Figure 4-6: Comparison between classical PEG200 liquisolid systems (left) and water 
granulated PEG200 liquisolid systems (right) in terms of DSC thermographs (for formulation 
composition refer to Table 2-3). 

As norfloxacin pure drug has a sharp endothermic peak at melting temperature 

(222 o C) with relatively high enthalpy value (107.7 J/g)(see Figure 3-2), the 

investigation of all of the water granulated liquisolid formulations should be in the 

range of the melting temperature of norfloxacin in order to assign the effect of wet 

granulation liquisolid formulations. Any changes in the endothermic peak or 

shifting of the melting temperature will appear as an effect of the non-volatile liquid 

vehicle as well as the effect of the water granulation on the active ingredient 

thermally. 

The comparison between the thermographs of water granulated PEG200 liquisolid 

formulations (Figure 4-6, right) and the classical PEG200 liquisolid formulations 

(Figure 4-6, left) indicates two regions of particular interest. 

The first one lies between 70 o C and 110 o C. The presence of these broad 

endothermic peaks could relate to the presence of PEG200 and Avicel® PH 101 
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[79] and [80]. However, these peaks appear to be deeper in the wet granulation 

formulations than in classical liquisolid formulations because they contain more 

water droplets, which lead to broader endothermic peaks. The second region is 

around 190 o C, which appears in both of the water and classical formulations. This 

could relate to the interaction between PEG200 and the crystals of norfloxacin, 

leading to a decrease and shifting back in the endothermic peaks of the pure drug. 

However, these peaks are clearer in the case of the water granulation 

formulations, due to the decrease in the weight of carrier and coating materials. 

 

 
 
Figure 4-7: Comparison between classical Synperonic TM PE/L-61 liquisolid systems (left) 
and water granulated Synperonic TM PE/L-61 liquisolid systems (right) in terms of DSC 
thermographs (for more information about the formulation components, see Table 2-3). 

 In the case of the Synperonic TM PE/L-61 formulations (Figure 4-7), the distinctive 

peaks appear in the both types: water granulation and classical norfloxacin 

liquisolid systems. The first broad peaks, around 125 o C, come from the 

combination effects of the granules to take up more liquid vehicle compared to the 

classical formulations. This capability prevents the water to be evaporated easily 

especially if the liquid vehicle accumulates inside the cavity of the granules, 

reaching to the surface so that it covers the water molecules that present between 
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the solid particles. As Synperonic TM PE/L-61 is a hydrophobic liquid vehicle and it 

is an immiscible liquid vehicle with water, in contrast with the PEG200, the water 

droplets need more heat to evaporate; this is seen in the formulations of 

Synperonic TM PE/L-61 and not in the conventional powder without liquid vehicle, 

which is more similar to PEG200 formulations. The second region, at 

approximately 220 o C, appears in the water-liquisolid granules as well as in the 

classical formulations, indicating that the drug is not soluble completely in the 

surfactant so that there is no complete interaction between them. The enthalpy 

values are 0.04497, 0.24, 0.0452, 0.09118 J/g for the formulations from F21 to 

F24, respectively. These enthalpies indicate that the crystallinity of the drug is still 

at its minimum values.   

4.2.4. Fourier Transform Infra-red (FTIR) analysis: 

Figure 4-8 and Figure 4-9 show a comparison between the FTIR spectra of the 

classical liquisolid and water granulation liquisolid norfloxacin formulations for both 

PEG200 and Synperonic TM PE/L-61. As expected, there is no significant 

difference between the two types of formulations. The water as a liquid binder in 

this situation affects only the construction of granules without making any changes 

to the wavenumber or the peaks. Moreover, it is noted that most of the water 

molecules used in the granulation process evaporate during the drying process at 

80 o C without making bonds with PEG200 or Synperonic TM PE/L-61. It does not 

make bonds with the pure norfloxacin particles, keeping the interaction only 

between the norfloxacin and the liquid vehicle (PEG200 or Synperonic TM PE/L-

61).  

This could suggest water as a liquid binder with no negative effects in drug release 

in the neutral dissolution medium. In other words, added water in this situation will 
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not lead to crystallization. It just affects on the shape and capability of the carrier 

and coating materials to adsorb more liquid vehicle to its internal structure. 

 

Figure 4-8: Comparison between the FTIR spectra (Y-axis is % Transmittance) of norfloxacin 
in classical PEG200 liquisolid systems (left) and water granulated PEG200 liquisolid 
systems (right) (for more information about the formulation components, see Table 2-3). 

 

Figure 4-9: Comparison between the FTIR spectra ((Y-axis is % Transmittance) of 
norfloxacin in classical Synperonic TM PE/L-61 liquisolid systems (left) and water granulated 
Synperonic TM PE/L-61 liquisolid systems (right) (for more information about the formulation 
components, see Table 2-3). 
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4.2.5. Determination of flow properties: 

Table 4-1: Comparison between classical  liquisolid and water granulated liquisolid 
formulations for PEG200 and Synperonic TM PE/L-61 liquid vehicles in terms of 
compressibility index (CI%) and Hussner’s ratio (H ratio) (for more information about the 
formulation components, see Table 2-3). 

formula flowability of classical liquisolid PEG200 

 
Tapped density 

(g/cm3) 
bulk density 

(g/cm3) 
CI% position H ratio position 

F1 0.50 0.39 22.22 poor 1.29 passable 

F2 0.58 0.44 23.64 poor 1.31 passable 

F3 0.62 0.42 31.58 poor 1.46 very poor 

F4 0.56 0.40 29.03 poor 1.41 poor 

formula flowability of water granulation liquisolid PEG200 

 
Tapped density 

(g/cm3) 
bulk density 

(g/cm3) 
CI% position H ratio position 

F9 0.57 0.42 26.83 poor 1.37 poor 

F10 0.51 0.36 29.17 poor 1.41 poor 

F11 0.52 0.37 29.17 poor 1.41 poor 

F12 0.47 0.33 29.63 poor 1.42 poor 

formula flowability of classical liquisolid Synperonic TM PE/L-61 

 
Tapped density 

(g/cm3) 
bulk density 

(g/cm3) 
CI% position H ratio position 

F13 0.44 0.33 24.11 passable 1.32 passable 

F14 0.45 0.36 21.21 passable 1.27 passable 

F15 0.46 0.32 31.03 poor 1.45 poor 

F16 0.56 0.36 35.38 very poor 1.55 very poor 

formula flowability of water granulation liquisolid Synperonic TM PE/L-61 

 
Tapped density 

(g/cm3) 
bulk density 

(g/cm3) 
CI% position H ratio position 

F21 0.52 0.38 26.79 poor 1.37 poor 

F22 0.46 0.34 26.47 poor 1.36 poor 

F23 0.59 0.43 25.93 poor 1.35 poor 

F24 0.50 0.35 28.57 poor 1.40 poor 

The flowability of powder has effects on the feeding of the powder from the hopper 

to the punch in the tablet machine. As a consequence of this, it has a critical role 

in the tablet weight and drug content uniformity. Table 4-1 shows a comparison in 

flowability between the classical liquisolid and water granulated liquisolid 

formulations containing norfloxacin in both liquid vehicles; PEG200 and 

Synperonic TM PE/L-61. This table includes two methods: Hausner ratio and Carr’s 

compressibility index from the relative values of the tapped and the bulk densities. 

According to the criteria of the British Pharmacopoeia [56], all formulations 

whether they are water granulated liquisolid or classical liquisolid have poor 
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flowability, except the first two classical Synperonic TM PE/L-61 formulations where 

the quantity of the liquid vehicle is higher. Thus, it leads to the use of a higher 

amount of carrier and coating materials so that they partially improve the 

flowability of the powder bed. Apart from this, all formulations do not show a 

decrease in the value of the Hausner ratio or the Carr’s index. The reason for this 

can be referred to the prevalent characterisation of Avicel® PH 101, which it has a 

documented poor CI% equals to 28.89 [81] & [82].  Although the poor flowability 

characteristic is the predominant feature of most of the formulations, it still 

differentiates between the classical liquisolid and water granulated liquisolid 

formulations. The water granulated liquisolid powders show less difference in the 

values of CI% compared to the relative classical liquisolid formulations. In the case 

of PEG200 formulations, the difference between the highest and the lowest CI% is 

less than 3%, whereas this difference increases to more than 9% in the classical 

liquisolid formulations. In the same manner, the difference between the highest 

and the lowest CI% in the case of water granulated Synperonic TM PE/L-61 

liquisolid formulations is only 2.1%, whereas this value raises to 14.17% in the 

classical liquisolid formulations. This phenomenon could be explained as follows; 

as the main effect of the significant differences in the classical formulations is from 

the quantity of the liquid vehicle (PEG200 or Synperonic TM PE/L-61), the water 

granulation process seems to overcome this problem through creating more 

consistent bed powder in the term of flowability, decreasing the limit of the 

variation in the powder flow behaviour.  Supporting this conclusion, the values of 

the angle of the slide for all water granulated liquisolid formulations come in the 

same range (Figure 4-5). As a result, the optimum load factor calculation becomes 

dependent on the compressibility load factor, mainly to indicate the exact amount 
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of the liquid vehicle that required tablets with acceptable compressibility 

characteristics. 

4.3. Evaluation of water granulated liquisolid tablets: 

4.3.1. Drug content uniformity, tablet dimensions, hardness, tensile 

strength, friability and disintegration tests: 

Table 4-2: Content uniformity, friability, tensile strength, hardness and disintegration tests 
for norfloxacin tablets in classical liquisolid and water granulated liquisolid systems (for 
more information about the formulation components, see Table 2-3). 

Classical PEG200 
Content 

Uniformity (%) 
Friability 

(%) 
T-strength 

(MPa) 
Hardness (N) 

Disintegration 
Time (sec) 

F1 97.43 +/- 2.922 0.474 0.97 +/- 0.209 51.98 +/- 3.756 105 +/- 24 

F2 106.12 +/- 4.769 0.405 1.66 +/- 0.406 91.94 +/- 21.521 111 +/- 0 

F3 96.85 +/- 0.980 0.842 0.85 +/- 0.103 45.36 +/- 4.189 49 +/- 8 

F4 96.15 +/- 7.889 0.724 0.78 +/- 0.094 45.60 +/- 7.184 40 +/- 5 

Water Granulated 
PEG200              

F9 108.03 +/- 0.512 0.260 1.07 +/- 0.178 72.57 +/- 12.677 347 +/- 39 

F10 98.34 +/- 0.998 0.122 1.24 +/- 0.177 86.00 +/- 11.778 369 +/- 39 

F11 98.31 +/- 1.836 0.639 0.75 +/- 0.088 27.36 +/- 3.184 165 +/- 4 

F12 107.27 +/- 2.234 0.291 0.96 +/- 0.330 35.11 +/- 11.284 116 +/- 16 

Classical Synperonic 
             

F13 97.91 +/- 4.189 0.304 1.29 +/- 0.092 46.85 +/- 3.014 197 +/- 28 

F14 100.19 +/- 4.785 0.275 1.21 +/- 0.075 57.75 +/- 3.585 199 +/- 57 

F15 103.44 +/- 1.128 0.167 1.33 +/- 0.072 48.27 +/- 2.933 81 +/- 9 

F16 102.57 +/- 2.175 0.338 1.17 +/- 0.048 58.26 +/- 2.418 61 +/- 3 

Water Granulated 
Synperonic              

F21 96.17 +/- 3.936 0.080 1.12 +/- 0.023 44.33 +/- 0.820 84 +/- 6 

F22 96.77 +/- 2.438 0.000 1.13 +/- 0.019 44.13 +/- 0.693 113 +/- 12 

F23 100.90 +/- 0.305 0.110 1.06 +/- 0.055 43.15 +/- 2.402 38 +/- 2 

F24 100.59 +/- 1.075 0.209 1.23 +/- 0.050 46.68 +/- 1.487 50 +/- 9 
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Table 4-2 shows a comparison between norfloxacin tablets in the water granulated 

liquisolid and the classical liquisolid systems for PEG200 and Synperonic TM PE/L-

61 liquid vehicles of the content uniformity, friability, tensile strength, hardness and 

disintegration tests in terms of means and standard deviations.  

The results of content uniformity tests show that the all formulations are within the 

British Pharmacopoeia specific limits (i.e. between 85% and 115%) [56]. Further 

investigation of the data shows that the values of the standard deviations in the 

water granulated liquisolid formulations have smaller values compared to the 

relative classical ones, although the steps of preparations in the case of wet 

granulation is more, leading to higher probability of errors and variations. This 

probably means that formation of the granules support the distribution of the liquid 

medication inside the solid structure framework, and the liquid binder (water) 

works compatibly with the liquid vehicle on this role. 

Regarding the test of the tensile strength, statistical analysis confirms that there is 

no significant differences between the water granulated liquisolid and the classical 

liquisolid tablets for both types of liquid vehicles. The probability value from 

applying paired t test is 0.68 > 0.05 in the case of PEG200 formulations and 0.2 > 

0.05 in the case of the Synperonic TM PE/L-61 formulations. This could be 

expected because the design of the water granulated liquisolid formulations 

depend on the value of the pactisity which is related directly to the hardness and 

inversely to the tablet weight.  Also, the tensile strength depends directly on the 

hardness and inversely on the thickness of the tablet, which is related directly to 

the weight of the tablet. As the compressibility load factor is calculated at the 
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optimum limit (i.e. 20 Kg F/1 g) for the all water granulated liquisolid formulations 

and all Synperonic TM PE/L-61 classical formulations, and as the selected 

flowability load factor in the case of the PEG200 classical liquisolid formulations 

should meet the criteria of acceptability [6], there should be no differences 

between them. The comparison between Synperonic TM PE/L-61 and PEG200 

water granulated liquisolids supports this conclusion, and the probability of the t-

paired test between Synperonic TM PE/L-61 and PEG200 water granulated 

liquisolid equals to 0.28 > 0.05, indicating that there is no significant difference 

between them in terms of tensile strength. 

The hardness of the liquisolid tablets relates to the quantity of the liquid vehicle, 

the type of the liquid vehicle and the amount and the type of the carrier and 

coating [6]. The combination between wet granulation and liquisolid affects the 

hardness of the tablet [83] and [31]. In this study, there are no significant 

differences between classical and water granulated liquisolid for both types of 

liquid vehicles, due to the enhancement of the hardness that  is provided by the 

granulation process in decreasing the amount of the coating and carrier inside the 

formulae, keeping the pactisity at the optimum level [6]. Instead of hardness test 

alone, the pactisity in these formulations could clarify the strength of the wet 

granulated liquisolid tablets.   

The friability tests show an excellent resistance for the water granulated liquisolid 

tablets: no formulations reached 1% loss, meeting the demands of the British 

Pharmacopoeia criteria. Finally, the test of disintegration shows that significant 

differences in the case of PEG200 formulations when applying t-paired test (p-

value = 0.031 > 0.005). As PEG200 has a binder property, increasing it in the 

formulation will prolong the time of the disintegration. Moreover, in the new water 
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granulation, the decreased amount of the carrier and coating accompanies a 

decrease in the tablet weight. Thus, the amount of disintegrant used in the 

formulation will be less than the amount used in the case of the classical liquisolid, 

although they have the same percentage in the unit dose (5%).  

In the case of the Synperonic TM PE/L-61 formulations, the liquid vehicle does not 

show binder properties like PEG200. Moreover, the quantity of disintegrant is high 

due to the lower values of the compressibility load factor in the classical 

formulation (Lf < 0.15), and does not decrease it to a limit that make a significant 

differences in the case of the water granulated Synperonic TM PE/L-61 liquisolid 

preparations. Nevertheless, none of the formulations exceed 5 minutes 

disintegration time.  

In conclusion, it can be said that water granulated liquisolid formulations show 

better drug distribution, low friability and short disintegration time with acceptable 

hardness and tensile strength. 

4.3.2. In vitro dissolution Studies: 

 It is clear that the percentage of norfloxacin released in the distilled water 

dissolution medium has shown a significantly higher release from wet granulated 

liquisolid tablets (PEG200 and Synperonic TM PE/L61) than the drug release in the 

same medium from classical liquisolid tablets. The highest percentage of the drug 

release was 83.1% in the case of PEG200 water granulated liquisolid after 90 

minutes, whereas the highest percentage for the counterpart classical formulation 

was 54.2% after 90 minutes. Therefore, the critical questions that should be asked 

are: which formula is the optimum one? Moreover, what are the expected changes 

on the liquid vehicles when incorporating water as a liquid binder regarding the in 
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vitro dissolution? Finally, what is the effect of maximizing the values of the load 

factors (i.e. minimizing the weight of the tablets) on the percentage of the drug 

release? 

In order to answer these questions, the changes in the trends of the dissolution 

should be investigated and comparisons made with the changes inside the 

formulations. 

 

Figure 4-10: Comparisons between norfloxacin-containing classical PEG200 liquisolid 
tablets (left) and water granulated PEG200 liquisolid tablets (right) that prepared by the load 
factor that had been used in the classical PEG200 liquisolid tablets (for more information 
about the formulation components, see Table 2-3). 

Figure 4-10 represents comparisons between norfloxacin dissolution trends. They 

are between the classical PEG200 liquisolid and the water granulated liquisolid 

tablets. The water granulated liquisolid tablets were prepared depending on the 

same load factors that are used for classical liquisolid formulations. The tablet 

containing a higher amount of the liquid vehicle (PEG200) showed greater 

improvements in the dissolution profiles (the similarity factor f2 is 32.61% for the 

comparisons between F1 and F5 and 32.92% for the formulations F2 and F6). 

Whereas comparison between F3 and F7 showed higher similarity factor reaching 

44.14%, and the comparison between F4 and F8 formulations showed a value 
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above 50.00%, indicating that there were less significant differences between 

them. Nevertheless, there is an indication that the highest percentage of 

norfloxacin release was recorded at the F7 water liquisolid tablets, reaching to 

approximately 70% after 90 minutes. This could imply that the wet granulation 

technique has an important effect on enhancing drug release from liquisolid tablets 

when PEG200 is used as a liquid vehicle. 

Using the new calculated compressibility load factor in order to prepare the water 

granulated PEG200 liquisolid for a smaller tablet weight size leads to formation of 

tablets with an improved norfloxacin drug release in distilled water dissolution 

medium. This applied to all formulations prepared, regardless of the value of the 

excipient ratios (R) or the concentrations of liquid medications. In more details, the 

best record for norfloxacin was at R=20 and 40% w/w liquid medication, reaching 

to 79.9% drug release (F12) (Table 2-3). This tablet formulation gave a similar 

dissolution profile with norfloxacin tablets, having R= 10 and 40% w/w liquid 

medication (F11). In the same way, the formulations having R= 10 or 20 and 20% 

w/w liquid medications show similar dissolution profiles (F9 and F10) (Table 2-3). 

As a consequence, the order of the dissolution profiles for the PEG200 classical 

liquisolid tablets stays the same as the water granulated formulations, but with 

higher percentages of drug release. This means that there is no effect on the in 

vitro drug release when incorporating the water granulation method into the 

PEG200 liquisolid formulation (Figure 4-11). 
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Figure 4-11: Comparisons between norfloxacin-containing classical PEG200 liquisolid 
tablets and water granulated PEG200 liquisolid tablets prepared by the new calculated load 
factor (for more information about the formulation components, see Table 2-3). 

Regarding the comparisons between the water granulated PEG200 liquisolid 

tablets, using the classical (from F5 to F8) and the new load factor (from F9 to 

F12), a slight improvement on drug release was observed in all formulations 

prepared by the new calculated load factor (Figure 4-10 and Figure 4-11). The 

similarity factors are over 50 %, except in the comparison between F8 with F12 (f2 

= 48.71) and the comparison between F5 with F9 (f2 = 48.70), yet the tablets 

prepared by the new load factors still provide higher drug release than from tablets 

prepared using classical load factors. 

As a result, although the prepared formulations made only slight improvements to 

the dissolution profiles, they decreased the weight of the excipients used to 

prepare the tablets, they allowed increase of the weight of the active ingredients, 

using the advantage to keep the preparation at the same liquid medication, and 

greater ability to increase the weight of the liquid vehicle inside the powder 

formulations without destroying the rule of the liquisolid systems : improved 

dissolution with acceptable powder flowability and compressibility. 
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When changing the liquid vehicle to Synperonic TM PE/L61, the dissolution 

behaviour becomes different. In more details, there was no significant effect on the 

percentage of the drug released when the water granulation technique was used 

as a liquid binder, comparing with the same dissolution profiles using PEG200 as 

a liquid vehicle (Figure 4-12). The recorded similarity factors were always over 

50%. 

 

Figure 4-12: Comparisons between norfloxacin-containing classical Synperonic PE/L-61 
liquisolid tablets and water granulated Synperonic TM PE/L-61 liquisolid tablets prepared by 
the load factor that had been used in the classical Synperonic TM PE/L-61 liquisolid tablets 
(for more information about the formulation components, see Table 2-3). 

There are two probably reasons for this; the first one is related to the hydrophobic 

nature of the Synperonic TM PE/L-61 which surrounds all the drug particles and 

prevents penetration by water in order to make further distribution to the drug 

particles inside the liquid medication [77], as happened in the case of PEG200, 

where the liquid vehicle and the liquid binder were miscible in the liquid medication 

system. However, this is doubtful because the solubility of the drug in water is 

higher than in Synperonic TM PE/L-61, so the probability of the drug dissolving in 

the liquid binder is higher, especially during continuous mixing to the liquisolid 

system after adding the liquid binder. Nevertheless, the drug particles would go 
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back to react with Synperonic TM PE/L-61 when the dry process completes. The 

DSC thermograms in Figure 4-7 show traces of water particles in the final wet 

granulated liquisolid system. These particles could simply help in forming the 

water granulation, rather than affecting the drug particles as they are present in a 

very small amount. The second reason could be that the high percent of the 

excipients used when applying such formulations leads to the same effect as 

happened in the classical liquisolid formulations (i.e. participating in preventing 

release of the drug particles into the dissolution system) [77]. 

 

Figure 4-13: Comparisons between norfloxacin-containing classical Synperonic TM PE/L-61 
liquisolid tablets and water granulated Synperonic TM PE/L-61 liquisolid tablets that prepared 
by the new calculated load factor (for more information about the formulation components, 
see Table 2-3). 

This reason could be clarified when applying the new calculated load factor. In 

Figure 4-13, the comparison between classical liquisolid tablets and the smaller 

weight water granulated Synperonic TM PE/L61 liquisolid formulations show that 

there is an increase in the percentage of norfloxacin release in the dissolution 

medium in all water granulated formulations. The percentage values of the 

similarity factor show that two out of four of the water granulated tablet 

formulations have values less than 50 % when compared to the classical liquisolid 
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formulations, leading to the conclusion that there is a significant increase in drug 

release. This enhancement could come from decreasing the amount of carrier and 

coating in the formulations, allowing the increase of the area of the diffusion layer 

between liquid medication and the dissolution medium at the molecular level. This 

happened with formulations F23 and F24, where the tablet weight decreased 

according to the new load factors. However, although this improvement is 

significant, it is still less than the improvement that happens in the case of PEG200 

formulations, indicating that the role of the water granulation process retains the 

effect on the dissolution, but through the changing of the tablet weight this time. 

4.3.3. Kinetic model analysis of drug release: 

Table 4-3: Comparison between norfloxacin classical liquisolids  and water grnulated 
liquisolids in terms of zero order, first order, Higuchi and Hixson-Crowell (H-C) kinetic 
dissolution models (for more information about the formulation components, see Table 2-3). 

Classical Liquisolid 

 
zero First Higuchi H-C 

F1 0.9187 0.9267 0.9552 0.9241 

F2 0.8795 0.8857 0.9243 0.8836 

F3 0.8528 0.8632 0.9023 0.8597 

F4 0.9388 0.9537 0.9700 0.9488 

F13 0.9644 0.9718 0.9871 0.9694 

F14 0.9976 0.9992 0.9993 0.9986 

F15 0.9549 0.9680 0.9811 0.9638 

F16 0.9847 0.9905 0.9977 0.9887 

Water Granulated Liquisolid 

 
zero First Higuchi H-C 

F9 0.9770 0.9909 0.9942 0.9869 

F10 0.9958 0.9995 0.9999 0.9987 

F11 0.9934 0.9991 1.0000 0.9978 

F12 0.9966 1.0000 0.9997 0.9997 

F21 0.9869 0.9922 0.9985 0.9906 

F22 0.9949 0.9985 1.0000 0.9975 

F23 0.9898 0.9966 0.9994 0.9948 

F24 0.9655 0.9803 0.9877 0.9757 
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Table 4-3 presents a comparison in the square values of the correlation 

coefficients (R2) between the classical liquisolid and water granulated liquisolid for 

both PEG200 and Synperonic TM PEL-61 liquid vehicle formulations. It compares 

four different types of kinetic models; the zero order, the first order, Higuchi and 

Hixson- Crowell (H-C) models. The important observation is that the water 

granulated liquisolid formulations which contain PEG200 show a significant 

increase in the R2 values in all the kinetic models compared to the classical 

PEG200 liquisolid formulations (probability values for all kinetic models are less 

than 0.05 for the t-paired tests), (see Table 4-3/ formulations from F1 to F4 vs. 

formulations from F9 to F12). Consequently, the water granulated PEG200 

liquisolid systems reach a value that nearly equals the water granulated liquisolid 

Synperonic TM PE/L-61 formulations. All the R2 values record over 0.95. However, 

the H-C values are less than others in the case of the water granulated PEG200 

liquisolid formulations. For example, there is a significant decrease compared to 

the zero order, first order or Higuchi kinetic models (P= 0.0186, 0.0242 and 

0.0288, respectively).  

Regarding water granulated Synperonic TM PE/L-61 liquisolid formulations, the all 

comparisons between the models show significant differences. This is very similar 

to the comparisons between the kinetic models in the case of the Synperonic TM 

PE/L-61 classical liquisolid formulations, which could be expected as the water 

granulation process does not reflect a significant improvement in the dissolution 

trends, especially at the first 15 minutes when the points have been selected for 

this study. 
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In summary, the three kinetic models (the zero, first and Higuchi models) show the 

highest accuracy. In other words, they have characteristics that applied to the 

water granulated liquisolid formulations.  

The enhancement in the R2 values in the case of zero order can be identified in 

the case of the water granulated liquisolid formulations due to the enhancement of 

the distribution of the liquid medication inside the solid granules, which is, in this 

case, less than the classical one. As a consequence, the chance to form the 

interacting layer between the drug and the liquid vehicle is less in this situation, 

which reflects positively on the percentage of the drug release and the accuracy of 

this model. 

For the first order kinetic model, the relationship between the drug release and the 

time is exponential [64], which can be noticed in all the water granulated 

formulations in the selected time; (i.e. between 5 and 15 minutes). This may be 

expected because the tablet contains disintegrant, as well as a reduced amount of 

carrier and coating materials, which leads to fast exponential release in the 

dissolution medium. 

On the other hand, the Higuchi model deals with the drug release from a different 

perspective, because it depends on Fick’s law of diffusion. In fact, the drive forces, 

which come from the concentration gradient between the tablet matrix and the bulk 

solution, play an important role in diffusing the drug into the dissolution medium 

[65]. This force considers the dispersion of drug particles in the liquid vehicles 

(PEG200 or Synperonic TM PE/L-61). The water granulation process enhances 

such dispersion via providing a fair distribution of the liquid medication inside the 

solid granules. It eliminates the negative rule of the retardation that could happen 
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in the case of the classical liquisolid formulations.  As a result of this, the model 

accuracy is improved.    

Regarding the H-C model, it depends on the assumption of the spherical shape for 

all particles inside the dissolution medium, so that they have the same effect on all 

part of their surface through the liquid agitation. It ignores other factors that could 

be found in Fick’s law of diffusion, keeping one factor that control the speed of the 

transformation of the particles towards the dissolution medium by a proportional 

change of surface with time and agitation [66].  

Water granulation improves the H-C assumption via supporting the sphericity of 

the particles inside the dissolution medium. It provides a fair distribution of the 

liquid medication inside the solid particles, and decreases the crystallinity of the 

drug particles via providing more liquid vehicle, so that it increases the wettability 

by increasing the value of the load factor. As a result, the assumption of this H-C 

model is still accepted in this case. 

4.4. Stability studies: 

Table 4-4: Drug content uniformity comparison in percentage between fresh and stability 
after 6 months samples for the water granulated PEG200 and Synperonic TM PE/L-61 
liquisolid tablets of norfloxacin (for more information about the formulation components, 
see Table 2-3). 

 Fresh After six months 

Formula Average (%)  St Dev Average (%)  St Dev 

F9 108.028 +/- 0.512 96.460 +/- 1.233 

F10 98.337 +/- 0.998 102.515 +/- 3.943 

F11 98.305 +/- 1.836 94.247 +/- 3.796 

F12 107.268 +/- 2.234 97.358 +/- 4.032 

F21 96.168 +/- 3.936 87.405 +/- 1.270 

F22 96.774 +/- 2.438 95.128 +/- 5.672 

F23 100.903 +/- 0.305 95.814 +/- 1.692 

F24 100.593 +/- 1.075 99.418 +/- 6.011 
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Table 4-4 compares the percentage of norfloxacin in water granulated liquisolid 

tablets at the moment of making and after six months storage at 21 o C and 76 % 

relative humidity. All formulations show a high percentage of drug content, yet 

there are some evidences that there is a decrease in some formulations. For 

example, formulations F9 and F21 loses about 10%, although the tablets still in the 

acceptable BP levels. However, this loss could be due to the stability conditions or 

just due to variations in the tablets. A more probable reason could be because 

other formulations do not show that decrease in the percentage of the drug, which 

could be supported from the dissolution behaviour of these formulations, showing 

no significant differences in the percentage of drug released between fresh 

samples and stored ones for the all formulations (Figure 4-14 and Figure 4-15). 

The similarity factor percentages in the case of formulations F9 and F21 are 

65.32% and 70.87%, respectively. 

Furthermore, the DSC thermographs in Figure 4-16 and Figure 4-17 do not lead to 

a similar conclusion. The endothermic peaks have the same melting temperature 

values in the stored formulations, especially the ones near to the melting point of 

the norfloxacin where there is no significant change in this region.  Moreover, the 

enthalpy values for the endothermic peaks at 220 o C in the case of the water 

granulated Synperonic PE/L-61 (i.e. from F21 to F24) are 0.174, 0.1034, 0.9206 

and 1.314 J/g, respectively, which are less than the counterpart values in the case 

of classical Synperonic PE/L-61 formulations. This means that the weakness in the 

case of classical Synperonic TM PE/L-61 liquisolid formulations after 3 months 

storage is overcome in the counterpart water granulated liquisolid tablets after 

storage, and the new prepared formulations do not only withstand stressful 
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conditions, but also provide a longer resistant time compared with the classical 

formulations. 

 

Figure 4-14: Comparison of the dissolution profiles between fresh and samples stored for 6 
months in terms of water granulated Synperonic TM PE/L-61 liquisolid tablets of norfloxacin 
(for more information about the formulation components, see Table 2-3). 

 

 

Figure 4-15: Comparison of the dissolution profiles between fresh and samples stored for 6 
months in terms of water granulated PEG200 liquisolid tablets of norfloxacin (for more 
information about the formulation components, see Table 2-3). 
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Figure 4-16: Comparison of the DSC thermographs between fresh and samples stored for 6 months in 

terms of water granulated PEG200 liquisolid tablets of norfloxacin (for more information about the 
formulation components, see Table 2-3). 

 

Figure 4-17: Comparison of the DSC thermographs between fresh and samples stored for 6 
months in terms of water granulated Synperonic TM PE/L-61 liquisolid tablets of norfloxacin 
(for more information about the formulation components, see Table 2-3). 

4.5. Conclusion: 

Liquisolid formulation technique has always been challenged by the size of the 

tablets. A large quantity of excipients was used in order to reach acceptable 
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flowing and compressible powder systems. The work in this chapter aimed to 

enhance this method via incorporation of water into the granulation process during 

liquisolid tablet preparation. The new calculated optimum load factor decreases 

significantly the size of the prepared tablets, which helps the industry to produce 

acceptable tablet size. The added water as a liquid binder affects the 

compressibility and the flowability of the liquisolid formulations, whether containing 

Synperonic TM PE/L61 or PEG200 as liquid vehicles. The in vitro dissolution 

profiles, studying norfloxacin as a model of very slightly water soluble drug, show 

that there is a significant increase in the percentage of the drug released, 

compared to the classical liquisolid formulations, although in the case of water 

granulated Synperonic TM PE/L61 formulations, the significant increase appears 

only after applying the new compressibility load factor. The PEG200 formulations 

show the dissolution enhancement regardless of applying the classical or the new 

calculated load factor, allowing more flexibility during preparation of larger 

batches. This novel method for the preparation of liquisolid tablets continues 

studying the differences when applying different liquid binders, different liquid 

vehicles and different hydrophobic drugs in order to investigate their suitability, as 

well as applicability, in terms of enhancing flowability, compressibility and the 

percentage of the drug released in aqueous dissolution medium. 
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Chapter Five:  Comparing 

water and 10 %w/w PVP 

solution as liquid binders in 

wet granulated liquisolid 

tablets 
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5.1. Introduction: 

The preparation of the water granulated liquisolid process provided good solutions 

for the large quantities of the carrier and the coating that could be faced when 

preparing the classical liquisolid formulations. Although these kinds of formulations 

enhance the dissolution of the hydrophobic drug in neutral dissolution media, the 

norfloxacin release is still under the accepted limit for the immediate release drug 

(i.e. 85% of drug release in the first 30 minutes [56]). Therefore, it is worthy to 

investigate another type of liquid binder. 

The suggested binder solution is Polyvinyl Pyrrolidone (PVP) due to its good 

physicochemical characteristics in terms of water solubility and wettability so that 

they improve the percentage of the drug release during the dissolution test. Other 

aspects could affect the drug release is the chains of the used PVP structure and 

the ratio of the PVP to the drug. 

Therefore, studying PVP effect on the wet granulated liquisolid preparations, and  

comparing this effect with water granulated liquisolid formulations not only in the 

dissolution profiles, but also, in flowability, compressibility, load factor calculations, 

DSC thermograph, FTIR spectra, and other quality control tests are the main goals 

of this chapter. 

5.2. Pre-formulation studies and characterisation of powder admixture: 

5.2.1. Flowability studies and determination of angle of slide: 

The aim of applying this test is to investigate the powder flow and how it would 

affect if there would be any changes in the type of the liquid binders. Figure 5-1 

compares water and PVP-K17 as binder solutions in terms of changing the angle 
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of slide when using Synperonic TM PE/L-61 and PEG200 as liquid vehicles. In the 

both situations, there are no significant changes on the angle values when the 

concentration of PVP changes. All different concentrations including the water 

record values between 14 and 16 degrees approximately. This could be expected 

in the case of PEG200 formulations as PVP in water makes polar solution, which it 

can be immiscible with the hydrophilic liquid vehicle.  However, this conclusion can 

also be seen in the case of Synperonic TM PE/L-61, where there is no homogeneity 

due to the hydrophobicity of the liquid vehicle. As a result, PVP can candidate both 

type of formulations (PEG200 and Synperonic TM PE/L-61) to the industrial 

applications for powder preparations, such as hard gelatine capsule filling. 

 

Figure 5-1: Comparison the averages and standard deviations of the angle of slide values 
for different wet granulated liquisolid formulations having the same R value and the same 
CW value but different PVP % concentrations for Synperonic TM PE/L-61 (left) and PEG200 
(right) as liquid binders. 
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Figure 5-2: Comparison the averages and standard deviations of the angle of slide values 
for different wet granulated liquisolid formulations at several  R values and CW values for 
the same liquid vehicle (PEG200) , using PVP-K17 (10%) (Left) and water (right) as liquid 
binders. 

In the same way, the records when changing the R values were at a minimum 

level of changing the angle of slide in the case of PVP-K17 solution (Figure 5-2, 

left). In fact, it provides more consistent results compared to the same formulation 

but using water as a liquid binder instead (Figure 5-2, right). The recorded values 

of the angle of slide were in a low range between 10 and 15 degrees in the case of 

the PVP formulations, and this continued with no significant changes when 

increase the value R, whereas the angle of slide increases with larger R value in 

the case of the water formulations. As a result, the application of PVP as a binder 

solution provides an acceptable powder flow properties regardless the ratio of 

carrier and coating materials (R) and whether using Synperonic TM PE/L-61 or 

PEG200. 
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5.2.2. Compressibility studies and determination of the new optimal 

compressibility load factor:  

 

Figure 5-3: The effect of PVP-K17 solutions on the average pactisity for liquisolid 
formulations using Synperonic TM PE/L-61 at a specific R value (15) and a specific CW value 
(0.2). 

The aim of applying this study is to investigate the compressibility of the liquisolid 

tablet formulations in terms of average pactisity when using PVP solutions as a 

liquid binder. When applying different concentrations of PVP-K17 solutions to the 

liquisolid formulations containing Synperonic TM PE/L-61 as a liquid vehicle, the 

average pactisity start decreasing when the concentration of PVP increases 

(Figure 5-3).  Water without PVP powder records the highest amount of pactisity 

whereas the lowest amount is at 40 % w/w PVP solution.  As stated in Figure 5-3, 

the inverse correlation between the average pactisity and the percentage 

concentration of PVP-K17 seems to be linear with regression coefficient is more 

than 0.99.  The expected reason for this result could be referred to the opposite 

hydrophobic nature of the liquid vehicle and the liquid binder, where the first one 

(Synperonic TM PE/L-61) is hydrophobic surfactant and the second one is a polar 

water soluble solution (PVP), so that both of them cannot mix together and they 
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form a heterogeneous mixture.  Although water shares the polarity characteristics 

with PVP solution but in the wet granulation process it will evaporate after drying 

process and it would stay in the minimum levels, whereas the PVP crystals would 

precipitate on the powder surface of the liquisolid formulations after drying 

process, occupying a space inside the granules that could be filled with 

Synperonic TM PE/L-61 in the case of water granulated liquisolid formulations. 

Consequently, a smaller space in the granules retains a smaller amount of liquid 

vehicle, decreasing the compressibility load factor and the relative average 

pactisity. Moreover, due to the contrasting in the hydrophilicity nature, there could 

be a shifting outside the granules for Synperonic TM PE/L-61, which could lead to 

squeeze it out and weaken the prepared tablet.  Both explanations can be 

determined from the linearity relationship, representing in Figure 5-3 where the 

largest pactisity has been recorded in the case of the water granulated liquisolid 

formulation. For these reasons, the preparations of liquisolid Synperonic TM PE/L-

61 formulations have been stopped in the presence of PVP solutions. 

 

Figure 5-4: The effect of PVP-K17 solutions on the average pactisity for liquisolid 
formulations using PEG200 at a specific R value (15) and a specific CW value (0.35). 
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On the contrary to the PVP wet granulated Synperonic TM PE/L-61 liquisolid 

formulations, PVP granulated PEG200 liquisolid formulations  show closer values 

in the average pactisity with change in the concentration of the PVP (Figure 5-4). 

Moreover, the addition of PVP solutions with different concentrations instead of 

water does not make a significant change in the pactisity from range of 0 to 30 % 

w/w PVP. All pactisity values are around 20 KgF/g. Therefore, the superiority of 

the formulations having water as a liquid binder in the case of the Synperonic TM 

PE/L-61 formulations (Figure 5-3) cannot be recognized in the case of the 

PEG200 formulations (Figure 5-4). The same hypothesis could explain this result. 

As the PEG200 has a hydrophilic nature, thus it can form a homogeneous mixture 

with either water or PVP solutions. Therefore, the liquid vehicle has the ability to 

retain in the granules after the drying process and there are no particles could 

affect its occupancy inside the powder admixture. 

 

Figure 5-5: Comparison between the compressibility load factors (ΨLf) of the water and 10 
% PVP-K17 granulated PEG200 liquisolid tablet formulations at different R values. 

After investigation the role of the PVP concentration as a liquid binder at specific R 

and CW values, it is worthy to demonstrate the differences between water and a 

specific PVP concentration (10% w/w) on the values of the compressibility load 

factors. Figure 5-5 shows the compressibility load factors for water and 10% PVP 
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solution over the used ranges of R values. It can be noticed that when R values 

are small (e.g. at 6.59 and 10), the differences between water and PVP 

formulations in terms of the load factor is not significant. However, when R values 

increase, the differences start increasing, and water prepared formulations show 

higher values than relative PVP prepared formulations. This phenomenon could be 

referred to the role of the coating material (silica) and its sensitivity to form 

granules and its help in providing strong tablets. In other words, when the quantity 

of coating material is large in the smaller R values, the effect of PVP on the 

pactisity does not appear. However, when less amount of coating material used in 

larger R values, the decreasing effect of PVP solution on the pactisity start to be 

significant.  

 

Figure 5-6: Comparison the pactisity (KgF/g) of PVP and water wet granulated PEG200 
liquisolid tablet formulations with a range of CW between 0.25 and 0.55 (w/w) for R= 6.59 
(left) and R = 15 (right). 

More investigation into the differences between the water and the PVP liquisolid 

formulations when PEG200 is the liquid vehicle clarifies several results (Figure 

5-6). First of all, the coating material at low R is more sensitive to the change of 

the CW in the PVP solutions compared to the water formulations. In other words, 

the decreasing in the pactisity of the PVP formulations takes place to large extent 
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compared to the water formulations when the amount of the liquid vehicle 

(PEG200) increases and when the coating materials is relatively predominant in 

the formulations (Figure 5-6,left). 

In the same manner, the PVP sensitivity to the change of the CW still higher than 

water when the carrier material predominating (Figure 5-6, right). 

This means that binder characteristics of the PVP solution have negative effects 

on the pactisity only when the CW becoming large regardless the value of the solid 

ratio (R) in the PEG200 liquisolid formulations.  

Also, when R =6.59, the values of the pactisity decreases massively when 

increasing the CW for both type of formulations (i.e. water and PVP). However, 

this is not indicated when the R values increase.   

This investigation is important for the industrial application when the liquid vehicle 

and the liquid binder are added gradually to make these kinds of formulations. 

Finally, the exponential relationship between CW and the pactisity does not 

change whether applying PVP or water as binder solutions or whether using small 

or large R values. As a result, it is possible to predict the linear relationship 

between the compressibility load factor (ΨLf) and the reciprocal solid ratio (1/R) in 

the case of 10 % w/w PVP-K17 granulated PEG200 liquisolid formulations. The 

regression coefficient (R2 > 0.99) was relatively high (Figure 5-7). 
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Figure 5-7: The linear model between compressibility load factor (Ψ Lf) and the reciprocal 
solid ratio (1/R) with R2 = 0.9903. 

5.2.3. Differential Scanning Calorimetry (DSC) analysis: 

 

Figure 5-8: DSC thermographs for PVP (left) and water (right) granulated liquisolid 
formulations when using PEG200 as a liquid binder. it includes DSC thermographs for PVP-
K17 pure powder (left) and for pure norfloxacin (bottom) for comparison purposes (for 
formulation compositions, refer to Table 2-4). 
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Figure 5-8 represents a comparison between DSC thermographs of the pure 

norfloxacin powder (Figure 5-8, bottom), PVP-K17 pure powder and PVP 

granulated liquisolid formulations (F1 to F4) (Figure 5-8, top-left) and water 

granulated liquisolid formulations (Figure 5-8, top-right) (F9 to F12), using PEG200 

as a liquid vehicle. The endothermic peak of pure norfloxacin at 222 o C shifts in 

the case of three PVP granulated formulations (F1, F3 and F4), whereas it 

disappears in the case of formulation F2. This leads to conclude that there is an 

interaction between the drug itself with the PVP particles, and this interaction 

decreases the crystallinity of the pure drug, enhancing the drug solubility and the 

drug dissolution in the aqueous medium, as will be shown later.  

In more details, the investigation of the DSC thermographs of the PVP granulated 

liquisolid formulations and their counterparts of the water granulated liquisolid 

formulations shows that endothermic peaks due to crystallinity of the drug are 

smaller in the case of the water granulated formulations. The probable reason for 

this is that there is one interaction between PEG200 and norfloxacin in the case of 

the water granulation, whereas there are two interactions in the case of the PVP 

formulations; one with PEG200 and the other with the PVP.  The similar situation 

can be noticed in the case of acetaminophen, where there was a comparison 

among three different granulation methods, using the same type of PVP as a 

binder solution [84]. Although there is a slight shift in the endothermic peaks in all 

granulation methods, there were questions about the reason of such shifting 

whether it comes from the drug interaction with PVP or comes from the interaction 

with other excipients [84]. 

Furthermore, the decrease of the powder quantities ( i.e. carrier and coating 

materials) in the all formulations allow these small endothermic peaks to appear in 
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the both types of (PVP and water) formulations, and when the solid powder 

becomes large, such as in the case of formulation F2, these small peaks 

disappear, due to the dilution effect.  

One thing could be noticed in the water and PVP granulated liquisolid formulations 

is the broader endothermic peaks around 100 o C. As it can be referred the reason 

of these peaks to the evaporation of water droplets, it can also be indicated in the 

case of the thermograph of PVP pure powder (see Figure 5-8, top-left). It indicates 

that this binder is adsorptive to humidity on its surface, and this broader peak 

increases with the increase of the molecular weight of the used PVP [85]. 

5.2.4. Fourier Transform Infra-red (FTIR) analysis: 

 

Figure 5-9: FTIR spectra for the PVP granulated liquisolid formulations, the spectrum for 
PVP powder alone (left) and water granulated liquisolid formulations (right) (for formulation 
compositions, refer to Table 2-4). 

Figure 5-9 shows a comparison between FTIR spectra of the PVP and water 

granulated PEG200- norfloxacin liquisolid formulations. It also includes the 

spectrum of PVP powder alone in order to examine its existence in the formulation 
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after drying process. Four significant assigned peaks can be noticed in the all 

spectra of the PVP formulations as well as in the spectra of the PVP alone, which 

are at 1418 cm-1, 1644 cm-1, 2954 cm-1 and 3360 cm-1 wavenumbers. While the 

first two assigned peaks could be related to C-N, C=O stretching in the PVP 

structure [86], the third and the fourth assigned peaks, which they could be for 

asymmetric stretching of CH2 and OH stretching, respectively [86], do not relate 

directly to the PVP structure because they could be noticed in the case of the 

water granulated liquisolid formulations. Thus, they could relate to other excipients 

existing in the formulations.  In conclusion, the granulation process does not affect 

the PVP particles and does not lead to any interaction with norfloxacin.  
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5.2.5. Determination of flow properties: 

Table 5-1: Comparison between PVP granulated liquisolid systems and water granulated 
liquisolid systems for PEG200 liquid vehicle in terms of compressibility index (CI %) and 
Hausner ratio (H ratio) (for formulation compositions, refer to Table 2-4). 

Formula Flowability of PVP granulated liquisolid PEG200 

 
Tapped density 

(g/cm3) 
Bulk density 

(g/cm3) 
CI% Position 

H 
ratio 

Position 

F1 0.47 0.34 28.13 poor 1.39 poor 

F2 0.43 0.33 23.53 passable 1.31 passable 

F3 0.47 0.32 30.77 poor 1.44 poor 

F4 0.44 0.33 23.81 passable 1.31 passable 

Formula Flowability of water granulated liquisolid PEG200 

 
Tapped density 

(g/cm3) 
Bulk density 

(g/cm3) 
CI% Position 

H 
ratio 

Position 

F9 0.57 0.42 26.83 poor 1.37 poor 

F10 0.51 0.36 29.17 poor 1.41 poor 

F11 0.52 0.37 29.17 poor 1.41 poor 

F12 0.47 0.33 29.63 poor 1.42 poor 

 

Table 5-1 represents the values of tapped powder density, bulk powder density, 

the percentage of compressibility Carr’s index and Hausner ratio for PVP 

granulated and water granulated PEG200 liquisolid formulations. It also includes 

the position of the formulations according to the criteria of the British 

Pharmacopoeia where the all formulations whether they are water granulated 

liquisolid or PVP granulated liquisolid have poor or passable flowability [56]. Thus, 

all formulations do not show any significant decrease in the values of the Hausner 

ratio or the Carr’s index when using PVP solution as a liquid binder compared to 

water alone. They reflects the poor flowability characteristics of Avicel® PH 101, 

which it has 28.89 CI% [81] & [82] as the predominant carrier excipient for all of 

the included formulations.   
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5.3. Evaluation of PVP granulated liquisolid tablets: 

5.3.1. Drug content uniformity, tablet dimensions, hardness, tensile 

strength, friability and disintegration tests: 

Table 5-2: Content uniformity, friability, tensile strength, hardness and disintegration tests 
for PVP granulated liquisolid and water granulated liquisolid systems (for formulation 
compositions, refer to Table 2-4). 

PVP Granulated 

PEG200 

Content Uniformity 

(%) 

Friability 

(%) 

T-strength 

 (MPa) 

Hardness  

(N) 

Disintegration 

Time (sec) 

F1 101.91 +/- 4.870 0.100 1.1 +/- 0.038 38.64 +/- 1.240 204 +/- 8 

F2 106.33 +/- 4.227 0.378 1.2941 +/- 0.092 42.12 +/- 3.554 399 +/- 8 

F3 111.5 +/- 5.320 0.299 1.0947 +/- 0.097 38.25 +/- 3.521 108 +/- 25 

F4 111.33 +/- 1.962 0.275 1.2231 +/- 0.058 44.42 +/- 1.964 167 +/- 11 

Water Granulated 

PEG200              

F9 108.03 +/- 0.512 0.260 1.07 +/- 0.178 72.57 +/- 12.677 347 +/- 39 

F10 98.34 +/- 0.998 0.122 1.24 +/- 0.177 86.00 +/- 11.778 369 +/- 39 

F11 98.31 +/- 1.836 0.639 0.75 +/- 0.088 27.36 +/- 3.184 165 +/- 4 

F12 107.27 +/- 2.234 0.291 0.96 +/- 0.330 35.11 +/- 11.284 116 +/- 16 

 

Table 5-2 provides information about several quality control tests, which include 

drug content uniformity test, friability test, tensile strength test, hardness test and 

disintegration test for the both PVP and water granulated PEG200 liquisolid tablet 

formulations. The aim of making this comparison is to investigate any possible 

effect due to using PVP solution as a liquid binder on the physicochemical 

characteristics of the prepared tablets. The results of content uniformity tests show 

that the all formulations are within the British Pharmacopoeia specific limits (i.e. 

between 85% and 115%) [56]. In addition to this, the statistical t-paired test 

between the average values of the percentage of the drug inside the PVP 

formulations and the water formulations shows that there is no significant 
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differences between these two groups (p-value is 0.326 > 0.05). Furthermore, the 

changing in the quantities of the liquid vehicle, carrier, and coating in the presence 

of PVP or water binder solutions does not have any significant effect on the 

uniformity of the drug in these formulations. As a consequence, the wet granulated 

formulations whether using water or PVP solution as liquid binders do not affect 

the distribution of the drug inside the PEG200 liquisolid bed systems although 

granulation has several processes that could affect the quantity of the drug during 

manufacturing, such as sieving and drying. 

Also, the difference in tensile strength between the PVP and water formulations 

seems to be not significant. The calculated probability (p-value) from applying t-

paired statistical test between the average results equals to 0.1116 > 0.05, 

although there is a slightly improvement in the case of F3 compared with F11. The 

reason for the similar results is because of the near values of the T-strength in the 

all of the PVP and water formulations. As the diameters for all tablets have 

approximately the same values, the expected variations may come from the 

thickness and the hardness, where the crushing forces is directly proportional to 

the T-strength and the thickness is inversely proportional to the T-strength; 

thickness does not show any significant differences due to the effect of using PVP 

and water as a binder solutions.  

The hardness results still meet the criteria of the compressibility load factors. The 

recorded averages of the crushing force in (KgF) of the all PVP batches are very 

near to the assigned weight of the tested tablet in (g) multiplying by 20 [6]. 

The friability tests do not show any exceptions. The PVP formulations have an 

excellent resistant to any expected damage could come from the cohesive forces 
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among the tablets or from adhesive forces with the wall of the friability tester.  All 

PVP formulations do not reach to 0.5 % loss in the tablet weights, meeting the 

criteria specified by the British Pharmacopoeia [56], and keeping the differences 

between the water and PVP formulations at their minimum levels with probability 

(p-value) equals to 0.639 > 0.05. The friability test shows an excellent resistant in 

the case of the water granulated liquisolid tablets, no formulations reach to 1% in 

the loss weight, meeting the demand of the standard of British Pharmacopoeia. 

Finally, the disintegration test shows that the all PVP formulations do not exceed 7 

minutes to complete disintegration. The variations among the PVP formulations in 

these situations refer only to the variations in the weight of the tablets, and the 

PVP solution does not make a significant difference over the water granulated 

formulations. The probability (p-value) from t-paired test equals to 0.326 > 0.05. 

In nut shell, all applicable quality control tests confirm the conclusion that adding 

PVP solution at 10 % concentration does not make any significant differences over 

the water formulations when the liquid vehicle is PEG200. In other words, 10% 

PVP solutions keep the differences with water to the minimum levels so that the 

effectiveness on the flowability and compressibility stays low, directing the 

effectiveness only towards the dissolution results. It also support the hypothesis 

that PEG200 as a liquid vehicle helps stability in the flowability and compressibility 

in these formulations, allowing the possibility to mix it with 10 % PVP solution and 

to apply in the manufacturing processes. 

5.3.2. In vitro Dissolution Studies: 

In chapter 4, the dissolution profiles tried to answer the questions related to the 

assignment of the optimum formula and how the water as a liquid binder affects 
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the role of the liquid vehicle, whether PEG200 or Synperonic TM PE/L-61, in term of 

enhancing the dissolution of norfloxacin in neutral aqueous medium. In this 

chapter, the research study continues trying to investigate the role of the wet 

granulation in the presence of PVP K-17 at concentration of 10% w/w on the 

PEG200 liquisolid tablet formulations, compared to the effect of water for the same 

tablet formulations. In other words, what are the differences between using PVP-

K17 and using water as liquid binders and how do they affect the drug release? 

 Furthermore, there is another comparison between the formulations prepared 

according to the classical load factors [77] and the new calculated load factor after 

granulation (Figure 5-10).  

 

Figure 5-10: Dissolution profiles of the PVP -K17 wet granulated PEG200 liquisolid 
formulations prepared according to the new compressibility load factors (left) and to 
classical compressibility load factor (right) (for formulation compositions, refer to Table 
2-4). 

The percentage of norfloxacin records a higher release in the wet granulated 

liquisolid tablets, with significant increasing in formulation F2, F3, and to some 

extent F4 compared to classical tablets for the same formulations (Figure 5-10). 

The similarity factors for these formulas are 41.3, 40.2 and 52.2 %, respectively. 

The interesting note about these percentages are that all of them for the whole 
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dissolution profiles (i.e. from 5 minutes to 90 minutes), whereas there is no 

significant changes in the first 30 minutes. This indicates that the PVP as 

solubilizing enhancer appears after the period of the immediate release (i.e. after 

30 minutes) in order to enhance the distribution of the drug particles in the 

aqueous dissolution medium. However, this role needs to be in smaller quantities 

of solid particles (i.e. small amounts of carrier and coating materials when the new 

compressibility load factors calculated). 

 

Figure 5-11: Dissolution profiles of the PEG200 water granulated liquisolid formulations 
prepared according to the new compressibility load factors (left) and to classical 
compressibility load factor (right) (for formulation compositions, refer to Table 2-4). 

The comparison between the effect of the adding the water or adding the PVP 

solution to PEG200 liquisolid formulations leads to that there is a similarity in the 

dissolution profiles (f2 > 50%) with a slightly improvement in dissolution profiles 

containing PVP-K17 in formulations F2 and F3 and F4, where the differences 

between the formulations are 23.2%, 14.84% and 10.26% at 90 minutes, 

respectively (Figure 5-10 and Figure 5-11). From these results; it is possible to 

determine the role of the PVP over water as a liquid binder. It affects the 

dissolution profiles from 30 minutes onward, where the water granulated 
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dissolution profiles stop releasing the drug and the PVP granulated formulations 

continue increasing in the drug release gradually. The conclusion from this is that 

the PVP-K17 has a positive effect on the dissolution profile [13], but still small in 

these conditions, keeping the main effect in improvement of dissolution profile 

comes from the wet granulation process itself rather than the type of the used 

liquid binder. One reason for this conclusion is that PEG200 is a miscible liquid 

vehicle with the liquid binder, water or PVP-K17 solution. 

Finally, the comparison between the water and PVP granulated liquisolid 

formulations when using the classical load factor in the preparations shows that 

the differences between the dissolution profiles become less significant when it 

compares with the new calculated load factors, although the PVP formulations still 

show slightly enhancement in the drug release. The highest recorded difference 

does not exceed 10 % in the case of formulation F4, whereas it decreases in the 

case of formulation F2 to about 0.48%. This means that as the quantities of the 

carrier and coating decreases in these formulations, the role of the PVP as a 

solubilizing enhancement becomes more obvious. Consequently, the importance 

of re-determine the load factors after incorporation wet granulation does not stop 

at parsimonious purposes, but it extends to enhance the drug dissolution profiles 

and norfloxacin could be considered as a good example. 

5.3.3. Kinetics model analysis of drug release: 

The kinetic models representing in Table 5-3 show a comparison of square 

regression coefficients (R2) between PVP and water granulated PEG200 liquisolid 

formulations for two periods; the first one from 5 to 90 minutes (i.e. the all 

dissolution profiles) and the second one is from 5 to 20 minutes ( i.e. the expected 
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immediate release for the relative formulations).The aim of selecting these cycles 

is to investigate the role of PVP as a liquid binder in the immediate and post-

immediate dissolution time and how this role will reflect on the theory for the 

selected kinetic models ( zero order, first order, Higuchi and Hixson-Crowell 

models). 

Table 5-3: Comparison between PVP granulated liquisolid and water granulated liquisolid in 
terms of zero order, first order, Higuchi and Hixson-Crowell (H-C) kinetic models from 5 to 
90 minutes and from 5 to 20 minutes (for formulation compositions, refer to Table 2-4). 

 Regression Coefficients R2 from 5 to 90 minutes 

Formula Binders Zero First Higuchi H-C 

F1 PVP 0.485 0.575 0.663 0.545 
F2 PVP 0.758 0.897 0.896 0.856 
F3 PVP 0.846 0.983 0.953 0.950 
F4 PVP 0.799 0.956 0.924 0.913 
F9 Water 0.563 0.656 0.736 0.494 

F10 Water 0.560 0.616 0.736 0.517 
F11 Water 0.710 0.825 0.860 0.640 
F12 Water 0.664 0.799 0.823 0.603 

 Regression Coefficients R2 from 5 to 20 minutes 

Formula Binders Zero First Higuchi H-C 

F1 PVP 0.946 0.977 0.981 0.992 
F2 PVP 0.989 0.997 0.997 0.993 
F3 PVP 0.997 0.999 0.997 0.990 
F4 PVP 0.997 0.999 0.997 0.989 
F9 Water 0.958 0.984 0.989 0.977 

F10 Water 0.967 0.982 0.992 0.977 
F11 Water 0.970 0.988 0.994 0.983 
F12 Water 0.980 0.996 0.997 0.992 

 

The investigation of the data for the period of time from 5 to 90 minutes confirms 

that most of PVP formulations have higher R2 values compared to its counterparts 

in the water formulations. In fact, the all PVP formulations show higher values 

except for F1. The investigation for the dissolution profiles (Figure 5-10 and Figure 

5-11) can clarify the reason for such results as the formulations having PVP 

continue releasing the drug in the dissolution media after the immediate time (the 

first 30 minutes), whereas the water formulation gives straight horizontal lines 

parallel to the time axis and hence no further releasing for the drug.  
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In the second period of time from 5 to 20 minutes, both water and PVP 

formulations record R2 values higher than 0.94. The reason could be referred to 

the action of both wet granulation processes that make liquid vehicle (PEG200) is 

better distributed in the solid powder.  

Regarding the zero and first order kinetic models, both models depend on the fast 

increasing in the release of the drug in the first 30 minutes of the dissolution 

studies. The zero order suggests a linear dissolution rate, whereas the first order 

model goes to the exponential drug release [64]. As both types of formulations 

attain the equations for the fast releasing in the first 30 minutes, the second period 

of time(form 5 to 20 minutes) shows higher accuracy for these types of  models, 

whereas the first period of time has lower accuracy, it still declares the superiority 

of the PVP formulations over the water counterparts. 

In addition to this, when considering the Higuchi model, the Fick’s law diffusion 

controls any assumption, where the driving forces due to concentration gradient 

between the tablet matrix and the bulk dissolution are the main corner in building 

this model to simulate the drug release [65]. 

As the wet granulation process enhances drug distribution in the liquisolid tablets 

and prevents the accumulation of the drug particles in the bottom of the dissolution 

tank, PVP as a binder solution shows less contact angle between the drug 

particles and the surface, increasing the wettability and preventing recapping or 

recrystallization [16]. Thus the driving forces will continue until complete drug 

release. This assumption can be supported from the Table 5-3 where the values of 

R2 for F3 and F4 reaches to over 0.90 in the cycle time from 5 to 90 minutes. 
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Finally, the assumption related to sphericity shape of the particles, keeping the 

speed of transforming these particles to the dissolution medium and proportioning 

the surface with the time and agitation [16]. In this model, there is no indication 

that PVP as a liquid binder crafts the shape of the granules more than water 

during the preparation. However, PVP as a material preventing the re-

crystallization, it helps keeping the speed of the transferring into the dissolution 

medium in a constant rate. Thus, the assumption of the relation between the 

surface decreasing with the time and agitation still exists and the R2 for all PVP 

formulations have values similar to the water formulations and reaching over 0.90 

in the case of formulations F3 and F4 for the period of time from 5 to 90 minutes.  

5.4. Stability studies: 

Table 5-4: Comparison between fresh and 3 months stored samples of the 10 % w/w PVP 
K17 granulated PEG200 liquisolid tablets (for formulation compositions, refer to Table 2-4).  

 
Fresh After 3 months 

Formula 
Average 

%  
Standard deviation 

Average 
%  

standard deviation 

F1 101.9 +/- 4.866 98.4 +/- 0.639 

F2 106.3 +/- 4.227 100.1 +/- 4.505 

F3 111.5 +/- 5.319 100.8 +/- 2.800 

F4 111.3 +/- 1.962 100.6 +/- 4.897 

Table 5-4 compares between the percentage of norfloxacin in PVP granulated 

liquisolid tablets at the moment of preparation and after three months storage at 

21 o C and 76 % relative humidity. All formulations show a high percentage of drug 

content, and the tablets are in the acceptable BP levels. Moreover, the similarity 

factor percentages for all formulations mentioned in Figure 5-12 have a value 

higher than 50 %, indicating that there are no significant differences between the 

dissolution profiles before and after the stability test. 
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Furthermore, the DSC thermographs in Figure 5-13 have the same conclusion. 

The endothermic peaks of the stability test have the similar trends and the 

endothermic peaks that appear in fresh samples.  The only notice could be 

mentioned here that the stored samples have enthalpy values larger than the fresh 

samples (broad peaks) due to adsorption water droplets on the surface of the 

stored tablets. 

Finally, the comparison in terms of the FTIR spectra between the fresh and stored 

formulations gives the same spectra characteristics (Figure 5-14), complying with 

the results from content uniformity, dissolution and DSC results. This means the 

new PVP prepared formulations do not only show withstand to the stressful 

conditions, but also they improve that the PVP is a good liquid binder when it 

incorporates with PEG200 in the wet granulated liquisolid formulations. 

 

Figure 5-12: Comparison the dissolution profiles between fresh and stored for 3 months 
using10% w/w PVP K17 granulated PEG200 liquisolid tablets (for formulation compositions, 
refer to Table 2-4). 
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Figure 5-13: Comparison the DSC thermographs between norfloxacin fresh and samples 
stored for 3 months in terms of 10% w/w PVP K17 granulated PEG200 liquisolid tablets (for 
formulation compositions, refer to Table 2-4). 

 

Figure 5-14: : Comparison the FTIR spectra between fresh and samples stored for 3 months 
for 10 % w/w PVP-K17 granulated PEG200 liquisolid tablets (for formulation compositions, 
refer to Table 2-4). 
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5.5. Conclusion: 

The aim of this study is to investigate the role of PVP solution as a liquid binder 

and compare the role of the water in the wet granulated liquisolid formulations with 

the role of the PVP solution. The study of the angle of the slide provided good 

application for the PVP formulations to be used for powder filling. The 

compressibility studies, on the other hand, showed the incorporation of PVP 

solution with Synperonic TM PE/L-61 was not good approach for the tablet 

preparations. However, the mixing of PVP solution with PEG200 liquid vehicle 

provided good compressibility characteristics with acceptable compressibility load 

factor. 

The comparison between the water and the PVP formulations in terms of the 

values of the compressibility load factor showed that the significant decrease only 

happened with the higher amount of the solid ratio (R values). As a result, the 

dissolution profiles for the PVP preparations had slightly higher percentages of the 

drug release compared to the water preparations. This happened when the 

quantities of carrier and coating decreased. 

The content uniformity and other quality control tests presented similar results with 

the water formulations and all of them were in the acceptable specifications. 

Finally, the stability for 3 months for PVP formulations did not show significant 

differences from the fresh preparations, indicating that PVP as a liquid binder 

could be a good candidate for wet granulated PEG200 liquisolid formulations.   
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Chapter Six:  Studying the 

solubility and dissolution 

behaviors of cinnarizine via 

SEDDS systems 
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6.1. Introduction: 

The aim of this chapter is to enhance the solubility and the dissolution in aqueous 

medium of cinnarizine, which can be considered as a model for hydrophobic 

drugs. It is classified as a medication derivative of piperazine, which is an organic 

water-soluble compound that consists of a six-membered ring containing two 

nitrogen atoms at opposite positions in the ring. However, its structure is 

considered as a very hydrophobic drug because its nitrogen atoms on the 

piperazine ring connect with Diphenyl methyl from one side and phenylprop-2-enyl 

from the opposite side (Figure 6-1).  

 

Figure 6-1: Chemical structure of cinnarizine. 

Pharmacologically, the drug is considered as an antihistamine medicine that has 

been prescribed for treatment of vertigo, motion sickness, nausea and vomiting 

[87]. Furthermore, it is also known to promote cerebral blood flow, and so it is used 

to treat cerebral apoplexy, post-trauma cerebral symptoms, and cerebral 

arteriosclerosis [88]. This drug is usually taken orally and once it reached to 

stomach, the tablet disintegrates and the drug dissolves completely because it is 

freely soluble in the low pH solutions. Then, it permeates to the blood circulation 

quite rapidly so that it reaches to the maximum concentration during 1 to 3 hours 



171 

 

post-administration [89]. However, this does not prevent the drug to be classified 

as a lipophilic one with low bioavailability and variable dissolution so that it is 

administrated as frequent doses because of its short half-life (3- 6 hours) [90] & 

[91]. Moreover, the solubility of the drug in the acidic medium make the absorption 

site from the stomach not from small intestine, which it has a relative larger area 

as a site of absorption.  

A recent study shows that given the drug intravenously as a lipid emulsion instead 

of taken orally would help to improve its bioavailability due to the higher recorded 

AUC and the lower clearance than the solution form, allowing for better therapeutic 

effect [92]. 

As a result of this, it could be possible to formulate this drug as a liquisolid tablet 

via dissolving through liquid vehicle having the same characteristics of the lipid 

emulsion. 

Therefore, this chapter tries to determine the most suitable liquid vehicle that 

enhances the solubility and in vitro dissolution profile of cinnarizine in an aqueous 

medium, where the pH values of the liquid in the small intestine. 
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6.2. Calibration curves and Solubility studies: 

 

Figure 6-2: Calibration curves for cinnarizine in acetonitrile solvent at 249 nm as a maximum 
wavelength (left) and in 0.1 M HCl at 253 nm as a maximum wavelength (right) (repeated 
three times). 

 

 

Figure 6-3: The solubility of cinnarizine in different types of surfactants/ lipids at 21 o C and 
37 o C. The data are represented as mean of and standard deviation values. 

The linear equation constituted from serial dilutions of cinnarizine in acetonitrile 

solvent and shown in Figure 6-2 (left) was used in order to determine the solubility 



173 

 

of the pure drug in the selected surfactants (Figure 6-3) by substituting the UV 

absorbance at 249 nm wavelength to calculate the relative cinnarizine 

concentration . The consideration of acetonitrile as a polar organic solvent allows 

being the main candidate in these solubility studies. Moreover, it has a capability 

to dissolve the all selected surfactants completely and make clear solutions. Thus, 

it ends any possibility to make interference in the absorbance due to less 

transparency. 

Cinnarizine can be classified as a drug practically insoluble in water at neutral pH 

level. Previous studies determined approximate value for its solubility in water 

(16.95 x 10-6 mg/ml) [87]. Therefore, the incorporation of cinnarizine in different 

types of surfactants is important as it gives an indication how this drug dissolves in 

water and how it acts during the dissolution studies.  

The investigation of Figure 6-3 assigns that the solubility of cinnarizine can be 

classified into three groups; the first one includes the surfactant that records 

solubility over 30 mg/ml at the body temperature (37 o C), which they are 

Transcutol® P, IPM and Capmul® MCM EP. Although some of these surfactants 

shows a certain of sensitivity to the change of the temperature, such as 

Transcutol® P which records 30.9 mg/ml solubility at 21 o C, all of them records 

high solubility values by increasing the temperature. 

The second group includes Capryol™ 90, Span 20 and Kolliphor® RH40. These 

surfactants record solubility values between 20 and 30 mg/ml at 37 o C. 

Furthermore, Kolliphor® RH40 and Capryol™ 90 show less sensitivity of 

temperature change when compared to the surfactant in the first group. Therefore, 

they can be considered as good candidate for further investigations. 
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The last group contains the rest of surfactants that record solubility less than 20 

mg/ml at body temperature. This group contains surfactants with different 

physicochemical characteristics. For example, PEG200, PEG300, PEG400 and 

Pluronic L-35 have HLB values more than 18, whereas the HLB value for 

Synperonic TM PE/L-61 equals to 3. 

 Furthermore, they have different sensitivity to the temperature change. In more 

details, Propylene Glycol (PG), PEG200, PEG300, PEG400 and Tween20 show 

more stability towards the changing in the temperature, whereas Pluronic L-35, 

Cremophor® EL and Tween80 show less heat stability, and the solubility of 

cinnarizine in span80 at 21 o C records a higher value than its solubility at 37 o C.     

In general, the conclusions that can be drawn from this solubility studies are the 

incorporation of cinnarizine as a pure drug with surfactants at higher temperature 

shows larger solubility values and a relative enhancement when compared with 

the solubility of the drug in distilled water. Also, surfactants that show higher drug 

solubility values or less sensitivity towards the change of heating could be good 

candidates for further investigations and dissolution studies. 

6.3. Screening in vitro dissolution studies: 

The aim of these studies is to determine surfactants that show the best percentage 

of cinnarizine release in the aqueous dissolution media, whether distilled water at 

pH 6.1 or phosphate buffer at pH 7.2. Moreover, it is designed to determine the 

conditions that could participate in increasing the percentage of drug release, such 

as heating, changing the type of the carrier, the effect of changing the type of 

surfactant, the quantity of surfactant, the type of dissolution media and the effect of 

combination between two or more surfactants. 
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Several surfactants with different HLB values have been incorporated with 

cinnarizine at 20% w/w in order to assign the best dissolution profiles. Figure 6-4 

represents the percentages of the drug release from these liquid medications. 

Although, all of them provide no more than 6 % of drug release, there is a 

possibility to divide them into three groups. 

 

Figure 6-4: Percentage of Cinnarizine release in DW (pH 6.1) from several liquid medications 
(20% w/w) with PEG200, Synperonic TM PE/ L-61, Tween 20, PG, PEG400 and Cremophor® 
RH40. (See Table 2-5). 

 

The first one contains PEG200, PEG400 and PG, which they do not reach to 0.5% 

drug release after 90 minutes. When the liquid medication of the first group is 

incorporated inside the dissolution medium, there is a separation between the 

surfactants and the drug that leads to dissolve the surfactant inside the aqueous 

dissolution medium and precipitate the drug particles at the bottom of the 

dissolution vessel. These surfactants have HLB values over 11, which is more 

hydrophilic surfactants. In other words, their affinity to dissolve and make 

hydrogen bonds with water is higher than making strong bond with cinnarizine. 

The second group could consist of Synperonic TM PE/L-61 (formulae F2, Figure 
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6-4), Span 20 and Span 80 (data not shown); which they have HLB values equal 

to 3.0, 8.6 and 4.3, respectively. These surfactants show practically no drug 

release in distilled water. This could be expected as they are hydrophobic 

surfactants, tend not to dissolve in water. Consequently, they will keep their bonds 

with the cinnarizine away from the dissolution medium on the bottom of the 

dissolution vessel.  

The third group could include Cremophor® RH40 (HLB value is between 14 and 

16) and to some extent Tween 20 (HLB value is 16.7). In this group, there is a 

slightly increase in the percentage of the drug release but cannot be considered as 

a significant increase. The similarity factor between the third group and the other 

groups is still over 60 %. In conclusion, the HLB value as an indicator factor does 

not play very vital role in enhancing the dissolution behaviour in water dissolution 

medium in the case of cinnarizine. 

 

Figure 6-5: The dissolution profiles for cinnarizine with Solutol® HS 15, Cremophor® RH40, 
and Cremophor® EL with Solutol® HS 15, Cremophor® RH 40 with Cremophor® EL, and the 
combinations among them with applying heating until dissolving the drug particle in the 
surfactant, keeping the percentage at 20%w/w drug/ liquid medication (See Table 2-5). 
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The factors that investigated in Figure 6-5 are heating and the combination 

between surfactants. Regarding heating, when apply a certain degree of 

temperature on the liquid medication, the dissolution enhanced markedly. In the 

case of formulation F8, the heating was for a limited time, which was not enough 

to make all the drug dissolve completely, but the enhancement of the dissolution 

was determined; after 15 minutes, it reaches to 12.22% while in the case of no 

heating, it was 3.39% at the same time (see Figure 6-4, F6).  Another example is 

the formulation F7, where Solutol® HS 15 was used as a liquid medication. Here, 

the applying of heating was kept until reaching to make cinnarizine completely 

dissolve in the surfactant. This leads to obtain about 29.43% drug release after 5 

minutes. However, the Solutol® HS 15 liquid medication started decreasing 

gradually until reach to 8.87% after 30 minutes and 4.85 % after 90 minutes. 

These lead to conclude that the Cremophor® RH40 has more stability in its 

dissolution profile comparing with Solutol® HS 15, although both of them provide a 

marked enhancement when applying heating. Finally, the combination of liquid 

medications among Solutol® HS 15, Cremophor® EL and Cremophor® RH40 did 

not show an expected enhancement comparing with the individual relative liquid 

medication when applying heating. 
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Figure 6-6: The dissolution profiles for liquisolid formulations using lactose as a carrier with 
Solutol® HS 15, Cremophor® RH40 and PEG200. Liquid medication of Cremophor with 120 
mg, 200 mg and 400 mg surfactant weight in phosphate buffer dissolution media pH= 7.2. 
(See Table 2-5). 

Another factor has been investigated is the type of carriers that could be used in 

cinnarizine liquisolid formulations. The selected carrier was lactose. The 

dissolution profiles for Cremophor® RH40, Solutol® HS 15 and PEG200 liquisolid 

formulations, using lactose as a carrier (Figure 6-6), do not show significant 

enhancement of the percentage of the drug release, comparing with the same 

quantities of liquid medications without addition of powder. The highest recorded 

points for the three liquisolid formulations were less than 10% drug release after 

15 minutes. Moreover, the similarity factor shows more than 84% between 

formulation F1 and formulation F15 when using PEG200 as a liquid vehicle. The 

similar results have been noticed in the case of Cremophor® RH40 without 

applying heating; the similarity factor between F6 and F14 is over 70%. 

Furthermore, the heating of Solutol® HS 15 in formulation F7 still shows a better 

dissolution profile from the one used liquisolid formulation with lactose as a carrier 
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material. In other words, the type of carrier shows no significant effect on the 

dissolution profile of cinnarizine in neutral dissolution media.  

On the other hand, when increasing the quantities of the Cremophor® RH40, the 

significant enhancement in the cinnarizine dissolution profiles is noticed. The 

similarity factors between F8 from one side and F16, F17 and F18, which 

represent different formulations containing increased amount of Cremophor® 

RH40, are 52.30%, 23.23% and 14.58%, respectively. The highest percentage is 

recorded at 67% drug release after 30 minutes in F18 formulation, where the 

quantity of the liquid vehicle is 400 mg. However, the differences between F17 and 

F18 are only 10% drug release in the first 25 minutes, although the difference in 

quantities of surfactants is 200 mg. However, when increasing the quantity from 

120 mg to 200 mg, the enhancement in the dissolution profile is more 26%. This 

means that the enhancement of the percentage of the drug release reaches to 

plateau level after adding specific amount of the liquid vehicle.  

As a result of this, the quantity of the Cremophor® RH40 surfactant plays an 

important role in determination the enhancement of the dissolution profile of 

cinnarizine. 

Another aspect has been investigated is the type of the dissolution media. In more 

details, when applying the same formulations but in distilled water dissolution 

medium (Figure 6-7: F19, F20 and F21) instead of phosphate buffer solution at pH 

7.2 (Figure 6-6: F16, F17 and F18), there is no significant differences between 

dissolution profiles, especially when applying higher quantities of the surfactants 

(i.e. at 200 and 400 mg).The similarity factors recorded between F16 and F19, F17 

and F20 and F18 and F21 are 50.14%, 60.04% and 58.31%, respectively. This 
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indicates that the type of the dissolution media in neutral range does not have a 

major effect on the enhancement of the dissolution profiles. 

 

Figure 6-7: Dissolution profiles for Cremophor® RH40 liquid medication at 120 mg, 200 mg 
and 400 mg; Cremophor® RH40 with 10 mg PVP and Brji® S 100 liquisolid formulation in 
distilled water at pH = 6.1 (See Table 2-5). 

Moreover, the addition of PVP into the liquid vehicle in formulation F23 with 200 

mg Cremophor® RH40 shows no significant differences with the formulation that 

does not have the PVP (F20) (see Figure 6-7). The similarity factor between them 

is about 61.19%.  

However, adding solid powder (carrier and coating) to convert the liquid 

medication to liquisolid admixture in formulation F24 leads to record a significant 

decrease in the percentage of drug release. The similarity factor between F20 and 

F24 is 26.03%, limiting the rule of the heat in the dissolution behaviour. 

Finally, using Brji® S100 as a liquid vehicle with cinnarizine does not improve the 

dissolution of the drug because it leads to only 10% of drug release after 90 

minutes, sharing the same results with the liquid vehicles mentioned in Figure 6-4. 
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To sum up, the cremophor® RH40 could be a good selection as liquid vehicle to 

dissolve cinnarizine but it needs to be used in higher quantities with heating. 

However, it is still better than Solutol® HS 15 as it is less sensitive to the 

temperature change in term of dissolution behaviour in neutral dissolution media, 

whether using distilled water at pH 6.1 or phosphate buffer solution at pH 7.2. 

Also, the combination between Cremophor® RH40 and the surfactants that show 

higher degree of solubility could give mixtures with higher dissolution results. 

6.4. Dissolution results for self-emulsifying drug delivery systems 

(SEDDS):  

A Self –emulsifying drug delivery system (SEDDS) could be defined as a system 

which emulsifies hydrophobic drugs in the aqueous solutions under gentle 

conditions of agitation to cause dispersion in a manner of colloidal dimensions 

[49]. The principle mixture of SEDDS consists usually of oils, which are medium 

chain fatty acids (triglycerides, diglycerides, monoglycerides or mixtures of them). 

Moreover, it contains surfactants usually with HLB values > 11 as well as 

hydrophilic co-solvents in different percentages. These systems showed a 

successful enhancement of dissolution of the hydrophobic drugs in the aqueous 

media in the previous studies and decreased the particle size of the emulsion to 

micrometre levels and even to nanometre level [93] . As a consequence, the 

application of this technique could show an improvement in the case of 

cinnarizine. However, several considerations should be noticed in term of using 

SEDDS. For example, the type of the oil, surfactant and co-solvent, the optimum 

percentages of these components and the overall concentration of the system that 

suits the volume of the dissolution medium from one side and the minimum liquid 

medication that could be applied to convert to liquisolid tablet later from another 



182 

 

side. The strategy that was followed in this research for selecting the type of the 

oil, surfactant and co-solvent depends mainly on the solubility of the drug in each 

one of them (refer to Figure 6-3). As a consequence of this, two SEDDS were 

selected; the first one contains Capryol™ 90 as a medium chain fatty acid, 

Kolliphor® RH40 as a surfactant and Transcutol® P as a co-solvent, whereas the 

second one consists of  isopropyl myrestate (IPM) as an oil, Kolliphor® RH40 and 

Transcutol® P as a surfactant and co-solvent, respectively. 

 The screening dissolution tests for the first SEDDS in the aqueous medium ( 

distilled water pH = 6.1) were selected according to ternary phase mixture design 

with 10 different percentages at specific quantity (refer to fromulation F25 to F34 

Table 2-5), and the dissolution profiles were summarized in Figure 6-8. 

 

Figure 6-8: Dissolution profiles in distilled water (pH=6.1) for liquid medications of 
cinnarizine with the SEDDS consist of different percentages of Capryol™ 90, Kolliphor® 
RH40and Transcutol® P (see Table 2-5). 

The investigation of the dissolution profiles assigns that there are three 

formulations recorded the highest percentages of the drug release (formulations 



183 

 

F27, F29 and F33 in Figure 6-8). While the formulations F27 contains 100% 

Kolliphor® RH40, the formulations F29 and F33 contain the surfactant in 50% 

sharing with Capryol™ 90 only in F29,  and it is at  66.66% sharing equal 

percentages (i.e. 16.66%) with the oil and co-solvent in F33. The expected reason 

for the recorded higher percentages in these formulations could be referred to the 

unique chemical structure of Kolliphor® RH40. It includes a hydrogenated castor 

oil, which acts as an organic solvent to the cinnarizine particles, as well as it has a 

40 parts of polyethylene glycole (PEG), which acts as a hydropilic co-surfactant, 

which can dissolve quickly in water. Furthermore, the presence of PEG in the 

structure of Kolliphor® RH40 and the connection of it with the hydrophobic part 

decreases the interfacial tension that could form between the hydrogenated caster 

oil and cinnarizine particles from one side and the aqueous dissolution medium 

from another side. As a consequence of this, the stability of the emulsion particles 

records improvement results when this surfactant is the predominant in the 

formulations.  

On the other hand, the successful dissolution profiles that can be seen in the 

presence of the Kolliphor® RH40 cannot present when this surfactant is absent. 

The lowest percentages of the drug release were recorded in the case of 

formulation F25, which include Capryol™ 90 alone and F26, which contains 

Capryol™ 90 and Transcutol® P (50:50). Thus, the combination between  the 

diethylene glycol monoethyl ether (Transcutol® P) with  propylene glycol 

monocaprylate (Capryol™ 90) does not seem to be a successful combination for 

dispersing the cinnarizine in the aqueous medium, even though the applied heat 

and the quantity that used during the preparation are similar to those used in the 

Kolliphor® RH40  formulations. This is probably due to that the affinity of the 
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hydrophobic drug to dissolve in monocaprylate in the precence of propylene glycol 

is very small (the solubility is only 1.57 mg/ml at 37 o C  (Figure 6-3) so that the 

propylene glycol does not work as PEG that is found in Kolliphor® RH40. Thus, the 

lowering of the interfacial tension in the case of Kolliphor® RH40 cannot attain in 

the case of Capryol™ 90 alone and even in the presence of Transcutol® P. 

To sum up, as long as Kolliphor® RH40 presents in the formulation, there are a 

significant enhancement in the cinnarizine dissolution profiles in the aqueous 

medium. 

 

Figure 6-9: Dissolution profiles in distilled water medium (pH=6.1) for liquid medications of 
cinnarizine with the SEDDS consist of different percentages of IPM, Kolliphor® RH40 and 
Transcutol® P (see Table 2-5). 

Regarding the second SEDDS (Figure 6-9); there is significant indication that 

substitution of Capryol™ 90 with IPM enhances the percentage of cinnarizine 

release in the aqueous dissolution medium. The highest recorded percentage 

reaches to 94.04% after 60 minutes in formulation F41, which contains the oil, the 

surfactant and the co-solvent in equal percentages (see Table 2-5). Moreover, 
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there is a significant enhancement in the percentage of the drug release in 

formulations F37 and F38, where the percentage of the IPM in the SEDDS is high. 

However, the enhancement of the dissolution profiles is not recorded without 

presence of Kolliphor® RH40. For example, formulations F35 and F36, which 

contain 100% IPM and 50% IPM with Transcutol® P, respectively, have practically 

no drug release. This means that the combination between IPM and Kolliphor® 

RH40 shows good enhancement in the dissolution profiles due to its ability to 

provide a stable dispersed mixture in the aqueous medium. This stability could 

come from the affinity of cinnarizine to dissolve more in IPM, especially when it 

mixes with Kolliphor® RH40 with heating. As a result, the crystal particles of 

cinnarizine will become smaller and occupy in a smaller size of emulsion droplets 

so that they become more stable in the aqueous dissolution medium. Finally, the 

presence of Transcutol® P in the mixture of IPM and Kolliphor® RH40 in optimum 

percentage supports the dispersion of the emulsion particles inside the dissolution 

medium. As a consequence, Transcutol® P works as a better co-solvent when IPM 

presents in the SEDDS mixture. 

 

Figure 6-10: Comparison between dissolution profiles of formulations from F42 to F51 (see 
Table 2-5). 
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After determining the optimum percentages for the two types of the SEDDS 

mixtures, it is worth to specify the maximum liquid medication concentration that 

can be used for 15 mg cinnarizine and achieve the similar enhancement in the 

dissolution profile that the assigned from ternary phase design screening tests as 

shown below. Figure 6-10 compares between Capryol™ 90/ Kolliphor® RH40/ 

Transcutol® P (70:15:15) SEDDS mixtures (Figure 6-10 left) and IPM/ Kolliphor® 

RH40/ Transcutol® P (35:35:30) SEDDS mixtures (Figure 6-10 right) at 15% w/w, 

7.5% w/w, 5% w/w, 3.75% w/w and 3% w/w for 15 mg drug, respectively.( refer to 

Table 2-5 for full compositions). 

For  both SEDDS, the percentage of the drug release decreases when the liquid 

medication concentration increases, although both of them records no significant 

differences when increases the concentration of liquid medication from 3% w/w to 

3.75% w/w (the similarity factors in the case of Capryol™ 90 mixture are 54.5% 

and 69.6% in the case of IPM mixture). However, the SEDDS containing IPM 

shows more stability with high percentages of the drug release comparing with the 

SEDDS containing Capryol™ 90 when increases the concentration of the liquid 

medication from 3.75% to 5% w/w. The similarity factor in the case of IPM 

between formulations F49 and F50 is 48.6% and between formulations F44 and 

F45 is only 35.9%.  

In the case of dissolution tests of the Capryol™ 90 SEDDS, another phenomenon 

could be noticed which a partial decrease in the dissolution profile is assigned 

after a period of time. It becomes more obvious when the concentration of the 

liquid medication increases, such as in the case of formulations F43 and F44 (see 

Table 2-51). Further investigations by using FTIR analysis (see section 2.4.3) 

determine that there is a formation of drug crystals gradually with time. Figure 6-11 
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represents a comparison between the FTIR spectra before starting the dissolution 

test (left) and after one hour period time (right) applied on dried precipitant after 

one hour dissolution run.  It is obvious that the FTIR spectrum of the SEDDS 

containing the cinnarizine particles before the starting of the dissolution test is 

compatible with the FTIR spectrum of the SEDDS without addition of cinnarizine, 

indicating that the drug particles completely dissolve in the SEDDS mixture. 

However, after one hour of the dissolution experiment, the FTIR spectrum of the 

collected white crystals is identical to the spectrum of the pure cinnarizine. This 

means that there is a gradual accumulation of the drug particles with time due to 

the rotation of the puddle of the dissolution device. The agitation power of the 

dissolution medium may change the value of the surface free energy of the 

emulsion system so that it increases and destabilizes the thermodynamic state of 

the system. This change allows the crystals of the drug to reconstitute inside the 

dissolution medium and then float on the surface of the vessel as noticed. This 

could explain the gradual decrease in the dissolution profile after reaching to the 

maximum level not only when increasing the concentration of the liquid 

medication, but also in the case when the SEDDS contains Transcutol® P in 100% 

(F30, see Table 2-5) or in the case of mixing Transcutol® P with Kolliphor® RH40 in 

equal percentage (F31, see Table 2-5), where its emulsion system make droplets 

sensitive and fragile to the force of agitation (see Figure 6-11).    

 In conclusion, the IPM SEDDS mixtures not only provide more enhancement 

dissolution profiles comparing with the Capryol™ 90 ones, but also it shows ability 

to accept higher concentrations of  liquid medications.  
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Figure 6-11: Compare between FTIR spectra of formulation F45 (see Table 2-5) with its blank 
(left), and compare between the spectra of pure cinnarizine with the crystal sample that is 
collected after one hour run of dissolution test for formulation F45 (right). 

6.5. Emulsion droplet size analysis and the relation with the percentage 

of cinnarizine release in the aqueous dissolution medium: 

The study of the droplet size of SEDDS mixtures (Capryol™ 90 and IPM) was 

determined by dynamic light scattering technique. The effective diameter (nm) 

from each formulation was grouped according to the type of the SEDDS and 

plotted as Pseudo-colour ternary phase diagram (Figure 6-12) in order to obtain an 

easier comparison with the trapezoidal area under the curve for the relative 

dissolution profiles (Figure 6-13).  

Regarding the Capryol™ 90 SEDDS, the larger particle sizes take place in two 

distinct areas; the first one is around the formulations including Kolliphor® RH40 

and Capryol™ 90 in equal percentage and the second one is around Kolliphor® 

RH40 and Transcutol® P in (50:50) percentage ratio. However, the general 

examination of the ternary phase diagram determines that the dark blue colour 
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covers smaller area (Figure 6-12, left). This means that the range of the particle 

size in most of the formulations of the Capryol™ 90 SEDDS is larger than 1 µm. 

The relative higher particle sizes reflect directly on the AUC of the dissolution 

profiles (Figure 6-12 and Figure 6-13, left sides), where the range of the AUC 

values do not exceed 3500 % drug release* minute. In other words, most of the 

dissolution profiles do not record stable high percentages of drug release during 

the dissolution test. 

Thermodynamically, the larger droplet sizes mean a larger probability of collision 

to happen. This leads to increase the surface free energy (W), which directly 

proportional to interfacial tension ( ƴ𝑆𝐿) between the solid particles and the liquid of 

the dissolution medium and the change of the interfacial area (ΔA) according to 

the following equation (𝑊 =  ƴ𝑆𝐿 x ΔA ) [94]. 

However, the larger droplet sizes mean also larger quantity of surfactant that 

makes the surface tension low. Thus, the SEDDS in the situation that contains 

high amount of surfactant will keep at a stable state. This explains why there is a 

large AUC values in the same area of the large effective diameter (Figure 6-12 

and Figure 6-13, left side), which is at high percentage of Kolliphor® RH40 in the 

formulations.   

On the other hand, when Capryol™ 90 is predominant in the SEDDS formulations, 

the decrease in the change of the interfacial area attains but the decrease in the 

interfacial tension does not achieve unless there is a presence of Kolliphor® RH40. 

Therefore, there is a blue area at the higher amount of Capryol™ 90 in the particle 

size triangle plot, and there is a sharp increase in the AUC tringle from dark blue to 

dark red when the surfactant starts including in the SEDDS formulations. 
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In the case of the formulation where the Transcutol® P is the predominant, the 

particle size is on a middle average size and it increases when the amount of the 

surfactant increases. Although the presence of the surfactant plays an important 

role in decreasing the interfacial tension in order to stabilize the state of the 

system, the capability of the formulations in this region does not resist the force of 

coalesce of the emulsion droplets, which comes from the spontaneous collision of 

the droplets that are rotating inside the dissolution medium. Thus, the small 

positive value of the interfacial tension that usually insoluble solid particles 

possess will grow up gradually, leading to form light fluffy conglomerates, which 

are held together by weak Van der Waals forces and float on the surface of the 

dissolution medium [94]. This reflects on the relative AUC plot with values between 

2500 and 3500 % drug release *minutes due to the gradual decrease of the 

dissolution profiles. 

  

Figure 6-12: Pseudo-colour ternary phase plots show effective diameters (nm) of the particle 
size for SEDDS formulations from F25 to F34 (left) and from F35 to F41 including F27, F30 
and F31 (right) (see Table 2-5). Each triangle represents the percentage ratios of the SEDDS 
components. 
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Finally, due to the higher solubility of the cinnarizine in IPM, the effective diameter 

of the IPM SEDDS formulations show smaller size and the dark blue area covers 

more than the half of the plotted ternary phase diagram (Figure 6-12, right). This 

reflects as higher AUC values where the dark red area is larger (Figure 6-13, 

right). It seems that the presence of IPM instead of Capryol™ 90 helps to resist 

the force of the droplet collision and keeps the system stable at low interfacial 

tension as well.  Thus, high percentage of the drug release with larger AUC values 

can be achieved. 

  

Figure 6-13: Pseudo-colour ternary phase plots show trapezoidal area under the curves 
(AUC) of the dissolution profiles (% drug release x min) for SEDDS formulations from F25 to 
F34 (left) and from F35 to F41 including F27, F30 and F31 (right) (see Table 2-5). Each 
triangle represents the percentage ratios of the SEDDS components. 

 

6.6. Conclusion: 

The aim of this study is to determine the best liquid medication that shows higher 

percentages of the cinnarizine release in the aqueous media. The solubility studies 

show that the hydrophobic drug has a larger affinity to dissolve in medium chain 

lipids. It also shows that cinnarizine is sensitive to the raising temperature, 
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although some surfactants, such as Cremophor® RH40 and PEG400 show no 

significant differences between the room temperature (21 o C) and the body 

temperature. The study continued with testing different formulations in the 

aqueous dissolution medium. It interacted with the solubility studies in terms of 

selecting Cremophor® RH40 as a good surfactant after applying heating until the 

drug particles completely dissolve. It shows that the quantity of the surfactant has 

a significant effect on the dissolution profiles. After that, the study examined two 

SEDDS mixtures. The one that contains IPM, Kolliphor® RH40 and Transcutol® P 

at (35:35:30) percentage ratios show the highest percentage of drug release, 

reaching over 90% after 15 minutes with no recorded of re-crystallization during 

the 90 minutes. It also shows that it is possible to increase the concentration of the 

liquid medication to 4.285 %w/w for 15 mg cinnarizine without significant change 

on the dissolution profile, suggesting that this mixture could apply in the 

pharmaceutical industries by filling into hard gelation capsule as SEDDS.  

 

 

  



193 

 

Chapter Seven:  Combination 

between SEDDS, wet 

granulation and liquisolid 

technique in order to prepare 

cinnarizine tablets 
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7.1. Introduction: 

After preparation of the optimum SEDDS mixture that showed the highest 

percentage of the cinnarizine release in the aqueous medium during the 

dissolution test, the next step was to convert this mixture to liquisolid tablets.  The 

plan was to use the advantage of wet granulation process to enhance the value of 

the compressibility load factor in order  to maximize the amount of liquid 

medication with small amount of solid particles (carrier and coating materials) so 

that meet the acceptable limit of the compressibility.  The central composite design 

was selected to develop a mathematical model that finds the predicted response 

(log pactisity) using the solid ratio (R = weight of carrier/ weight of coating), 

liquid/solid ratio (CW) and the percentage of water to the solid amount in the unit 

dose (Water w/w) as the main factors. However, during the scoping study to 

determine the best level for these factors, there were problems with the 

components of the optimum SEDDS mixture (i.e. IPM, Kolliphor® RH40 and 

Transcutol® P). The SEDDS mixture was evaporating during the drying process so 

that the concentration of the drug increased in one tablet more than 50% from the 

selected dose. 

Moreover, the dissolution tests in the aqueous medium show that the prepared 

liquisolid tablets gave approximately no drug release. The investigation for this 

phenomenon resulted in the presence of the silica powder (coating material) in the 

formulation caused this problem. This led to change the composition of the 

SEDDS in order to avoid these problems, and the selection was based on 

Capmul® MCM EP, Kolliphor® RH40 and PEG400.  
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Therefore, the aims of this chapter are to optimize the percentages of the newly 

selected SEDDS components regarding the dissolution test in the aqueous 

medium, to obtain formula with the lowest amount of the liquid vehicle that gives 

the highest percentage of the drug release; to determine the optimal amount of  

the carrier without presence of the coating material, using the benefit of the 

incorporating the wet granulation process in the liquisolid preparation and, finally, 

to evaluate the prepared formulations in terms of dissolution, quality control tests, 

DSC, FTIR and stability studies. 

7.2. Studying the Dissolution profiles and Emulsion droplet sizes for 

self-emulsifying drug delivery systems (SEDDSs) including 

Capmul® MCM EP, Kolliphor® RH40 and PEG400: 

The challenges of construction SEDDSs do not stop at their capability to enhance 

the percentage of a hydrophobic drug release in the aqueous distilled water only, 

but also they extend to include their suitability to be stable during this test. This 

stability could be resulted in decreasing the particle size of the system, using 

materials that do not show high sensitivity towards the changing in the 

temperature, and preparing SEDDSs easily and be fast disperse inside the 

aqueous liquid medium. 

The interpretation of these points obliges to expand the selection criteria of the 

components of SEDDSs to examine the chemical structure of the oil, surfactant 

and co-solvent in addition to investigate the drug solubility as well as temperature 

sensitivity of each of them. This could be attained from selecting an oil and a co-

solvent that integrate with the chemical structure of the surfactant (Kolliphor® 

RH40) from one side and the chemical structure of cinnarizine from another side. 

Consequently, the substitution of Transcutol® P (refer to chapter 6) with PEG400 
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could help to achieve this point because Kolliphor® RH40 has 40 polyethylene 

glycol parts in its structure, which are workable for PEG400. Furthermore, 

replacing Capryol™ 90 with Capmul® MCM EP will improve the role of the oil 

because of removing the propylene glycol, which seems to be less soluble with 

cinnarizine, from the structure of the oil, and keeping the medium chain fatty acids 

alone, such as 8-Caprylic acid and 10-Capric acid. 

The strategy of  screening dissolution tests examines the SEDDS, consisting of 

Capmul® MCM EP, Kolliphor® RH40 and PEG400, in the aqueous medium ( 

distilled water pH = 6.1). It is applied according to the ternary phase mixture 

design with 10 different percentages at a specific quantity (refer to formulations F1 

to F10 in Table 2-6).  These dissolution profiles were summarized in Figure 7-1. 

 

Figure 7-1: Dissolution profiles for liquid medications of cinnarizine with the SEDDS consist 
of different percentages of Capmul® MCM EP, Kolliphor® RH40 and PEG400 (see Table 2-6). 

The screening dissolution tests show that the highest percentage of cinnarizine 

release is 88.18 % after 30 minutes. It is recorded at formulation F9 where the 
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percentages of the oil, surfactant and co-solvent are (66.67:16.66: 16.66), 

respectively (Figure 7-1). 

 Other formulations in these tests could be classified into three groups; the first 

one includes four formulations (F3, F5, F8 and F10). The order of the quantities of 

the components is as follows; Kolliphor® RH40, Capmul® MCM EP and PEG400, 

respectively. Also, in these formulations, there is a certain level of stability during 

the dissolution test and no significant evidence to recrystallization.  

On the contrary, the second group, which includes formulations F1, F4 and F6, 

has a significant decrease in the percentage of the drug release, especially after 

the first 30 minutes from starting the tests. The highest percentage of 

recrystallization recorded at formulation F1 where Capmul® MCM EP is 100%, 

whereas the lowest recrystallization in this group is when there is a minimum level 

of sharing between the three components.   

The last group consists of two formulations; F2 and F7, where there is no 

surfactant, indicating that using co-solvent alone or a mixture between the co-

solvent and the oil alone is not good approach to enhance the dissolution of 

cinnarizine in aqueous dissolution medium. 
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Figure 7-2: Pseudo-colour ternary phase plots show trapezoidal area under the curves 
(AUC) of the dissolutions profiles (% drug release. minutes) (left) and effective diameter 
(nm) of the particle sizes (right) for SEDDS screening formulations of Capmul® MCM EP, 
Kolliphor® RH40 and PEG400 (see Table 2-6). 

The comparison between the trapezoidal AUC of the dissolution profiles and the 

effective diameter of the particle size in the formulations from F1 to F10 shows that 

there is a negative correlation between them (Figure 7-2), where the area of the 

highest AUC value in the left triangle (dark red colour) is compatible with the area 

of the smallest particle sizes in the right triangle (dark blue colour). In the same 

manner, the area that represents the largest particle size in the right triangle (dark 

red colour) reflects the area in the middle range of the AUC values, which includes 

the formulations that represent a significant degree of recrystallization during the 

dissolution test. The only exception for this correlation is recorded at formulation 

F10 where there is a high AUC area and relatively large size of effective diameter. 

This could be explained according to the structure of the droplet itself rather than 

the formation of crystals. In other words, although the larger particle size have 

been recorded due to presence of the three components in equal percentages, the 
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large power of decreasing the interfacial tension keep high levels of stability and 

consequently high percentage of the drug release.  

 

Figure 7-3: : Dissolution profiles from formulations F11 to F16 with formulation F9 show the 
percentage of cinnarizine release with time in order to determine the maximum 
concentration of the liquid medications that gives the highest drug release (see Table 2-6). 

 

Formulation F9, which records the highest percentage of the drug release, was 

selected in order to investigate the effect of increasing the concentration of the 

liquid medication. Figure 7-3 shows the dissolution profiles of the formulations 

from F11 to F16, representing an increase in the concentration of the liquid 

medications from 3.0% w/w to 7.5% w/w for 15 mg cinnarizine. The comparisons 

between these formulations show that the formulation F11 is the only one show a 

significant decrease in its dissolution profiles from formulation F9.  The similarity 

factor (f2) between the formulation F11 from one side and the formulations F9, 

F14 and F16 from other sides are always less than 50%. This means that the 

decreasing in the amount of the SEDDS from approximately 500 mg to 

approximately 250 mg does not make any significant changes on the percentage 
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of the drug release. As a consequence, there is a possibility to construct liquisolid 

tablets with acceptable weight, keeping the percentage of the drug release at its 

high percentage.  Thus, the liquid medication at amount 250 mg for 15 mg drug 

(i.e. 6.0% w/w) was selected for further liquisolid applications.  

7.3. Construction of the mathematical model and testing the 

significance of the regressions: 

The generated mathematical model to determine the relative amount of solid 

particles that can be used to prepare liquisolid tablets with acceptable 

compressibility criteria depends on three variables; the log pactisity as a response 

variable, which is the logarithm of the average of tablet weights (g) divided on the 

average of their relative crushing forces (KgF), and the (w/w) of water incorporated 

to make the wet massing (water) and the net of the liquid/solid weight (CW) ratio 

are considered to be as the independent variables [6]. The initial model includes 

all the variables that can be used to construct a second degree of polynomial 

model. The multiple linear regression analysis for the response variable, log 

pactisity (Y), and the two factors, i.e. CW (X1) and water (X2), derived by the best 

fit method is shown in the following equation: 

𝑌 = 1.493 − 1.95 𝑋1 + 2.042 𝑋2 − 0.26 𝑋1𝑋2 − 0.92 𝑋12 − 1.661 𝑋22         (1) 

This model recorded a high value of the coefficient of determination R2 = 97.07%, 

which describes the amount of variation in the values of the observed response 

(log pactisity) that is explained by the independent variables. However, the 

disadvantage with this value (R2) is that it always increases when the number of 

factors increases [95]. Therefore, the fitted model should be considered from 

another term, which is called adjusted R2, which is not affected by the number of 
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the factors. With this model, it records 94.97%. Furthermore, the predicted R2, 

which is a static term that measures the ability of the model to predict the 

response values when using new observations, is relatively low (81.08%). This 

means that there is a significant large difference between the values of predicted 

R2 and adjusted R2. In other words, the model is overfit, which cannot predict new 

observations in high accuracy. Therefore, the model needs to be improved. 

 The analysis of variance (ANOVA) data presented in Table 7-1 are used to 

evaluate the significant of each factor that presented in the equation (1). It includes 

information about the degree of freedom (DF), adjusted sum square (Adj. SS), 

adjusted mean square (Adj. MS), the values of static F-test (F-values) and the 

relative probability values at 95% confidence interval (p-Value) for each regression 

coefficient mentioned in equation (1). The null hypothesis test (H0) is used to 

check if there is a linear statistical relationship between the response variable (Y) 

and at least one of the independent variables. It can be expressed as follows: 

𝐻0:  𝛽1 =  𝛽2 = ⋯ =  𝛽𝑘 = 0               (2) 

Where β1, β2… βk are the regression coefficients of the variables mentioned in 

equation (1). 

According to this null hypothesis, the F-test value can be calculated as follows: 

𝐹 − 𝑣𝑎𝑙𝑢𝑒 =
𝐴𝑑𝑗 𝑀𝑆

𝐴𝑑𝑗 𝑀𝑆𝐸
       (3) 

Where MSE is the adjusted mean square error for the model in equation (1), which 

is equal to 0.002817 and can be calculated from dividing adjusted sum square 

error on its degree of freedom (see Table 7-1). The small p-Value for squared term 
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(0.037 < 0.05) indicates that there is a certain of curvature in the response surface, 

mainly coming from the water * water (X22). However, one quadratic term (CW 

*CW) has a large p-value, which means that it is significantly not important. 

Therefore, it should be removed from the model with the term of 2-way interaction 

(CW * Water %), which also have a large p-value (0.851). 

Table 7-1: Analysis of Variance (ANOVA) for the initial mathematical model explained in the 
equation (1). 

Source DF Adj. SS Adj. MS F-Value P-Value 

Model 5 0.652324 0.130465 46.31 0 

Linear 2 0.621506 0.310753 110.32 0 

   CW 1 0.594486 0.594486 211.04 0 

   Water 1 0.027021 0.027021 9.59 0.017 

Square 2 0.030711 0.015356 5.45 0.037 

   CW*CW 1 0.000591 0.000591 0.21 0.661 

   Water*Water 1 0.030709 0.030709 10.9 0.013 

2-Way Interaction 1 0.000107 0.000107 0.04 0.851 

   CW*Water 1 0.000107 0.000107 0.04 0.851 

Error 7 0.019718 0.002817 
     Lack-of-Fit 3 0.016493 0.005498 6.82 0.047 

   Pure Error 4 0.003225 0.000806 
  Total 12 0.672043 

    

Removing the non-significant variables could enhance the adequacy  of the fitting 

of this model on the surface response so that it makes the probability of the lack-of 

fit error higher than 0.05. 

Removing the terms from the model happened by applying backward elimination 

approach, where it starts with all the variables in the model, and at each step, 

removes one variable that has the smallest F-value. It stops removing when the 

probability values are less than α-level which is selected here at 0.05 [95]. 

Therefore, in this model, two terms are removed; CW * Water and CW * CW, 

respectively. Thus, the new fitted model is now as follows; 
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𝑌 = 1.652 − 2.726 𝑋1 + 1.922 𝑋2 − 1.631 𝑋22      (4) 

In the new reduced model, the coefficient determination decreased slightly to 

reach to 96.96%. However, the adjusted R2 has improved (R2 Adjusted = 95.95%) 

and the significant increase was in the value of the predicted R2, which was 

recorded as 93.03. Here, the predicted R2 become very close in its value to the 

adjusted R2, indicating that the overfitting has been removed. ANOVA analysis for 

variable terms (see Table 7-2) shows that the all probability values are less than 

0.05. This means that all included terms are significantly important and the null 

hypothesis can be rejected (equation 2). Moreover, the increase in the probability 

value of the lack-of-fit error from 0.047 to 0.092 suggests that the reduced model 

becomes fit to the data.  

Furthermore, the negative sign of the X1 factor in equation (4) suggests that the 

log pactisity will decrease when the CW increased. This could be expected as the 

increase in the amount of the liquid vehicle inside the liquisolid system will lead to 

a decreased in the crushing force of the tablet.  However, in the case of X2 factor, 

the positive sign of the coefficient regression shows that when the percentage of 

the liquid binder increased the hardness of the tablet will increase, but the 

presence of the quadratic term (X22) suggests that the direct proportional 

relationship between the water and the log pactisity will be true until reach to the 

maximum, after which the addition of the water will decrease the hardness of the 

prepared tablets. As a result, there is a necessity to determine the optimum 

amount of solid powder that can be used at the maximum level of water in order to 

prepare the liquisolid tablets with acceptable compressibility characteristics, which 

is equal to 20 KgF/g pactisity value (or 1.301 for log pactisity).  
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Table 7-2: Analysis of Variance (ANOVA) for the reduced mathematical model explained in 
the equation (2). 

Source DF Adj. SS Adj. MS F-Value P-Value 

Model 3 0.651627 0.217209 95.75 0.000 

Linear 2 0.621506 0.310753 136.99 0.000 

   CW 1 0.594486 0.594486 262.07 0.000 

   Water 1 0.027021 0.027021 11.91 0.007 

Square 1 0.030121 0.030121 13.28 0.005 

   Water*Water 1 0.030121 0.030121 13.28 0.005 

Error 9 0.020416 0.002268 
     Lack-of-Fit 5 0.017191 0.003438 4.26 0.092 

   Pure Error 4 0.003225 0.000806 
  Total 12 0.672043 

    

7.4. Model Validation and optimizing the value of the liquid/solid ratio 

(CW): 

In order to validate the reduced model (equation 4), the theoretical (predicted) 

values and the observed (actual) values of the log pactisity for 4 observations, 

presented in Table 7-3, are calculated by substituting the independent variables 

(i.e. X1, X2 and X22). The observations for the validation purposes are selected 

differently from the points constructing the central composite design, although they 

are still in the spherical space of the design.  

Table 7-3: Theoretical (predicted) values and the observed (actual) values observed for 
responses Y (log pactisity). 

Formulations CW Water 
Theoretical log 

Pactisity 
Actual Log 
Pactisity 

Error 

F30 0.25 0.4 1.4792 1.4622 -0.0170 

F31 0.25 0.6 1.5361 1.5512 0.0151 

F32 0.45 0.4 0.9329 0.9059 -0.0270 

F33 0.30 0.6 1.4007 1.4032 -0.0025 

 

As the error presented in Table 7-3, which comes from the difference between the 

actual value and the theoretical value of the response, indicated that there is a 
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relative high accuracy for this model. The error values do not exceed 0.03 in the 

value of the log pactisity, which will lead to a robust prediction to the quantity of the 

solid material in the liquisolid preparation. 

The optimum values of the factors (CW and Water) that produce liquisolid tablets 

with acceptable compressibility at log pactisity equals to 1.30 can be determined 

by two approaches; the first one is through examining the surface response plot 

and the contour plot presented in Figure 7-4. 
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Figure 7-4: Surface response plot (top) and contour response plot (bottom) showing the 
effect of CW and Water on log pactisity as described in the equation (4). 

 

Regarding the surface response plot, there is a linear increase in the value of the 

log pactisity with decreasing in the value of the CW. The blue colour starts very 

dark at a value of CW = 0.45, and increasing gradually until reaching to the area of 

dark red colour at CW =0.2. On the other hand, the curvature in the surface sheet 

reflects the effect of the squared term of the Water. At the centre of this curvature, 

the response value recorded the highest amount during the entire surface sheet. 
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In the same manner but in more informative way, the contour plot of the two 

factors in Figure 7-4 clarifies the distribution of the response values according to 

the reduced model presented in equation 4. The optimum response value (i.e. at 

log pactisity = 1.3) is represented by a curvature line, giving the maximum value of 

CW at the centre where the water is between 0.55 and 0.6. 

For further accuracy in determination of the optimum value of the CW, the 

response optimizer plot was constructed as in Figure 7-5. At the bottom, it includes 

two subplots; each one represents the relationship between the factor and the 

response in the terms of the model (equation 4). The narrow white area represents 

the range of the factors’ values that include the optimum target of the response, 

which has been identified at 1.3010. Moreover, the desirability plots (Figure 7-5, 

top) represents a relationship between the desirability value (between 0 and 1) on 

the y-axis and the response value according to each factor on the x-axis. The 

selected weight for the desirability functions, which determines how the desirability 

distributes between the upper or lower bound and the target [95],   is 1.0.  
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Figure 7-5: Optimization plot for CW and Water% factors (bottom) with the relative 
desirability functions (top). 

The reason of selecting this value is that increasing over 1.0 will lead to a change 

in the shape of the function and suggesting two solutions in the case of the 

water%, which is far from the reality. On the other hand, decreasing in the value of 

the weight will lead to obtain a very sharp plot in the case of CW desirability 

function, making the optimum value at the selected target with a wide change 

value when moving from one point to another.  As the relationship between CW 

and log pactisity is linear, the desirability function (top-left in Figure 7-5) shows a 

sharp apex, whereas the curvature in the relationship between the water% and log 

pactisity allows a wider apex in the desirability function. According to this, the 

nearest response value to the target is 1.3002 with relative high desirability value 

(D= 0.96045). At this value, the CW is 0.3366 and water is 0.5952. 

During the formulation preparations, the selected CW was considered to be 0.336 

and water was 0.60 to give log pactisity equals to 1.302 (i.e. pactisity equal 20.04). 

 



209 

 

7.5. In vitro dissolution studies: 

After determining the optimum quantity of both the liquid medication and the solid 

powder, it is worth to evaluate the prepared liquisolid formulations according to 

their percentages of the drug release in aqueous dissolution medium. For this 

purpose, four formulations were prepared (from F34 to F37, Table 2-6). While F34 

consists of 15 mg of the drug powder dissolved in 235 mg SEDDS, F35 and F36 

consist of 10 mg and 5 mg drug powder dissolved in 156.67 mg and 73.33 mg 

SEDDS, respectively. The aim of this is to fix the liquid medication at 6 % w/w 

concentration and see how changing the quantity will affect the dissolution profiles. 

Moreover, formulation F37, which includes 15 mg powder drug dissolved in 185 

mg SEDDS was prepared in order to investigate how the decrease in the quantity 

of SEDDS would affect release when converting the formulation from liquid 

medication to liquisolid tablets. Finally, the prepared formulations were compared 

with the tablets from the market containing 15 mg drug powder for their dissolution 

profiles in the aqueous medium (distilled water at pH =6.1) in both the aqueous 

and the 0.1 M HCl dissolution media. All profiles were presented in Figure 7-6 and 

Figure 7-7. 

The investigation of the dissolution profiles shows that formulation F34 has the 

highest percentage of the drug release among other formulations. It reaches to 

about 34 % after one hour test period. Also, it shows a fast drug release from the 

first 5 minutes, where the percentage of the drug records 31% (Figure 7-6).   

A further notice can be identified is that there is a decrease in the percentage of 

the drug release for formulations F35 and F36 comparing with formulation F34. 

The similarity factor f2 between formulations F34 and F35 and between 
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formulations F34 and F36 is 50.73% and 40.04%, respectively, indicating that 

these decreases in the dissolution profiles are significant. In other words, less drug 

content means less percentage of the drug release.  

 

Figure 7-6: Comparison of the dissolution profiles between market tablets and prepared 
formulations from F34 to F37 in the aqueous dissolution medium (DW at pH=6.1) (see Table 
2-6). 

Regarding the two formulations F35 and F36, the dissolution profiles start 

relatively high after 5 minutes and then it decreases gradually with the time, 

whereas there is stability in the case of the dissolution profile of formulation F34. 

The same phenomenon can be noticed but in more obvious in the case of the 

dissolution profile of formulation F37, where dissolution stars at 27.7% after 5 

minutes and ends at approximately 10% after 90 minutes. Nevertheless, all 

formulations (i.e. from F34 to F37) show a significant increase in their dissolution 

profiles compared to the profile of the tablets from the market, where the 

percentage of the drug release does not exceed 2% in aqueous dissolution 

medium (Figure 7-6). 
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The justification behind these dissolution behaviours could be as follows; at the 

first 5 minutes all liquisolid tablets completely disintegrate in the dissolution device, 

releasing the drug in the free SEDDS liquid, which does not make any bond with 

the carrier particles in the liquisolid tablet, into the dissolution medium(DW at pH= 

6.1). When there are bonds between SEDDS and solid particles, the drug particles 

that dissolve in the SEDDS mixture either precipitate in the bottom of the 

dissolution device or make bonds with microcrystalline cellulose as part of the 

SEDDS mixture. In both situations, drug will not pass the filter of the dissolution 

device. Thus, it will not be detected by the UV spectrometer. As the result of this, 

formulation F34 does not exceed 33% of the drug release. 

On the other hand, it seems that when decreasing the amount of the SEDDS in 

the liquisolid tablets, the probability to make bonds with carrier particles increases 

so that the percentage of the drug release decreases (e.g. F35 and F36 vs. F34).  

Moreover, when increasing the concentration of the liquid medication from 6.0% 

w/w to 7.5% w/w, such as in the case of the formulations F34 and F37, the 

percentages of the drug release starts decreasing with the time. This could be 

referred to the gradual increase in the re-crystallization of the drug particles with 

the time. This means that the agitation power of the dissolution medium may 

change the value of the surface free energy by increasing the surface area of the 

drug particles. Thus, it leads to an increase of the energy and destabilization of the 

thermodynamic state of the system.  

 Finally, formulation F34 shows completely dissolving in acidic (0.1 M HCl) 

dissolution medium in the first 30 minutes, which is similar to the commercial 

tablets (Figure 7-7). 
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Figure 7-7: Comparison the dissolution profiles between market tablets and prepared 
formulation F34 in acidic (0.1 M HCl) dissolution medium. 

7.6. Differential Scanning Calorimetry (DSC) analysis: 

 

Figure 7-8: Comparison between DSC thermographs of formulations (from F34 to F37), 
market tablets and pure cinnarizine (see Table 2-6). 

 

Figure 7-8 represents a comparison between the all thermograms of the SEDDS 

liquisolid formulations, market tablets and pure cinnarizine. It is obvious that 

cinnarizine pure drug has a sharp endothermic peak at melting temperature 

(122.29 ° C) with relatively high enthalpy value (907.6 J/g). This sharp peak 

indicates the crystallinity of the drug and the melting point of the sample, referring 



213 

 

the end of the thermogram to the decomposition of cinnarizine. Moreover, the 

sharp endothermic peak disappears in all SEDDS liquisolid formulations (from F34 

to F37), indicating a change in the crystallinity of the drug. Furthermore, the 

changing in the percentage of the liquid medication, such as in the case of F37 or 

the size of the tablet (e.g. formulations F34, F35 and F36) seems to have no main 

effects on the liquisolid thermograms. This is contrary with the conclusion related 

with the dissolution profiles for the same formulations in the aqueous medium, 

where the percentage of the drug release decreases with decreasing in the size of 

the tablet (F35 and F36) or increase in the concentration of the liquid medication 

(F37). This means that the re-crystallinity that happened during the dissolution test 

is not direct as a result of the formulation itself. This is because the pure drug still 

completely dissolves in the SEDDS.  

Finally, the sharp endothermic peak appears clearly in the case of the market 

powder, where there is no added SEDDS to the formulations. It appears at 119.3 

°C with enthalpy equals to 44.34 J/g, indicating a slightly change in drug 

crystallinity due to the effect of the added excipients in the formulation. The rest 

disturbance peaks after 125 o C are probably due to the nature of the excipients in 

the market tablets. 

7.7. Fourier transforms infra-red spectroscopy (FTIR): 

The investigation of the FTIR spectra for the formulations from F34 to F37 shows 

that there are no effects for either changing the size of the tablet or changing the 

concentration of the liquid medication as the all FTIR spectra are identical (top-

right Figure 7-9).  
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Moreover, there is no evidence for the peaks that are categorized the active 

ingredient (pure cinnarizine, Figure 7-10), indicating that the pure drug still 

completely dissolve in the SEDDS liquid medication and the addition of the carrier 

(Avicel® PH 101) or the disintegrant (sodium carmellose) does not lead to any 

change. 

The supporting conclusion comes from FTIR spectra for SEDDS liquid medication 

alone (top-left Figure 7-9), where different concentrations of liquid medication 

show the identical FTIR spectra with the blank. Furthermore, when compared with 

the FTIR spectra that relate to the components of the SEDSS (see bottom-left 

Figure 7-9), they only show the interaction between them with no evidence for the 

distinctive functional group of the pure drug (Figure 7-10). As a result of this, the 

FTIR spectra of the prepared formulations support the conclusion that the solid 

materials do not have any direct effect on the re-crystallinity of cinnarizine particles 

and the lower recorded percentage of the drug release in the dissolution tests 

comes from the interaction between the SEDDS itself with the solid particles 

(carrier and disintegrant) (see top right and bottom right Figure 7-9). 
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Figure 7-9: FTIR spectra (Y-axis is % Transmittance) for SEDDS liquid medications at 7.5% 
w/w, 6.0% w/w, 3.0% w/w and 0.0% w/w (top-left), formulations from  F34 to F37 (see Table 
2-6) (top-right), Capmul® MCM, Kolliphor® RH40 and PEG400 (bottom -left) and Na 
Carmellose and Avicel® PH 101 (bottom- right). 
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Figure 7-10: FTIR spectrum for pure cinnarizine powder 

7.8. Flowability, drug content uniformity, tablet dimensions, hardness, 

tensile strength, friability and disintegration tests: 

The investigation of the flowability behaviour results for the prepared formulations 

(from F34 to F37, Table 2-6) is summarised in Table 7-4. The compressibility 

Carr’s index ranged between 20% and less than 27%, which is passable for 

formulations F34, F35 and F36 and poor for F37. The results for Hausner’s ratio 

also show the same conclusion according to British Pharmacopoeia standards 

[56]. Thus, removing the silica as a coating material does not affect negatively on 

the flowability behaviour for the prepared formulations, although it decreases the 

amount of the liquid vehicle that could be retain inside the formulations. Finally, 

using water as a liquid binder in the all formulations enhances the flowability of the 

formulations as it decreases the Carr’s compressibility index for the carrier, which 

is recorded as 28.89% [81] & [82]. 
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Table 7-4: Flowability evaluations including tapped density, bulk density, Carr’s 
compressibility index and Haussner ratio for formulations from F34 to F37 (see Table 2-6). 

       Formulations Tapped density 
(g/cm3) 

bulk density 
(g/cm3) 

CI% position H ratio position 

F34 0.38 0.29 25.00 passable 1.33 passable 

F35 0.38 0.29 22.32 passable 1.29 passable 

F36 0.36 0.29 20.69 fair 1.26 passable 

F37 0.40 0.30 26.45 poor 1.36 poor 

 

Regarding the content uniformity tests, the all formulations are within the limit of 

the British pharmacopoeia (i.e. between 85% and 115%) [56] (see Table 7-5). 

Also, the percentage of the loss of the weight during friability test was less than 

1% for the all formulations and all tablets stay intact after 100 rounds at 25 rpm 

speed. In the same way, the disintegration time is less than 15 minutes (the BP 

limit) for the all of the substances. In fact, they record less than 5 minutes which 

reflect very good time regarding the immediate release tablets. This result 

integrates with the percentage of the drug release in the dissolution test, where the 

all formulations record high percentages in the first five minutes. This is mainly due 

to the effect of the disintegrant, which was incorporated in 5% in the all 

formulations. However, the positive effect of the disintegrant on reducing the 

disintegration time and enhancing the percentage of the drug release of the 

dissolution profiles is not recognised for the hardness tests and consequently the 

tensile strength values. Regarding this, there is a decrease in the predicted value 

of the hardness for all formulations (Table 7-5), which is calibrated according to 

Spireas et al. criteria [6]. The similar result can be noticed in the case of the fast 

disintegrating tablets containing croscaremellose sodium and Disintequick MCC-

25, which is a mixture between lactose and microcrystalline cellulose, as filler [96]. 

In this study, there is an indication that increasing the amount of disintegrant leads 

to decrease in the hardness. However, this study does not contain liquid 
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medication which could have a significant effect on the hardness. Also, there is no 

study detailed the effect of the disintegrant on the liquisolid tablet in terms of its 

effect on the pactisity. This could suggest a further investigation to the role of the 

disintegrant when it is added into the liquisolid tablet formulations. 

Table 7-5: Average and standard deviations of the content uniformity test, friability test, 
tensile strength, hardness and disintegration tests for SEDDS liquisolid formulations (see 
Table 2-6). 

Formula 
Content 

Uniformity (%) 
Friability 

(%) 
Tensile 

strength (MPa) 
Hardness (N) 

Disintegration 
Time (sec) 

F34 106.68 +/- 4.3 0.028 0.802 +/- 0.041 31.38 +/- 1.462 157 +/- 5 

F35 99.41 +/- 0.8 0.006 0.701 +/- 0.038 23.54 +/- 1.387 106 +/- 6 

F36 113.49 +/- 0.6 0.032 0.680 +/- 0.031 23.44 +/- 1.344 132 +/- 10 

F37 103.05 +/- 5.5 0.051 0.726 +/- 0.039 37.27 +/- 2.015 150 +/- 5 

7.9. Stability studies: 

Measuring the drug content uniformity inside the SEDDS formulations (from F34 to 

F37, Table 2-6) shows that all formulations demonstrate a reduction in their 

content uniformity, although they are still in the range limit of the British 

Pharmacopoeia (85% to 115%) [56], (Table 7-6). The investigation of the 

percentages, which are presented in Table 7-6, shows that this reduction ranged 

from 7.6% in the case of formulation F35 to 17.1% in the case of the formulation 

F36. 

Table 7-6: Comparison the percentage of the content uniformity between fresh and 3 
months stability samples for the SEDDS liquisolid samples (formulations from F34 to F37) 
(see Table 2-6). 

 
Fresh After 3 months 

Formula Average 
 

Standard deviation Average 
 

standard deviation 

F34 106.7 +/- 4.295 92.3 +/- 3.631 

F35 99.4 +/- 0.844 91.8 +/- 1.534 

F36 113.5 +/- 0.587 96.4 +/- 3.372 

F37 103.0 +/- 5.524 92.3 +/- 1.736 
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In the same way, the reduction can be detected in the dissolution profiles of the 

stored samples (Figure 7-11). This means that the free parts of the drug particles 

that still dissolved in the SEDDS liquid vehicle are sensitive to the high percentage 

of the humidity as the all formulations demonstrate a certain degree of reduction in 

the amount of the active ingredients. 

 

Figure 7-11: Comparison of the dissolution profiles between fresh and samples stored for 3 
months on SEDDS liquisolid tablets for formulations from F34 to F37 (see Table 2-6), (the 
error bars were deleted for easier comparison). 

 

The investigation to the DCS thermograms show that there is an increase in the 

endothermic peaks around 100 o C, indicating that all formulations adsorbed the 

water droplets on their powder surface. Those droplets affect negatively the 

particles of the active ingredient that dissolve in the SEDDS liquid (Figure 7-12). 

Finally, the study of the FTIR spectra for the both fresh and stored samples 

(Figure 7-13) shows that there are no evidences that the drug particles have some 

changes due to the effect of the storage conditions. The FTIR spectra of the stored 

samples have the same peaks as those of the fresh samples. 
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Figure 7-12: Comparison of the DSC thermograms between fresh and samples stored for 3 
months in terms of SEDDS liquisolid tablets formulations from F34 to F37. 

 

 

Figure 7-13: Comparison of the FTIR spectra between fresh and samples stored for 3 
months in terms of SEDDS liquisolid tablet formulations from F34 to F37. 
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7.10. Conclusion: 

The aim of this chapter is to convert the SEDDS to liquisolid tablets by using wet 

granulation technique. The unfavourable  physicochemical characteristics , which 

are found in the previous chapter, consists a reasonable justification to seek 

altering the components of the SEDDS so that they are suitable for liquisolid 

process, such as they are not evaporated during the granulation process. Capmul® 

MCM EP, Kolliphor® RH40 and PEG400 in ratio of (16.66:66.67:16.66), 

respectively, are found to be acceptable due to recording a relative high 

percentage of the drug release in the aqueous dissolution medium during the 

ternary phase screening test. Moreover, the selected percentages for the SEDDS 

mixture show resistance to decrease in the drug release when the liquid 

medication increases until a concentration between 6.0 % w/w and 7.5% w/w for 

15 mg cinnarizine, which means that it is possible to be prepared as liquisolid 

tablets with acceptable tablet weight. Furthermore, the negative effect of the role 

of the coating materials on the dissolution behaviour pushes toward developing a 

new equation that determines the optimum quantity of the carrier considering the 

liquid/ solid ratio (CW) and the percentage of water that can be used as a liquid 

binder during the preparation and simulating the principles of determination of 

compressibility load factor [6]. The error when validating the developed model do 

not exceed 0.03 of the value of the response (log pactisity), indicating a relatively 

accurate model.  The prepared tablet formulations show a significant 

enhancement in the dissolution profile when they are compared with tablet from 

the market in the aqueous medium, reaching to 33% of the drug release compared 

with less than 2% for the market tablet after 90 minutes. However, the decreasing 

in the size of the tablet or increase the concentration of the liquid medication leads 
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to decrease in the percentage of the drug release. Also, the tests of the friability, 

disintegration, content uniformity show that the prepared formulations comply with 

the British Pharmacopoeia standards [56]. However, the hardness of the tablets 

show a slightly decrease at the optimum level due to the addition of the 

disintegrant in 5% to the formulations. Finally, the stability studies indicated a 

slightly decrease in the drug percentage after 3 months storage due to the 

adsorption of the water droplets on the surface of the tablet. This could suggest 

that this kind of preparation would be better if it is prepared as coated tablets.  

 

 

 

 

  



223 

 

Chapter Eight:  Conclusion 

and future work
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8.1. General conclusion: 

The aim of this research was to enhance the solubility and dissolution of the water-

insoluble drugs by using the liquisolid technique. However, the selection of 

norfloxacin as a model drug for applying this technique did not show an 

improvement in the drug dissolution as expected comparing with the conventional 

preparation in the aqueous medium. This is because of the unique structure of this 

drug as a zwitterionic one, and its interaction with selected liquid vehicles so that 

they form interacting layers, impairing the drug release in the dissolution test. 

On the other hand, determination of the compressibility load factor of Synperonic 

TM PE/L-61 provided a good opportunity to prepare tablets with acceptable 

compressibility characteristics, although the weight of the unit dose recorded high 

values. Furthermore, mixing norfloxacin with either PEG200 or Synperonic TM 

EP/L-61 in order to form liquisolid formulations showed (as detected by DSC and 

FTIR analyses) that the crystallinity of the drug has significantly reduced. The 

conclusion from this initial study was suggested to use the wet granulation process 

with the liquisolid pharmaceutical technique in order to enhance the flowability, 

compressibility and the drug release in the aqueous dissolution medium. 

Therefore, incorporating water as a liquid binder on the previous prepared 

classical liquisolid formulations provided an advantage through reducing the size 

of the unit dose; the large unit dose is considered a major disadvantage for the 

liquisolid technique. The combination between the two methods (wet granulation 

and liquisolid) was through re-calculating the optimum load factor, which was 

always the compressibility one, because granules formation provides a wider 

capacity to accept more liquid vehicle inside the porous structure of carrier and 
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coating materials. Moreover, incorporation of water as a liquid binder did not affect 

the entity of the liquid vehicles and application of the drying process did not lead to 

any evaporation of the liquid vehicle, which makes the water as a liquid binder a 

good candidate for the technique. The enhancement in the flowability and the 

compressibility was extended to the in vitro dissolution trends using the aqueous 

medium. The dissolution trends showed a significant increase in the percentage of 

the drug release compared to those of the classical liquisolid preparations. 

However, there was a question about the effect of the quantity of solid excipients 

on the dissolution trends. For this purpose, the water granulated liquisolid 

preparations were made by using the classical load factors.  The results showed 

that the significant increase in the dissolution trends appeared only when applying 

the new compressibility load factor (with the granulation process) when the 

Synperonic TM PE/L-61 was the liquid vehicle.  However, the PEG200 formulations 

showed no significant differences in terms of dissolution trends when using the 

classical or the new calculated load factors, meaning the presence of flexibility 

during the preparation in large scale. 

When investigating the role of PVP solution as a liquid binder in the combination 

between wet granulation and liquisolid techniques, it showed good flowability, 

compressibility and dissolution behaviours for the produced tablets. The angle of 

slide, which is used to evaluate the flowability, showed relative small degrees, 

indicating good flow characteristics. However, the pactisity studies, which is used 

to determine the compressibility load factor, showed that there was a decrease in 

their values when there was an increase in the concentration of PVP at a specific 

amount of excipient ratio (R values) and Synperonic TM PE/L-61 to the solid 

powder (CW), whereas when using PEG200, there was no significant change (P < 
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0.05) in the pactisity values related to the PVP concentrations. On the other hand, 

the comparison between water and PVP formulations showed a significant 

decrease in the value of the compressibility load factors only when there is an 

increase in the solid ratio (R values). In other words, this happened when the 

amount of the coating materials became smaller. Finally, the dissolution trends 

showed a slight increase in the percentage of the drug release in the aqueous 

medium, compared to the water granulated liquisolid preparations in terms of 

using PEG200 as a liquid vehicle. In addition to content uniformity, stability and 

other tablets’ quality control tests, using PVP solution as a liquid binder could be a 

good candidate with PEG200 liquid vehicle to prepare enhanced liquisolid tablets. 

Regarding cinnarizine, which is practically insoluble in water, the screening 

dissolution tests showed no enhancement of the drug release using the liquisolid 

technology, in spite of using a range of surfactants with different HLB values. Due 

to the hydrophobicity of this drug, either the drug separated from the high HLB 

surfactants and floated on the surface of the aqueous medium or it makes a 

hydrophobic layer with low HLB surfactants and precipitated in the bottom of the 

dissolution apparatus. However, using non-ionic surfactants in relatively large 

amounts, such as Kolliphor® RH40 with its melting process, the percentage of the 

drug release has improved; this gives a justification to use the Self-Emulsifying 

Drug Delivery Systems (SEDDSs). Depending on the solubility of the drug in a 

range of oils, surfactants and co-surfactants, two SEDDS mixtures were selected, 

the one that contains IPM, Kolliphor® RH40 and Transcutol® P showed the highest 

percentage of the drug release at a ratio of 35:35:30, respectively. The high 

percentage of the drug release (over 90% after 10 minutes) permitted an increase 

in the concentration of the liquid medication from 3.00% w/w to 4.29% w/w for 15 
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mg of drug without a significant change in the dissolution trend. This could suggest 

that this mixture shows a promise to be used by pharmaceutical industries via 

filling in hard gelation capsules. After optimizing the IPM SEDDS mixture, there 

was a trial to upload it as the liquid vehicle to the solid admixture and then to apply 

the wet granulation process. However, due to the sensitivity of the components to 

the temperature during the drying of the liquisolid granules, the SEDDS mixture 

was changed to include Capmul® MCM EP, Kolliphor® RH40 and PEG400. Hence, 

they do not evaporate at the temperature of the drying process. The optimum ratio 

that gave the highest drug release was 16.66:66.67:16.66, Capmul® MCM EP: 

Kolliphor® RH40: PEG400, respectively, whereas the highest concentration of the 

liquid medication was 6.0% w/w for 15 mg of the drug. Moreover, the negative 

effect of the coating material on cinnarizine release in the aqueous dissolution test 

led to develop the new system, depending on the carrier only to prepare an 

acceptable flowable- compressible liquisolid tablets. A new mathematical model 

was developed to determine the optimum amount of the carrier and the optimum 

percentage of the water that should be incorporated during the granulation 

process. The new prepared tablets showed a significant increase in the dissolution 

trend compared to the commercial tablets. However, there was a decrease in the 

hardness due to adding 5% disintegrant, suggesting that those tablets could be 

manufactured as a coated one to avoid this problem. 

8.2. Future work: 

This project started with the investigation of applying the liquisolid technique on 

norfloxacin and then on cinnarizine as model hydrophobic drugs in order to 

enhance their solubility and dissolution trends in the aqueous media. The obtained 
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results with classical liquisolid preparations could be further investigated in vivo to 

check the bioavailability of the drugs.  

Regarding the wet granulation technique, the selecting of the carrier and the 

coating materials was microcrystalline cellulose (MCC) (Avicel® PH 101) and 

silicon dioxide (Cab-O-Sil® M-5P), respectively. Investigating other grades of MCC 

with higher surface area or different types of silica could provide a higher value of 

the optimum loading factor so that it is possible to decrease the size of the unit 

dose or increase the uploaded amount of the liquid vehicle with a good capacity to 

increase the dose of the drug in each unit. 

Additionally, using SEDDS technique helped to increase the percentage of the 

cinnarizine release in the aqueous dissolution medium. However, converting the 

optimum SEDDS mixture to liquisolid tablets faced difficulties due to the 

evaporation of the content of SEDDS mixture from one side and the drug 

precipitation from another side.  

Regarding the evaporation problem, it could be solved by filling the SEDDS 

mixture into capsules and examining the drug release in vitro and in vivo to check 

the suitability.  

However, for the drug precipitation, it could be referred to the drug chemical 

structure. Using different drugs, which they are not affected by the type of the solid 

materials, will allow using the advantage from the presence of coating materials 

(e.g. silica) in the liquisolid preparations.  The results, in general, showed that 

using even small amount of silica as a coating material increased the 

compressibility loading factor. In this case, central composite design could be 

developed with three factors instead of two. In addition to CW and Water, the 
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values of R could be the third one and the developed model could include 

coefficients related to the third factor. This could increase the compressibility load 

factor so that it could increase the liquid vehicle or the drug dose per unit.  The 

results showed that using even small amount of silica as a coating material 

increases the value of the compressibility loading factor. The presence of silica 

could reduce the negative effect of the disintegrant on the pactisity. However, this 

effect could be solved by using tablet coating excipients. This could be 

strengthening the tablets and protect them from any factor that could affect the 

stability of the drug. 

Another solution for this problem, to be applied in the future, is to optimize the 

amount of the disintegrant by considering it as a main factor in the composite 

central design study. The response could be the AUC values from the relative 

dissolution trends in addition to the log pactisity. This could help to reach an 

optimum disintegrant percentage that gives the high dissolution trends with no 

significant effect on the hardness of the prepared tablets. 

Finally, all successful formulations should be tested in vivo in order to validate its 

enhancement to the drug solubility and dissolution. 
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