
Security Programming with High-Level

Abstractions: a Tutorial (Extended Abstract)∗

Paolo Modesti

Department of Computing, Engineering and Technology

University of Sunderland, UK

Abstract

The speci�cation of security protocols with high-level programming

abstractions, suited for security analysis and veri�cation, has been advoc-

ated by the formal methods for security research community. Based on

these principles of application design, we developed a tutorial to intro-

duce undergraduate students to the foundations of security programming.

The main pedagogical goal of this tutorial is to teach, in a simple and

e�ective way, how to build secure distributed applications using common

cryptographic primitives abstracting from their low-level details. The tu-

torial is aimed at helping the students to grasp quickly the main security

concepts and to apply them e�ectively to the coding of distributed pro-

grams implementing security properties like authentication and secrecy.

As programming is one of the main skills required by the cybersecurity

industry, we believe that this tutorial can contribute to the professional

development of future graduates.

1 Introduction

The implementation of security protocols is an important building block for the
construction of safe and robust applications. In particular, security protocols
play a key role in protecting user data exchanged over a network infrastructure
that can be assumed to be under adversary control, as in the Dolev-Yao attacker
model [1]. Programming security protocols is challenging and error-prone, as it
requires that the high-level security properties of a protocol must often hard-
coded explicitly, in terms of low-level cryptographic notions.

As experience has shown, low-level implementation bugs are discovered even
in protocols like TLS and SSH which are widely used and thoroughly tested.
Therefore, the speci�cation of security protocols with high-level programming
abstractions, suited for security analysis and automated veri�cation, has been

∗Presented at the HEA National Conference on Learning and Teaching in Cybersecurity,

Birmingham, UK, 15th June 2016

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunderland University Institutional Repository

https://core.ac.uk/display/74369097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


advocated by the formal methods for security research community [2, 3]. This
was one of the main reasons for developing tools for veri�cation of security
protocols in the symbolic model [4, 5] and for the automatic generation of se-
curity protocols implementations [6, 7, 8]. In order to widen the adoption of
these tools among practitioners, some of them allow for the speci�cation of se-
curity protocols with simple languages based on the Alice and Bob notation
[9, 10, 11, 12]. This makes the coding considerably simpler and more compact
than their equivalent in formal languages like the process calculi.

Based on these principles of application design and on the availability of
existing tools [7, 4], at the Department of Computing, Engineering and Techno-
logy of the University of Sunderland, we developed a tutorial to introduce un-
dergraduate students to the foundations of security programming. This tutorial
was part of the CET324 Advanced Cybersecurity module (Year 3, academic
year 2015-16).

The main pedagogical goal of this tutorial is to teach, in a simple and ef-
fective way, how to build secure distributed applications using common cryp-
tographic primitives (symmetric and asymmetric encryption, digital signature,
hashing, message authentication codes) abstracting from their low-level details.
The tutorial is aimed at helping students to quickly grasp the main security con-
cepts and to e�ectively apply them to the coding of distributed programs imple-
menting security properties like authentication and secrecy. This constructivist
approach allows students to put into practice what each student is learning, per-
ceiving his/her progress building increasingly more complex software artefacts.
As programming is one of the main skills required by the cybersecurity industry,
we believe that this tutorial can contribute to the professional development of
our future graduates.

2 Pedagogical Approach

This tutorial was developed and delivered as part of the CET324 module where
students needed to develop their understanding and ability to implement secure
computer systems by identifying and evaluating the security considerations re-
quired for each stage of the computer system development life-cycle. A particu-
lar focus is given to the role of cryptography in secure systems design. Therefore,
students were introduced to the basic principles of cryptography and how these
could be applied to secure systems design (including encryption, decryption,
ciphers, digital signatures and public key infrastructures).

In more detail, the tutorial addresses the following:

• learning need: as our students comes from di�erent programs (computer
science, computer forensics, network computing, etc.), their programming
abilities are mixed. Therefore, the traditional learning curve to master
cryptography is likely to be too steep for many students;

• purpose: in a limited amount of time (3 hours of lectures, 4 hours of
supervised tutorial, and 10-12 hours of independent work) students should

2



be able to show a good understanding of secure systems design principles,
in particular in the implementation of simple security protocols, making
use of cryptographic primitives like symmetric and asymmetric encryption,
digital signatures and message digest;

• activities: a series of learning activities with increasing levels of di�culty
in bite size steps, and incremental elaboration, help the student to manage
the increasing complexity of the material being delivered. Activities are
detailed in �Tutorial Structure and Content� section;

• outcomes: critical understanding of the principles and applications of cy-
bersecurity and secure systems design, identifying and minimising the se-
curity risks, e�ectively implementing in reliable and e�ective way simple
security protocols;

• evaluation: as this tutorial was run in the laboratory, we used a format-
ive evaluation strategy with one to one feedback from the tutor. Ongoing
testing/evaluation was also intrinsic to the code presented in the activities,
helping to motivate students to progress through the materials, increment-
ally improving their coding ability as the module progressed.

3 Tutorial Structure and Content

The tutorial is based on the Java programming language and on the crypto-
graphic services o�ered by the Java Cryptography Architecture (JCA). We chose
them because they are widely used by the industry and are freely available. In
particular, we used the AnBxJ library which is part of the AnBx Compiler and
Code Generator [7], a tool developed as an academic research project. Instead of
directly using the JCA programming interface, the AnBxJ library wraps, in an
abstract way, the JCA interface and implements the custom classes necessary to
encode programs in Java. The AnBxJ library o�ers a high degree of generality
and customization, since the API does not commit to any speci�c cryptographic
solution (algorithms, libraries, providers). Moreover, the library provides access
in an abstract way to the communication primitives used to exchange messages
in the standard TCP/IP network environment. For the modelling and veri�ca-
tion, we used the OFMC model checker [4], a tool for symbolic security protocol
analysis that supports the Alice and Bob notation.

The pre-requisites for this tutorial include the knowledge of the basic prin-
ciples of Object-Oriented Programming. Most of our students learned C# in
their previous years of studies. No prior knowledge of security programming was
assumed. The basic knowledge of cryptographic primitives is acquired during
the module lectures that are part of this tutorial.

The main topics covered are (unless otherwise stated the tools used are Java
and the AnBxJ library):

• Client/Server programming

3



• Key generation (tool: JDK keytool)

• Simple secret exchange, based on asymmetric cryptography

• Weak authentication using digital signature

• Strong authentication using challenge/response and digital signature

• Implementation of a secure channel using secrecy and authentication

• Defensive programming, checks on receptions

• Con�guration of cryptographic algorithms

• Modelling and Veri�cation of Security Protocols speci�ed in the Alice and
Bob notation (tool: OFMC)

The tutorial is structured in a series of tasks of increasing di�culty. Each
programming task usually starts with a piece of code that students have to
analyse and run. As the AnBxJ library allows running the application with
di�erent debugging levels, log messages are available to report about every steps
of the programs execution. Students are then asked to modify or extend the
program in order to add some functionality or to achieve some security goals,
thus applying and reinforcing their learning.

4 Evaluation and Conclusion

We ran this tutorial for the �rst time in the second semester of the academic year
2015-16 and used ongoing student feedback to re�ne and improve the module.
So far, the major achievement was that students were able to build simple ap-
plications implementing security goals like authentication and secrecy. Another
important aspect is that students approached for the �rst time an advanced
topic like modelling and veri�cation of security protocols. This o�ered them the
opportunity to become aware of the existence of methodologies and techniques
that are not only used in academic research but also are becoming increasingly
adopted by the industry. This may be useful to help student in pursuing their
postgraduate studies or to have better chances to �nd a quali�ed job in the
software development and cybersecurity sector.

Acknowledgements The author wishes to thanks Susan Jones and Alastair
Irons for their constructive feedback.

References

[1] D. Dolev and A. Yao, �On the security of public-key protocols,� IEEE
Transactions on information Theory 2(29), 1983.

4



[2] M. Bugliesi and R. Focardi, �Language based secure communication,� in
Computer Security Foundations Symposium, 2008. CSF'08. IEEE 21st,
pp. 3�16, 2008.

[3] M. Avalle, A. Pironti, and R. Sisto, �Formal veri�cation of security protocol
implementations: a survey,� Formal Aspects of Computing 26(1), pp. 99�
123, 2014.

[4] D. Basin, S. Mödersheim, and L. Viganò, �OFMC: A symbolic model
checker for security protocols,� International Journal of Information Se-
curity 4(3), pp. 181�208, 2005.

[5] B. Blanchet, B. Smyth, and V. Cheval, �ProVerif 1.94: Automatic crypto-
graphic protocol veri�er, user manual and tutorial,� 2016.

[6] M. Avalle, A. Pironti, D. Pozza, and R. Sisto, �JavaSPI: A framework for se-
curity protocol implementation,� International Journal of Secure Software
Engineering 2(4), pp. 34�48, 2011.

[7] P. Modesti, �AnBx: Automatic generation and veri�cation of security pro-
tocols implementations,� in 8th International Symposium on Foundations
& Practice of Security, LNCS 9482, Springer, 2015.

[8] O. Almousa, S. Mödersheim, and L. Viganò, �Alice and Bob: Reconciling
formal models and implementation,� in Programming Languages with Ap-
plications to Biology and Security: Essays Dedicated to Pierpaolo Degano
on the Occasion of His 65th Birthday, C. Bodei, G.-L. Ferrari, and C. Pri-
ami, eds., Lecture Notes in Computer Science 9465, pp. 66�85, Springer
International Publishing, 2015.

[9] S. Mödersheim, �Algebraic properties in Alice and Bob notation,� in Inter-
national Conference on Availability, Reliability and Security (ARES 2009),
pp. 433�440, 2009.

[10] M. Bugliesi and P. Modesti, �AnBx-Security protocols design and veri�ca-
tion,� in Automated Reasoning for Security Protocol Analysis and Issues in
the Theory of Security: Joint Workshop, ARSPA-WITS 2010, pp. 164�184,
Springer-Verlag, 2010.

[11] D. Basin, M. Keller, S. Radomirovic, and R. Sasse, �Alice and Bob meet
equational theories,� in Logic, Rewriting, and Concurrency, N. Martí-Oliet,
P. C. Ölveczky, and C. Talcott, eds., Lecture Notes in Computer Science
9200, pp. 160�180, Springer International Publishing, 2015.

[12] M. Bugliesi, S. Calzavara, S. Mödersheim, and P. Modesti, �Security pro-
tocol speci�cation and veri�cation with AnBx,� Journal of Information
Security and Applications 30, pp. 46�63, 2016.

5


	Introduction
	Pedagogical Approach
	Tutorial Structure and Content
	Evaluation and Conclusion

