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ABSTRACT 

 

The present work investigated the preparation of phenoxazinone derivatives 

and evaluated their performances for the detection of pathogenic bacteria. 

The first method investigated the condensation of nitroaminophenol with 

tetrahalogenobenzoquinones; the corresponding nitrohalogenophenoxazinones were 

all characterised and evaluated for the detection of nitroreductase activity in a range 

of clinically important microorganisms. The detection of nitroreductase activity has 

been previously suggested for the monitoring of bacterial growth; however, 

nitrohalogenophenoxazinones were proven to be less suitable for this purpose than 

other, previously reported, nitroreductase substrates. 

The second route investigated the synthesis of phenoxazinone derivatives via 

the oxidative cyclisation of diamino-dihydroxydiphenylethers and of 

diaminobenzoquinones. The reactive intermediates were trapped and characterised 

in order to rationalize the mechanism of formation of aminophenoxazinones via this 

route. 7- and 8-Aminophenoxazinones derivatives were prepared and further 

derivatised with β-alanine. Similarly, some nitrohalogenophenoxazinones were 

reduced to their corresponding aminophenoxazinones and derivatised with β-alanine.  

Thirteen new chromogenic substrates were prepared, characterised and 

evaluated for their sensitivity to detect β-alanine aminopeptidase on agar medium; 

this enzyme is expressed by only three types of bacteria, the most important being 

Pseudomonas aeruginosa, a pathogen commonly known to affect cystic fibrosis 

sufferers. Their performance for the detection of Pseudomonas aeruginosa were 

compared to the lead compound (7-N-(β-alanyl)amino-1-pentylphenoxazin-3-one), 

the substrate contained in a commercially available medium, chromIDTM ID Ps. 

aeruginosa. The substrates, if hydrolysed, resulted in a low colouration of the 

colonies when compared to the lead compound; however, 2-pentyl substituted 

aminophenoxazinones were found to be less toxic and had an excellent affinity for 

the bacterial colonies. 
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DBU  1,8-diazabicyclo[5-4-0]undec-7-ene 
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M  molarity 

M +  positive molecular ion 

M -  negative molecular ion 

MeOH  methanol 

min  minute 



 

mL  millilitre 

mol  mole 

mmol  mmole 

mg  milligram 

m.p.   melting point 

MMPP magnesium monoperoxyphthalate 

MRSA  meticillin-resistant Staphylococcus aureus 
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NMR  nuclear magnetic resonance 
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[O]  oxidation 

PCR  polymerase chain reaction 
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quat.  quaternary 
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s  singlet 
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T  temperature 

t  triplet 
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THF  tetrahydrofuran 

TLC  thin layer chromatography 
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Microorganisms are ubiquitous in our environment: they colonise and adapt to the 

most extreme environment (extremophiles) or live in symbiosis with other organisms, 

such as the human commensal bacteria Staphylococci (skin, 2001JID170),  

Streptococci (saliva and teeth, 1996AOB1133) or Bacteroid, Eubacterium and 

Bifidobacterium (colon, 2005CPD1047) to name a few. If the presence of such 

bacteria is well tolerated by, and even necessary to, humans (nutrients; immune 

system stimulation), the proliferation of exogenous pathogenic bacteria can lead to 

life-threatening conditions.  

The presence of pathogenic bacteria can have disastrous consequences in hospitals, 

food and water, to name three highly significant areas of our health and well-being. 

Their identification in such domains is necessary and has become a corner stone of 

such areas. 

The present work focuses on the development of specific chromogenic enzyme 

substrates allowing for the rapid detection of nosocomial bacteria. Identification using 

chromogenic enzyme substrates has acquired a significant impact for the detection of 

human pathogens. Their simplicity and reliability, shorter identification process and 

fewer complementary tests required, respond to the need for quick results in a 

hospital context. Indeed, the successful treatment and eradication of a pathogen rely 

on its quick and correct identification. 

Many methods have been developed, and are still under development, for the 

accurate and rapid detection of microorganisms (1996MI455, 2000MI549). Full 

details of each method are out of the scope of the present work and only a brief 

overview of the existing and most relevant techniques will be given here. The 

description of techniques using fluorogenic and, more particularly, chromogenic 

enzyme substrates as a means of detection will be more carefully detailed with an 

insight into their properties, structures and mode of action. The second part of this 

introduction will be dedicated to the occurrence and preparation of the phenoxazin-3-

one core, which is the core of the new chromogenic substrates prepared herein. 

 

1.1 Bacterial detection 

Identification of a bacterium requires quantifying a relationship based on its 

morphology, physiology and chemical structure (B-1993MI01). Bacteria are 

characterized, defined and named after the appearance of their colonies, the 
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morphology of a single cell and respective arrangement of several cells, their growth 

characteristics, their biochemistry and their reaction to inhibitory tests, the need for 

specific nutrients or conditions for growth, their reaction to antiserum and their 

genetics. The detection of a bacterium involves a series of tests allowing the 

observation of a determinant character allowing its relation to a previously described 

genus and species. It is generally admitted that no single test provides a definitive 

identification of an unknown microorganism. The traditional identification methods 

involve culture of the bacteria for enrichment and isolation of the subsequent 

bacterial colonies, followed by screening using a series of biochemical tests and 

serological confirmation (1990MI497).  

 

 1.1.1 Classical detection methods 

1.1.1.1 The Gram stain 

The Gram stain, developed in 1884 by Christian Gram, was the first taxonomic test of 

its kind allowing such an important differentiation within the bacterial kingdom. The 

Gram stain procedure (1884MI185) involves the use of an aqueous solution of 

gentian violet (crystal violet, 1), along with a saturated 

solution of iodine and potassium iodide as mordant. 

Decolorisation of the bacterial cell is then attempted by 

washing with ethanol or acetone, leaving Gram-positive 

bacteria stained in violet. A counter stain of carbol fuschin 

2 is finally applied, dying any Gram-negative cells in red. 

Several factors can influence the outcome of the Gram 

stain, such as the age of the culture and the composition 

of the cultivation medium (1990JAB822). Errors in 

determining the Gram reaction have been observed, with bacteria, known as Gram 

variable, showing a variable behaviour toward the Gram stain.  

The ability of Gram-positive organisms to retain the dye more effectively than Gram-

negative organisms when exposed to a solvent is related to major differences within 

the structure of the bacterial cell wall. Gram-positive bacterial cell walls (Figure 1.1) 

consist of a thick homogeneous layer of peptidoglycan, covalently bound to linear 

anionic polymeric teichoic acids (ribitol and glycerol units linked by phosphodiesters, 

2002MI46S), situated outside the plasma membrane. 

1, R1 = CH3, R2 = H 
2, R1 = H, R2 = CH3 

N

NN

R1

R1

R1R1

R1

R1

Cl

R2
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Figure 1.1: Schematic and simplified structure of Gram-positive (left) and Gram-negative (right) 
bacterial cell wall (adapted from B-2008MI02). 
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Peptidoglycan is a mesh-like polymer composed of covalently bound N-

acetylglucosamine (NAG) and N-acetyl muramic acid (NAM) subunits.  

The peptidoglycan layer is highly crosslinked in Gram positive organisms; 

crosslinking occurs via the carboxylic acid residues of NAM. With Gram-positive 

bacteria, crystal violet is thought to be retained behind the peptidoglycan layer, which 

pores are being shrunk upon the decolorisation process.  

The Gram-negative bacterial cell wall is a relatively more complex structure (Figure 

1.1). It consists of a thin, poorly crosslinked peptidoglycan layer recovered by an 

outer membrane; the coherence of this structure is ensured by Braun’s lipoproteins 

(Figure 1.1). The outer membrane, which is the main self-protective structure of 

Gram-positive bacteria against toxic compounds, is composed of three main 

elements: the phospholipid layer, the lipopolysaccharide layer and the 

polysaccharide O-side chain. This highly lipophilic external structure exercises a 

control over the permeation of hydrophilic compounds, whereas the porin channels it 

contains (Figure 1.1) allow the permeation of small hydrophilic molecules such as 

nutrients (2001MI215).  

With Gram-negative bacteria, the thin peptidoglycan layer and the outer membrane, 

which permeability is affected by ethanol, fail to retain crystal violet upon the 

decolorisation process, leaving the cells colourless. 

Other, yet less popular, dye-based Gram differentiation methods have since been 

developed. The growth of bacteria on medium containing 8-

anilino-1-naphthalene sulphonic acid (ANS, 3), a hydrophobic 

fluorescent dye, was found to differentiate Gram-negative 

bacteria from Gram-positive by selective fluorescence. The 

hydrophobic interactions occurring upon adsorption of the dye 

onto the bacterial proteins, present in the lipopolysaccharide layer of the Gram-

negative outer membrane, result in a dramatic increase of ANS quantum yield 

(1980AEM372). The lack of interaction with the outer peptidoglycan layer of Gram-

negative bacteria left the latter non-fluorescent, the intrinsic quantum yield of ANS 

being very low in aqueous environment.  

More recently, Mason et al. reported a live Gram stain 

method using two fluorescent nucleic acid binding dyes, 

hexidium iodide (HI, 4) and SYTO 13 (1998AEM2681). 

NH SO3H

3 

N
H2N

NH2

I

4, λex/em = 
518nm/600nm 



CHAPTER ONE  INTRODUCTION  
   

5 

While Gram-positive bacteria did permeate both HI and SYTO 13, Gram-negative 

only permeated SYTO 13. This resulted in the observation of an orange fluorescence 

for Gram-positive bacteria, as the simultaneous presence of both dyes resulted in a 

quenching of SYTO 13 fluorescence by HI (1998AEM2681), and a green 

fluorescence for Gram-negative bacteria. The outer lipopolysaccharide layer is 

thought to be responsible for the exclusion of HI (1998AEM2681).  

 

 1.1.2 New methods of identification 

  1.1.2.1 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is defined as “a primer-mediated enzymatic 

amplification of specifically cloned or genomic DNA sequence” (B-2002MI03). The 

PCR process involves denaturation of a DNA sequence, hybridization of the primers 

(short oligonucleotides sequences) and polymerization of the desired sequence by a 

thermostable DNA polymerase, Taq (from the thermophile Thermus aquaticus). 

These three successive steps, which constitute a cycle, are realized in a thermal 

cycler, allowing each step to take place at a different, optimum temperature: 95°C 

(denaturation), 60°C (primer hybridization) and 72°C (polymerization). This cycle is 

typically repeated 20 to 40 times, at which point billions of copies of the gene 

sequence are available (number of cloned sequence = 2n cycles). Interpretation of the 

results is done by staining the PCR product with a phenantridium dye (analogous to 

4), followed by separation using gel electrophoresis. The recent emergence of real-

time PCR can by-pass this interpretation step by 

monitoring the increase of fluorescence during the 

amplification process using double-stranded DNA 

specific dyes such as SYBR Green I 5. 

The ability to replicate a unique gene sequence has 

proven to be highly useful in the identification of 

pathogenic bacteria and PCR is becoming increasingly 

important as a rapid means of detection (1998JCM2810). 

Virtually any species-specific nucleotide sequence can be selected for amplification, 

but replication of gene sequence determinants of the pathogenic character of a 

bacterium is sometimes key to identification: the vtx1 and vtx2 genes encoding for 

the production of verotoxin, responsible for the hemorrhagic colitis linked to E. coli 

O157 : H7 infection (2010MI7), can easily discriminate E. coli O157 : H7 from non 

N

N

S

N

N

5, λex/em = 
494nm/521nm 
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virulent E. coli strains. The mecA gene, encoding for the production of penicillin-

binding protein 2a (1997CMR781), is another example of useful gene marker which 

can discriminate meticillin-resistant Staphylococcus aureus (MRSA) from non-

resistant Staph. aureus species.   

The concomitant use of several pairs of primers (multiplex PCR) has been 

successfully applied to the simultaneous detection of some nosocomial pathogens, 

such as Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas 

aeruginosa, Acinetobacter baumanii, and Klebsiella pneumonia (2009JMM329), and 

common food contaminants, Salmonella spp. (2009MI348, 2009MI43), Listeria 

monocytogenes (2006MI763) and Campylobacter jejuni (2003AEM1383). 

   

  1.1.2.2 Bacteriophages 

Bacteriophages or phages are viruses that infect bacteria cells only. They can 

recognize and bind to specific receptors on the outer membrane of bacterial cells, i.e.  

an amino acid sequence of a surface protein. The high specifity of bacteriophages for 

their respective host has led to the development of an original approach to bacterial 

detection, which was first demonstrated by Ulitzur and Kuhn (B-1987MI04).  

For the purpose of pathogen detection, phages are genetically engineered to include 

a reporter gene, the majority being bioluminescence genes (lux) from naturally 

bioluminescent species, such as Vibrio fischeri. Upon infection of the bacterium by 

the genetically modified phage, the lux reporter gene is introduced along with the 

phage DNA into the bacterial host and then expressed (Scheme 1.1). As the lux 

gene encodes for the production of luciferase (2002FRI863), the infected bacterium 

becomes bioluminescent. The production of bacterial bioluminescence results from 

the aerobic luciferase-catalysed oxidation of an aliphatic aldehyde (e.g. dodecanal 6) 

in the presence of reduced flavin mononucleotide (FMNH2) (Scheme 1.1, 

1991MR123). Monitoring of the resulting light emission is therefore indicative of the 

presence of the bacterium. 

Assays using luciferase reporter phages have been reported for the detection of the 

following pathogens: E. Coli O157 : H7 (1996MI152), Listeria monocytogenes 

(1997AEM2961), Mycobacterium tuberculosis (2001JCM3883), Salmonella spp. 

(1996JFP908), Staphylococcus aureus or Yersinia pestis (2009JCM3889). 

Bacterial detection using bacteriophages is a reliable and specific method; however, 

it requires the genetic engineering of specific phages, which are as yet only available 
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for a few common pathogens. Long assay times are usually required for the 

production of detectable luminous signal, especially when few cells of the pathogen 

are available.  

 

 

FMNH2 H3C
(CH2)10

O

O2 FMN H2O

H

H3C
(CH2)10

OHO

 

 

 

 

Scheme 1.1: Principle of detection using genetically engineered bacteriophage and 
enzymatic reaction resulting in bioluminescence (adapted from 2002FRI863). 
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  1.1.2.3 Enzyme-linked immunosorbent assay (ELISA)  

Immunoassay utilises the specific relationship between antibodies and antigen 

(1990MI497). The specificity and sensitivity of immunoassay has been enhanced by 

the use of monoclonal antibodies (specific to one particular type of bacterial antigen) 

and the combination of enzyme labels and substrates (1990MI497). 

The most popular and widely used type of immunoassay is probably enzyme-linked 

immunosorbent assay (ELISA). The principle of ELISA, illustrated in Scheme 1.2, 

uses microplate wells coated with capture antibodies.  

 

 

 

O OO
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O

OHHO

O OHO

CH3 CH3

 

 

 

 

After incubation of the bacteria and capture of the antigens, enzyme-linked 

antibodies are added to the wells and bind to the fixed antigen (Scheme 1.2). A 

fluorogenic enzyme substrate is finally added and, if the correct antigens are present 

Scheme 1.2: Bacterial detection using sandwich ELISA 
(Last accessed 23/03/2010 and adapted from:  

http://64.202.120.86/upload/image/articles/2006/biopen/biopen-elisa-schematic.jpg). 
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in the resulting ELISA sandwich complex, further incubation results in the detection of 

fluorescence. 

The most sensitive enzymes used with ELISA are horseradish peroxidase, 

phosphatase and β-galactosidase (2005ABI227). This technique has been applied to 

the detection of L. monocytogenes (1992LAM26), Ps. fluorescens (1993JAB394), E. 

coli O157:H7 (2009BBE1641) or Salmonella spp. (2009BBE1641). 

 

  1.1.2.4 Chromogenic media 

Chromogenic media utilise enzymes as taxonomic markers.  

 

1.1.2.4.1 Agar-based media 

Chromogenic agar-based media are an evolution of the traditional, general purpose, 

growth media used in microbiology, which only allow a presumptive identification of 

the microorganisms based on their colonial appearance (e.g. pigmentation, 

morphology) and require the use of further biochemical test for definitive identification 

(2007JAM2046). 

The addition of chromogenic enzyme substrates 

in those media has allowed a more direct 

identification of the suspected pathogen, via the 

evidence of a specific enzymatic activity. As 

chromogenic media are destined to be used 

directly on clinical samples, a combination of 

enzyme substrates is often used to differentiate 

the pathogen from other commensal bacteria, or 

even to allow the identification of several 

pathogens simultaneously. Figure 1.2 depicts 

the example of a chromogenic medium 

(chromID CPS3, bioMérieux) allowing the 

simultaneous detection of the most common 

urinary tract pathogens: Escherichia coli 

(purple), detected via β-glucuronidase activity, 

Proteus mirabilis (brown), detected via deaminase activity and enterococci (blue), 

detected via β-glucosidase activity. More detail will be given later on the exact nature 

of such enzyme substrates. These media also tend to promote the development of 

Figure 1.2: Example of a chromogenic 
medium (chromID CPS3) allowing 
multiple detection: here E. coli 
(purple), P. mirabilis (brown) and 
enterococci (blue). (Picture taken from 
http://www.biomerieux.fr/servlet/srt/bio
/france/dynPage?open=FRN_CLN_P
RD&doc=FRN_CLN_PRD_G_PRD_C
LN_20&pubparams.sform=2&lang=fr, 
last accessed 04/04/2010). 
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the microorganism under investigation and the expression of the enzyme necessary 

to hydrolyse the substrate, while inhibiting the growth of competing microorganisms, 

to facilitate identification and avoid false-positive results (2007BSM96). Thus 

chromogenic media can by-pass the time consuming procedure of isolating a pure 

culture prior to carrying out further identification tests.  

Many media have been developed for the identification of specific pathogens 

(2007JAM2046, 2009JMM139), including the detection of antibiotic-resistant 

pathogens such as vancomycin-resistant enterococci (VRE, 2009JCM4113, 

2009JMM124) and MRSA (2004JCM4519, 2010JCM215).  

Chromogenic media confer the advantage to permit procedures and readings free 

from any specific and costly equipment. 

 

   1.1.2.4.2 Micro gallery and automated system 

Micro galleries, such as API gallery (1988AEM2838, 1993ACB81), combine a wide 

range of enzyme substrates. A gallery can correctly identify a microorganism within a 

given family or genera for which the gallery has been designed. This process has 

been automated recently, with systems such as VITEK®2 (bioMérieux), which only 

require the manual preparation of the 

inoculum. Inoculation of the wells, 

incubation and interpretation of the 

results are carried out by the system 

itself. Figure 1.3 depicts the type of 

card used in VITEK®2 system after 

incubation, with a card designed for 

Gram positive bacteria, showing 

positive results corresponding to 

presence of Staphylococcus 

epidermis. Tests are available for the identification of Enterobacteriaceae 

(2003JCM2096), yeasts (2007JCM1087) or Bacillus species (2010LAM120). 

The use of galleries allows for the identification of a much wider range of 

microorganisms, compared to the agar-based media mentioned previously; however 

these techniques of identification usually require the isolation of a pure culture, which 

implies longer identification procedures. Automated systems are costly and can only 

accommodate a limited number of samples at a time. 

Figure 1.3: Example of a VITEK®2 card displaying 
results for St. epidermis. 
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1.1.3 Chromogenic and fluorogenic dyes 

Chromogenic and fluorogenic dyes have been implemented in many detection 

techniques, to enhance the visualisation of results by providing a strong and easily 

identifiable signal.  

They have been divided into 4 classes (B-1980MI05, 2007BSM96) based on their 

mode of interaction with microorganisms: DNA fluorescent dyes, pH indicators, redox 

indicators and enzyme substrates. 

 

1.1.3.1 DNA fluorescent dyes  

DNA fluorescent dyes typically have a low intrinsic fluorescence upon excitation; 

however, the electronic alteration resulting from interaction with DNA base pairs 

results in a dramatic increase of the quantum yield for the resulting DNA-fluorogen 

complex (B-2006MI06). The nature of the interaction is for most dyes, non-covalent, 

intercalative binding. DNA fluorescent dyes are usually cationic aromatic 

heterocycles, with a planar structure facilitating insertion between the stacked base 

pairs of the DNA duplex (B-2006MI06).  

 

 

 

 

 

 

Acridine orange 7 (Figure 1.4) is perhaps one of the oldest examples, known to have 

two distinct λem whether it is bound to single stranded RNA (λem= 650nm) or double 

stranded DNA (λem= 526nm). Phenanthridium dyes 8a-b, mentioned above in section 

1.1.1.1 and section 1.1.2.1, are widely used DNA stains; their membrane permeability 

can be tuned by modification of the nitrogen substituent (8a-b, Figure 1.4). 

8a,R = CH2CH3  
λex/em = 510 nm / 595 nm 
8b, R = (CH2)3-N

+-(CH3)(CH2CH3)2 
λex/em = 530 nm / 625 nm 

9, λex/em = 509 nm / 527 nm 

7 

λex/em = 500 nm / 526 nm (DNA) 

Figure 1.4: Examples of some common DNA fluorescent dyes. 
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Thiazole orange 9, an old photographic dye belonging to the class of cyanine dyes, 

has shown excellent nucleic acid binding properties associated with an important 

increase of its quantum yield upon excitation. This discovery led the preparation of 

many analogues such as the SYBR Green I 5 or SYTO dyes (1995US5436134), 

mentioned in section 1.1.1.1 and section 1.1.2.1. 

These dyes have gained much popularity due to their implementation into modern 

detection techniques, which are not limited to microorganism identification, such as 

PCR, DNA probes or epifluorescence microscopy to enhance the visualisation of 

genetic material or the microorganism itself. 

 

1.1.3.2 pH indicators 

Bacterial growth often results in biochemical changes within the growth medium, 

some resulting in a noticeable variation of the pH. The addition of a pH indicator to 

the growth medium is often used to monitor the production of acid or the release of a 

base. 

A significant increase of the pH in the growth medium is characteristic of urease 

activity or of L-amino-oxidase (deaminase) activity, such as phenylalanine 

deaminase, which are both characterised by the release of ammonia. A common 

biochemical test used for the detection of these enzymes is the addition of phenol red 

(10, Scheme 1.3) into the medium, which results in a change of the medium colour 

from yellow to red-fuschia (Scheme 1.3). 

 

 

 

 

 

A decrease in pH is usually characteristic of sugar fermentation, which results in the 

production of lactic acid. MacConkey agar uses neutral red 11 to specifically identify 

bacteria that ferment lactose to lactic acid (Scheme 1.4, pH transition: 6.8-8.0).  

 

Scheme 1.3: Acidic and basic forms of phenol red. 

10, pH < 6.8 : yellow pH > 8.4 : fuschia 
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1.1.3.3 Redox indicators 

Redox indicators detect oxidative enzyme systems, present in all living organisms, by 

acting as artificial electron acceptors (2002MI63). They present little specificity and 

are used as general bacterial growth indicators. 

Methylene blue 12 has been widely used for this purpose, with micro organism 

growth monitored by the disappearance of the blue colour resulting from the 

formation of leucomethylene blue 13 (Scheme 1.5).  

 

 

 

 

 

Alternatively, 2,3,5-triphenyltetrazolium chloride (TTC, 14, Scheme 1.6) is also 

commonly used as a growth indicator (1987JAB551, 2002MI63) and for the 

enumeration of bacterial colonies. TTC is a colourless water soluble salt which forms, 

upon reduction, 1,3,5-triphenylformazan 15, a red insoluble solid, which allows clear 

visualisation of bacterial development. 

 

 

 

 

 

Scheme 1.5: Reduction of methylene blue to the colourless leucomethylene blue. 

12, Blue 

pH < 6.8 : red 11, pH > 8.0: yellow 

Scheme 1.4: Acidic and basic forms of neutral red. 

Scheme 1.6: Formation of insoluble 1,3,5-triphenylformazan upon reduction 
of 2,3,5-triphenyltetrazolium chloride. 

13, Colourless 

15, Red 14, Colourless 
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The ability of 2,3,5-triphenyltetrazolium chlorides to form 1,3,5-triphenylformazan 

upon reduction has been widely exploited as a marker of biological activity; the 

production of a range of colours can be achieved by substitution or replacement of 

the phenyl ring with various heterocyclic moieties. 

 

1.1.3.4 Enzyme substrates 

An enzyme substrate is composed of two moieties: a chromophore/fluorophore, or a 

precursor susceptible to form one of the former upon a further reaction taking place 

after enzymatic hydrolysis, and a biological molecule, usually a peptide or a sugar. 

Enzyme substrate dyes comprise an auxochrome, a substituent which enables 

linkage to the biological molecule and the formation of an intense colour via electron 

conjugation, chelation with a metal, or reaction with a secondary reagent (B-

2008MI07). The two main types of auxochromic groups encountered are the hydroxyl 

group, which allows for the detection of osidase, esterase, phosphatase and 

sulfatase activities, or the amino group which permits the detection of 

aminopeptidase activities. 

The efficiency of enzyme substrates has been quantified by the following features:

 - The absorption maximum of the free chromophore/fluorophore must be 

significantly different from that of the substrate. Ideally the enzymatic substrate will be 

non-coloured and/or non U.V. active to allow clear identification of enzymatic activity; 

 - The chromophore/fluorophore must be readily cleaved and must dissociate 

from the enzyme to avoid any interference with the enzymatic activity.  

 - The chromophore/fluorophore must have a high molar absorptivity to allow 

detection of weak enzyme activity;  

 - The chromophore/fluorophore and its corresponding substrate should be of a 

low toxicity to the microorganism(s) under investigation; 

 - The chromophore/fluorophore and its corresponding substrate should be 

stable to the conditions used for bacterial growth: the colour/fluorescence must 

develop only upon enzymatic action. Moreover, the chromophore/fluorophore itself 

should not undergo any further modification induced by side enzymatic reaction that 

would attenuate its colour/fluorescence; 

 - The substrate should have a good water solubility to ease its incorporation 

into the medium and favour its enzymatic hydrolysis; 
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 -The chromophore/fluorophore should accurately localise to the bacterial 

colony with little or no diffusion of the colour when used in a solid medium. 

The overall performances of an enzyme substrate in bacterial identification will be 

discussed in terms of sensitivity and specificity; these two criteria are determined by 

screening the substrate against a large number of bacterial strains. The sensitivity of 

a chromogenic medium is defined as the percentage of positive results for the overall 

strains of bacteria expressing the enzyme activity. The specificity is defined as the 

percentage of organisms producing a colour being the actual targeted bacterial 

strains.  

Enzyme substrates have been subdivided into four groups by virtue of their mode of 

action (B-1980MI02): simultaneous capture chromogenic substrates, post-incubation 

coupling chromogenic substrates, intra-molecular rearrangement/electron 

conjugation chromogenic substrates and self-coloured chromogenic/fluorogenic 

substrates. Examples of traditional and recently developed enzyme substrates follow 

to illustrate this classification.  

 

1.1.3.4.1 Simultaneous capture chromogenic substrates 

The product resulting from enzymatic hydrolysis of the substrate, called the primary 

reaction product, is further reacted (capture reaction) with a second reagent present 

in the medium to form a highly coloured product, called the final reaction product.  

Capture reaction has been widely applied to metal chelators such as esculetin 

(1987MI188, 16), cyclohexenoesculetin (1996AEM3868, 1997JAM532, 

1999US6008008, CHE, 17), 8-hydroxyquinoline (1987MI410, 18), alizarin 

(2000LAM336, 2006US7052863, 19), 3-hydroxyflavone (2007MI410, 20) and 3',4'-

dihydroxyflavone (2007MI410, 21, Figure 1.5).  

 

Figure 1.5: Structures of metal chelators used as simultaneous capture chromogenic substrates.  

17 19 18 

21 20 22 
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Ferric ion, usually incorporated as ferric citrate in the medium, is the metal ion of 

choice due to its low toxicity toward microorganisms. The resulting iron complexes 

are black for all ligands depicted in Figure 1.5, excepted alizarin, for which the 

resulting iron complex is bright violet (2000LAM336). 

The capture reaction using ferric ion is depicted in Scheme 1.7 with the example of 

β-D-glycosidic derivatives of cyclohexenoesculetin 23 (1996AEM3868, 1997JAM532, 

1999US6008008). Upon enzymatic hydrolysis, chelation of the primary reaction 

product, cyclohexenoesculetin (CHE, 18), with ferric ions, results in the formation of 

the black iron complex 24 (2007BMC1172, Scheme 1.7). The resulting iron complex 

24 precipitates out of the medium and locates, with great accuracy, the site of 

hydrolysis (Figure 1.6).  

 

 

 

 

 

The accurate location of the site of hydrolysis, and hence the bacterial colonies, 

greatly depends upon the diffusion factor of the primary reaction product and the rate 

constant of the capture reaction to form the final reaction product.  

Scheme 1.7: Enzymatic hydrolysis of CHE-β-Glu 23, followed by chelation of CHE with ferric ion 
with Figure 1.6 illustrating the formation of 24 for the detection of Clostridium NC1MB 10697. 

24, black complex 

18, colourless, 
blue fluorescence 

 

β-Glucosidase 

CHE-β-Glu, 23, colourless solid 

Figure 1.6 
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This issue is well illustrated while comparing esculin 17 and CHE 18 (Figure 1.7), the 

presence of an extra cyclic carbon chain confers CHE with an increased lipophilicity 

resulting in low diffusion within the medium (Figure 1.7).  

An alternative to metal chelators in simultaneous capture chromogenic substrates is 

the coupling of the primary reaction product to a secondary organic reagent. The 

NADI reaction (Scheme 1.8), reported by Ehrlich in 1885 (B-1885MI08), was 

appropriately adapted to simultaneous capture reactions. 

 

 

 

 

 

This reaction was initially used to detect the presence of 

cytochrome c oxidase (1954JBC733) via the oxidative 

addition of N,N-dimethyl-p-phenylenediamine 25 and α-

naphthol 26, resulting in the formation of the blue 

coloured indophenol 27 (Scheme 1.8, Figure 1.6). 

Appropriate derivatisation of N,N-dimethyl-p-

phenylenediamine, or an analogous compound, and  α-

naphthol have rendered possible the detection of osidase 

and amidase microbial activities via this reaction (2002US6340573B1). The most 

Figure 1.8: Formation of 
blue indophenol on agar 
medium with 
Pseudomonas aeruginosa. 

Scheme 1.8: Formation of the blue indophenol 24 upon enzymatic catalysis 

25 26 

27, blue  

Figure 1.7: Detection of Listeria monocytogenes on agar medium using esculetin-β-D-
glucoside (esculin, left) and CHE-β-D-glucoside (right) (L-2008MI01). 

[O] 
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advanced example reported allows the detection of up to three different enzyme 

activities with the two enzyme substrates L-alanyl-4-amino-2,6-dichlorophenyl-β-D-

galactopyranoside 28 and α-naphthyl-β-D-glucopyranoside 29 (2002US6340573B1, 

Scheme 1.9). Formation of the indodichlorophenol dye 32 only occurred upon full 

enzymatic hydrolysis and formation of both primary reaction products, 2,6-dichloro-4-

aminophenol 30 and α-naphthol 31 (Scheme 1.9) simultaneously, allowing high 

selectivity amongst bacteria. 

 

 

 

 

 

This reaction is advantageous in terms of specificity compared to metal chelators; 

however, it shows less affinity with the site of hydrolysis on solid media where metal 

complexes are more accurate, and is best suited for liquid media. 

The final and most popular example of this type of substrate are indoxyl derivatives 

33-37 (1961T236, 1961JMC574, 1988CJM690); 

these substrates are without contest the most 

widely used chromogens for the detection of 

enzymatic activity and are currently implemented 

in most commercially available chromogenic 

media (2009JMM139).  

Scheme 1.10 illustrates the example of 5-

bromo-6-chloroindoxy-α-glucoside 38, which, 

upon hydrolysis of the α-glucoside moiety, releases the free indoxyl 33, 

Scheme 1.9: Detection of three different enzyme activities: L-alanine-aminopeptidase and β-
galactosidase activities to hydrolyse 28 and β-glucosidase activity to hydrolyse 29. 

28 

29 

32 

30 

31 

N
H

HO

R3

R2

R1

33, R1 = H, R2 = Br, R3 = Cl, ‘Magenta’ 
34, R1 = Cl, R2 = Br, R3 = H, turquoise (‘X’) 
35, R1 = R2 = H, R3 = Cl, ‘Rose/Salmon’ 
36, R1 = R3 = H, R2 = Br, blue  
37, R1 = R2 = R3 = H, indigo blue 
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spontaneously oxidised to a brightly coloured mixture of indigo 39 and other 

indigogenic by-products in minor quantities, such as indirubin 40 (Scheme 1.10). In 

this instance, this could be termed a simultaneous self-capture reaction. The resulting 

chromogenic mixture formed is highly insoluble and precipitates out of the medium, 

allowing a very clear identification of α-glucosidase expressing bacteria (Figure 1.9). 

 

 

 

  

 

Indoxyls 33-37 are very sensitive substrates with a low toxicity (2007JAM2046); they 

are suitable for the detection of osidases, esterases and phosphatases. Moreover the 

position and nature of the halogen substituent on the indoxyl moiety offers a large 

range of colours, which explains their popularity in microbial detection. Their 

synthesis is, however, difficult to achieve and their use is limited to aerobic 

microorganisms, as the presence of oxygen is necessary to the formation of the final 

reaction product. 

 

1.1.3.4.2 Post-incubation coupling chromogenic substrates 

The conditions necessary for the coupling reaction, when using post-incubation 

coupling chromogenic substrates, require addition of the secondary reagent after 

enzyme hydrolysis, as the growth conditions are strongly affected by the reaction. 

Scheme 1.10 and Figure 1.9: Enzymatic hydrolysis of 5-bromo-6-chloroindoxyl (Magenta) 
α-glucoside and formation of the brightly coloured indigo and indirubin derivatives. 

α-glucosidase 

[O] 

38 33 

39 

40 
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This method has been mostly applied to azo-coupling reactions, where the secondary 

reagent, a diazonium salt, is toxic to microorganisms and inhibitory toward enzymatic 

activities (B-1980MI02).  

The detection of pyroglutamyl amidase with the substrate pyroglutamyl-β-

naphthylamide 41 is a good illustration of this method:  the primary reaction product, 

naphthylamine 42, can be coupled with tetrazotized o-anisidine (43, Fast blue B), 

resulting in the formation of the blue azo dye 44 (Scheme 1.11, B-1980MI02). 

 

H
N

N
H

O

pyroglutamyl
aminopeptidase NH2

N
O

pH 1.0 N

N

O

NH2

N

N

N

N

Cl

Cl

H3CO

OCH3 N N
N N

H3CO OCH3

NH2 H2N

 

 

 

 

An alternative capture reaction, using an acidic solution of p-

dimethylaminocinnamaldehyde 45 to form the highly coloured red ene-imine product 

46 is also possible (Scheme 1.11, 1987JCM1805, 1996JCM1811). 

In both cases the toxicity of the final reaction product forbids any further assay on the 

microorganism under investigation, and this resulted in research on other, less toxic, 

substrates (1967MI500, 2002US6340573B1). 

Scheme 1.11: Enzymatic hydrolysis of pyroglutamyl-β-naphthylamide 41 and capture of the resulting 
product, β-naphthylamine 42. 

41 42 

43 

44, blue 

45 

46, red/ red-violet 

42 
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More recently, the example of 9-(4'-aminophenyl)acridine substrates was introduced 

as a means of detection for peptidase activities (2007BMCL1418). Although not a 

true coupling reaction, the primary reaction product 47 is weakly coloured and 

requires the addition of acetic acid to yield the colourful 9-(4'-aminophenyl)acridinium 

ion (48, Scheme 1.12, Figure 1.10, 2007BMCL1418).  

 

 

 

 

 

 

 

 

 

 

Acidification of the medium is only possible after incubation; as such a low pH is 

inhibitory to the growth of most bacteria. 

Post-incubation coupling chromogenic substrates are now seldom used; the 

important range of other enzyme substrates available now can usually provide a 

better alternative to post-coupling reactions. 

 

1.1.3.4.3 Intramolecular rearrangement/electron conjugation chromogenic 

substrates 

In this instance, the enzyme induces a structural modification, such as an 

intramolecular rearrangement, forcing a change of the electron conjugation within the 

molecule and a shift in the wavelength of light absorption. 

An example of this type of substrate is nitrocefin 47, which is utilised in the detection 

of β-lactamase enzyme producing bacteria (2005JOC367). Upon hydrolysis of the    

Scheme 1.12: Ionisation of 9-(4'-amino-2',6'-
dimethoxyphenyl)acridine with acetic acid and 
consequent formation of a purple colour 
(2007BMLC1418).  
Figure 1.10: Importance of ionisation of 33 for 
the visualisation of the bacterial colonies. 

47 48 

Protonated 
form 

Neutral 
form 
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β-lactam ring in nitrocefin 47 by β-lactamase activity, the altered electron density in 

cephalothin 48 induces a dramatic change of the wavelength absorbance, permitting 

visible colony detection (Scheme 1.13). 

 

 

 

 

 

Recently, researchers from Biosynth® have exploited this technique by developing a 

range of indoxyl enzyme substrates, such as the ALDOL™-455-β-D-galactosidase 49 

(P-2009MI01). Upon enzymatic hydrolysis of 49, the colourless primary reaction 

product 50 undergoes an intramolecular Aldol-type condensation to produce a yellow 

insoluble dye, 7-chloro-10-phenyl-10H-indolo-[1,2a]-indol-10-one 51 (Scheme 1.14).  

  

 

 

 

 

Scheme 1.13: Opening of the nitrocefin β-lactam ring by β-lactamase enzymatic activity. 

47, yellow, λmax: 390nm 48, red, λmax: 486nm  

β-lactamase 

Scheme 1.14 and Figure 1.11: Intramolecular rearrangement of ALDOL™-455-β-D-
galactosidase 49 upon enzymatic hydrolysis and resulting yellow colonies of Enterobacter 
cloacae (P-2009MI01, with Dr. L.M. Wick’s authorisation). 
 

β-D-galactosidase 

49, colourless 

51, yellow  

50  
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The rearrangement appears to be instantaneous, and the precipitation of the 

resulting product 51 locates the bacterial colonies with precision (Figure 1.11). The 

low toxicity and absence of background of these substrates is also notable (Figure 

1.11). 

Very few examples of intramolecular rearrangement substrates are available yet, 

presumably due to the difficulty of finding an adequate rearrangement reaction, 

suitable to the bacterial growth condition.  

 

1.1.3.4.4 Self coloured chromogenic/fluorogenic substrates 

The primary reaction product itself is coloured/fluorescent suppressing the need of 

any other reagents. 

The colouration/fluorescence of this type of enzyme substrates results from the 

conjugation of an available lone pair of electrons, belonging to the auxochrome, into 

the π-system of the chromophore/fluorophore. The linkage of a biological molecule to 

the auxochromic group translates into a dramatic quenching of the 

colour/fluorescence for the resulting enzyme substrate, as a result of important 

changes within the electron conjugation. Scheme 1.15 depicts the electron 

movement within the core structure 52 common to some popular chromogenic and 

fluorogenic dyes, and the restricted conjugation occurring within the bond formed 

between the dye and the biological molecule, in the corresponding enzyme substrate 

53. Cleavage of the biological marker by enzymatic hydrolysis restores its initial 

colour/fluorescence.  

 

 

 

Scheme 1.15: Electron movements and quenching of this effect in some common structure of 
self-coloured enzyme substrates: 
 X = O or N, X2

 = O or C(CH3)2, X
3 = N, C-Ph or C-PhCOOH, R = Alkyl chain or amino acid 

52  

Coupling 

Hydrolysis 

Colour/ Fluorescence Quenched colour/ fluorescence 

53  
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1.1.3.4.4.1 Fluorogen 

The three most common fluorogenic cores (Figure 1.12) used as enzyme substrates 

are fluorescein 54, 7-hydroxyphenoxazin-3-one (resorufin, 55) and, probably the 

most important class, the coumarin core, including 7-hydroxy-4-methylcoumarin (4-

methylumbelliferone, 4-MU, 56a) and 7-amino-4-methylcoumarin (7-AMC, 56b) 

(2009JMM139). Recently, benzoxazole 57a and benzothiazole 57b derivatives have 

been used successfully as enzyme substrates (2008WO152306). 

 

 

 

. 

 

The most widely used fluorogen is probably 4-MU, partly due to its low toxicity to 

microorganisms, ease of preparation and bright blue fluorescence under U.V. 

excitation. It is commonly utilised for the detection of microbial sugar hydrolase 

activity. However, the use of 4-MU (pKa = 7.80) 

has several disadvantages. The pH dependence 

is an important issue, as full or partial dissociation 

of the phenolic proton is essential to enhance 

electron conjugation and reach maximum 

fluorescence intensity. This issue has been 

addressed by the preparation of several 7-

hydroxycoumarin derivatives possessing a lower 

pKa and allowing full dissociation of the phenolic 

proton at relatively low pH: fluorinated coumarins 

and particularly 6,8-difluoro-4-methylumbelliferone 

(1997BMC1985, 1998US5830912) as well as chlorinated coumarin analogues 

(2006JAM977),  showed higher efficiency and sensitivity than the traditional 4-MU 

enzyme substrate. If the full dissociation of the phenolic proton improves the 

56a, R = OH,  
λex/em : 360/449nm 
56b,R = NH2,  
λex/em : 351/430nm 

54, λex/em : 494/518nm 

55, λex/em : 571/595nm 

Figure 1.12: Structure of common fluorogens. 

Figure 1.13: Diffusion of 4-MU on 
a multipoint agar plate. 

57a = O 
57b = S 
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emission intensity of the fluorogen, it consequently augments its solubility in aqueous 

media, which dramatically increases the diffusion of the fluorogen on agar media, 

considerably limiting its usefulness in locating bacterial colonies on solid media. As 

an example, the screening of organisms via multipoint inoculation is rendered 

extremely difficult due to the diffusion of 4-MU in the medium (Figure 1.13). 

The relatively low pKa of fluorescein (pKa = 6.4) and of resorufin (pKa = 6.0) results 

in partial deprotonation at physiological pH, and 

causes the same diffusion phenomenon when 

these substrates are used on agar media. 

Resorufin-β-D-glucuronide is commonly used for 

the detection of E. coli; however, the product of 

enzymatic hydrolysis shows poor localisation of 

the bacterial colonies (Figure 1.14). Its derivative, 

2-dodecylresorufin is reported to show high affinity 

for lipid regions of cells (B-2005MI04); however, 

its use as an enzyme substrate has not been 

reported yet. The preparation of fluorinated resorufin analogues has also been 

reported to improve the fluorogenic properties of these dyes (2008US7432372). 

Despite the disadvantages mentioned above, fluorogenic substrates are notoriously 

very sensitive with diagnostic results achievable within hours. Early readings are not 

achievable with the naked eye and require instrumentation to measure weak 

fluorescence. Moreover, their use in solid media has been restricted in favour of 

chromogenic substrates (2007BSM96). 

 

1.3.4.4.2 Chromogens 

Early development of self-coloured enzyme substrates involved the use of p-

nitroaniline 58a (1961ABB271, 1967MI415) and p-nitrophenol 

58b (1961BBA460, 1967SCI1451). Enzyme activity was 

witnessed by the appearance of a yellow colour at the site of 

hydrolysis. Although, the colour is relatively weak compared to 

other chromogens, these enzyme substrates are still used in 

various test kits, as they are cheap and easy to produce.  

More recently, several 7-aminophenoxazin-3-one derivatives 59a-d have been 

reported for the detection of aminopeptidase activity on agar medium (2008OBC682). 

Figure 1.14: Detection of E. coli 
using resorufin-β-D-glucuronide. 

58a, R = NH2, yellow 

58b, R = OH, yellow 

NO2

R



CHAPTER ONE  INTRODUCTION  
   

26 

The presence of a fused benzene ring (2006US0121551), or alkyl substituent 

(2006WO030119, 2008OBC682), and the absence of a significant pH dependency, 

successfully limited the colour diffusion from the site of hydrolysis in solid media.       

7-Amino-1-pentylphenoxazin-3-one 59a is a particularly efficient substrate, with high 

affinity for the bacterial colonies (Figure 1.15). The main drawback reported for 7-

aminophenoxazin-3-one based enzyme substrates is the orange background 

colouration generated by the substrate itself 

(Figure 1.15). 

 

 

 

 

 

 

Other, less popular, chromogens were reported for detection of enzymatic activity: 

acridinone 60, (1989US4810636, 1991AGE1646), naphtholbenzein 61 

(2000AEM5521), 5-(4-hydroxy-3,5-dimethoxyphenylmethylene)-2-thioxothia-zolidin-

4-one-3-ethanoic acid (SRA, 62, 2009FML10) and the 3-methoxy and 3,5-dimethoxy 

derivatives of 4-[2-(4-hydroxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl 

carboxylic acid) (63a [SLPA] and 63-b [VLPA], 1990CARc5, 1999AEM807, 

2002AEM3622) proven to be efficient for bacteria identification; colourfull colonies 

were formed upon hydrolysis of their corresponding substrates (Figure 1.16).  

N

HO O

OHO

OH

R1R2

N

HOOC

OH

OCH3H3CO

S

N
O

S

COOH

 

 

59a, R1 = n-pentyl, R2 = R3 = H, red/pink 
59b, R1 = R2 = CH3, R3 = H, red/pink 
59c, R1 = R2 = R3 = CH3, red/pink 
59d, R1 = R2 = -(CH)4-, R3 = H, red/pink 

Figure 1.15: Detection of  Ps .aeruginosa using 
7-N-β-alanylamino-1-pentylphenoxazin-3-one. 

60, Pink 
61, Red-Pink 

O

N

H2N O

R1

R2

R3

62, Red-Pink 

63a, R1 = R2 = OCH3, burgundy 
63b, R1 = OCH3, R2 = H, red 
 

Figure 1.16: Structure of chromogens recently developed for the detection of enzymatic activity. 
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1.1.4 Enzyme targets  

Knowledge of the most common enzymes expressed by pathogenic and non-

pathogenic microorganisms is essential to the successful development of efficient 

enzyme substrates. Identification and characterisation of all the different enzymes 

produced by a bacterium is a long and tedious process (2007BSM96) and such 

information is not always available. However, a good knowledge of the most 

important bacterial enzymes has been acquired. A description of enzyme classes and 

their use in microbiology for the differentiation of microorganisms has been given by 

Bascomb (1987MM105) and more recently by Orenga et al. (2009JMM139). The 

following review will attempt to highlight briefly the main enzyme activities exploited in 

chromogenic media for the detection of some important pathogens. 

 

   1.1.4.1 Esterases and lipases 

Esterase enzymes are ubiquitous in all living organisms. Esterases can hydrolyse 

substrates with a short carbon chain, whereas lipase enzymes hydrolyse long carbon 

chain esters and trialkylglycerol fatty acid esters to glycerol and the constituent fatty 

acids. Hydrolysis of short esterase substrates, such as various fluorescein diacetate 

derivatives, has been widely used for the monitoring of microorganism viability and 

activity by flow cytometry (1995FML1, 2003JMM379). Variation of the ester 

hydrocarbon chain has been exploited to achieve higher specificity, for example, use 

of the fluorogenic substrate 4-methylumbelliferyl butyrate has been suggested as a 

complementary test for the differentiation of various microorganisms, such as 

Branhamella catarrhalis and Neisseria spp. (1988JCM1227) or Mycobacterium 

fortuitum and Mycobacterium chelonei (1977MI147). 

The most important application of chromogenic subtrates to esterase activity is 

probably for the detection in stool samples of Salmonella spp., the pathogen 

responsible for the majority of food poisoning episodes in the United Kingdom 

(1999JCM766). Salmonella spp. are known to be some of the few 

Enterobacteriaceae able to hydrolyse fatty acid esters with carbon chain lengths of C-

7 to C-10 (2007JAM2046). Cooke et al. studied the sensitivity of various esters of 4-

[2-(4-hydroxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl carboxylic acid) 

bromide (SLPA, 63a), differing in chain length  (C-4 to C-10), and found the 

octanoate ester to be most sensitive for the detection of Salmonella spp. (64, 

Scheme 1.16, 1999AEM807).  
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Consequently, many recent commercial chromogenic substrates rely on the 

octanoate esterase activity to detect Salmonella spp.: as an example, indoxyl 

magenta caprylate is present in Oxoid-Salmonella-Chromogen-Agar (OSCM, Oxoid), 

Rapid'Salmonella (BioRad), Compass Salmonella (Biokar diagnostic), Salmonella-

Agar-Plate (ASAP, AES), Salmonella-Medium-Identification-Detection (SM ID2, 

bioMérieux) or HiCrome Salmonella agar (HIMEDIA) (2007BCM96). A comparative 

study carried by Perez et al. (2003JCM1130) confirmed the high specificity and 

selectivity of such detection media for the elucidation of Salmonella spp. within 

clinical specimens.  

The lipase enzyme activity has been seldom exploited in the field of enzyme 

substrates, presumably due to the difficulty of incorporating highly lipophilic enzyme 

substrates into an aqueous medium. The hydrolysis of dialkylglycerol fatty acid esters 

of resorufin by a free lipase from Pseudomonas cepacia (2006JMCE76) has, 

however, been reported, suggesting potential applications. 

 

1.1.4.2 Glycosidases 

1.1.4.2.1 β-D-Glucuronidase  

Bacterial β-D-glucuronidase plays a role in the decomposition process of the host 

connective tissue during the infectious process (1973AM863).  

β-D-Glucuronidase activity is relatively limited amongst bacteria; it has been detected 

mainly in Escherichia coli (94 to 96% of clinical isolates), but also in some Shigella 

species (44 to 58% of clinical isolates) and Salmonella species (20 to 29% of clinical 

isolates) (1991MR335). The prevalence of this enzyme in E. coli (1990AEM1203) has 

Salmonella spp. 

esterase 

 

Scheme 1.16: Hydrolysis of SLPA octanoate 63 by Salmonella spp. esterase (1999AEM807). 

64 63a 
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generated a strong interest in the preparation of β-D-glucuronic acid derivatives:  with 

chromogens, such as p-nitrophenol (1984JCM1177, 1990AEM2021), 5-bromo-4-

chloroindoxyl (1988CJM690, 1988AEM1874), or fluorogens, such as 4-

methylumbelliferone (1984JFS1186, 1986JCM368, 1988JCM2682) and its 6-chloro 

derivative (2006JAM977). These substrates can differentiate with high specificity E. 

coli (the most common urinary tract pathogen) amongst other Enterobacteriaceae 

present in urine samples (1995JCM199, 2009JMM139). Current commercial 

chromogenic agars such as chromID coli (bioMérieux) or Oxoid BrillianceTM 

E.coli/coliform Selective Agar (Oxoid) exploit the β-D-glucuronidase acitivity of E. coli.   

 

.    1.1.4.2.2 β-D-Galactosidase  

 

 

 

 

 

β-D-Galactosidase, also called lactase, catalyses the breakdown of lactose 65 into its 

monosaccharide constituents β-D-galactose 66a and α/β-D-glucose 66b (Scheme 

1.17), a step involved in the fermentation of sugar. This enzyme is mainly distributed 

within the coliform group (Enterobacteriaceae), which are common water pollutants; 

assay of β-D-galactosidase activity is therefore part of the national guidelines for the 

microbiological examination of water (2001JAM1118).  

The detection of β-D-galactosidase activity with chromogenic substrates was first 

introduced by Aizawa using o-nitrophenyl-β-D-galactoside (1939MI321). Numerous β-

D-galactopyranosyl substrates have been prepared since then, using p-nitrophenol, 

6-bromo-2-naphtol (1967MI395), 5-bromo-4-chloro-3-indoxyl (1990AEM301), alizarin 

(2000LAM336), CHE (1996AEM3868), p-naphtholbenzein (2000AEM5521) as 

chromogens, and 4-methylumbelliferone (4-MU) or 7-hydroxycoumarin-3-carboxylate 

(2001JAM1118) as fluorogens.  

Specific chromogenic media for some virulent member of the coliform group such as 

E. coli 0157:H7 or vancomycin resistant enterrococci (VRE) are based on a β-D-

galactopyranosyl derivative of indoxyl or alizarin (2009JMM139). 

β-Galactosidase 

Scheme 1.17: Lactose hydrolysed into β-D-galactose and α/β-D-glucose. 

65 66a 66b 
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1.1.4.2.3 α-D-Galactosidase 

Little information is available on the prevalence of α-D-glycosidase, however, α-D-

galactopyranoside activity seems to occur in some species of the genus 

Streptococcus and Enterococcus (1989JCM1719). Streptoccocus bovis, which is 

linked with gastrointestinal neoplasia, was differentiated from other streptococci via 

α-D-galactopyranoside activity using 4-MU (1983AEM622) or p-nitrophenol 

(1989JCM1719).  

Perry et al. reported this enzyme to be predominant in Salmonella spp., and 

consequently developed an agar medium (ABC medium, 1999JCM766) including an 

α-D-galactoside chromogen, to differentiate Salmonella spp. from the various 

Enterobacteriaceae present in stool samples.  

 

1.1.4.2.4 β-D-Glucosidase  

The primary role of β-D-glucosidase is the hydrolysis of gluco-oligosaccharides into 

single glucose units. This enzyme is widely 

distributed amongst bacteria and has found 

application for the detection of some important 

human pathogens (2009JMM139). β-D-Glucosidase 

is prevalent in enteroccoci (1997JAM532, 

2006JAM410), Listeria spp. (2004MI1), Vibrio spp. 

(2005MI1454), Candida spp. (2009JMM139) and members of the Enterobacteriaceae 

family (1997JAM532, 2006JAM410). 

The use of the natural substrate esculin 67 for the detection of β-D-glucosidase 

activity has been known for more than a century (1909MI547), but the issue of 

diffusion discussed in section 1.3.4.1 (Figure 1.7) led to the use of more efficient 

substrates. Perry et al. tested most known chromogen for the detection of β-D-

glucosidase activity: indoxyls, 8-hydroxyquinoline, esculetin, CHE, 3-hydroxyflavone, 

3',4'-dihydroxyflavone and alizarin, and highlighted the variation of sensitivity of a 

same substrate amongst bacterial species and the necessity to select carefully a 

chromogen for targeting a particular pathogen (1997JAM532).  
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1.1.4.2.5 αααα-D-Glucosidase 

Sadler et al. demonstrated the occurence of α-D-glucosidase activity in the genus 

Bacilli using p-nitrophenyl-α-D-glucoside (1984JCM594) and differentiated the 

pathogenic Bacilli anthracis, responsible for the disease commonly called anthrax, 

from other non pathogenic Bacilli (1984JCM594).  

More recent applications have exploited α-D-glucosidase activity to differentiate 

Enterococcus faecalis from Enterococcus faecium (VRE-BMX, bioMérieux, 

2007JCM1556), to identify specifically Staphylococcus aureus (S. aureus ID, 

bioMérieux, 2003JCM5695), or Chronobacter sakazakii (2007AEM48), an occasional 

contaminant of powdered infant formula milk. All media used indoxyl-α-D-glucoside 

derivatives as the chromogen.  

 

1.1.4.2.6 β-Hexoaminidase 

β-Hexoaminidase enzyme is prevalent mainly in Candida albicans, a commensal 

yeast of the digestive mucosa, which can proliferate under certain condition, causing 

severe mycoses. This enzyme is expressed weakly, if at all, by other Candida 

species (2002AEM3622, 2006JCM3340), and provides the ideal tool for the 

differentiation of C. albicans.  

Commercially available chromogenic media, such as CHROMagar Candida 

(CHROMagar, 1996JCM454), Candida ID 2 (CAID2, bioMérieux, 2006JCM3340), 

Candida diagnostic agar (CDA, PPR diagnostic limited, 2002AEM3622) and 

CandiSelect4 (CS4, Bio-Rad, 2008JMM89) exploit β-hexoaminidase activity for the 

identification of C. albicans. Cooke et al. reported the use of a new substrate, 

ammonium 4-{2-[4-(2-acetamido-2-deoxy-β-D-glucopyranosyloxy)-3-methoxyphenyl]-

vinyl}-1-(propan-3-yl-oate)-quinolium bromide (VLPA-GlcNAc, 68, Scheme 1.18, 

2002AEM3622), which produced red colonies of C. albicans.  
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Several comparative studies (1996JCM454, 1998JMM623, 2001MI9, 2002AEM3622) 

have highlighted the high sensitivity, high specificity and time-saving of such 

chromogenic media, suggesting them as an advantageous replacement of 

conventional C. albicans tests in microbiological routine tests. 

 

1.1.4.3 Phosphatase 

Phosphatase enzymes are involved in several key processes and, hence, are widely 

distributed amongst organisms. Their use in the domain of bacterial identification is 

limited to the hydrolases of phosphate ester, the latter being divided into two 

categories, according to their pH optimum: 

- Acidic phosphatase, which has optimum activity at pH 4-5 and was found to be 

specific to hexose phosphates (1987MM105); 

- Alkaline phosphatase, which has optimum activity at pH 8.5-9.5 and hydrolyses all 

phosphomonoesters (1987MM105). 

The most relevant examples of microorganism detection via phosphatase activity are: 

Clostridium perfringens, which 

expresses acidic phosphatase and is 

detected using 4-methylumbelliferyl-

phosphate 69 in combination with a 

selectively toxic antimicrobial agent, D-

cycloserine (Fluorocult TSC-agar, 

β-hexoaminidase 

Scheme 1.18: Enzymatic hydrolysis of VLPA-GlcNAc by Candida albicans (2002AEM3622). 

68, pale orange 
63b, red 

70 

69 
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Merck, 2000IJF205), and Staphylococcus aureus, which is detected using 

phosphatase substrates such as 5-bromo-6-chloro-3-indoxyl phosphate 70 

(CHROMagar Staph. aureus, CHROMagar, 2000US6548268, 2000JCM1587).  

Phosphatase substrates have also been included for non-direct detection of Candida 

albicans, i.e. to allow a better differentiation of C. albicans by tagging other Candida 

species in different colors (CHROMagar Candida, 1996JCM454). 

 

   1.1.4.3.1 Phosphatidylinositol phospholipase C (PI-PLC) 

Phosphatidylinositol phospholipase C (PI-PLC) is a periplasmic enzyme secreted by 

several bacteria including pathogenic strains of Listeria spp. (L. monocytogenes and 

L. ivanovii), Staphylococcus spp., Bacillus spp. and Clostridium spp. 

(2000US6051391). Its main application in microbial detection is the differentiation of 

L. monocytogenes, the food-borne pathogen causative of meningitis, septicaemia 

and miscarriage in pregnant women (1996MI195), from other less pathogenic Listeria 

species (BCM-LMDS, Biosynth (2000IJF205) or Rapid L’MONO, Sanofi (2004MI1)). 

Shashidhar et al. reported the use of 2-naphthol-myo-inositol-1-phosphate for the 

detection of PI-PLC activity (1991ABI10); however, it has been replaced by the more 

effective 5-bromo-4-chloro-3-indoxyl-myo-inositol-1-phosphate 71 (2000US6051391, 

Scheme 1.19). 

 

 

 

1.1.4.4 Peptidase 

Peptidases are ubiquitous in bacteria, as they participate in the degradation of 

peptides into free amino acids and, hence, provide the essential supply of amino 

acids for the synthesis of new proteins (1996FMR319). 

Peptidases can be classified into two groups: endopeptidases and exopeptidases. 

Endopeptidases hydrolyse peptide bonds anywhere within a peptide chain. 

Exopeptidases hydrolyse peptide bonds only at the extremities of a peptide chain; 

PI-PLC 

Scheme 1.19: PI-PLC hydrolysis of 5-bromo-4-chloro-3-indoxyl-myo-inositol-1-phosphate 71. 

71 
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after hydrolysis, carboxypeptidases leave a free carboxylic acid group on the C-

terminal end of the peptide chain, while aminopeptidases leave a free amino residue 

at the N-terminal end of the polypeptide (Scheme 1.20, 1996FMR319). 

 

 

 

Some peptidases have promiscuous activity, others are highly specific for peptide 

bonds to a few particular amino acids (1996FMR319). Table 1.1 summarise the wide 

range of arylamidase enzymes actually used in manual and automated enzyme test 

kits, mentioned in section 1.1.2.5.2.  

 

 

Alanyl Glycine Lysyl-alanine 

ββββ-Alanyl Glycyl-arginine Methionine 

Alanyl-alanine Glycyl-glycine Phenylalanine 

Alanyl-phenylalanyl-proline Glycyl-proline Proline 

Arginine Glycyl tryptophan Pyrrolidonyl 

Arginyl-arginine Histidine  Serine 

Aspartic acid Hydroxyproline Seryl-tyrosine 

Citrulline Isoleucine  Tryptophan 

αααα-Glutamic acid Leucine  Tyrosine 

Glutamyl-glutamic Leucyl-glycine  

Glutamyl-glycyl-arginine Lysine  

 

 

 

 

Scheme 1.20: Peptidase classification: A, aminopeptidase (exopeptidase); B, endopeptidase; 
C, carboxypeptidase (exopeptidase). 

Table 1.1: Known arylamidase activities which are exploited for bacterial detection (2009JMM139).  

Chromogen Chromogen 
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1.1.4.4.1 Pyroglutamyl aminopeptidase  

L-Pyroglutamyl aminopeptidase or L-pyrroIidonyl aminopeptidase, more commonly 

named PYRase, was first described in Bacillus subtilis (1969EJB63). This enzyme is 

prevalent in group A streptococci, Streptococcus pyogenes, and group D enterococci, 

Enterococcus faecalis, Enterococcus faecium, Enterococcus avium and 

Enterococcus durans (1983JCM1275, 1987JCM1805, 1996JCM1811). As a result, 

PYRase substrates have been suggested as a complementary test for the 

identification of these species (1987MI283). The PYRase activity test using L-

pyroglutamyl-β-naphthylamide paper strip is extremely quick; incubation of the 

bacterial colonies on a paper strip containing the enzyme substrate usually gives a 

positive reaction within 10-20 minutes (1987JCM1805, 1996JCM1811). Although L-

pyroglutamyl-β-naphthylamide has been the most commonly reported substrate 

(1991MR335), L-pyroglutamyl-7-amido-4-methylcoumarin (1978JB1145) and its 4-

trifluoromethyl derivative (1990APF326) or L-pyroglutamylnitroanilide (1978JB1145) 

have also been used successfully. 

 

1.1.4.4.2 L-Alanine aminopeptidase 

L-Alanyl aminopeptidase (L-ALA) is localised in the cell wall of Gram-negative 

bacteria (1990JAB822). Cerny reported the prevalence of L-ALA in Gram-negative 

bacteria and the absence of the latter in Gram-positive bacteria using L-alanyl-p-

nitroanilide (1976EJM223). Manafi et al. screened for L-ALA against a wide range of 

Gram-negative and Gram-positive positive organisms using four different L-ALA 

aminopeptidase substrates, and suggested this test was a reliable alternative to the 

Gram stain (1990JAB822). 

The following chromogens were reported for the detection of Gram-negative 

organisms: 4-methoxy-β-naphthylamine (1990JAB822), 2-aminoacridone 

(1990JAB822), 7-amino-4-methylcoumarin (1990JAB822) and derivatives of 9-(4'-

aminophenyl)-10-methylacridinium salts (2008BML832). The Gram-Sure test (Remel, 

USA) is an example of a commercially available test for the differentiation of Gram-

positive and Gram-negative bacteria, based on L-alanyl aminopeptidase fluorogenic 

substrates. 

An alternative use of L-ALA activity, although not directly related to chromogenic 

substrates, is the selective release of the antibiotic, fosfalin 72.  Alafosfalin 73, which 

has a general low toxicity, is known to be stereospecifically recognised by bacteria 
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(1979AAC677). The antibiotic L-α-aminoethylphosphonic acid (fosfalin, 73), is 

released upon selective aminopeptidase hydrolysis (Scheme 1.21), and interferes 

with alanine racemase, which plays an essential role in the crosslinking of the 

peptidoglycan layer, resulting in growth inhibition (2002JCC3913).  

 

 

 

 

 

Perry et al. have demonstrated that Salmonella spp. are resistant to alafosfalin, 

possibly due to non-permeation of alafosfalin through the cell membrane, and have 

exploited those results to develop a selective medium for the detection of Salmonella 

in stool samples (2002JCC3913, 2002WO24725). 

 

   1.1.4.4.3 β-Alanine aminopeptidase 

β-Alanine aminopeptidase (β-ALA) was recently isolated from Pseudomonas sp. 

(2005MI3075) and appeared to be very specific to β-alanine dipeptides. The 

preparation of β-alanine derivatives of 9-(4'-aminophenyl)acridines (2007BML1418), 

9-(4'-aminophenyl)-10-methylacridinium salts (2008BML832), and 7-

aminophenoxazinones (2008OBC682) have confirmed the occurrence of β-ALA in 

Ps. aeruginosa, but also detected β-ALA activity in Serratia marcescens and in 

Burkholderia cepacia. Consequently, a chromogenic medium for the specific 

detection of Ps. aeruginosa has been developed (PS-ID, bioMérieux, 2009MI143), 

using the β-alanine derivative 74 of the potent chromogen 7-amino-1-

pentylphenoxazin-3-one (59a, Scheme 1.22). 

 

Scheme 1.22: Detection of β-alanine aminopeptidase using 7-amino-1-pentylphenoxazin-3-one 
(2008OBC682). 

β-ALA 

74, pale orange 59a, deep purple 
with metallic sheen 

Scheme 1.21: Release of L-α-aminoethylphosphonic acid via aminopeptidase activity. 

Aminopeptidase 

73 72 
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  1.1.4.5 Nitroreductase enzymes 

It appears that the reduction of 2,4,6-trinitrotoluene by bacteria was the first 

nitroreductase activity reported in the literature by Channon (1944BJ70). A three-step 

pathway has been suggested by Yamashina (1954BCJ42) for the enzymatic 

reduction of nitroaromatic compounds 75, involving nitroso 76 and hydroxylamine 77 

intermediates (Scheme 1.23). Experiments involving the monitoring of molecular 

hydrogen absorbance by bacteria during reduction confirmed this hypothesis 

(1976AEM949). 

 

 

 

 

The nitroreductase enzymes have been subdivided (1970JBA1126, 1979JBC4009, 

1980CJM81) into two different classes, namely “reductase I” and “reductase II” types, 

based on their sensitivity to oxygen. The “reductase I” type corresponds to an 

oxygen-insensitive enzyme, following the three step reduction pathway described 

above (Scheme 1.23), while the “reductase II” type is an oxygen-sensitive enzyme 

(1979JBC4009), with a reduction pathway initiated with a nitro radical anion, 

extremely reactive toward molecular oxygen.  

O O

C
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OH

O OH2N
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O

OH
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O

-O

O OH2N

C
O

OH

Nitroreductase

No emission under long range U.V. excitation

Bright blue fluorescence under long range U.V. excitation

 
Scheme 1.24: Nitroreductase activity evidenced by 7-nitrocoumarin-3-carboxylate (2001LAM403). 

Scheme 1.23: Suggested enzymatic reduction pathway of nitro compounds (1954BCJ42). 

75 76 77 

79 

80 
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James et al. evidenced nitroreductase activity using several 7-nitrocoumarin 

derivatives (2001LAM403). Amongst the 7-nitrocoumarins tested, 7-nitrocoumarin-3-

carboxylic acid (79, Scheme 1.24) is reduced, upon enzymatic activity, to the highly 

fluorescent 7-aminocoumarin-3-carboxylic acid (80, Scheme 1.24).  

Nitroreductase activity was hence evidenced in a wide range of clinically important 

bacteria and yeasts. 7-Nitrocoumarins have potential application as growth 

indicators, due their general activity amongst microbial genera and their stability as 

fluorescent markers.  

 

1.2 Occurrence of the phenoxazinone core  

 1.2.1 Natural products 

  1.2.1.1 Ommochromes 

The phenoxazinone core 81 was first discovered occurring as a natural pigment. 

These pigments were referred to as ommochromes, the 

name originating from its first localisation: Becker 

isolated this new type of pigment from the eyes of the 

arthropod Ephestia kühniella (1939MI597, 1941N237). 

They have been isolated since in a wide range of insects from the order of 

Lepidoptera, Diptera, Odonata, Orthoptera, Phasmida and Hymenoptera                  

(B-1974MI10).   

Much work was undertaken by Butenandt who later successfully elucidated 

(1954LA217, 1954LA229) and synthesised (1954LA106) xanthommatin 82 (Scheme 

1.25). Xanthommatin is a yellow pigment 

which is readily and reversibly reduced to 

a red pigment, 5,12-

dihydroxyxanthomatin  83a (Scheme 

1.25). This transformation is thought to 

occur via an enzymatic process, possibly 

via a specific xanthommatin reductase 

enzyme, as reported by Santoro et al. 

(1986MI169). Both ommochromes (82 

and 83a), amongst other type of 

pigments, are present in arthropods’ eyes, more precisely located between the 

81 

Figure 1.16: Eye pigmentation of Drosophila 

melanogaster (1998G1551): Wild type (left) and 
mutant lacking ommochrome pigmentation 
(right) (with the authorisation of Prof. Kent Golic) 
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individual ommatidium (1972MI616) and are responsible for the eye colouration 

(Figure 1.16). Xanthommatin and 5,12-dihydroxyxanthomatin act mainly as 

screening pigments: screening pigments affect light perception by lowering the 

sensitivity of photoreceptor cells, resulting in a decreased “background illumination” 

of the photoreceptors, hence increasing acuity (B-1974MI11). This role was 

confirmed by experiments showing that Drosophila mutants devoid of ommochromes 

had reduced contrast perception.   

 

 

 

 

 

The 5,12-dihydroxyxanthomatin form 83a is responsible for  the formation of two 

other ommochromes, namely rhodommatin 83b, the β-O-glucoside derivative of 

dihydroxyxanthomatin, and ommatin D 83c, the sulphate ester derivative of 

dihydroxyxanthomatin (Scheme 1.25). These pattern pigments have been isolated 

from the wings of various butterflies (1997MI215). 

A fifth type of pigment, 84, was isolated by Bolognese from the eyes and skin of 

cephalopods (1988JHC1243). This pigment was recognised as a precursor of 5,12-

dihydroxyxanthomatin, which was produced when 84 was stirred under acidic 

conditions (1988JHC1243, Scheme 1.25).  

83a, R = H 

83b, R = β-glucosyl 
83c, R = SO3H 

Scheme 1.25: Xanthommatin 82, its reduced 83a and trapped reduced forms 83b, 83c. 

82 

84 

H+ 
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There is no reported biological activity for ommochromes and study of those 

compounds was mostly related to the understanding of their biosynthetic pathways, 

and their distribution in living entities. 

 

  1.2.1.2 Mould metabolites 

Cinnabaric acid 85a, cinnabarin 85b and tramesanguin 85c were isolated by Cavill et 

al. (1959T275, 1961T139) and Gripenberg et al. 

(1957ACB1485, 1958ACB603, 1963ACB703) from 

wood-rotting fungi, namely Coriolus sanguineus, 

various species of Polystictus sanguineus and 

Trametes cinnabarina. Later, Sullivan et al. isolated 

the same pigments from three other fungi belonging 

to the Pycnoporus species (1971JPS1097). Very 

recently, Dias et al. (2009NPC489) isolated a novel phenoxazinone pigment from 

Picnoporus cinnabarinus : pycnoporin 85d. These phenoxazinones were isolated as 

red crystalline solids, responsible for the bright red-orange pigmentation of the fungi.  

Cinnabarin was reported to possess anti-viral and anti-microbial activity (1998MI317, 

1999MI89, 2003MI1069), as well as some significant antitumor activity 

(2009NPC489).  

 

  1.2.1.3 Actinomycins 

Actinomycins (Figure 1.17, 86) are, without contest, the most well known and studied 

structure related to the phenoxazinone core. They were first isolated by Waksman 

and Woodruff from cultures of Actinomyces (Streptomyces) antibioticus (1940MI609), 

who observed high bacteriostatic and bactericidal activities over a range of both 

Gram-positive and Gram-negative bacteria. The structure of actinomycins was 

classified by Brockmann as a chromopeptide (1950N494): it is composed of a 

chromophore moiety, 2-amino-1,9-dicarboxyl-4,6-dimethylphenoxazin-3-one, and two 

cyclopeptide chains (86). Three particularly well known actinomycins are actinomycin 

C1 (D) (86a, 1964N384), actinomycin C2 (86b) and actinomycin C3 (86c, 1960N230); 

all show high anti-tumour activity in human cancer (1974MI49). Actinomycin D is 

currently used to treat a variety of paediatric cancers (B-2006MI12).  

 

85a R1 = R2 = COOH 

85b R1 = CH2OH, R2 = COOH 

85c R1 = COOH, R2 = CHO 
85d R1 = CH(OCH3)OH, R2 = COOH 
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However, actinomycins use is limited due to their high toxicity toward normal cells 

and many derivatives have been made by either modifying, via chemical synthesis, 

the chromophore moiety (1966JOC3694, 1975JMC1175, 1990LA1269), or the 

sequence of amino acids (1964TL3523, 1966TL2331, 1972JACS4759), in an attempt 

to lower its toxicity.  

The amino acid sequence was also successfully modified via controlled biosynthesis, 

a technique involving the introduction of similar amino acids to the ones present in 

the actinomycin peptide chain into the microorganism growing medium 

(1974CRV625). As an example, actinomycin E1 (86d) and E2 (86e) (Figure 1.17) 

were produced by Streptomyces antibioticus in the presence of DL-iso-leucine. 

The efficiency of actinomycin is tightly bound to its complex structure and the way it 

specifically intercalates with DNA (1974CRV625); this was impaired with the 

introduction into the 4,6-positions of a bulkier alkyl chain or a methoxy group, the 

absence of the methyl group, modification of the amino group in the 2-position, or 

modification of the cyclopentapeptide chain and resulted in a considerable decrease 

of activity for the resulting analogues (1974CRV625).  

Despite intensive research in the preparation of new actinomycin derivatives, no 

analogues with superior activity to that of actinomycin D were discovered and 

research in the field is now less important.  

 

  1.2.1.5 Biosynthesis of the phenoxazinone core 

It is worthy to note that ommochromes, cinnabaric acid and its analogues, as well as 

actinomycin, all share a common core structure, namely 2-amino-3H-phenoxazin-3-

one.  

Figure 1.17: General structure of actinomycins 
 
86a- Actinomycin C1 (or D) 

α=β: 1 = L-Thr, 2 = D-Val, 3 = L-Pro, 4 = Sar, 5 = N-methyl-L-Val  
86b- Actinomycin C2  

α: 1 = L-Thr, 2 = D-Val, 3 = L-Pro, 4 = Sar, 5 = N-methyl-L-Val  
β: 1 = L-Thr, 2 =L-Ile, 3 = L-Pro, 4 = Sar, 5 = N-methyl-L-Val  
86c- Actinomycin C3 

α=β: 1 = L-Thr, 2 =L-Ile, 3 = L-Pro, 4 = Sar, 5 = N-methyl-L-Val  
86d- Actinomycin E1 
α: 1 = L-Thr, 2 = D-Val, 3 = L-Pro, 4 = Sar, 5 = N-methyl-L-Val  
β: 1 = L-Thr, 2 =L-Ile, 3 = L-Pro, 4 = Sar, 5 = N-methyl-Ile  
86e- Actinomycin E2 
α=β: 1 = L-Thr, 2 =L-Ile, 3 = L-Pro, 4 = Sar, 5 = N-methyl-Ile 
 86 

α β 
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87 88 89 

90 84 Xanthommatin 82 

91 

92 93 94 Actinomycin 86 

R = Pentapeptide lactone  

Cinnabaric acid 85a 

Scheme 1.26: Analogy in the biosynthesis of xanthommatin, cinnabaric acid and actinomycins 
(1965JBC4377, 1974MI47, 1974CRV625):  
i) Tryptophan pyrrolase, ii) Kynurenine formamidase, iii) Kynurenine-3-hydroxylase, iv) 
Phenoxazinone synthetase, v) [Oxidative-cyclisation], vi) Kynureninase, vii) [Methylation], viii) 
[Peptide formation]. 

ii) i) 

iii) 

iv) 

iv) 

v) 

vi) 

vii) 

viii) iv) 
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This similarity arises from their common precursor, tryptophan 87, as well as a very 

similar biosynthetic pathway (Scheme 1.26), although they are all produced by 

different living entities.  

Tryptophan is enzymatically opened to N-formylkynurenine 88, followed by N-

deformylation to produce kynurenine 89. Subsequent hydroxylation leads to 3-

hydroxykynurenine 90, which is the known precursor for both enzymatic (1974MI47) 

and chemical (1954LA75) preparation of xanthommatin 82, via the phenoxazin-3-one 

intermediate 84 (Scheme 1.26). 3-Hydroxykynurenine 90 is further transformed to 3-

hydroxyanthranilic acid 91, the precursor of cinnabaric acid 85a (Scheme 1.26). 

In the biosynthesis of actinomycin, 3-hydroxyanthranilic acid 91 is further methylated 

by methionine, to give 4-methyl-3-hydroxyanthranilic acid (4-MHAA, 94), which is 

linked to a pentapeptide chain 93 followed by lactonisation of the latter once attached 

to 4-MHAA, leading to 4-MHAA pentapeptide lactone 94 (1974CRV625, 

1993JBC10612). The oxidative coupling of two identical 4-MHAA pentapeptide 

lactone moieties leads to actinomycin 86 (Scheme 1.26).  

The enzymatic oxidative coupling of two o-aminophenol moieties 94 to 2-

aminophenoxazin-3-one 95 is known to occur with different enzymes, phenoxazinone 

synthase (phsA) being responsible for the formation of actinomycin in Streptomyces 

antibioticus (1961JBCPC16, 1962JBC882, 1989B6323), but laccase (1999MI141), 

tyrosinase (1998BBA268), peroxidase (2008MI579), cytochrome c and cytochrome 

oxidase (1992B8090) and cerruloplasmin (1998BBA268) have all been reported to 

catalyse the reaction (Scheme 1.27).  

 

H+ + 2e- 

H+ + 2e- 

2H+ + 2e- 

Enzymatic 

Enzymatic 

Non-enzymatic/ 

aerobic oxidation 

Scheme 1.27: Formation of 2-aminophenoxazin-3-one 90 via an o-aminophenol 112 oxidative cascade 
(1989B6323). 

95 

94 
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 Barry et al. studied the enzymatic oxidation of o-aminophenol and its derivatives and 

proposed a cascade of three consecutive 2-electron oxidations for the biosynthetic 

formation of 2-aminophenoxazin-3-ones (1989B6323, Scheme 1.27).  

The understanding of the enzymatic pathway, and the chemistry developed to 

identify and prepare the intermediates, allowed for an important advance in the field 

of phenoxazinone chemistry, particularly for their preparation. 

 

 1.1.2.2 Phenoxazinone dyes 

1.1.2.2.1 Litmus and orceins  

Litmus and orcein refer to a variable and relatively poorly defined mixture of dyes, 

mainly composed of phenoxazinone and phenoxazimine derivatives (B-2002MI05), 

and was traditionally manufactured from Roccella, Lecanora and Varialaria lichens. 

These lichens contain orsellinic acid depsides 96a-b which, upon basic hydrolysis 

release o-orsellinic acid 97. Decarboxylation leads to the production of orcinol 98, 

which, upon treatment with ammonia and air, give the dye named orcein and, in the 

case of litmus, lime (Ca(OH)2), potash (K2CO3) and gypsum (CaSO4) were also 

added (Scheme 1.28, 2003MI289). 

 

 

 

Musso and co-workers studied extensively the oxidation mechanism of orcinol in 

ammonia (1965CB3952, 1965CB3964, 1963CB1588) and succeeded in the 

separation and characterisation of the low molecular weight oxidation products 

(1963CB1579, 1963CB1593), which are part of the litmus and orcein dye mixture. 

Amongst the products characterised, four general structures related to 

phenoxazinone were isolated: α-orcein 99a-b, β- and γ-orcein 100a-b, β- and γ-

hydroxyorcein-monoquinone 101, β- and γ-hydroxyorcein-diquinone 102 (Figure 

1.18).  

97 96a R = CH3 
96b R = H 

98 

Scheme 1.28: Chemical reactions occurring during the extraction and manufacturing of orcein and litmus 
from lichens: i) NH3, aerial oxidation; ii) NH3, aerial oxidation, Ca(OH)2, K2CO3, CaSO4 (2003MI289) 

i) 

ii) 

-OH -CO2 
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The core structure was either 7-amino or 7-hydroxy-1,9-dimethylphenoxazinone. The 

two isomers designated by β- and γ- refer to the relative position of the two orcinol 

substituents: β- designates the trans isomer, represented on structure 101, and γ- the 

cis isomer, represented on structures 100 and 102. 

Orcein and litmus were originally used to dye silk and wool, and are nowadays used 

as a biological stain or as pH indicator; they have also been described in hair dyeing 

preparations (2006FR2907005).   

The colour change observed upon pH variation was demonstrated to be caused by 

hydroxyphenoxazinones 103, which is protonated at acidic pH (pH 4.4) to generate 

the red cation 104 and above pH 7 is deprotonated to afford the blue-violet cation 

105 (Scheme 26, 2003MI289). 

 

 

 

 

 

Figure 1.18: Orceins resulting from the oxidation of orcinol in ammonia 

99a R= NH2 

99b R= OH 

100a R= NH2 
100b R= OH 

101 102 

Scheme 1.29: pH indicator species present in litmus and their corresponding acid and basic ions 
(2003MI289). 

104, Red, pH  < 4.4 103 105, Blue, pH > 7 
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1.3 Chemical synthesis of the phenoxazinone core 

The preparation of phenoxazinones has been reviewed previously by Pearson (B-

1960MI12), Landquist (B-1979MI13), and Schäfer (1964POC135). The present 

review will attempt to classify the synthesis of phenoxazinones based upon their 

mechanism of formation, as well as give an update of the most recent synthesis. 

However, interest in the field of phenoxazinones has decreased over the last two 

decades, possibly due to the lack of new discoveries since the actinomycins, and 

very few novel methods have been developed regarding their synthesis. 

 

 1.3.1 Oxidative condensation of o-aminophenol 

The most important and widely applied synthesis of phenoxazinones is probably the 

oxidative condensation of o-aminophenol and o-aminophenol derivatives. This 

reaction mimics the biological formation of phenoxazin-3-one via the use of various 

oxidising agents. The first reaction was reported by Fischer et al., with the 

autooxidation of o-aminophenol 94 to 2-aminophenoxazin-3-one 94 in acidic solution 

using ferric chloride or potassium dichromate (Scheme 1.30, 1890MI2792). 

 

 

 

 

 

The same results were achieved in neutral solution using mercuric oxide 

(1894CB2784) or lead dioxide (1902MI2816). The mechanism of formation is 

analogous to that of the biological synthesis described previously in section 1.2.1.5 

(Scheme 1.28). This analogy has been highly exploited for the preparation of 

naturally occurring phenoxazin-3-ones: actinomycin C3 (1960N230) and actinomycin 

C1 (D) (1964N384), as well as various actinomycin-related analogues 

(1966JOC3694, 1971JHC989, 1975JMC1175, 1990LA1269), were prepared via 

oxidative condensation of a single substituted o-aminophenol unit.  

The preparation of the mould metabolite cinnabarinic acid 85a was achieved via the 

oxidative condensation of 3-hydroxyanthranilic acid 91 with manganese dioxide 

(1978CA22792d, Scheme 1.31).  

i) 

Scheme 1.30: Oxidative condensation of o-aminophenol 
i) FeCl3 or K2Cr2O7, CH3COOH; yield not given (1890MI2792). 

94 95 
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Another remarkable example of the application of the oxidative condensation of o-

aminophenol for the preparation of natural products is the synthesis of xanthommatin 

(Scheme 1.32, 1954LA75). 

 

 

  

 

 

More recent studies on the oxidative condensation of o-aminophenol have focussed 

on mimicking the enzyme phenoxazinone synthase via the use of various metal 

complexes, such as ferroxime (II) (2004JCD1056, 2006ICA2329, Figure 1.19, 106), 

dioximatomanganese (II) (2006JMO(A)270, (Figure 1.19, 107), or cobaloxime (II) 

(1996JCD473, 1998JCD3275, Figure 1.19, 108).  

 

 

 

 

 

Figure 1.19: Example of metal complexes used for the catalytic oxidation of o-aminophenols. 

107 106 108 

Scheme 1.31: Oxidative condensation of 3-hydroxyanthranilic acid 91 
i) MnO2, 92% (1978CA22792d). 

i) 

91 85a 

Scheme 1.32: Synthesis of xanthommatin 82 
i) K3Fe(CN)6, K3PO4, H2O (pH = 7.1) (1954LA75). 

 

82 90 

i) 
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1.3.2 Oxidative mixed condensation of o-aminophenol 

The first mixed condensation of o-aminophenol was observed by Butenandt et al. 

(1957LA72) who reported the formation of 2-hydroxy-1-acetylphenoxazin-3-one 111 

in moderate yield when 2-amino-3-hydroxyacetophenone 109 was reacted with 

catechol 110 in acetic acid, using potassium ferricyanide (Scheme 1.33). 

 

 

 

 

 

 

Ruan et al. reported another type of mixed condensation, between o-aminophenols 

112a-d and 7-amino-5-chloroquinolin-8-ol 113, in a recent study on the 

antiproliferative activities of some phenoxazin-3-one derivatives 114a-d (Scheme 

1.34, 2006CCL1141). 

 

 

 

 

 

 

 

The 6-amino-5-H-pyrido[3,2a]phenoxazin-5-ones 114a-d were produced in moderate 

yield by condensing the o-aminophenols 112a-d in aqueous acetone using sodium 

periodate (Scheme 1.34).  

 

i), ii) 

114a R = H 
114b R = CH3 
114c R = Cl 
114d R = NO2 

Scheme 1.33: Synthesis of 2-hydroxy-1-acetylphenoxazin-3-one 
i) K3(FeCN6), AcOH; ii) H2O; 43% (1957LA72). 

109 110 111 

113 

i), ii) 

Scheme 1.34: Synthesis of 6-amino-5H-pyrido[3,2a]phenoxazin-5-one (2006CCL1141) 
i) NaIO3, acetone, H2O, 2h; ii) NaIO3, H2O, 20h, R.T.; 40-58%, specific yields not given. 

112a R = H 
112b R = CH3 
112c R = Cl 
112d R = NO2 
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No study of the mechanism was performed; however, the author suggested the 

condensation occurred via three 2-electron oxidation steps and two conjugate 

addition processes (Scheme 1.35), similar to the mechanism of the self-

condensation of o-aminophenols. 

  

1.3.3 Condensation of o-aminophenols with hydroxyquinones 

The condensation of o-aminophenol 94 with 2,5-dihydroxy-3-chlorobenzoquinone 

115 to 1-chloro-2-hydroxyphenoxazin-3-one 116 was initially reported by Kehrmann 

and Messinger (Scheme 1.36, 1893CB2375). 

 

 

 

 

 

Kehrmann (1895CB353, 1924HCA973) and later Butenandt et al. (1960MI143) 

extensively studied the condensation between o-aminophenol and 2-

hydroxynaphthoquinone. This reaction was later adapted to the synthesis of 

xanthommatin (1954LA75), fluorescent probes (2001AC2920), or the synthesis of 

aminodinaphthoxazone (120, 2006US0121551). As an example, the synthesis of 

aminodinaphthoxazone 120 was achieved via the condensation of 1-amino-2-

Scheme 1.36: Condensation of o-aminophenol with 2,5-dihydroxy-3-chlorobenzoquinone 
i) aq. HCl, yield not given (1893CB2375). 

i) 

Scheme 1.35: Suggested mechanism of the condensation between o-aminophenols 112a-d 
and 7-amino-5-chloroquinolin-8-ol 113. 

123a-d 

2e + H+ 

115 116 

2e + 2H+ 2e + 2H+ 

113 

94 
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naphthol-4-sulphonic acid 117 and 2-hydroxynaphthoquinone 118 in AcOH. The 

resulting dinaphthoxazonesulphonic acid 119 was then refluxed in the presence of 

ammonium to yield aminodinaphthoxazone 120 (2006US0121551, Scheme 1.37).  

 

 

 

Similarly the condensation of o-aminophenol and 2-hydroxybenzoquinone to 

phenoxazin-3-one was also reported by Schäfer et al. (1971CB3937, 1971T4721, 

1972T3811). However, as discussed by Schäfer et al., the outcomes of this 

condensation depend on the substitution pattern of the o-aminophenol, the 

hydroxyquinone and the conditions used.  

 

 1.3.4 Condensation of o-aminophenol with quinolin-5,8-dione 

Bolognese et al. described the formation of 5H-pyrido[3,4a]phenoxazin-5-one 122 by 

condensing o-aminophenol with quinolin-5,8-dione 121 in the presence of zinc 

acetate in refluxing acetic acid (Scheme 1.38, 2002JME5205, 2002JME5217). 

 

 

 

 

 

Once in solution, the zinc cation forms a complex  123 with quinolin-5,8-dione 121 

which, according to the authors, has an increased electron density at the 7- position, 

hence favouring attack of the o-aminophenol in the 6-position. The mechanism of 

condensation involved sequential attack of two o-aminophenol molecules followed by 

elimination of one o-aminophenol molecule to give the 5H-pyrido[3,2a]phenoxazin-5-

one (130, Scheme 1.39).  

Scheme 1.38: Preparation of 5H-pyrido[3,4a]phenoxazin-5-one 122 
i) Zn(CH3COO)2, AcOH, reflux, 2h; yield not given. 

i) 

121 122 
94 

117 118 

Scheme 1.37: Preparation of aminodinaphthoxazone 119 
i) AcOH, reflux; ii) aq. NH3, reflux; yield not given (2006US0121551). 

i) 

120 

ii) 

119 
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1.3.5 Condensation of o-aminophenols with halogenated quinones 

The condensation between 2-hydroxy-nitroaniline 124αααα-ββββ and 2,3-dichloro-1,4-

naphthoquinone 125 in EtOH with NaOAc, yielded the corresponding nitro-6-

chlorobenzo[a]phenoxazin-5-one 126a-b in good yield (Scheme 1.40).  

 

 

 

 

 
Scheme 1.40: Preparation of nitro-6-chlorobenzo[a]phenoxazin-5-one 126a-b 

i) EtOH, KOAc , ∆ = 90-100°C; 126a, 76% ; 126b, 78% (1980JOC2155). 

Scheme 1.39: Suggested mechanism for the formation of 5H-pyrido[3,4a]phenoxazin-5-one (2002JME5205) 

123 

122 

124αααα R1 = NO2, R2 = H 
124ββββ R1 = H, R2 = NO2 

125 126a R1 = NO2, R2 = H 
126b R1 = H, R2 = NO2 
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The products had potential application as dyes (1933US2020651) and have also 

been used as intermediates in the preparation of chromogenic substrates 

(2006US0121551).  

The mechanism of this condensation was studied by Agarwal and Schäfer 

(1980JOC2155) who suggested the formation of a nitro-o-aminophenoxide anion 

127αααα-ββββ when sodium or potassium acetate was used. This resulted in a nucleophilic 

attack on 2,3-dichloronaphthoquinone by sodium nitroaminophenolate 127αααα-ββββ, 

forming the 2-phenoxy-3-chloronaphthoquinone intermediate 128a-b, which 

underwent ring closure to form nitro-6-chlorobenzo[a]phenoxazin-5-one 126a-b 

(Scheme 1.41). 

 

 

 

 

 

 

An alternative, similar condensation was initially reported in 1933 (1933US2020651) 

and later by Mital and Jain (1971JC1875), with a slight modification of the conditions. 

This reaction involves a condensation between aminophenol 124ββββ and 

tetrahalogenated-1,4-benzoquinones (bromanil 129c, chloranil 129b), in a 

Scheme 1.41: Suggested mechanism for the formation of nitro-6-chlorobenzo[a]phenoxazin-5-one 
(1980JOC2155). 

127αααα-ββββ 

125 

128a R1 = NO2, R2 = H 
128b R1 = H, R2 = NO2 

126a R1 = NO2, R2 = H 
126b R1 = H, R2 = NO2 
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EtOH/NaOAc system, and yielded 8-nitrophenoxazinones 130ββββb-c (Scheme 1.42). 

Little information is known about the mechanism of this reaction, but it is very likely to 

occur through a similar pathway to the 2,3-dichloro-1,4-naphthoquinone 

condensation. 

 

 

 

 

 

 

 1.3.6 Condensation of p-nitrosoaniline and o-nitrosophenol derivatives 

with phenols 

The first example of this type of condensation was reported by Fischer and Schäfer 

(1895LA145), who noted the condensation of p-nitrosoaniline 131 and orcinol 132a to 

7-amino-1-methylphenoxazin-3-one 133a (Scheme 1.43). This method was later 

applied to other resorcinol derivatives 132b-c by Stužka et al. (1969M1670, Scheme 

1.43). 

 

 

 

 

 

 

 

Jose et al. described a synthesis of Nile red derivatives 136a-b by condensing N,N-

disubstituted-4-amino-nitrosophenols 134a-c with 1,6-dihydroxynaphthalene 135 in 

DMF or in acidic methanol (Scheme 1.44, 2006JOC7835, 2006T11021). 

Scheme 1.42: Preparation of nitro-1,2,4-trihalogeno-3H-phenoxazin-3-one 
i) EtOH, NaOAc, 85°C; 130ββββb, 58.0%; 130ββββc, 62.0%; (1971JC1875). 

 

i) 

Scheme 1.43: Condensation of p-nitrosoaniline and resorcinol derivatives 
i) conc. HCl, EtOH, reflux; 133a, 1.5%; 133b, 14.8%; 133c, yield not given (1969M1670). 

124ββββ 
129b X = Cl 
129c X = Br 

130ββββb X = Cl 
130ββββc X = Br 

131 133a R = CH3 
133b R = H 
133c R = OH 

132a R = CH3 
132b R = H 
132c R = OH 
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The method has also been extended to the preparation of fluorinated resorufin 

derivatives 138a-c: the condensation of nitroso-fluororesorcinol 137a-c with 

resorcinol 132b in conc. H2SO4 led to fluorinated 7-hydroxyphenoxazin-3-ones 138a-

c (Scheme 1.45). The resulting resorufins were further derivatised to prepare 

substrates sensitive to peroxidase activities (2008USP7432372). 

 

 

 

 

 

 

 1.3.7 Condensation of benzoquinonechlorodiimide with resorcinol 

Nietzki and Maeckler reported the preparation of 7-amino-1-methylphenoxazin-3-one 

133a via the condensation of benzoquinonechlorodiimide 139 and orcinol 132a in 

conc. H2SO4, followed by neutralisation with an aqueous ammoniacal solution 

(1890CB718, Scheme 1.46). When repeating the experiment, Musso and Wager 

also isolated 7-amino-2-chloro-1-methylphenoxazin-3-one 140a as a by-product in 

relatively important yield (1961CB2551, Scheme 1.46). Formation of the chlorinated 

by-product 140b was also notable in the preparation of 7-aminophenoxazin-3-one 

133b. 

Scheme 1.45: Condensation of fluorinated 4-nitrosoresorcinol 137a-c and resorcinol 132b 
i) conc. H2SO4, EtOH, ∆ = 80°C; 138a, 16.7%; 138b, 41.3%; 138c, 48.5% (2008USP7432372). 

Scheme 1.44: Condensation of p-nitrosoaniline derivatives 134a-c and 1,6-dihydroxynaphthalene 135 
i) DMF, reflux; 136a, 54%; 136c, 53%; or MeOH, H+, reflux; 136b, 53% (2006JOC7835, 2006T11021) 

i) 

i) 

134a R1=R2= (CH2)3OH 
134b R1=R2= (CH2)2COOCH3 
134c R1= (CH2)3SO3H 
         R2= (CH2)2COOH 

135 

137a X1 = X3 = H, X2 = F 
137b X1 = X2 = F, X3 = H 
137c X1 = X2 = X3 = F 

132b 
138a X1 = X3 = H, X2= F 
138b X1 = X2 = F, X3 = H 
138c X1 = X2 = X3 = F 

136a R1=R2= (CH2)3OH 
136b R1=R2= (CH2)2COOCH3 
136c R1= (CH2)3SO3H 
         R2= (CH2)2COOH 
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The preparation of several 7-aminophenoxazin-3-one derivatives was successfully 

achieved, following a similar method, by condensing benzoquinonechlorodiimide 139 

with 5,7-dihydroxy-3,4-substituted coumarins 141a-b in refluxing EtOH or MeOH, 

yielding 7-amino-1,2-(3',4'-disubstituted-2'-pyranyl)phenoxazin-3-one (142a-b, 

Scheme 1.47, 2006US0121551). The substitution in the 1,2-position of the 

phenoxazin-3-one avoided the formation of the chlorinated by-product. 

 

 

 

 

 

 

 

 1.3.8 Reductive cyclisation of 5-hydroxy-2'-nitrodiphenyl ethers 

Studies undertaken by Bird and Latif (1979T529, 1979T1813, 1986JNSM95) 

concerned the cyclisation of 2-nitro-3'-hydroxydiphenyl ether 146. The 

phenoxazinone core 81 was accessed via the initial formation of an ether bridge 

between 2-chloronitrobenzene 143 and potassium m-methoxyphenoxide 144. 

Deprotection of the resulting diphenyl ether 145, followed by reduction of the nitro 

group with NH4Cl and zinc dust, resulted in an intramolecular cyclisation of the 

nitrosodiphenyl ether 147 to a phenoxazin-3-one (81, Scheme 1.48). 

 

i), ii) 

Scheme 1.46: Condensation of benzoquinonechlorodiimide 139 and resorcinol derivatives 132a-b 
 i) conc. H2SO4, ∆ ; ii) aq. NH3; 133a, 6.1%; 140a, 1.6%; 133b, 4.7%; 140b, 13.5% (1961CB2551).  

Scheme 1.47: Condensation of benzoquinonechlorodiimide 139 and 5,7-dihydroxysubstituted 
coumarins 141a-b 

i) EtOH or MeOH, reflux; 142a; 142b; yields not given (2006US0121551). 

139 
133a R = CH3 
133b R = H 

141a R1 = CH3, R2 = H 

141b R1, R2 = -(CH2)3- 

139 

140a R = CH3 
140b R = H 

132a R = CH3 
132b R = H 

142a R1 = CH3, R2 = H 

142b R1, R2 = -(CH2)3- 
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The nitrosodiphenylether 147, generated during the reduction step, was proposed as 

the reacting species initiating the intramolecular cyclisation to phenoxazin-3-one 81. 

However, the resulting phenoxazin-3-one is easily reduced to 3-hydroxy-3H-

phenoxazine 148 under such conditions and phenoxazin-3-one could be isolated only 

after the removal of zinc followed by aerial oxidation. 

  

 1.3.9 Oxidative cyclisation of 2,5-dinitro-2',5'-dihydroxydiphenylether 

Groundwater et al. reported the synthesis of 7-aminophenoxazin-3-one analogues 

59a-b via the cyclisation of 2,5-dinitro-2',5'-dihydroxydiphenylethers (2008OBC682). 

The synthesis was achieved by the initial preparation of appropriately substituted 2,5-

dimethoxyphenols 150a-b via Baeyer-Villiger oxidation of the corresponding 2,5-

dimethoxybenzaldehydes 149a-b. Coupling of the 2,5-dimethoxyphenols 150a-b to 

2,5-dinitro-1-fluorobenzene 151 afforded 2,5-dinitro-2,5-dimethoxybenzene 152a-b, 

which were further dealkylated using BBr3. The resulting 2,5-dinitro-2',5'-

dihydroxydiphenylethers 153a-b were reduced via catalytic hydrogenation; 

subsequent aerial oxidation of the solution resulted in formation of the desired 7-

aminophenoxazin-3-ones 59a-b (Scheme 1.49, 2008OBC682).  

 

Scheme 1.48: Preparation of phenoxazin-3-one 81 via reductive cyclisation of 2-nitro-3'-
hydroxydiphenyl ether 146. 

i) 140-150°C, 75%; ii) BCl3, CH2Cl2, -80°C to R.T. to reflux, 66%; iii) NH4Cl, Zn dust, aq. DME, 40°C; 
iv) Aerial oxidation, 67%. 

i) ii) 

iii) 

iv) 

143 144 145 146 

147 81 148 
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The proposed mechanism suggested the formation of 2,5-diamino-2',5'-

dihydroxydiphenylether 154 and its existence as a zwitterion 115. Subsequent attack 

of 155 by 2 mol of oxygen results in the formation of the hypothetical di-radical 156, 

which self-terminates into the 2,5-diaminophenoxybenzoquinone 157 (Scheme 1.50).  
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Scheme 1.49: Preparation of 7-aminophenoxazin-3-one derivatives 59b-c 
 i) MMPP, MeOH; ii) 2M NaOH, CH3OH; 150a, 23.0%; 150b, 75.0%; iii) NaH, DMF; 152a, 76%; 152b, 
89%; iv) 1M BBr3 in DCM, dry DCM, -75°C to R.T.; v) H2, Pd/C 5%, MeOH; vi) Air, MeOH, R.T.; 59b, 
68%; 59c, 75%; (2008OBC682). 

149a R1 = R2 = CH3, R3= H 
149b R1 = R2 = R3 = CH3  
 

151 

154 155 

156 157 

Scheme 1.50: Suggested mechanism for the cyclisation of 2,5-diamino-2',5'-dihydroxydiphenylether  
to 7-aminophenoxazin-3-one 133b (2008OBC682). 

150a R1 = R2 = CH3, R3= H 
150b R1 = R2 = R3 = CH3  
 

152a R1 = R2 = CH3, R3= H 
152b R1 = R2 = R3 = CH3  

153a R1 = R2 = CH3, R3= H 
153b R1 = R2 = R3 = CH3  
 

59b R1 = R2 = CH3, R3= H 
59c R1 = R2 = R3 = CH3  
 

i), ii) iii) 

iv) v), vi) 

133b 
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Finally, intra-molecular cyclisation of 2,5-diaminophenoxybenzoquinone 157 yields 

the 7-aminophenoxazin-3-one (Scheme 1.50). 

 

1.3.10 Oxidation of phenoxazines 

Preparation of the phenoxazin-3-one 81 was also achieved via oxidation of 

phenoxazine 158 (Scheme 1.51). The first oxidations were carried out using 

potassium nitrosodisulfonate, or ferric chloride in acetic acid (1902CB341). Other 

oxidants, such as iodoxylbenzene with vanadium oxide acetyl acetonate 

(1990SC1543), bis-(trifluoroacetoxy)pentafluoroiodobenzene (1991MC323) and 

ozone (1984BCJ2526) successfully oxidised phenoxazine in good yield. Study of the 

mechanism suggested that phenoxazine was oxidised via a one-electron step, giving 

the radical cation 159. Conjugation through the benzene ring gives the 

phenoxazonium radical cation 160 (Scheme 1.51), the species responsible for the 

oxidation to phenoxazin-3-one 81.  

 

 

 

 

 

The oxidation is pH dependent and formation of phenoxazinone occurs only at acidic 

pH. Higher pH results in loss of a proton from the phenoxazonium ion 159, 

generating the radical 160, and resulted in dimerisation or polymerisation of the 

phenoxazine unit (161, Scheme 1.52). 

 

Scheme 1.51: Formation of the phenoxazine radical cation 160 

158 159 

160 

-e
-
 



CHAPTER ONE  INTRODUCTION  
   

59 

 

 

  

 1.4 Aims 

The aims of this work were to synthesise and test novel chromogenic enzyme 

substrates suitable for the specific detection of the β-alanine aminopeptidase. The 

enzyme substrates of interest will be based on the 8-aminophenoxazin-3-one core 

and their synthesis will be achieved mainly by exploration of the newly developed 

pathway reported above in section 1.3.9. The preparation of 8-amino-1-

pentylphenoxazin-3-one is of interest as a possible replacement for 7-amino-1-

pentylphenoxazin-3-one in current use for the detection of β-alanine aminopeptidase. 

Preparation of other 8-aminophenoxazinone derivatives, would be desirable, in 

search of better performing enzyme substrates. Optimisation and shortening of the 

pathway reported in section 1.3.9, would also be of interest. 

All phenoxazinone substrates prepared will be derivatised with β-alanine and tested 

against Ps. aeruginosa and B. cepacia to evaluate their efficiency in the detection of 

those pathogens. 

 

 

 

 

 

 

 

Scheme 1.52: pH dependance of the phenoxazine oxidation. 
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The present chapter will discuss the preparation of new phenoxazinones 

chromogens via two different synthetic pathways and is divided into four parts. 

The first part is related to the preparation and characterisation of 

nitrohalogenophenoxazinones via a condensation type reaction. The synthesis of 

some of the corresponding aminohalogenophenoxazinones derivatives will also be 

discussed. 

The second part will discuss the preparation of novel 7- and 8-aminophenoxazinone 

derivatives via an oxidative cyclisation reaction. Several strategies will be explored 

for the introduction of a substituent onto the phenoxazin-3-one core. Due to the 

similarities of the synthetic routes explored, the preparation of each key precursor will 

be presented stepwise, in a grouped manner, rather than discussing each synthetic 

route separately. 

The third part will discuss the preparation of β-alanine enzyme substrates using the 

7- and 8-aminophenoxazinones derivatives previously prepared in the first and 

second part. 

Finally, the fourth part will evaluate and compare the U.V.-Visible characteristics of 

some of the 7- and 8-aminophenoxazinones derivatives prepared along with their 

corresponding β-alanine derivatives. 

 

2.1 Synthesis of halogenophenoxazin-3-ones  

 2.1.1 Preparation of nitro-1,2,4-trihalogenophenoxazin-3-ones 130αααα-γγγγa-c 

The condensation of nitroaminophenols 124ββββ with tetrahalogenobenzoquinones 

129b-c (Scheme 1.40), described earlier in section 1.3.5, seemed particularly 

attractive to prepare quickly several phenoxazin-3-one derivatives. The amino group 

necessary for the preparation of enzyme substrate could be introduced readily via 

reduction of the nitro group.  

The necessary starting materials, including the three halogenobenzoquinones 

fluoranil 124a, chloranil 124b and bromanil 124c, were readily available and allowed 

the direct preparation of 7-nitro, 8-nitro and 9-nitro-1,2,4-trihalogenophenoxazin-3-

ones. The reaction was attempted using the original procedure described 

(1935US2020651), without modification. The condensation occurred smoothly in an 

ethanolic NaOAc suspension of the correctly substituted nitro-2-aminophenol 124αααα-γγγγ 

and tetrahalogenobenzoquinone 129a-c at room temperature, with rapid formation of 
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the product as a bright red precipitate. The precipitate was conveniently collected by 

filtration and purified by recrystallisation from glacial AcOH, yielding the expected 

nitro-1,2,4-trihalogenophenoxazinones 130ααααb-c, 130βb-c and 130γγγγb in moderate to 

excellent yields (Scheme 2.1). The case of fluoranil was slightly different and will be 

discussed later.  

 

 

 

 

 

 

The 1H NMR spectra of the resulting nitro-1,2,4-trihalogenophenoxazin-3-ones 

130ααααb-c, 130βb-c and 130γγγγb) displayed only three characteristic deshielded 

aromatic protons, two doublets and a doublet of doublets in the case of 130ααααb-c and 

130βb-c and two doublets of doublets and a triplet in the case of 130γγγγb (Table 2.1).  

The formation of the phenoxazin-3-one core was supported by the 13C NMR spectra, 

with the presence of 12 carbon signals; two particular carbons were peculiar to the 

formation of phenoxazinone. Firstly, the deshielded signal within the 171.0-171.6ppm 

region was characteristic of a carbonyl and was assigned to 3-C (Table 2.1). 

Secondly, the relatively shielded aromatic carbon within the 103.3-111.6ppm region, 

was attributed to 4-C (Table 2.1). This shielded value was characteristic of the 4-

position, ortho to the oxygen bridge and α to the carbonyl 3-C. The four remaining 

carbons present on the quinoid ring could not be assigned with certainty.   

The three quaternary carbons present on the benzenoid part of the ring were 

assigned regarding their electronic environment; hence assignment depended upon 

the nitro group position.  

With 7-nitrophenoxazin-3-ones 130ααααb-c the cumulated effects of electron withdrawal 

at 7-C from both the ipso nitro group and the imino-quinone justified the assignment 

of the signal at 149.7-149.8ppm to 7-C (Table 2.1).  The para position of the nitro 

group to 9a-C had a significant deshielding effect and the value of 143.5-143.6ppm 

Scheme 2.1: Preparation of nitro-1,2,4-trihalogeno-3H-phenoxazin-3-ones 
 i) EtOH, NaOAc, R.T. 

129a X = F, Fluroanil 
129b X = Cl, Chloranil 
129c X = Br, Bromanil 

124αααα 5-NO2 

124β 4-NO2 

124γγγγ 3-NO2 

130ααααa-c 7-NO2 12.4-38.5% 
130βa-c 8-NO2 45.3-98.6% 

130γγγγa-b 9-NO2 72.3-95.0% 
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was assigned to 9a-C. The remaining value of 136.6 was assigned to 5a-C (Table 

2.1). 

With 8-nitrophenoxazin-3-ones 130βb-c the most deshielded value of 147.7-

148.5ppm was attributed to 5a-C, as a result of the cumulated electron withdrawing 

effect from the ispo oxygen atom and the para nitro substituants (Table 2.1). The 

value of 145.3ppm was assigned to 8-C, and the remaining value of 132.6-133.0ppm 

to 9a-C, as in this case the meta nitro substituent could not affect the chemical shift 

of 9a-C (Table 3). 

With 9-nitrophenoxazinone 130γγγγb, the ipso position of the nitro group to 9-C resulted 

in electronic conditions similar to that described above for 7-C with 8-

nitrophenoxazinones 130ααααb-c, such that the value of 147.8ppm was assigned to 9-C. 

The two remaining signals at 143.7 and 125.3ppm were assigned to 5a-C and 9a-C 

respectively (Table 2.1). 

 

 

 
130ααααb-c  130ββββb-c 

 

130γγγγb 

δH NMR 

(ppm) 

d6-DMSO 

6-H 
8.44-8.55 (1H, d,  

J = 2.4Hz) 
6-H 

7.82-7.95 (1H, d,  

J = 9.0Hz) 
6-H 

8.09 (1H, dd,  

J = 7.5, 2.1Hz) 

8-H 
8.29-8.32 (1H, dd,  

J = 8.7, 2.4Hz) 
7-H 

8.47-8.57 (1H, dd,  

J = 9.0-9.3, 2.7Hz 
7-H 

7.97 (1H, t, 

 J = 8.4Hz) 

9-H 
8.21-8.24 (1H, d, 

 J = 8.7-9.0Hz) 
9-H 

8.60-8.73 (1H, d, 

 J = 2.7Hz) 
8-H 

8.02 (1H, dd,  

J = 8.4, 2.1Hz) 

δC NMR 

(ppm) 

d6-DMSO 

3-C 170.0-171.5 3-C 171.1-171.6 3-C 171.0 

4-C 103.4-111.8 4-C 103.2-111.6 4-C 111.2 

5a-C 136.6-137.1 5a-C 147.7-148.2 5a-C 143.7 

9a-C 143.5-143.6 9a-C 132.6-133.0 9a-C 125.3 

C-NO2 149.7-149.8 C-NO2 145.3 C-NO2 147.8 

ννννmax (cm
-1

) 

C=O 1641-1646 C=O 1638-1649 C=O 1647 

NO2 
1529-1519 and  

1347-1346 
NO2 

1510-1508 and 

1331-1328 
NO2 1532 and 1330 

 

 Table 2.1: Key NMR and I.R. spectral features of nitro-1,2,4-trihalogenophenoxazin-3-ones 130αααα-ββββb-c, γγγγb 



CHAPTER TWO                          SYNTHESIS OF PHENOXAZINONE SUBSTRATES  
   

63 

I.R. spectroscopy confirmed the presence of a nitro group with the two characteristic 

stretches around within the 1532-1519 and 1347-1330cm-1 region (Table 2.1). 

The C=O stretch observed was of a relatively low absorbance (1646-1638cm-1) for a 

carbonyl (Table 2.1). The conjugations within the phenoxazin-3-one ring (Scheme 

2.1), were thought to be responsible for the weakening of the double bond strength 

and its resulting low absorption.  

 

 

 

 

  2.1.1.1 Nitro-1,2,4-trifluorophenoxazin-3-ones 130αααα-γγγγa  

The condensation of nitro-2-aminophenol 124αααα-γγγγ with fluoranil 129a gave the 

corresponding nitro-1,2,4-trifluorophenoxazinones in poor yields (12-38%, Scheme 

2.1). In this particular case, the formation of an insoluble material, suspected to be a 

triphenodioxazinone, seemed to dominate the formation of nitro-1,2,4-

trifluorophenoxazinone 130αααα-γγγγa (Scheme 2.1). This was not observed with 

brominated or chlorinated derivatives under the present conditions at room 

temperature.  

Mital and Jain (1971JC1875) reported the formation of such triphenodioxazinones 

162 from chloranil or bromanil and various aminophenols derivatives under the 

following conditions: either by (i) refluxing two equivalents of aminophenols with one 

equivalent of the halogenated quinone and NaOAc, or (ii) by reacting a 

trihalogenated phenoxazinone 130 with another equivalent of aminophenol and 

NaOAc under reflux conditions (Scheme 2.3).  

The strong electronegative character of fluorine atoms would suggest that fluoranil 

would be sensitive toward nucleophilic attack, allowing the formation of a 

triphendioxazinone even at R.T.; furthermore, nitro-1,2,4-trifluorophenoxazinones 

130αααα-γγγγa would also show an increased reactivity towards a second condensation.  

 

 

Scheme 2.2: Electron conjugations within the phenoxazin-3-one core responsible for the 
weakening of the C=O bond. 
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Hence two possibilities could be envisaged for the low yield of nitro-1,2,4-

trifluorophenoxazin-3-ones: a concomitant attack of fluoranil 130a by two molecule of 

nitroaminophenol, resulting in the formation of the quinone intermediate 163αααα-γγγγa 

followed by cyclisation to 162αααα-γγγγa, or formation of nitro-1,2,4-trifluorophenoxazinone, 

followed by a condensation with a second molecule of nitroaminophenol (Scheme 

2.4). The possibility of both pathways occurring simultaneously was envisaged.  

However, attempts to avoid the formation of by-products, by lowering the reaction 

temperature to -15°C using a salt/ice bath, along with a dropwise addition of the nitro-

2-aminophenol solution, failed to improve significantly the yield of 130αααα-γγγγa. 

 

 

 

 

The formation of nitro-1,2,4-trifluorophenoxazinones 130αααα-γγγγa,  was evidenced by 

NMR analysis using 13C and 19F spectra, the presence of fluorine atoms being 

Scheme 2.3: Formation of triphenodioxazinone 162 
i) 1eq. o-aminophenol, EtOH, NaOAc; ii) 1eq. o-aminophenol, EtOH, NaOAc, reflux; 

iii) 2eq. o-aminophenol, EtOH, NaOAc, reflux; 
X = Br or Cl, R = H, CH3, F, Cl, Br, OMe, OEt (1971JC1875). 

Scheme 2.4: Hypothetic formation of dinitro-6,13-difluorotriphenodioxazinones 162αααα-γγγγa. 

130 

162 

163αααα-γγγγa 

162αααα-γγγγa 

130αααα-γγγγa 

129a 

129 
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strongly confirmed by 19F-13C coupling in the 13C NMR spectrum. In the example of 9-

nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 130γγγγa (Figure 2.1), 1-C appeared as a 

doublet of doublets with a 1JCF of 274.7Hz, which corresponded to direct 19F-13C 

coupling, and a 2JCF of 12.2Hz, generated by the neighbouring fluorine on 2-C. A 

doublet of triplets was observed from 2-C, exhibiting a 1JCF of 273.2Hz and a 2JCF of 

6.8Hz, both fluorine atoms at 1-C and 4-C also coupling with 2-C. The carbonyl 3-C 

was shown as a triplet of doublets with a 2JCF of 21.1Hz, due to the two neighbouring 

fluorine atoms at 2-C and 4-C, and a 3JCF of 5.5Hz generated by the fluorine at 1-C. 

The carbon 4-C exhibited a doublet of doublets with a 1JCF of 261.9Hz and a 2JCF of 

6.3Hz. The 19F-13C coupling was extremely useful in fully assigning the carbon 

atoms: a 1JCF of 260-270Hz indicating the carbons bearing a fluorine atom and the 

value of 2JCF indicating the relative position to other fluorine atoms.  
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The assignment of the 7- (130ααααa) and 8-nitro-1,2,4-trifluorophenoxazin-3-one 130ββββa 

spectra was made following the same reasoning, the value of δC on the quinoid ring 
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Figure 2.1: 13C NMR spectrum of 9-nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 2.3γa within the      
                   δ133.5-144.5ppm region and an expansion of 3-C (δ166.10-167.30ppm). 

4-C, 
1
JCF = 261.9Hz, 2JCF = 6.3Hz 

2-C, 
1
JCF = 273.2Hz and  2JCF = 6.8Hz 

 
1-C, 

1
JCF = 274.7Hz and  2JCF = 12.2Hz 

 

3-C, 
2
JCF = 21.1Hz, 3JCF = 6.3Hz 

130γγγγa 
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remaining unaffected by the position of the nitro group on the benzenoid ring (Table 

2.2). The 19F revealed three signals, a dd at δF = -266ppm corresponding to 1-F, a dd 

at δF = -271ppm corresponding to 2-F and a triplet at δF = -282ppm corresponding to 

4-F.  

 

 

 

δF NMR 

(ppm) 

d8-THF 

1-F -266.07- -265.41 (1F, dd, J = 9.3, 2.0-2.5Hz) 

2-F -271.89- -271.43 (1F, dd, J = 9.6-9.0, 1.7-2.3Hz) 

4-F -282.53- -282.17 (1F, t, J = 2.3-2.8Hz) 

δC NMR 

(ppm) 

d8-THF 

1-C 142.1-142.2 (dd, J = 273.4-274.7, 12.0-12.2Hz) 

2-C 141.3-141.4 (dt, J = 272.7-273.4, 6.8-6.9Hz) 

3-C 166.7-166.8 (dt, J = 21.0-21.4, 5.4-5.6Hz) 

4-C 135.8-136.0 (dd, J = 261.9-262.7, 6.1-6.5Hz) 

4a-C 140.7-141.7 (ddd, J = 18.1-18.3, 4.8-5.5, 1.1-1.2Hz) 

10a-C 129.85-130.1 (ddd, J = 8.5-10.0, 5.0-5.2, 1.2-1.4Hz) 

ννννmax (cm
-1

) 

C=O 1637-1634 

NO2 1531-1518 and 1312-1308 

C-F 1004-1003 

 

 

 

The main features observed by I.R. spectroscopy were the low C=O stretch within 

the 1637-1634cm-1 region, the NO2 stretches within the 1531-1518 and 1312-

1308cm-1 region and the strong absorption band within 1004-1003cm-1 corresponding 

to the C-F stretch (Table 2.2). 

 

 

 

Table 2.2: Key NMR and I.R. spectral features of nitro-1,2,4-trifluorophenoxazin-3-one 130αααα-γγγγa. 

130αααα-γγγγa 



CHAPTER TWO                          SYNTHESIS OF PHENOXAZINONE SUBSTRATES  
   

67 

2.1.2 Synthesis of 8-amino-1,2,4-trihalogenophenoxazin-3-ones 165a-c 

The next step towards the preparation of amino-1,2,4-trihalogenophenoxazin-3-one 

substrates required reduction of the nitro group. Catalytic hydrogenation was chosen, 

mainly because of the simplicity of the procedure and work up. Subsequently, 

catalytic hydrogenation of the isolated 8-nitro-1,2,4-trihalogeno-3H-phenoxazin-3-

ones 130βa-c was conducted smoothly in an EtOAc:MeOH solvent mixture (Scheme 

2.5), but care was required when reducing the chlorinated 130βb and brominated 

130βc derivatives, as discussed below. 

 

 

 

 

When the hydrogen pressure was set above 2.0 bar during the catalytic reduction, a 

mixture of colourful products resulted after the re-oxidation step (observed by TLC) in 

the case of 130ββββb and 130ββββc, which was possibly the result of hydro-dehalogenation. 

This hypothesis seems likely as, under forcing conditions, using Pd/C 10%, Et3N and 

a H2 pressure of 3.4 bar, the more sensitive brominated analogue led to the isolation 

of 8-amino-3H-phenoxazin-3-one 167a in moderate yield, after re-oxidation and 

purification (Scheme 2.6). No attempt was made to improve the yield; however, 

milder conditions could possibly reduce the amount of tarring observed.  

 

130βc 166 

Scheme 2.6: Hydro-dehalogenation of 8-nitro-1,2,4-tribromo-3H-phenoxazin-3-one 130ββββc 
i) H2, Pd/C 10%, Et3N, MeOH/EtOAc; ii) AgO, MeOH, 54.1%. 

i) ii) 

164a X = F 

164b X = Cl 
164c X = Br 

165a X = F 

165b X = Cl 
165c X = Br 

Scheme 2.5: Preparation of 8-amino-1,2,4-trihalogeno-3H-phenoxazin-3-one 165a-c 
i) H2, Pd/5%C or PtO2, MeOH/EtOAc; ii) AgO or Ag2O or MnO2, MeOH; 165a: 98.0%; 165b: 97.6%, 
165c: 94.8%. 

i) ii) 

167a 

130βa X = F 

130βb X = Cl 
130βc X = Br 
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The Pd/C 5% catalyst was replaced by Pt2O for the reduction of 130βb-c, allowing a 

better control of the hydrogenation outcome, and avoiding hydro-dehalogenation. 

The conditions used to reduce the nitro group in 130βa-c irremediably reduced the 

phenoxazin-3-one imino-quinone system. The 8-amino-3-hydroxy-1,2,4-trihalogeno-

3H-phenoxazine intermediates 165a-c were not isolated but the colourless solution 

obtained after hydrogenation, which slowly turned to deeply coloured solution upon 

removal of the catalyst and aeration, strongly suggest this species was formed. The 

aerial oxidation was rather slow and, for synthetic convenience, the oxidation process 

was accelerated by the use of an oxidising agent, such as silver (I) oxide, silver (II) 

oxide or manganese (IV) dioxide (Scheme 2.5).  

The resulting 8-amino-1,2,4-trihalogenophenoxazin-3-ones 165a-c showed a general 

low solubility in organic solvents, which did not permit their characterisation by NMR 

spectroscopy, nor a full assessment of their purity, except for the trifluorinated 

analogue 165a. However, I.R. spectroscopy could confirm the reduction of the nitro to 

an amino group and the presence of the imino-quinone, with the characteristic I.R. 

absorption bands within the 3200-3500 cm-1 and 1630-1640cm-1 regions respectively 

(Table 2.3). Mass spectrometry also gave peaks with masses corresponding to the 

expected products, with the expected isotopic ratio for 165b and 165c (Table 2.3). 

 

 
ννννmax (cm

-1
) 

NH2 

ννννmax (cm
-1

) 

C=O 
m/Z 

165a X =F 3503, 3358 and 3230 1638 264.9 (M 
-) 

165b X = Cl 3387,3321 and 3226 1634 
312.8 (94%), 314.8 (100%), 

316.8 (42%), 318.8 (28%) (M 
-) 

165c X = Br 3376, 3319 and 3216 1628 
447 (37%), 449 (100%),  

451 (91%), 453 (29%) (MH)+ 

 

 

 

2.2 Synthesis of phenoxazinones via oxidative cyclisation  

 2.2.1 Previous work 

Previous work undertaken at the University of Sunderland to synthesize 7-

aminophenoxazin-3-one chromogenic substrates led to the development of a new 

synthetic pathway (2008OBC682, 2006WO030119), described earlier in section 

Table 2.3: Key I.R. spectral features of 8-amino-1,2,4-trihalogenophenoxazin-3-ones 165a-c. 
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1.3.9. Before the synthesis of 7-aminophenoxazin-3-ones, Zaytsev (T-2006MI00) 

developed a model study leading to the synthesis of 8-aminophenoxazin-3-one 167a 

(Scheme 2.7).  

 

 

 

 

 

 

The commercially available 2,5-dimethoxybenzaldehyde 149d was oxidised with 

magnesium monoperoxyphthalate (MMPP) in MeOH and the resulting formate ester 

hydrolysed to 2,5-dimethoxyphenol 150f in basic methanol. 2,4-dinitro-2',5'-

dimethoxy diphenylether 169 was formed by reacting 2,5-dimethoxyphenol 150f with 

2,4-dinitro-1-fluorobenzene 168 in DMSO using Et3N. Demethylation of the 

diphenylether 169 using BBr3 and reduction of the resulting 2,4-dinitro-2',5'-

dihydroxydiphenylether 170, followed by aerial oxidation, led to the formation of 8-

aminophenoxazin-3-one 167a. This pathway was then modified in order to prepare 

the reported 7-aminophenoxazin-3-one derivatives. 8-Aminophenoxazin-3-one 167a 

itself was never derivatised with β-alanine, nor were any of its potential analogues 

prepared. The current work considers the preparation of 8-aminophenoxazin-3-one 

derivatives and the synthesis of the corresponding β-alanyl chromogenic substrates.  

 

 2.2.2 Substitution strategy  

The main difficulty of the previously mentioned pathway was the introduction of a 

specific substituent on the quinoid part of the phenoxazinone ring, to prepare mono, 

di- or trisubstituted phenoxazinones at the   1-,2- or 4- position (Figure 2.2).  

Scheme 2.7: Preparation of 8-aminophenoxazin-3-one 167a 
i) MMPP, MeOH; ii) 2M NaOH, CH3OH, ; iii) Et3N, DMSO; iv) 1M BBr3 in DCM, dry DCM, -75°C to R.T.; 
v) H2, Pd/C 5%, MeOH; vi) Air, MeOH, R.T. (T-2006MI00). 

i), ii) iii) 

iv) v), vi) 

149d 150f 

168 

169g 

170 
167a 
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 Substituents were sought to increase the lipophilicity of 

the molecule; short to long alkyl chains, trifluoromethyl 

or perfluoroalkyl chains, or alkoxy chains were 

considered to be good candidates. Based on the 

efficiency of 7-amino-1-pentyl-3H-phenoxazin-3-one, 

efforts were focused onto the introduction of a pentyl 

chain in the 1-position. Substituents on the benzenoid part of the phenoxazinone, 

other than the auxochrome required for electron conjugation and derivatisation with 

an amino acid, were not desirable as it would be neighbouring the amino group and 

might have impaired binding to the enzyme active site resulting in poor hydrolysis of 

the substrate. Furthermore, substituting the benzenoid moiety within the pathway 

investigated would require modification of the dinitrofluorobenzene starting material 

which would considerably lengthen the synthesis. This possibility was not 

investigated. 

 

 2.2.3 Retrosynthetic analysis 

All disconnection approaches discussed here are based on the formation of a 

diphenylether or a similar species and involve a 2,4-diaminophenoxy-2',5'-

benzoquinone derivative 171 as a direct precursor of 8-aminophenoxazinones.  

The first synthetic route to be explored, route A, considers the preparation of the 2,4-

diaminophenoxy-2',5'-benzoquinone 171 via a 2,4-dinitro-2',5'-dihydroxydiphenylether 

170, itself available from a 2,4-dinitro-2',5'-dimethoxydiphenylether 169 (Scheme 

2.8). The ether bridge would arise from a 2,5-dimethoxyphenol 150, prepared from 

the corresponding 2,5-dimethoxybenzaldehyde 149 (Scheme 2.8). The appropriately 

substituted 2,5-dimethoxybenzaldehydes 149 would be prepared from the 

corresponding 1,4-dimethoxybenzenes 172 (Scheme 2.8). Two alternatives would be 

possible here: either the preparation of substituted 1,4-dimethoxybenzenes from the 

corresponding hydroquinones 173 (route A1) which is limiting in terms of analogues 

available, or the preparation of 2-substituted 1,4-dimethoxybenzenes from the readily 

available 1,4-dimethoxy-2-bromobenzene 174 (route A2) which restricts to the 

preparation of 2-substituted 8-aminophenoxazinones (Scheme 2.8).  

Benzenoid 
ring 

Quinoid 
ring 

Figure 2.2 
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Route A 

Route B 

Scheme 2.8: Retrosynthetic analysis on potential 8-amino-phenoxazin-3-ones derivatives.  

Route A1 

Route A2 

167 171 170 169 

150 
149 

172 

174, R1 = R3 = H 

173 

174 

175a, R1 = R2 = R3 = H 
175b, R1 = OCH3, R2 = H, R3 = Br 
 

176, R1 = OCH3, R2 = H, R3 = Br 
177 
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An alternative to this route, route B, considers the possible formation of 2,4-

diaminophenoxy-2',5'-benzoquinone 171 from a 2,4-dinitro-2'-bromo-5'-

hydroxydiphenylether 174 (Scheme 2.8). The latter could be prepared from 2,4-

dinitro-2'-bromo-5'-methoxydiphenylether 175a. For a more convenient synthesis, the 

latter could be replaced by 2,4-dinitro-2',6'-dibromo-3',5'-dimethoxydiphenylether 

175b, achievable in two step from the readily available 3,5-dimethoxyphenol 177 

(Scheme 2.8).   

The next analysis focuses on the synthesis of 8-amino-1-pentylphenoxazinone 167p 

via a diphenylether approach. Two main routes (Route C and D) were considered to 

reach the 2,4-diaminophenoxy-3'-pentyl-2',5'-benzoquinone 171a required for 

cyclisation (Scheme 2.9). 

Route C involved the preparation of 2,4-dinitro-3'-pentyl-2',5'-dimethoxydiphenylether 

169p which was not achievable via the two previous route described (Route A and 

B, Scheme 2.8). Two alternatives were possible to prepare the latter, either the 

synthesis of 2,5-dimethoxy-6-pentylphenol 150p (Route C1) or the synthesis of 2,4-

dinitro-3'-bromo-2',5'-dimethoxydiphenylether 169e (Route C2, Scheme 2.9). Both 

routes relied on the introduction of a pentyl substituent by substitution of the bromine 

atom, and both shared 2,5-dimethoxy-6-bromobenzaldehyde 178 as a common 

precursor (Scheme 2.9). The preparation of 169e seemed advantageous, as it could 

allow a quicker preparation of diphenylether derivatives via substitution of the 

bromine, hence allowing a quicker preparation of other 8-amino-1-alkylphenoxazin-3-

one derivatives. 

Route D considered a shorter approach to 2,4-diaminophenoxy-3'-pentyl-2',5'-

benzoquinone 171p via the direct preparation of 2,4-dinitrophenoxy-3'-pentyl-2',5'-

benzoquinone 179 from 2-hydroxy-6-pentyl-1,4-benzoquinone 180 (Scheme 2.9). 

The latter could be prepared from the readily available olivetol 181 (Scheme 2.9), 

hence avoiding the tedious introduction of a pentyl chain.   
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Scheme 2.9: Retrosynthetic analysis on 8-amino-1-pentylphenoxazin-3-one 167p. 
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 2.2.4 Synthesis of 2,5-dimethoxybenzaldehydes   

2.2.4.1 From hydroquinones 173a-c 

The preparation of substituted 2,5-dimethoxybenzaldehydes 149a-c, following Route 

A1, started with the three following commercially available substituted 

hydroquinones: 2,3-dimethyl-1,4-hydroquinone (173a), 2,3,5-trimethyl-1,4-

hydroquinone (173b) and 2-tbutyl-1,4-hydroquinone (173c) (Scheme 2.10).  

 

 

 

 

 

 

 

Protection of the hydroquinone (173a-c) was effected in DMF using NaH, followed by 

addition of MeI, as previously described (2008OBC682), giving the 

dimethoxybenzene (172a-c) in excellent yield (Scheme 2.10). The methylation of 

hydroquinone 173a-c was confirmed by the presence of two singlets integrating each 

for 3 protons (or one singlet integrating for 6 protons) within the 3.65-3.85ppm region 

of the 1H NMR spectra, and the absence of a characteristic O-H stretch on the I.R. 

spectra. Introduction of a formyl substituent was conveniently achieved under Duff 

reaction conditions (1972JOC3972, 1968T5001), giving the substituted 2,5-

dimethoxybenzaldehyde (149a-c) in good to excellent yield (Scheme 2.10). 

Introduction of the formyl substituent was confirmed by the presence of a deshielded 

singlet within the 10.35-10.45ppm region of the 1H NMR spectra and the deshielded 

carbon signal within the 189-193ppm region of the 13C NMR spectra. 

 

  2.2.4.2 From 2-hydroxy-5-methoxybenzaldehyde 182 

The preparation of 3-bromo-2,5-dimethoxybenzaldehyde  178 (Route C) was 

reported in the literature and proceeded via bromination of 2-hydroxy-5-

methoxybenzaldehyde 182, followed by methylation of the resulting 2-hydroxy-3-

bromo-5-methoxybenzaldehyde 183 (Scheme 2.11, 1925JCS1998, 525OL2004). 

Scheme 2.10: Preparation of substituted 2,5-dimethoxybenzaldehyde 149a-c from commercially  
available hydroquinones 173a-c 

i) NaH, DMF; ii) MeI, 45°C, 3h; iii) TFA, hexamethylenetetraamine, 90°C. 

149a R = 3,4-diMe, 62.6% 
149b R = 3,4,6-triMe, 85.3% 
149c R = 4-tButyl, 56.7% 

172a R = 2,3-diMe, 91.2% 
172b R = 2,3,5-triMe, 84.4% 
172c R = 2-tButyl, 78.5% 

173a R = 2,3-diMe 
173b R = 2,3,5-triMe 
173c R = 2-tbutyl 

i), ii) iii) 
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Direct bromination of the readily available 2,5-dimethoxybenzaldehyde 149d would 

lead to 2,5-dimethoxy-4-bromobenzaldehyde, as previously reported (2003TL3281), 

most probably due to cumulated steric hindrance at the 3-position, overcoming the 

meta directing effect of the formyl group.  

Bromination of 2-hydroxy-5-methoxybenzaldehyde 195 was effected smoothly using 

bromine in a glacial acetic acid/sodium acetate mixture, giving the desired 2-hydroxy-

3-bromo-5-methoxybenzaldehyde 183 in excellent yield (Scheme 2.11).  

 

 

 

 

 

The structure was confirmed by NMR spectroscopy: the 1H NMR spectrum revealed 

2 aromatic protons, a doublet at 7.31ppm of J = 3.0Hz (6-H) and another doublet at 

7.51ppm of J = 3.0Hz (4-H), a singlet at 10.08ppm corresponded to the formyl group, 

and a singlet at 10.65ppm corresponded to the hydroxyl group, as well as an 

aliphatic signal at 3.78ppm that corresponded to the methoxy group. The coupling 

constant of 3.0Hz for both doublets was characteristic of a meta aromatic coupling, 

hence confirming the 3-position of bromine in 183. Protection of the free hydroxyl 

group was first attempted using sodium hydride in DMF, followed by addition of 

methyl iodide; the desired product was isolated in moderate yield due to some hydro-

dehalogenation producing 2,5-dimethoxybenzaldehyde 149 as a by-product 

(Scheme 2.12).  

 

 

 

 

i) ii) 

Scheme 2.11: Preparation of 2,5-dimethoxy-3-bromobenzaldehyde 178 
i) Br2, AcOH, AcONa, 75.1%; ii) DMF, K2CO3, (MeO)2SO2, 99.7%. 

Scheme 2.12: Protection of 2-hydroxy-5-methoxybenzaldehyde 183 
i) NaH, DMF, ii) MeI, 45°C; 178, 50.7%; 149d, 14.3% or 

i) Dimethylsulphate, K2CO3, DMF; 178, 99.7%. 

i), ii) 

178  149d  

182 183 178 

183 
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This method was replaced by protection using dimethyl sulphate in a suspension of 

K2CO3 in DMF, giving 2,5-dimethoxy-3-bromobenzaldehyde 178 in near quantitative 

yield (2004OL525, Scheme 2.12).  

 

   2.2.4.2.1 Sonogashira cross-coupling 

One direct method to introduce an alkyl substituent onto 2,5-dimethoxy-3-

bromobenzaldehyde 178, in order to prepare the desired 2,5-dimethoxy-6-

pentylbenzaldehyde  149p (Route C1), was a cross-coupling reaction, and the well-

known Sonogashira conditions were considered first. If successful, this would result 

in the preparation of 2,5-dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 rather than 2,5-

dimethoxy-6-pentylbenzaldehyde 149p; however the 1-pentyne substituent could be 

reduced to a pentane chain further along the synthetic pathway. 

Replacement of the bromine by 1-pentyne was first attempted using the original 

Sonogashira conditions (1975TL4467), using Et3N, CuI, [Ph3P]2PdCl2 and 1-pentyne 

(Scheme 2.13); however even after 48h reflux in an inert atmosphere of N2 in a 

sealed tube, only a small amount of 2,5-dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 

could be recovered, along with unreacted starting material (Scheme 2.13).  

 

 

 

 

 

 

The use of tris-tbutylphosphine ligand along with [PhCN]2PdCl2 as a catalyst, in 

dioxane and di-isopropylamine has been reported to be an extremely efficient system 

for Sonogashira cross-couplings on less reactive aryl bromides at room temperature 

(2000OL1729). The electron rich tris-tbutylphosphine ligand is thought to accelerate 

the rate of oxidative addition of the aryl bromide to [PhCN]2PdCl2. However, no 

improvement was noticeable on the yield of 2,5-dimethoxy-1-pentyn-1'-

ylbenzaldehyde 184 under these conditions (Scheme 2.13), and 2,5-dimethoxy-3-

bromobenzaldehyde 178 was the main product recovered.  

Scheme 2.13: Attempted Sonogoshira coupling on 2,5-dimethoxy-3-bromobenzaldehyde 178 
i) 1-pentyne, CuI, Pd[PPh3]Cl2, Et3N, N2 atm., reflux, 48h, 10.7% or 
i) 1-pentyne, CuI, Pd[PhCN]2Cl2, (

tBu)3P, (iPr)2NH, dioxane, R.T., 48h, 13.2%. 

i) 

184 178 
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The replacement of the slow reacting bromine by the notoriously more reactive iodine 

was then considered, and the preparation of 2,5-dimethoxy-3-iodobenzaldehyde 185 

was attempted, again using 2-hydroxy-5-methoxybenzaldehyde 182 as starting 

material. The only procedure reported in the literature describes the consequent 

formation of the dimer 186b (Scheme 2.14) along with the desired 2-hydroxy-3-iodo-

5-methoxybenzaldehyde 186a, when iodination of 2-hydroxy-5-

methoxybenzaldehyde 182 was attempted (1996T3841).  

 

 

 

According to Hart et al. (1996T3841), the procedure requires an efficient and non-

oxidative iodinating agent, as oxidative condition will favour the formation of 186b. An 

attempt to improve the procedure was made by utilising bis-(2,4,6-trimethylpyridine) 

iodine (I), a very efficient iodinating agent for phenol (1995TL8217). Hence, 

iodination of 2-hydroxy-5-methoxybenzaldehyde 182 was effected in DCM at -15°C, 

producing the expected 2-hydroxy-3-iodo-5-methoxybenzaldehyde 186a in moderate 

yield; however, the formation of some dimer 186b could not be avoided (Scheme 

2.14). These results were slightly poorer to those reported by Hart et al. using 

tetraethylammonium diacetoxyiodate in DCM at -15°C (186a, 54%; 186b, 14%, 

1996T3841); however no further attempt were made to improve the yield, and 186a 

Scheme 2.14: Preparation of 2,5-dimethoxy-3-iodobenzaldehyde 185 
i) bis-(2,4,6-trimethylpyridine) iodine (I), DCM, -15°C, 186a, 47.4%; 186b, 22.8%; ii) DMF, K2CO3, 
(MeO)2SO2, 93.5%; iii) [Ph3P]2PdCl2, CuI, 1-pentyne, dry Et3N, dry DMF, N2 atm., 95°C, 24h, 84.6%. 

i) 

ii) 

iii) 

186a 186b 

185 184 

182 
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was methylated in excellent yield using dimethyl sulphate in a K2CO3/DMF 

suspension to give 2,5-dimethoxy-3-iodobenzaldehyde 185 (Scheme 63). 

The Sonogashira conditions were again attempted on 2,5-dimethoxy-3-

iodobenzaldehyde 185, using dry DMF as a co-solvent, with this time a total 

conversion of the starting material and isolation of 2,5-dimethoxy-1-pentyn-1'-

ylbenzaldehyde 184 in excellent yield (Scheme 2.14).  
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The 1H NMR clearly evidenced the presence of the pentyne chain, with  a triplet at 

0.995ppm  corresponding to 5'-H, a sextuplet at 1.59ppm corresponding to 4'-H and a 

triplet at 2.37ppm corresponding to 3'-H (Figure 2.3). The two singlets at 3.71ppm 

and 3.93ppm belonged to the two methoxy groups and the aromatic region showed 

two doublets of J = 3.0Hz, at 7.09ppm and 7.15ppm corresponding to 4-H and 6-H 

respectively and a singlet at  10.26ppm corresponding to the formyl group (Figure 

2.3). 
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Figure 2.3: 1H NMR spectrum of 2,5-dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 within the 
3.40-10.60ppm region, with an inset expansion of the 0.50-2.50ppm region. 
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The replacement of the bromine by iodine had a positive impact on the reaction 

outcome, confirming the difficulties encountered in prepararing 184 from 178 were 

largely inherent to the leaving group. 3-Iodo-2,5-dimethoxybenzaldehyde 185 is likely 

to undergo the oxidative addition to bis(diphenylphosphine)palladium (0) 187 more 

easily than its brominated analogue 178 (Scheme 2.15).  The transmetalation step of 

pentynyl copper 191 to 188 is also likely to be eased by the presence of iodine 

(Scheme 2.15). 

 

 

 

 

   2.2.4.2.2 Suzuki cross-coupling 

The Suzuki reaction is another interesting cross-coupling reaction, involving the 

reaction of an aryl boronic acid and an aryl halide. It was considered as an alternative 

to synthesise 1-substituted 8-aminophenoxazinones via Route C1.  

Kawada et al. reported a Suzuki type coupling between protected p-hydroxyboronic 

acids and 2,5-dimethoxy-3-bromobenzaldehyde (1998JOC5831, 1998AGE973). 

Scheme 2.15: Hypothetic catalytic cycle of the Sonogashira cross-coupling reaction. 

184 
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Using the reported conditions, Suzuki coupling was attempted on 2,5-dimethoxy-3-

bromobenzaldehyde 178 with benzene boronic acid 193, successfully yielding 2,5-

dimethoxybiphenyl-3-carbaldehyde 194 in excellent yield (Scheme 2.16).  

 

 

 

The product was evidenced by NMR analysis: 1H showing two multiplets at 7.41-

7.63ppm and 7.60-7.64ppm corresponding to protons 3'-H, 4'-H and 5'-H and protons 

2'-H and 6'-H of the additional benzene ring (Figure 2.4).  
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 Figure 2.4: 1H NMR spectrum of 2,5-dimethoxybiphenyl-3-carbaldehyde 194 within the 3.00-
11.00ppm region, with an inset expansion of the 7.24-7.72ppm region. 
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Scheme 2.16: Preparation of 2,5-dimethoxybiphenyl-3-carbaldehyde 194 
i) 2M Na2CO3, Pd(PPh3)4, DME, EtOH, ∆ = 100°C, 85%. 
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This reaction opened a route to a wide range of 2,5-dimethoxybiphenyl-3-

carbaldehydes analogues via the use of substituted boronic acids; however, this 

alternative was not explored any further due to the poor results obtained from testing 

the corresponding phenoxazin-3-one chromogenic substrate.  

 

2.2.4.3 From 1,4-dimethoxy-2-bromobenzene 174 

The ortho-directed metalation of some 1,4-dimethoxy-2-bromobenzene analogues 

using  n-butyl lithium (n-BuLi) has been reported by Carmen et al. (1997TA913). The 

resulting lithiated intermediates were reacted with variety of electrophiles, including 

methyl iodide.  

This method seemed ideal for the substitution of 1,4-dimethoxy-2-bromobenzene 174 

with an alkyl substituent, and particularly a pentyl substituant. The resulting product 

would then lead to 2-substituted 8-aminophenoxazinones via Route A2.  

Hence, alkylation of 1,4-dimethoxy-2-bromobenzene 174 was attempted, using n-

BuLi and tetramethylenediamine (TMEDA) in dry THF, followed by addition of 1-

bromopentane (Scheme 2.17). 

 

 

 

 

 

 

In a review on direct ortho metallation, Snieckus (1990CRV879) reported the use of 

TMEDA to increase the nucleophilicity of n-BuLi, mainly due to a modification of its 

solubilised form in the presence of TMEDA. 

Initially, after formation of 2,5-dimethoxyphenyllithium 195 and addition of neat 

bromopentane, the reaction was allowed to warm up to room temperature. However, 

even after a prolonged reaction time, the starting material could not be fully converted 

to 1,4-dimethoxy-2-pentylbenzene 196 and quenching of the reaction with NH4Cl 

resulted in the major formation of 1,4-dimethoxybenzene. It appeared that 1,4-

Scheme 2.17: Alkylation of 1,4-dimethoxy-2-bromobenzene 178 
i) 2.5M n-BuLi, dry THF, TMEDA, dry THF, N2 atm., -78°C, 1h; 
ii) Bromopentane, -78°C to R.T. to reflux, 15h, 85.7%. 

i) ii) 

195 196 178 
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dimethoxy-2-bromobenzene 178 was fully lithiated, but that nucleophilic attack of 

bromopentane was too slow to be completed at room temperature. The weak 

electrophilic character of bromopentane could be responsible for the slow kinetics of 

the reaction; overnight reflux was necessary for the full conversion of the starting 

material to 1,4-dimethoxy-2-pentylbenzene 196.  

Formylation of the resulting 1,4-dimethoxy-2-pentylbenzene 196 was effected 

smoothly using the Duff conditions described previously, producing the expected 2,5-

dimethoxy-4-pentylbenzaldehyde 211 in excellent yield (Scheme 2.18). 
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Scheme 2.18: Formylation of 1,4-dimethoxy-2-bromobenzene 196 
i) TFA, urotropine, reflux, 82.4%. 
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Figure 2.5: 1H NMR of 2,5-dimethoxy-4-pentylbenzaldehyde 197. 
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The 1H NMR (Figure 2.5) revealed two aromatic singlets at 6.82ppm and 7.29ppm 

corresponding to 3-H and 6-H, respectively. The absence of coupling between the 

two protons, unlike the situation with benzaldehydes 178 and 194, each with two 

meta aromatic protons, confirmed that in the case of 197, formylation had occurred 

para to the pentyl chain and the two aromatic protons were in 3- and 6-position 

(Figure 2.5).  

The successful synthesis of 2,5-dimethoxy-4-pentylbenzaldehyde was expected to 

lead to 2-pentylphenoxazinones, and allow a comparison of their performances to the 

gold standard 7-amino-1-pentylphenoxazin-3-one.  

 

  2.2.5 Synthesis of 2,5-dimethoxyphenols 150a-f 

The Baeyer-Villiger oxidation was employed to convert the substituted 2,5-

dimethoxybenzaldehydes to the corresponding substituted 2,5-dimethoxyphenols via 

the formate ester.  

The initial conditions, using a suspension of magnesium monoperoxyphthalate 

(MMPP) in MeOH, proved to be efficient in the case of 2,5-dimethoxybenzaldehyde 

149d and 2,5-dimethoxy-3,4,6-trimethylbenzaldehyde 149b, giving the corresponding 

phenols in good yield (60.1% and 62%, respectively). However, the oxidation of 2,5-

dimethoxy-3,4-dimethylbenzaldehyde 149a and 2,5-dimethoxy-4-tbutylbenzaldehyde 

149c, using the same conditions, gave unsatisfactory yields for the conversion to the 

corresponding phenols (17.3% and 20.1%). The use of MMPP in MeOH was 

replaced by m-CPBA in DCM with a great improvement in the conversion to the 2,5-

dimethoxyphenols 150a-g (Scheme 2.19). 

 

 

 

 

 

 

 
Scheme 2.19: Preparation of 2,5-dimethoxyphenols 150a-g 

i) 75% m-CPBA, DCM, 18-24h, R.T.; ii) 10% aq. NaOH, MeOH. 

i) ii) 

149a R1 = R2 = Me, R3 = H 
149b R1 = R2 = R3 = Me 
149c R2 = R3 = H, R2 = tButyl 
178 R2 = R3 = H, R2 = Br 
197 R1 = R3 = H, R2 = n-pentyl 
194 R2 = R3 = H, R2 = phenyl 
149d R1 = R2 = R3 = H 

150a R1 = R2 = Me, R3 = H, 79.8% 
150b R1 = R2 = R3 = Me, 83.0% 
150c R2 = R3 = H, R2 = tbutyl, 54.15% 
150d R1 = R3 = H, R2 = n-pentyl, 81.4% 
150e R2 = R3 = H, R2 = Br, 70.4% 
150f R2 = R3 = H, R2 = phenyl, 74.2% 
150g R1 = R2 = R3 = H, 60.9% 

198a R1 = R2 = Me, R3 = H 
198b R1 = R2 = R3 = Me 
198c R2 = R3 = H, R2 = tButyl 
198d R2 = R3 = H, R2 = Br 
198e R1 = R3 = H, R2 = n-pentyl 
198f R2 = R3 = H, R2 = phenyl 
198g R1 = R2 = R3 = H 
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The 2,5-dimethoxybenzylformate intermediates 198a-g were not isolated, but 

immediately hydrolysed to the corresponding 2,5-dimethoxyphenols 150a-g in MeOH 

using 10% aq. NaOH in MeOH (Scheme 2.19). All phenols were isolated in good to 

excellent yields (Scheme 2.19).  

The formation of a phenol was confirmed in all cases by I.R. spectroscopy with the 

presence of an absorption band within the 3416-3263cm-1 region of the I.R. spectra, 

characteristic of an O-H stretch (Table 6). The hydroxylic proton could also be 

observed on the 1H NMR spectra as singlet within the 5.77-6.10ppm region; 

correlation of this singlet with 1-C, 2-C, 5-C and 6-C on the HMBC spectrum occurred 

only in the case of 213e and 213f were the two aromatic proton were positioned meta 

to each other. 

 

 213a-g 

δH NMR 

(ppm) 

OCH3 (7-H) 3.40-3.90 

OCH3 (8-H) 3.65-3.90 

-OH 5.55-5.90 

ννννmax (cm
-1

) O-H 3416-3263 

 

 

 

In the case of 1,4-dimethoxy-2-tbutylbenzene, the phenol was also prepared in good 

yield via the introduction of a boronic acid group using a solution of 2.5M n-BuLi in 

hexane followed by the addition of triisopropylborate. The resulting boronic acid could 

then be oxidised to the desired phenol using a 35% w/v aqueous solution of H2O2 

(Scheme 2.20).  

 

 

 

 

 

Table 2.4: Key 1H NMR and I.R. features of substituted 2,5-dimethoxyphenols 150a-g. 

Scheme 2.20: Preparation of 2,5-dimethoxy-4-tbutylphenol 150c 
i) 2.5M n-BuLi in hexane, dry THF, -78°C; ii) [isoPrO]3B, -78°C to R.T.; 
iii) sat. aq. NH4Cl; iv) 35% w/w H2O2, THF, R.T., 53.4% 

i), ii) iii) iv) 

200 150c 172c 199 
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 2.2.6 Bromination of 3,5-dimethoxyphenol 177 

The preparation of 2,6-dibromo-3,5-dimethoxyphenol 176 from 3,5-dimethoxyphenol 

177 was achieved in good yield by simple addition of two equivalents of bromine to a 

DCM solution of 3,5-dimethoxyphenol 177, according to the literature (Scheme 2.21, 

1989CJC335). 

 

 

 

 

The main evidence for the 2,6-disubstitution was the presence of only two aromatic 

signals at 6.06 and 6.20ppm, each integrating for one hydrogen, corresponding to 1-

OH and 4-H respectively.  

 

  2.2.7 Oxidation of olivetol 181 

The oxidant of choice for the synthesis of 1,4-benzoquinones from phenols with no 

para substituents, required for the preparation of 2-hydroxy-6-

pentyl-1,4-benzoquinone 180 from olivetol 181 (Route D), was 

potassium nitrosodisulfonate (Fremy’s salt, 201), with many 

reports of this type of oxidation in the literature (1971CRV229).  

A first attempt to oxidise olivetol, adapted from the procedure described by Musso 

(1958CB349, Scheme 2.22), in CH3CN using a K2HPO4 buffer was unsuccessful and 

only olivetol was recovered.  

 

 

 

 

 

Oxidation of various halogenated orcinol derivatives (203a-c) to the corresponding 2-

hydroxy-1,4-benzoquinone (204a-c) has previously been reported (1983J(P1)2595, 

Scheme 2.21: Bromination of 3,5-dimethoxyphenol 177 
i) Br2, DCM, 72.6%. 

i) 

177 
176 

201 

Scheme 2.22: Oxidation of orcinol (1958CB349) 
i) Fremy’s salt, H2O, K2HPO4. 

i) 

202 132a 
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Scheme 2.23) using potassium nitrosodisulfonate; all conversions were realised in 

excellent yield.  

 

 

 

 

 

 

Preparation of a bromo olivetol derivative was then attempted in order to drive the 

oxidation to 2-hydroxy-6-pentyl-1,4-benzoquinone. The 4-bromo-5-pentylresorcinol 

required to prepare the latter via oxidation, was not achievable using olivetol. 

Addition of one equivalent of Br2 to 181 occurred primarily at the 2-position, but the 

high reactivity of olivetol led to an inseparable mixture of olivetol, mono-, di and tri-

bromoolivetol. The preparation of tribromoolivetol 205, previously reported in the 

literature (1936CB1643), using an excess of Br2 within a suspension of NaOAc in 

glacial AcOH (Scheme 2.24), was chosen to avoid the formation of partially 

brominated olivetol analogues. Tribromoolivetol 205 was isolated in excellent yield 

(Scheme 2.24); the full substitution of olivetol was confirmed by 1H NMR 

spectroscopy, with only one singlet in the aromatic region, at 6.10ppm, which 

disappeared after a D2O shake, as is characteristic of phenolic protons. The 

presence of unwanted bromine atoms was thought not be a problem, as they could 

be removed readily during the later catalytic hydrogenation step.   

 

 

  

   

Scheme 2.23: Oxidation of orcinol derivatives 203a-c 
i) Fremy’s salt, K2HPO4, H2O, R.T. (1983J(P1)2595). 

203a R1 = R2 = H, R3 = Cl 
203b R1 = R2 = R3 = Cl 
203c R1 = R2 = R3 = Br 

i) 

204a R1 = H, R2 = Cl, 86% 
204b R1 = R2 = Cl, 83% 
204c R1 = R2 = Br, 96% 

Scheme 2.24: Preparation of 2,6-dibromo-3-hydroxy-5-pentyl-1,4-benzoquinone 206 

i) Br2, AcOH, NaOAc, 0°C to R.T., 5h, 92.2%;  ii) Fremy’s salt, K2HPO4, H2O, CH3CN, R.T., 81.6%. 

i) ii) 

205 206 
181 
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The oxidation of 2,4,6-tribromoolivetol 205 was attempted again, with a slight 

modification, as CH3CN was used to ease the dissolution of 2,4,6-tribromoolivetol in 

the K2HPO4 buffer. The expected 2,6-dibromo-3-hydroxy-5-pentyl-1,4-benzoquinone 

206 was isolated in excellent yield, although some starting material remained 

unreacted. The conversion could not be pushed to completion, even after further 

addition of Fremy’s salt.  

The oxidation to a quinone was evidenced by the presence of two deshielded signals 

on the 13C NMR spectrum at 172.9 and 178.1 ppm and by the two quinone C=O 

stretch present at 1638 and 1669 cm-1  the I.R. spectrum 

   

2.2.8 Synthesis of diphenylethers 169a-g, 175b-c and 152c-d 

  2.2.8.1 Reaction with 2,4-dinitro-1-fluorobenzene 168  

The preparation of 2,4-dinitro-2',5'-dimethoxydiphenylethers 169a-g was achieved as 

previously described (2008OBC682), using 2,4-dinitro-1-fluorobenzene 168, 

commonly called Sanger’s reagent. The 2,5-dimethoxyphenols 150a-e previously 

prepared  were dissolved in DMSO, followed by the addition of Et3N 

and 2,4-dinitro-1-fluorobenzene, giving the diphenylethers 169a-g as 

white to yellow crystalline solids in excellent yield (Scheme 2.25). The 

exception was 3,4,6-trimethylphenol, which failed to react in the presence of Et3N. 

This issue was addressed by the use of a much stronger organic base, 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU, 207), allowing the formation of the desired 

diphenylether 169b in excellent yield.  

 

 

 

 

 

 

 

 Scheme 2.25: Preparation of 2,4-dinitro-2',5'-dimethoxydiphenylether 169a-g 
i) DMSO, Et3N, R.T., 5h-18h (b: DMSO, DBU, R.T., 18h). 

i) 

168 

N

N

207 

150a R1 = R2 = Me, R3 = H 
150b R1 = R2 = R3 = Me 
150c R2 = R3 = H, R2 = tbutyl 
150d R1 = R3 = H, R2 = n-pentyl 
150e R2 = R3 = H, R1 = Br 
150f R2 = R3 = H, R1 = phenyl 
150g R1 = R2 = R3 = H 

169a R1 = R2 = Me, R3 = H, 61.6% 
169b R1 = R2 = R3 = Me, 85.7% b 
169c R2 = R3 = H, R2 = tbutyl, 95.8%  
169d R1 = R3 = H, R2 = n-pentyl, 92.4% 
169e R2 = R3 = H, R1 = Br, 76.6% 
169f R2 = R3 = H, R1 = phenyl, 91.8% 
169g R1 = R2 = R3 = H, 88.2% 
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Likewise, 3,5-dimethoxyphenol and its dibromoanalogue were coupled to 2,4-dinitro-

1-fluorobenzene yielding  2,4-dinitro-3',5'-dimethoxydiphenylethers (175b-c, Scheme 

2.26). 

 

 

 

 

 

 

The formation of a diphenylether product was confirmed by the presence of twelve 

aromatic carbon signals on the 13C NMR spectrum. The 1H NMR spectrum provided 

evidence of the 2,4-dinitrobenzene ring with the three deshielded aromatic protons 

(3-H, 5-H and 6-H) and evidence of dimethoxybenzene ring with the two methoxy 

signals within 3.32-3.755ppm for 7'-H and within 3.63-3.82ppm for 8'-H. I.R. 

spectroscopy showed the characteristic absorption bands for nitro groups within the 

1337-1345cm-1 and 1529-1540cm-1 (Table 2.5). 

 

 

 

169a-g (X = OCH3, Y = H) and 175b-c (X = H, Y = OCH3) 

δH NMR (ppm) 

d6-DMSO 

3-H 8.73-8.94 (1H, d, J = 2.7-3.0 Hz) 

5-H 8.15-8.39 (1H, dd, J = 9.0-9.3, 2.7-3.0 Hz) 

6-H 6.69-7.05 (1H, d, J = 9.0-9.3 Hz) 

7'-CH3 3.32-3.755 (3H, s) 

8'-CH3 3.63-3.82 (3H, s) 

ννννmax (cm
-1

) NO2 1337-1345 and 1529-1540 

 

 

Scheme 2.26: Preparation of 2,4-dinitro-3,5-dimethoxydiphenylether 175b-c 
i) DMSO, Et3N, R.T., 5h-18h. 

i) 

175b X = Br, 65.0% 

175c X = H, 91.2% 

168 

176 X = Br 
177 X = H 

Table 2.5: Key 1H NMR and I.R. spectral features of 2,4-dinitro-2,5-dimethoxydiphenylethers 169a-g and  
2,4-dinitro-3,5-dimethoxydiphenylethers 175b-c. 
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Scheme 2.28: Stabilisation of 3,5-dibromo-3-
hydroxylate-6-pentylbenzoquinone anion 206a. 

However, when a similar coupling was attempted on 2,6-dibromo-3-hydroxy-5-pentyl-

1,4-benzoquinone 206, none of the expected 2,4-dinitrophenoxy-4',6'-dibromo-3'-

pentyl-2',5'-benzoquinone 208 could be isolated, only starting material was recovered 

(Scheme 2.27). Even under more forcing conditions, using NaH in DMF with heat 

over 72h, none of the expected product was formed. 

 

 

 

 

 

 

2,6-Dibromo-3-hydroxy-5-pentyl-1,4-benzoquinone was easily deprotonated, as 

witnessed upon the addition of a base by the formation of a deep purple colour 

generated by the corresponding anion 206a (Scheme 2.28).  

2,4-Dinitro-1-fluorobenzene itself particularly 

favours aromatic nucleophilic substitution, as 

the nitro groups ortho and para to the 

fluorine atom strongly activate the carbon in 

position 1- to nucleophilic attack.  The failure 

of this reaction was possibly linked to the 

conjugation and subsequent stabilisation of 

the anion 206a, as well as some steric 

hindrance generated by the two bromine atoms, ultimately hindering nucleophilic 

attack on 2,4-dinitro-1-fluorobenzene 168. The use of simple 2-hydroxy-1,4-

benzoquinones for this particular reaction could confirm their low reactivity; however, 

this option was not further investigated and no more attempt to prepare 8-

aminophenoxazin-3-ones via Route D were made. 

 

 

Scheme 2.27: Attempted preparation of 2,4-dinitrophenoxy-4',6'-dibromo-3'-pentyl-2',5'-benzoquinone 208 
i) DMSO, Et3N, R.T. or NaH, DMF, 50°C, 72h. 

i) 

208 

168 

206 

O

O Br

Br

OO

O Br

Br

O

206a 
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2.2.8.2 Reaction with 2,5-dinitro-1-fluorobenzene 151 

Although the synthesis of 7-aminophenoxazin-3-one was not the primary target, 

some of the 2,5-dimethoxyphenols prepared previously could lead to new, potentially 

interesting, substituted 7-aminophenoxazin-3-ones. 

Under the route currently being investigated, 2,5-dinitro-2',5'-

dimethoxydiphenylethers 152 were the required precursors to the corresponding 7-

aminophenoxazin-3-ones. The 2,5-dinitro-1-fluorobenzene 151 required for their 

synthesis, was not readily available, and had to be prepared from 2-fluoroacetanilide 

209, as previously described in the literature (2002TL3221). Hence, 2-

fluoroacetanilide 209 was nitrated using a mixture of fuming HNO3 and conc. H2SO4, 

followed by hydrolysis of the amide bond using aq. NaOH (Scheme 2.29). Nitration 

mainly occurred in the para position to the acetanilide group, but the ortho isomer 

210b was also isolated in low yield (1976ACB141, 1989JFC245, Scheme 2.29). 

 

 

 

 

 

The following step, involving the oxidation of aniline to a nitro group, was previously 

reported in the literature for 4-nitro-2-fluoroaniline 210a, using dimethyldioxirane 

(2002TL3221); however, the yield was not given. The oxidation method previously 

used by the University of Sunderland research team (T-2006MI00) was effected in 

glacial AcOH using NaBO3.4H2O, affording the desired 2,5-dinitro-1-fluorobenzene 

151 in 49.0% yield. A new method was desirable to improve the yield and the use of 

trifluoroperacetic acid (TFPAA) was investigated. Emmons reported the oxidation of 

several aniline derivatives to their corresponding nitrobenzene derivatives, in 

excellent yield, using TFPAA (1954JACS3470). The method described the 

generation of TFPAA by the addition of trifluoroacetic anhydride to a DCM solution of 

90% w/v aqueous H2O2. Such a high concentration of H2O2 is not available anymore 

due to its known hazard and use of a 35% w/v aqueous H2O2 solution was reported 

Scheme 2.29: Nitration of 2-fluoroacetanilide 209 
i) fuming HNO3, conc. H2SO4, glacial AcOH, 0°C, ii) 10% aq. NaOH, MeOH; 210a, 67.5%; 210b,15.3%. 

i), ii) 

209 

210a 

210b

v 



CHAPTER TWO                          SYNTHESIS OF PHENOXAZINONE SUBSTRATES  
   

91 

to lower considerably the yield of aniline oxidation, the formation of by-products being 

important in this case (1954JACS3470). This issue was addressed by replacing the 

aqueous H2O2 solution with a urea-hydrogen peroxide adduct (UHPA) to generate 

the TFPAA (1992TL4835).  

2-Fluoro-4-nitroaniline was then oxidised in CH3CN using TFPAA, previously 

generated by addition of trifluoroacetic anhydride to an CH3CN suspension of urea-

hydrogen peroxide adduct, to the expected 2,5-dinitrofluorobenzene 151 in good 

yield (Scheme 2.30).  

 

 

 

 

 

The formation of 2,5-dinitrofluorobenzene 151 was confirmed firstly by a general 

deshielding of all aromatic protons, particularly 3-H (numbered as 6-H in the starting 

material 210a) positioned ortho to the transformed substituent, and secondly by the 

absence of the broad singlet integrating for the two protons of NH2 (Table 2.6).  

 

 

  

210a 

 

151 

δH NMR 

(ppm) 

d6-DMSO 

3-H 7.87-7.93 (2H, m) 8.42 (1H, dd, J = 9.0, 7.5 Hz) 

5-H 7.87-7.93 (2H, m) 8.26 (1H, ddd, J = 9.0, 2.4, 1.5 Hz) 

6-H 6.85 (1H, d, J = 8.7 Hz) 8.53 (1H, dd, J = 10.5, 2.4 Hz) 

NH2 6.77 (2H, br. s) - 

ννννmax (cm
-1

) 

NH2 3493 and 3395  - 

NO2 1522 and 1314 1549 and 1343 

 

 

Scheme 2.30: Oxidation of 2-fluoro-4-nitroaniline 210a 
i) UHPA, TFAA, CH3CN, -15°C to R.T., 70.2%. 

i) 

151 210a 

Table 2.6: Key 1H NMR and I.R. spectral features of 2-fluoro-4-nitroaniline 210a and 
2,5-dinitro-1-fluorobenzene 151. 
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The oxidation of the amine substituent was also notable on the I.R. spectrum of 2,5-

dinitrofluorobenzene 151 since the two N-H stretches at 3493 and 3395cm-1 could 

not be observed anymore (Table 2.6). 

2,5-Dinitro-1-fluorobenzene 151 does not benefit from the same reactivity toward 

nucleophilic aromatic substitution as 2,4-dinitro-1-fluorobenzene 168, as only the 

nitro group ortho to the fluorine activates the carbon in the 1-position. Attempts to 

couple 2,5-dimethoxyphenol using Et3N in DMSO gave poor results, as mostly 

starting materials were recovered, even after 72h. The use of NaH in DMF improved 

the yields of the 2,5-dinitro-2',5'-dimethoxydiphenylether 152c-d (Scheme 2.31), but 

they remained comparatively much lower than the corresponding  2,4-dinitro-2',5'-

dimethoxydiphenylethers 169c-d. 

 

 

 

 

  

 

 

2.2.9 Attempted substitution of diphenylether 

  2.2.9.1 From 2,4-dinitro-3'-bromo-2',5'-dimethoxydiphenylether  

A series of reactions were attempted to substitute the bromine atom on 2,4-dinitro-3'-

bromo-2',5'-dimethoxydiphenylether 169e, with the objective of shortening the 

synthesis of 8-aminophenoxazin-3-ones derivatives (Route C2).  

A Grignard-type reaction was first attempted, as described in the literature, using 

ferric acetylacetonate (Fe(acac)3) (2005OS33). The conditions described were 

applied to 2,4-dinitro-3'-bromo-2',5'-dimethoxydiphenylether with bromopentane, but 

failed to yield any product (Scheme 2.32). 

Bromine-lithium exchange was attempted in the same fashion as for 1,4-dimethoxy-

2-bromobenzene, using 2.5M n-BuLi in dry THF followed by the addition of 

bromopentane (Scheme 2.32). n-BuLi was revealed as too strong a base for the 

Scheme 2.31: Preparation of 2,5-dinitro-2,5-dimethoxydiphenylether 152c-d. 

i) NaH, DMF, R.T., 20h 

i) 

152c R1 = tbutyl, 47.4% 
152d R1 = n-pentyl, 46.8%  

151 150c R2 = tbutyl 
150d R2 = n-pentyl 
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diphenylether moiety, as a considerable amount of tarring occurred, probably initiated 

by cleavage of the diphenylether bond, followed by further side reactions.  

 

 

 

 

 

 

Suzuki coupling was also attempted; by analogy with the results obtained from the 

trials effected previously on 2,5-dimethoxy-3-bromobenzaldehyde 178, it seemed that 

boronic acid reacted more readily with the 2,5-dimethoxy-3-bromobenzene moiety. 

Using the conditions described above, 2,4-dinitro-2',5'-dimethoxydiphenylether 169e 

was thus subjected to a coupling reaction with benzeneboronic acid 193 (Scheme 

2.33).  

 

 

 

 

 

After 24h reflux, no more starting material could be observed by TLC in the reaction 

mixture. NMR analysis of the isolated product revealed the presence of the expected 

extra aryl group, but the absence of signals corresponding to the 2,4-dinitrobenzene 

moiety and the presence of a sharp singlet at 6.10ppm. This strongly indicated that 

Scheme 2.33: Suzuki coupling of 2,4-dinitro-3'-bromo-2',5'-dimethoxydiphenylether 169e 
 i) Phenylboronic acid, Pd(PPh3)4, 2M Na2CO3, EtOH, DME, ∆ = 100°C, 24h, N2 atm., 93.3%. 

i) 

Scheme 2.32: Attempted preparation of 2,4-dinitro-2',5'-dimethoxy-3'-pentyldiphenylether 169p 
 i) Bromopentane, Mg, dry THF, 1,2-dibromoethane; ii) Fe(acac)3, dry NMP, or 
 i) dry THF, 2.5M n-BuLi, N2, -75°C; ii) Bromopentane -75°C to R.T. 

i), ii) 

169e 169p 

i) 169e 

150f 

169f 
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coupling of the boronic acid did occur along with a cleavage of diphenylether. 

Comparison with the spectra of 2,5-dimethoxy-biphenyl-3-ol 150f previously prepared 

from 2,5-dimethoxybiphenyl-3-carbaldehyde 194 confirmed the formation of 2,5-

dimethoxy-biphenyl-3-ol during this reaction in 93.3% yield. 

This unsuccessful series of reactions undertaken on 2,4-dinitro-2',5'-dimethoxy-3'-

bromodiphenylether 169e proved this diphenylether to be unsuitable for the desired 

type of substitutions, i.e. introduction of alkyl substituents and this pathway was not 

further investigated.  

    

2.2.9.2 From 2,4-dinitro-2',5'-dimethoxydiphenylether 169g 

In a last attempt to substitute on the diphenylether ring, a formyl group was 

introduced on the 2,4-dinitro-2',5'-dimethoxydiphenylether 169g, using the Duff 

conditions described previously and leading to the isolation of 2,4-dinitro-4'-formyl-

2',5'-dimethoxydiphenylether 211 in good yield (Scheme 2.34). The 1H NMR 

spectrum exhibited a deshielded singlet at 9.75ppm, characteristic of a formyl group, 

further confirmed by a very deshielded peak in the 13C NMR spectrum at 193.5ppm. 

Five aromatic protons, a doublet at 8.41ppm, a doublet of doublets at 7.89ppm, a 

singlet at 7.14ppm, a doublet at 6.57ppm and a singlet at 6.455ppm confirmed the 

presence of the two aromatic rings. The two singlets were part of the 

dimethoxybenzene ring and confirmed their relative para position and the introduction 

of the formyl group into the 4-position. 

 

 

 

 

 

The successful preparation of 2,4-dinitro-4'-formyl-2',5'-dimethoxydiphenylether 211 

opened a route to new derivatives, as the formyl group could be transformed into a 

wide range of products, within the limitations previously experienced with 

diphenylethers, i.e. use of an inorganic base or strong organic base would have to be 

avoided. 

i) 

Scheme 2.34: Formylation of 2,4-dinitro-2',5'-dimethoxydiphenylether 169g 
i) Hexamethylenetetramine, TFA, 95°C, 48h, 73.2%. 

211 169g 
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2.2.10 Demethylation of diphenylether 169b,g and 227b  using BBr3 

The diphenylethers prepared were deprotected using BBr3. This reagent has been 

used previously on similar structures (2008OBC682) and has also been reported to 

be very effective for the demethylation of various aryl methyl ethers (1968T2289). 

This method was successfully applied to the demethylation of 2,4-dinitro-2',5'-

dimethoxydiphenylether 169g and 2,4-dinitro-2',5'-dimethoxy-3',4',6'-

trimethyldiphenylether 169b. Deprotection was confirmed by the disappearance of 

the two methoxy signals in the aliphatic region of the 1H NMR and 13C NMR spectra 

and the formation of two deshielded singlets within the 9.50-9.80ppm region for 170a 

and within the 8.80-8.90ppm region for 170b. The I.R. spectra of both 170a and 170b 

also showed absorption band within the 3300-3400cm-1 region, characteristic of 

phenols. In the case of 2,4-dinitro-2',5'-dimethoxy-3',4',6'-trimethyldiphenylether, a 

notable amount of the corresponding quinone 179b was also isolated (Scheme 

2.35).  

 

 

 

 

 

 

The isolation of quinone 179b was confirmed by the presence on the 13C NMR 

spectrum of two strongly deshielded carbon signals at 180.5ppm and 186.9ppm and 

the two quinone carbonyl stretches observed at 1648 and 1666cm-1 on the I.R. 

spectrum.  

This method of deprotection showed limitations when deprotection of 2,4-dinitro-2',5'-

dimethoxy-4'-tbutyldiphenylether 169c was attempted, as only a small amount of the 

expected product could be isolated, along with a complex mixture of by-products. 

Further experiments with the BBr3 demethylation procedure and 2,4-dinitro-2',6'-

dibromo-3',5'-dimethoxydiphenylether 175b also proved to be problematic. Two 

products were isolated: the mono-deprotected diphenylether 212 and the 2,4-dinitro-

2',5'-dihydroxy-3',4',6'-tribromodiphenylether 214 (Scheme 2.36). 

Scheme 2.35: Deprotection of 2,4-dinitro-2',5'-dimethoxydiphenylether 169b and 169g 
i) 1M BBr3 in DCM, dry DCM, N2 atm., -75°C to R.T., ii) H2O. 

i), ii) 

170a R1 = R2 = R3 = H, 66.5% 
170b R1 = R2 = R3 = CH3, 53.5% 

179b R1 = R2 = R3 = CH3, 
13.0% 

169b R1 = R2 = R3 = CH3 
169g R1 = R2 = R3 = H 
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The isolation of 212 and 214 was rationalised as follows: as soon as the second 

demethylation occurred, generating 213, the electron rich carbon at the 4'-position 

reacted immediately with bromine to form the triibromodiphenyl ether 214, avoiding 

any possible isolation of the desired 2,4-dinitro-2',5'-dihydroxy-3',6'-

dibromodiphenylether 213. The isolation of 214 suggested that sequential 

demethylation of the diphenylether occurred, 

one methyl group being removed at a time.  

The formation of 214 was suspected as the 

aromatic region only showed 3 aromatic 

protons on the 1H NMR spectrum, a doublet 

at 7.10ppm, a doublet of doublets at 

8.33ppm and a doublet at 8.95ppm, 

corresponding to 6-H, 5-H and 3-H 

respectively. The addition of a third bromine 

atom was confirmed by mass spectrometry 

(Figure 2.6): the four peaks corresponding to 

the different isotopic mass of 214, with a 

1:4:4:1 ratio, correlated with the mass of 214 and the presence of three bromine 

atoms.  

The preparation of 8-aminophenoxazin-3-one derivatives from 2,4-dinitro-2',5'-

dihydroxy-3',6'-dibromodiphenylether 213 (Route B), was abandoned here due to the 

difficulties encountered to prepare this intermediate. 

Scheme 2.36: Deprotection of 2,4-dinitro-2',6'-dibromo-3',5'-dimethoxydiphenylether 175b. 

212 

213 214 

175b 

Figure 2.6: Mass spectrum representing the 
(M-H)- peaks of the different bromine 
isotopes of 214. 
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2.2.11 Oxidative demethylation of diphenylethers 169a,c,d,f and 152c-d 

using cerium (IV) ammonium nitrate 

Consequently, an alternative method for the deprotection of diphenylethers was 

sought.  The formation of a range of substituted p-quinones in high yield from 

substituted p-dimethoxybenzenes via oxidative demethylation using cerium (IV) 

ammonium nitrate (CAN), reported by Jacob et al. (1976JOC3627), seemed 

advantageous. 1,4-Dimethoxybenzene-2,3,5,6-tetramethylbenzene 215 is thought to 

be first oxidised by cerium (IV) to the di-cation 216, followed by addition of water to 

form the tetramethylcyclohexadiene intermediate 217 (Scheme 2.37). Subsequent 

loss of CH3OH leads to the formation of duroquinone 218 (1976JOC3627, Scheme 

2.37). 

 

 

 

 

 

Oxidative demethylation was hence attempted, by addition of an aqueous solution of 

CAN to an acetonitrile solution of the correctly substituted diphenylethers (Scheme 

2.38). The expected 2,4- (179a,c,d,e) and 2,5-dinitrophenoxy-2',5'-benzoquinones 

(219a-b) were all isolated in good to excellent yield (Scheme 2.38). 

The oxidative-demethylation was evidenced by the absence of signals corresponding 

to the two methoxy groups within the 3.30-3.82ppm region of the 1H NMR spectrum. 

The key characteristics were the quinone carbonyls, observed as two deshielded 

signals, on the 13C NMR spectra, within 179.9-181.4ppm and 186.6-187ppm for 

quinones 179a,c,d,e and within 181.0-181.4ppm and 187.65-187.8ppm for quinones 

219a-b (Table 7). 

 

Scheme 2.37: Suggested intermediates for the formation of duroquinone via CAN oxidation of 
1,4-dimethoxybenzene-2,3,5,6-tetramethylbenzene 215 (1976JOC3627). 

215 217 218 
216 
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The quinone C=O stretches were also visible as two distinct absorption bands within 

the 1647-1651cm-1 and 1665-1676cm-1 region of the I.R. spectra. The three 

deshielded aromatic protons (3-H, 5-H and 6-H for 179a,c,d,e or 3-H, 4-H and 6-H for 

219a-b) and the absorbance characteristic of nitro groups within the 1341-1347cm-1 

and 1526-1544cm-1 region of the I.R. spectra confirmed the integrity of the 

dinitrophenoxybenzoquinone ring (Table 2.7).  

 

 

 
179a,c,d,e  219a-b 

δH NMR 

(ppm) 

d6-DMSO 

3-H 8.88-8.94 (1H, d, J = 2.7Hz) 3-H 8.32-8.44 (1H, d, J = 9.0Hz) 

5-H 
8.38-8.60 (1H, dd,  

J = 9.0-9.3, 2.7Hz) 
4-H 

8.23-8.33 (1H, dd,  

J = 9.0, 2.4Hz) 

6-H 
7.31-7.90 (1H, d,  

J = 9.0-9.3Hz) 
6-H 8.41-8.51 (1H, d, J = 2.4Hz) 

δC NMR 

(ppm) 

2'-C 179.9-181.4 2'-C 181.0-181.4 

5'-C 186.6-187.6 5'-C 187.65-187.8 

ννννmax (cm
-1

) 

C=O 
1647-1649  

and 1665-1676 
C=O 

1650-1651 

and 1672-1676 

NO2 
1341-1347  

and 1526-1543 
NO2 

1343-1347 

and 1540-1544 

 

 

 

Scheme 2.38: Oxidative demethylation of substituted 2,4- and 2,5-dinitro-2',5'dimethoxydiphenylethers 
i) CAN, CH3CN, H2O, R.T. 

i) 

169a 4-NO2, R1 = R2 = Me, R3 = H 
169c 4-NO2, R2 = R3 = H, R2 = tbutyl 
169d 4-NO2, R1 = R3 = H, R2 = n-pentyl 
169f 4-NO2, R2 = R3 = H, R1 = phenyl 
152c 5-NO2, R2 = R3 = H, R2 = tbutyl 
152d 5-NO2, R1 = R3 = H, R2 = n-pentyl 

Table 2.7: Key spectral features of substituted 2,4- and 2,5-dinitrophenoxy-2'-5'-benzoquinones 
179a,c,d,e and 219a-b. 

179a 4-NO2, R1 = R2 = Me, R3 = H, 90.9% 
179c 4-NO2, R2 = R3 = H, R2 = tbutyl, 63.0% 
179d 4-NO2, R1 = R3 = H, R2 = n-pentyl, 96.7% 
179e 4-NO2, R2 = R3 = H, R1 = phenyl, 84.6% 
219a 5-NO2, R2 = R3 = H, R2 = tbutyl, 93.2% 
219b 5-NO2, R1 = R3 = H, R2 = n-pentyl, 91.4% 
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The two carbon signals at 180ppm and 187ppm were assigned to 2'-C and 5'-C, 

respectively (Figure 2.7), the assignments being justified by the HMQC spectrum of 

2,4-dinitrophenoxy-4'-pentyl-2',5'-benzoquinone 179d (Figure 2.7). 

 

ppm (f2)
2.503.003.504.004.505.005.506.006.50

175.0

180.0

185.0

190.0

ppm (f1)

 

 

 

 

Firstly, a strong correlation between the carbon signal at 180.3ppm and 6'-H could be 

seen, as well as a similar correlation between the carbon signal at 186.6ppm and 3'-

H. This suggested a close proximity between 6'-H and the carbon at 180.3ppm and 

between 3'-H and the carbon at 186.6ppm. However, a strong correlation was also 

seen between 1''-H, belonging to the pentyl chain substituent, and the carbon at 

186.6ppm, but no correlation between the same 1''-H and the carbon signal at 

180.3ppm. A three bond correlation is much more likely to be seen on an HMQC 

spectrum than a four bond correlation, suggesting that the signal at 186.6 ppm could 

be assigned to 5'-C and the signal at 180.3ppm could be assigned to 2'-C. The 

HMQC spectrum of 2,4-dinitrophenoxy-3',4',6'-trimethyl-2',5'-benzoquinone 179b 

(Figure 2.8) led to the same conclusion regarding the assignment of 2'-C and 5'-C.  

1''-H 

3'-H 6'-H 

180.3 ppm 

186.6 ppm 

179d 

1'

6'
5'

4'

3'
2'

O

O

O
3

4
5

6

1
2

NO2

O2N
1''

2'

3''

4''

5''

Figure 2.7: HMQC spectrum of 2,4-dinitrophenoxy-4'-pentyl-2',5'-benzoquinone 179d. 



CHAPTER TWO                          SYNTHESIS OF PHENOXAZINONE SUBSTRATES  
   

100 

 

ppm (f2)
1.701.801.902.00

180.0

185.0

190.0

ppm (f1)

 

 

 

A correlation between the methyl group 8'-H and the carbon signal at 180.5ppm and 

correlation between the two methyl groups 7'-H and 9'-H and the carbon signal at 

186.9ppm also strongly suggested that the 2'-C signal was at 180.5ppm and the 5'-C 

signal was at 186.9ppm. 

This strategy could not be applied to the assignment of 2'-C and 5'-C of the other 2,4- 

and 2,5-dinitrophenoxy-2',5'-benzoquinones, mainly due to the absence of 

determinant correlations between the substituents of the quinoid ring and the 2'-C 

and 5'-C signals. It was considered reasonable to assign the signal around 180ppm 

to 2'-C and the signal around 187ppm to 5'-C for all the 2,4-dinitro and                    

2,5-dinitrophenoxy-2',5’-benzoquinones prepared, by extrapolation of the signals 

assigned to 179b and 179d. Considering the nature of their substituents, it is very 

unlikely that the chemical shift of 2'-C and 5'-C would be inverted. 

Overall, the CAN oxidative-demethylation proved to be superior to the BBr3 

demethylation for 2,4- and 2,5-dinitro-2',5'-dimethoxydiphenylethers. Cerium (IV) 

ammonium nitrate presented the advantage of being easily handled, compared to the 

1
2

3

4

5

6

O

7'
O

8'

CH3

9'

CH3

1'O
2'

5'

3'

NO2

6'O2N 4'H3C

9'-H 

7'-H 

8'-H 

180.5 ppm 

186.9 ppm 

Figure 2.8: HMQC of 2,4-dinitrophenoxy-3',4',5'-trimethyl-2',5'-benzoquinone 179b. 

179b 
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moisture sensitive BBr3, resulting in a simple reaction procedure, providing crystalline 

solids in high yield. 

 

2.2.12 Synthesis of 7- and 8-aminophenoxazin-3-ones 

  2.2.12.1 From 2,4-dinitro-2',5'-dihydroxydiphenylethers 170a-b 

The catalytic hydrogenation of 2,4-dinitro-2',5'-dihydroxydiphenylether 170a, followed 

by removal of the catalyst and aeration of the resulting solution, was reported to give 

8-aminophenoxazin-3-one 167a in excellent yield (T-2006MI00, Scheme 2.39). This 

procedure was attempted several times to prepare 8-aminophenoxazin-3-one 167a, 

with little success, as 8-aminophenoxazin-3-one 167a was only isolated in poor yield, 

if at all (Scheme 2.39).  

 

 

 

 

 

After examination of the suggested mechanism based upon the oxidation of 

duroquinone (1938JACS98), it seemed necessary that the hydroquinone was fully 

deprotonated for the oxidation to occur. Hence, Et3N was added after the reduction of 

2,4-dinitro-2',5'-dihydroxydiphenylether 170a to promote the formation of 221a, but 

this was not sufficient to drive the oxidative-cyclisation and a metal oxide (AgO, Ag2O 

or MnO2) was added to promote the reaction (Scheme 2.40).  

 

 

 

 
Scheme 2.40: Oxidative cyclisation of 2,4-diamino-2',5'-dihydroxydiphenylether derivatives 

i) Et3N, ii) [O] with AgO, Ag2O or MnO2. 

Scheme 2.39: Oxidative cyclisation of 2,4-dinitro-2',5'-dihydroxydiphenylether 170a 
i) H2, Pd/C 5%, MeOH, ii) Aerial oxidation. 

 

167a, trace 

167a R1 = R2 = R3 = H, 91.3% 

167c R1 = R2 = R3 = CH3, 86.7% 

i), ii) 

i)  ii) 

170a 

220a R1 = R2 = R3 = H 
220b R1 = R2 = R3 = CH3 

221a R1 = R2 = R3 = H 
221b R1 = R2 = R3 = CH3 
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Using these conditions, 8-aminophenoxazin-3-one 167a and 8-amino-1,2,4-

trimethylphenoxazin-3-one 167c were isolated in good yield (Scheme 2.40). The 

formation of the phenoxazinone ring could be witnessed by the appearance of a deep 

purple colour. The 8-aminophenoxazin-3-one structure was confirmed mainly by two 

key pieces of information, namely, the presence of a deshielded carbon signal 

around 185ppm on the 13C NMR spectrum and the presence of one amino group, as 

shown on the 1H NMR spectrum by a broad singlet around 5.3ppm, integrating for 

two protons (Figure 2.9) and on the I.R. spectrum by three bands characteristic of an 

aromatic amine within 3200-3370cm-1. 

 

ppm (f1)
2.03.04.05.06.07.0

0

500

1000

1500

2000

7.
20

5

7.
17

6

6.
93

7
6.

92
8

6.
88

2
6.

87
3

6.
85

3
6.

84
4

5.
31

8

2.
32

1
2.

31
8

2.
06

2
2.

05
9

1.
95

3
1.00
0.95

0.96

3.12

3.15
3.33

1.91

ppm (f1)
170.0175.0180.0185.0

18
4.

12
9

 

 

 

 

Experiments showed that neutral conditions were insufficient to drive the cyclisation 

of 220a to 167a. The formation of a zwitterion, as suggested in section 1.3.9 

(Scheme 1.50), seemed not to be occuring with 220a-b; furthermore, aerial oxidation 

was not sufficient to drive the cyclisation of 220a to 167a (Scheme 2.40), even after 

the potential formation of 221a and stronger oxidising conditions were required to 
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CH3
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13167c 

-NH2 
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3-C 

11-H 

12-H 

13-H 

Figure 2.9: 1H NMR spectrum of 8-amino-1,2,4-trimethylphenoxazin-3-one 167c and expansion of  
the 13C NMR spectrum within the 165-190ppm region (inset). 
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isolate 167a. These observations are in favour with the formation of 171a as a key 

intermediate, and highlight the need to favour the oxidation of 220a to 171a (Scheme 

2.41) for optimum formation of 8-aminophenoxazin-3-ones. 

  

 

 

 

 

 

 

  

2.2.12.2 From 2,4 and 2,5-dinitrophenoxy-2',5'-benzoquinones 

Dinitrophenoxy-2',5'-benzoquinones 179a-e and 219a-b were reduced by catalytic 

hydrogenation using Pd/C 5% as a catalyst. A solvent mixture of EtOAc : MeOH (1:1) 

was used to improve the solubility of the starting material. The reduction typically 

required 2h for completion and, after removal of the catalyst, cyclisation to the 

phenoxazin-3-one moiety occurred rapidly upon addition of a metal oxide such as 

Ag2O or MnO2 (Scheme 2.42).  

 

 

 

 

 

 

 

 

 

Cyclisation was witnessed by the production a deep violet coloured solution for the 8-

aminophenoxazin-3-ones 167b-f and deep pink-red colour for the 7-

aminophenoxazin-3-one 59d-e. The resulting 7- and 8-aminophenoxazin-3-ones 

Scheme 2.42: Catalytic hydrogenation of dinitrophenoxy-2',5'-benzoquinone 179a-d,f and 219a-b 
i) MeOH/EtOAc (1:1), Pd/C 5%, H2, P = 2.4bar; ii) MeOH, Ag2O or MnO2 

i), ii) 

Scheme 2.41: Oxidation of 2,4-diamino-2',5'-dihydroxydiphenylether 220a. 

220a 171a 

179a 4-NO2, R1 = R2 = CH3, R3 = H 
179b 4-NO2, R1 = R2 = R3 = CH3 
179c 4-NO2, R1 = R3 = tbu, R2 = H 
179d 4-NO2, R1 = R3 = pentyl, R2 = H 
179e 4-NO2, R1 = Ph, R2 = R3 = H 
219a 5-NO2, R1 = R3 = tbu, R2 = H 
219b 5-NO2, R1 = R3 = pentyl, R2 = H 

167b 8-NH2, R1 = R2 = CH3, R3 = H, 94.0% 
167c 8-NH2, R1 = R2 = R3 = CH3, 92.0% 
167d 8-NH2, R1 = R3 = tbu, R2 = H, 86.8% 
167e 8-NH2, R1 = R3 = pentyl, R2 = H, 94.7% 
167f 8-NH2, R1 = Ph, R2 = R3 = H, 73.4% 
59d 7-NH2, R1 = R3 = tbu, R2 = H, 97.5% 
59e 7-NH2, R1 = R3 = pentyl, R2 = H, 97.6% 

[O] 
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167b-f and 59d-e were all formed in excellent yield (Scheme 2.42); removal of the 

catalyst and evaporation of the solvent gave a product free of impurities. Exception 

was made for 2,4-dinitrophenoxy-2',5'-dimethoxy-3'-phenylbenzoquinone 167f, for 

which reduction required modified conditions (Pd/C 10% in THF), longer 

hydrogenation time (48h), and the subsequent cyclisation required the use of Et3N to 

yield 167f.  

The key characteristics for all the phenoxazinones prepared were first an important 

shielding of the aromatic protons situated on the benzene ring (6-H, 7-H and 9-H or 

6-H, 8-H and 9-H, Table 2.8), as a result of both nitro groups reduction. The 

observation of only one amino group, seen as a broad singlet within the 5.31-

5.41ppm region of the 1H NMR spectra for 8-aminophenoxazinones and within 6.81-

6.83ppm for 7-aminophenoxazinones (Table 2.8), as well as a carbonyl within the 

184.1-184.6ppm region of the 13C NMR spectra, attested for the formation of a 

cyclised product. The presence of three absorption bands within 3355-3420, 3308-

3329 and 3198-3226cm-1 (range for both 7- and 8-aminophenoxazinones) and of an 

absorption band within 1634-1649cm-1 (8-aminophenoxazinone) or 1643-1661cm-1 

(7-aminophenoxazinone), provided further evidence for the formation of an amino 

and a carbonyl group (Table 2.8).  

 

 

 
167b-f  59d-e 

δH NMR 

(ppm) 

 

d6-DMSO 

6-H 
7.05-7.20 (1H, d,  

J = 8.7-9.3Hz) 
6-H 6.475-6.51 (1H, d, J = 2.4Hz) 

7-H 
6.78-6.90 (1H, dd,  

J = 8.7-9.0, 2.7Hz) 
8-H 

6.69-6.71 (1H, dd,  

J = 8.7-9.0, 2.4Hz) 

9-H 6.77-6.96 (1H, d, J = 2.7Hz) 9-H 7.43-7.48 (1H, d, J = 8.7Hz) 

NH2 5.31-5.41 (2H, br.s) NH2 6.81-6.83 (2H, br.s) 

δC NMR 

(ppm) 

3-C 184.1-184.5 3-C 184.3-184.6 

4-C 104.0-111.75 4-C 105.1-106.5 

ννννmax (cm
-1

) 

C=O 1634-1649 C=O 1643-1661 

N-H 
3355-3414, 3308-3337  

and 3198-3225 
N-H 

3408-3420, 3317-3329  

and 3205-3226 

 

Table 2.8: Key NMR and I.R. spectral data for 7- and 8-aminophenoxazin-3-ones 167b-f, 59d-e. 
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Finally, the shielded aromatic carbon (4-C), present within 104.0-111.75ppm region 

of the 13C NMR spectrum, resulting from its position ortho to the oxygen bridging 

atom and the carbonyl 3-C,  provided further evidence for the quinoid nature of the 

product (Table 2.8). 

 

 2.2.13 Trapping of reactive species 

A series of experiments was undertaken to confirm the nature of the intermediates 

involved in the cyclisation of phenoxazin-3-ones. Three different starting materials 

were investigated, 2,4-dinitro-2,5-dihydroxydiphenylether, 2,4-

dinitrophenoxybenzoquinones and 2,5-dinitrophenoxybenzoquinone.  

 

  2.2.13.1 2,4-Diamino-2',5'-dihydroxydiphenylether 220a 

The first species, 2,4-diamino-2,5-dihydroxydiphenylether 250, which was expected 

from catalytic hydrogenation of 2,4-dinitro-2,5-dihydroxydiphenylether, could not be 

fully characterised due to its poor stability. The addition of acetic anhydride 

immediately after catalytic hydrogenation of 170a provided the expected 2,4-

diacetamido-2',5'-dihydroxydiphenylether 222 in good yield (Scheme 2.43), providing 

evidence for 2,4-diamino-2,5-dihydroxydiphenylether 220a as an intermediate.  

 

 

 

 

 

Acetylation was evidenced by the presence of two singlets each integrating for 3 

protons at 2.025 and 2.11ppm on the 1H NMR spectrum, along with the two 

carbonyls at 168.5 and 169.1ppm on the 13C NMR spectrum. The four deshielded 

singlets at 8.67, 8.88, 9.44 and 9.89ppm, each integrating for one proton, were 

readily exchangeable with deuterium and were assigned to the two hydroxylic 

protons and the two amide protons, respectively. Acetylation was further confirmed 

by I.R. spectroscopy, the sharp absorption bands at 1698 and 1665cm-1 were thought 

Scheme 2.43: Catalytic hydrogenation of 2,4-dinitro-2',5'-dihydroxydiphenylether 170a 
i) MeOH, Pd/C 5%, H2, P = 2.4bar; ii) Acetic anhydride; 79.5%. 

i) 

222 170a 

ii) 

220a 
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to arise forml the C=O stretch, the broad absorption band from 2900 to 3500cm-1 was 

thought to arise from the O-H stretch, and the overlapping sharp peaks at 3416 and 

3317cm-1 were thought to arise from the N-H stretch. 

 

  2.2.13.2 2,4-Diaminophenoxybenzoquinones 171a,c,d 

The 2,4-dinitrophenoxy-2',5'-benzoquinones 179a, c and d were dissolved in a 

solvent mixture of EtOAc and MeOH and subjected to catalytic reduction using      

Pd/C 5%, directly followed by addition of acetic anhydride. In each case, the 

corresponding 2,4-diacetamido-2',5'-benzoquinones 223a-c were isolated in excellent 

yield (Scheme 2.44), providing evidence for the formation of 2,4-

diaminophenoxybenzoquinones 171a,c,d as intermediates. 

 

 

 

 

 

 

Acetylation was evidenced on the 1H NMR spectrum, as described above, by two 

singlets in the 2.0-2.1ppm region, each integrating for three protons, and two 

deuterium exchangeable protons in the 9.0ppm and 10.0ppm region. The carbonyls 

were observed as two deshielded signals in the 165-170ppm region of 13C NMR 

spectrum, and as a sharp peak within the 1697-1726cm-1 region of the I.R. spectrum 

(Table 2.9). The conservation of the quinone ring was evident on the 13C NMR 

spectrum, with the two deshielded signals around 180ppm and 186ppm, and on the 

I.R. spectrum with two absorption bands around 1660cm-1 and 1650cm-1 (Table 2.9). 

Those spectral features were similar to that of the corresponding starting material 

179a, c and d, and the quinone carbonyls were assigned as 2'-C and 5'-C for the 

signals at 180 and 186ppm, respectively, following the reasoning discussed in 

section 2.2.11. 

 

 

i) 

Scheme 2.44: Trapping of the 2,4-aminophenoxy-2',5'-benzoquinones intermediates via acetylation 
i) MeOH, Pd/C 5%, H2, P = 2.4bar; ii) Acetic anhydride. 

223a R1 = R2 = CH3, R3 = H, 95.8% 
223b R1 = R3 = H, R2 = tbutyl, 99.0% 
223c R1 = R3 = H, R2 = pentyl, 98.3% 

179a R1 = R2 = CH3, R3 = H 
179c R1 = R3 = H, R2 = tbutyl 
179d R1 = R3 = H, R2 = pentyl 

ii) 

171a R1 = R2 = CH3, R3 = H 
171c R1 = R3 = H, R2 = tbutyl 
171d R1 = R3 = H, R2 = pentyl 
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Range for 223a-c 

δH NMR (ppm) 

2a-CH3 and 2b-CH3 2.03-2.06 (3H, s) and 2.055-2.07 (3H, s) 

2-NH 8.63-9.33 (1H, s) 

4-NH 9.31-10.07 (1H, s) 

δC NMR (ppm) 

1a-C and 1b-C 165.8-168.8 and 166.3-169.2 

2'-C 181.0-182.1 

5'-C 186.6-187.8 

ννννmax (cm
-1

) 

C=O (quinone) 1639-1648 and 1655-1665 

C=O (amide) 1697-1726 

N-H 3270-3403 

 

 

 

Attempts to reduce the quinone ring on 179a with a much longer hydrogenation time 

(48h) failed to produce the desired product 222a or even the previously isolated 

quinone 223a, but led to an unexpected result (Scheme 2.45). The same analytical 

data were obtained when 2,4-diacetamidophenoxybenzoquinone 223a was refluxed 

in MeOH (Scheme 2.45). 

 

 

 

Table 2.9: Key NMR and I.R. spectroscopic features of 2,4-diacetamido-2',5'-benzoquinones 223a-c. 

Scheme 2.45: Formation of 2-acetoxy-5-acetamido-1-phenylamino-3',4'-dimethyl-2',5'-benzoquinone 224 
i) MeOH, Pd/C 5%, H2, P = 2.4bar, 48h; ii) Acetic anhydride ∆ or iii) MeOH, ∆. 

i)  

179a 

i), ii)  

iii)  

222a 

223a 224 
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The 1H NMR spectrum appeared very much similar to the data obtained for 223a, 

with the presence of two acetyl groups, two methyl group, four aromatic protons and 

two deshielded, exchangeable protons. The slight difference in chemical shift could 

not be taken into account, as both NMR spectra could not be run in the same solvent. 

The 13C NMR spectrum revealed the possible quinoid nature of the product, with the 

presence of two deshielded signals at 183.6 and 185.8ppm. The major difference 

arose from the examination of the HMBC spectrum, which revealed key correlations 

between the singlet at 8.26ppm and carbon atoms belonging to both the benzene 

and the quinone ring (Figure 2.10).  
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The correlation between one of the NH and 6-C, 1-C, 2-C and 2'-C could only be 

possible in a structure where the nitrogen would be the bridging atom between both 

rings (Figure 2.10). The proposed structure 224 matched appropriately the NMR 

data and correlation observed; however, X-ray crystallography would be required for 

a definitive confirmation of the proposed structure 224.  

The formation of the quinone 224 is thought to be possible via a Smiles 

rearrangement type reaction: nucleophilic attack of the nitrogen atom in the 2-position 

Figure 2.10: HMBC spectrum of the probable 224 (assigned carbons correlate with 1-NH).  
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ipso to the oxygen bridging atom could lead to the intermediate 225 with subsequent 

rearrangement to 225, followed by transfer of the acetyl group to form 2-acetoxy-5-

acetamido-1-phenylamino-3',4'-dimethyl-2',5'-benzoquinone  224 (Scheme 2.46). 

 

 

 

   

2.2.13.3 2,5-Diamino-2',5'-dihydroxydiphenylether 154a 

The reduction of 2,5-dinitrophenoxy-4'-tbutyl-2',5'-benzoquinone 219a and trapping of 

the resulting intermediate was carried out following the same conditions described for 

2,4-dinitrophenoxybenzoquinones 179a, c and e (Scheme 2.47). The resulting 

product was 2,5-diacetamido-4'-tbutyl-2',5'-dihydroxydiphenylether 227, providing 

evidence for the formation of 2,5-diamino-2',5'-dihydroxy-4'-tbutyldiphenylether 154a 

as an intermediate (Scheme 2.47). 

 

 

 

 

 

Unlike its 2,4-regioisomer 179c, 2,5-dinitrophenoxy-4'-tbutyl-2',5'-benzoquinone 219a 

was fully reduced (nitro groups and quinone ring) under catalytic reductive conditions: 

i) 

Scheme 2.47: Catalytic hydrogenation of 2,5-dinitrophenoxy-4'-tbutyl-2',5'-benzoquinone 219a 
i) MeOH, Pd/C 5%, H2, P = 2.4bar; ii) Acetic anhydride; 97.5%. 

227 219a 

ii) 

154a 

223a 

224 

Scheme 2.46: Suggested mechanism for the formation of 2-acetoxy-5-acetamido-1-phenylamino-3',4'-
dimethyl-2',5'-benzoquinone 224. 

225 

226 
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comparison of both acetylated product 223b and 227 evidence the reduction of the 

quinone ring for 226, with the absence of the two quinone carbonyls 5'-C and 2'-C 

around 187 and 182 ppm and the appearance of the two hydroxylic protons 2'-OH 

and 5'-OH at 8.8 and 8.4ppm, respectively (Figure 2.11).  
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The reasons for the reduction of the quinone ring in the case of 227 could not be 

rationalised considering the hydrogenation conditions used. However, it appeared 

evident that the relative position of the two nitro groups was determinant of the 

hydrogenation outcomes.  

 

  2.2.14 Mechanism of cyclisation 

In the case of 8-aminophenoxazin-3-ones 167, 2,4-diaminophenoxybenzoquinones 

171 have been confirmed to be key intermediates. They are direct intermediates in 

the reduction of 2,4-dinitrophenoxybenzoquinones 179, but are also likely to arise 

from the oxidation of 2,4-diamino-2',5'-dihydroxydiphenylether 220, intermediates 

2-NH 5-NH 

2'-OH 

5'-OH 

1a-C and 1b-C 

Figure 2.11: Comparison of sections of 1H NMR spectrum and 13C NMR spectrum for 222b and 226 

in d6-DMSO. 
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resulting from the reduction of 2,4-dinitro-2',5'-dihydroxydiphenylether 170 (Scheme 

2.48). This last hypothesis, oxidation of 2,4-diamino-2',5'-dihydroxydiphenylether 220 

to 2,4-diaminophenoxybenzoquinone 171 (Scheme 2.48), is supported by the 

necessity to have oxidising conditions to favour the formation of 8-aminophenoxazin-

3-one from this route (Scheme 2.48). 
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The cyclisation is likely to occur from 2,4-diaminophenoxybenzoquinone 171 via 

nucleophilic attack of the amino group onto the quinone carbonyl, giving to the 

intermediate 228 (Scheme 2.48). Proton transfer and subsequent loss of water would 

then yield to 8-aminophenoxazin-3-ones 167 (Scheme 2.48).  

In the case of 2,5-dinitrophenoxybenzoquinones, only the formation of 2,5-diamino-

2',5'-dihydroxydiphenylethers 154  could be proven. However, after addition of MnO2, 

154 are likely to be oxidised to 2,5-diaminophenoxy-2',5'-benzoquinones 157, before 

undergoing the same cyclisation as described previously (Scheme 2.49).  

Scheme 2.48: Possible mechanism of formation of 8-aminophenoxazin-3-ones 167 
i) MeOH, Pd/C 5%, H2, P = 2.4bar, ii) Ag2O, MeOH. 

i), ii) 

H transfer - H2O 

179 171 

167 

i) 

ii) 
170 

220 

228 
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It appears that the oxidation of 2,5-diamino-2',5'-dihydroxydiphenylether 154 is easier 

under mild conditions than the oxidation of 2,4-diamino-2',5'-dihydroxydiphenylether 

220.  

  

2.3 Synthesis of β-alanine substrates 235a-b and 237a-i 

After preparation, the 7- and 8-aminophenoxazin-3-ones needed to be derivatised 

with tboc protected β-alanine via a standard peptide coupling procedure. The addition 

of TFA, required to remove the tBoc protecting group, had the advantage of 

producing a salt, facilitating the incorporation of the resulting β-alanine 

aminopeptidase substrate into aqueous medium. 

 

 2.3.1 From 7-aminophenoxazin-3-ones 59d-e 

Previous work (2008OBC613) effected on the lead compound, 7-amino-1-pentyl-3H-

phenoxazin-3-one, showed satisfactory results when an active mixed anhydride was 

used for the coupling procedure. In the case of 7-amino-3H-phenoxazin-3-ones, the 

position of the amino group considerably reduces its nucleophilic character, due to 

the extended conjugation of the nitrogen lone pair of electrons (59d-e, Scheme 

2.50).  

For that reason, 7-amino-3H-phenoxazin-3-ones 59d-e were reduced to 7-amino-3-

hydroxy-3H-phenoxazines 229a-b, using catalytic reductive conditions, prior to 

peptide coupling, in order to limit conjugation and increase the amino group 

nucleophilicity (Scheme 2.50). 

Scheme 2.49: Possible mechanism of formation of 7-aminophenoxazin-3-ones 59 
i) MeOH, Pd/C 5%, H2, P = 2.4bar, ii) Ag2O, MeOH. 

i) 

154 157 219 

59 

ii) 
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The active mixed anhydride 232 was prepared in situ by reacting iso-

butylchloroformate 231 with N-tBoc-β-alanine 230 under dry conditions in the 

presence of a base (Scheme 2.51). Although N-methylmorpholine or Et3N is usually 

the base of choice, it has been reported that N-methylpiperidine limits the formation 

of urethane by-products, resulting from a reaction on the unwanted side of the mixed 

anhydride (1983JOC2939). N-Methylpiperidine was therefore adopted as the base of 

choice for the coupling of all the 7- and 8-amino-3H-phenoxazin-3-one chromogens 

prepared. 

 

 

  

 

 

Once the mixed anhydride had formed, the 7-amino-3-hydroxyphenoxazines 229a-b 

were added under a N2 atmosphere to avoid re-oxidation and the resulting mixture 

was stirred under N2 until no more of the phenoxazine starting material 229a-b 

remained (Scheme 2.52). Aeration of the solution quickly re-oxidised the 

intermediates 233a-b to the desired 7-N-(N'-tBoc-β-alanyl)aminophenoxazin-3-ones 

234a-b (Scheme 2.52). 

Coupling of the protected β-alanine was confirmed by 1H NMR spectroscopy. In the 

case of 234b, the presence of a deshielded proton at 10.41ppm corresponding to 7-

NH attested the formation of the peptide bond. The broad singlet at 6.80ppm was 

assigned to NH of the tBoc protected amino acid chain. The β-alanyl signals 

appeared at 3.16ppm as a quartet and at 2.47ppm as a triplet, corresponding to 3''-H 

and 2''-H, respectively. Finally, the signal corresponding to 9H at 1.30ppm was 

characteristic of the tBoc protecting group (Figure 2.12). 

Scheme 2.50: Reduction of 7-aminophenoxazin-3-ones to 7-amino-3-hydroxy-3H-phenoxazin-3-ones. 

59d-e 

Scheme 2.51: Preparation of the reactive mixed anhydride 232 
i) Dry THF, N-methylpiperidine, 0°C. 

i) 

232 230 231 

229a R = tbutyl 
229b R = pentyl 

[H] 
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Re-oxidation of the phenoxazin-3-one ring was confirmed by the characteristic 

carbonyl signal at 185.1ppm on the 13C NMR spectrum.  
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Scheme 2.52: Preparation of the 7-N-(β-alanyl)amino-2-alkylphenoxazin-3-one 269a-b 

 i) H2, Pd/C 5%, DMF, 1h30; ii) 232, dry THF, N-methylpiperidine, 48h; iii) Aerial oxidation, 1h, R.T.; 
234a, 45.3%, 234b, 46.0%; iv) neat TFA, 10min, R.T., 235a, 94.4%, 235b, 88.5%. 
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Figure 2.12: 1H NMR of 7-N-(tBoc-β-alanyl)-amino-2-pentylphenoxazin-3-one 234b. 
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Deprotection of the substrate was effected smoothly using neat TFA (Scheme 2.52). 

Removal of the tBoc protecting group was readily observed by 1H NMR spectroscopy. 

For example, in the case of 235b, deprotection was confirmed by the disappearance 

of the NH-tBoc signal at 6.80ppm and the C(CH3)3 signal at 1.30ppm, along with the 

appearance of a very broad singlet integrating for three protons at 7.965ppm, 

characteristic of NH3
+ (Figure 2.13). 
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2.3.2 From 8-aminophenoxazin-3-ones 165a-c and 167a-f 

2.3.2.1 N-β-Alanine derivatives 

The 8-aminophenoxazin-3-ones 165a-c and 167a-f were coupled to N-tBoc-β-alanine 

following the procedure described for 7-aminophenoxazin-3-ones 59c-d, except that 

the reduction step was not necessary (Scheme 2.53), as the nucleophilicity of the 

amino group is much higher in this case. Consequently, isolated yields of the 

resulting N-tBoc-β-alanine substrates were generally higher for 8-aminophenoxazin-

3-ones (Scheme 2.53). 
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Figure 2.13: 1H NMR spectrum of 7-N-(β-alanyl)-amino-2-pentylphenoxazin-3-one TFA salt 235b. 
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The characteristic spectral features, attesting to the coupling to NtBoc-β-alanine, 

were the singlet integrating for nine hydrogen atoms within the 1.30-1.42ppm region, 

corresponding to C(CH3)3, the triplet integrating for two hydrogens within 2.34-

2.57ppm, assigned to 2'-H, the quartet integrating for two hydrogens within 3.175-

3.32ppm, assigned to 3'-H and the broad singlet within the 6.49-6.90ppm, assigned 

to the β-alanine protected amino group (Table 2.10). The formation of a peptide bond 

resulted in a dramatic deshielding of the 8-NH proton, observed within the 9.90-

10.33ppm region (Table 2.10). Both carbonyls resulting from the linking to NtBoc-β-

alanine could be seen, on the 13C NMR spectra, within 156.0-156.1ppm for 4'-C and 

within 170.05-170.4ppm for 1'-C, and on the I.R. spectra within the 1679-1713cm-1 

region (Table 2.10). 

The deprotection of substrates 236a-i with TFA resulted in the disappearance of the 

C(CH3)3, NH and C=O (4'-C) signals belonging to the tBoc protecting group (Table 

2.10). The resulting free, protonated amine, could be seen as broad singlet 

integrating for three protons within the 7.75-7.98ppm region of the 1H NMR spectra, 

and as a broad absorption band within the 3032-3077cm-1 region of the I.R. spectra 

(Table 2.10).  

Scheme 2.53: Preparation of 8-N-(β-alanyl)aminophenoxazin-3-ones 237a-i 

i) 232, dry THF, N-methylpiperidine, 48h, R.T.; ii) neat TFA, 10min, R.T. 

i) 

ii) 

165a-c 
236a R1 = R2 = R3 = H, 54.3% 
236b R1 = R2 = Me, R3 = H, 98.3% 
236c R1 = R2 = R3 = Me, 37.0% 
236d R2 = R3 = H, R2 = tbutyl, 61.7% 
236e R1 = R3 = H, R2 = n-pentyl, 90.1% 
236f R2 = R3 = H, R1 = phenyl, 69.6% 
236g R1 = R2 = R3 = F, 72.8% 
236h R1 = R2 = R3 = Cl, 28.2% 
236i R1 = R2 = R3 = Br, 67.3% 

237a R1 = R2 = R3 = H, 80.7% 
237b R1 = R2 = Me, R3 = H, 96.1% 
237c R1 = R2 = R3 = Me, 91.2% 
237d R2 = R3 = H, R2 = tbutyl, 93.5% 
237e R1 = R3 = H, R2 = n-pentyl, 87.0% 
237f R2 = R3 = H, R1 = phenyl, 82.2% 
237g R1 = R2 = R3 = F, 98.0% 
237h R1 = R2 = R3 = Cl, 82.1% 
237i R1 = R2 = R3 = Br, 93.2% 
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236a-i 237a-i 

δH NMR 

(ppm) 

 

d6-DMSO 

C(CH3)3 1.30-1.42 (9H, s) - 

2'-H 2.34-2.57 (2s, t, J = 6.6-7.8Hz) 2.67-2.77 (2s, t, J = 6.3-6.6Hz) 

3'-H 3.175-3.32 (2s, q, J = 6.6-7.2Hz) 3.05-3.30 (2s, t, J = 6.3-6.6Hz) 

8-NH 9.90-10.33 (1H, s) 10.33-10.56 (1H, s) 

NH
tboc 6.49-6.90 (1H, br. s) - 

NH3
+ - 7.75-7.98 (3H, br. s) 

δC NMR 

(ppm) 

1'-C  170.05-170.4 168.9-169.3 

4'-C 156.0-156.1 - 

ννννmax (cm
-1

) 

C=O 1679-1713 1670-1678 

N+-H - 3032-3077 

N-H 3263-3422 3255-3408 

 

 

 

 

2.3.2.2 N- and O- di-β-alanine derivatives 

It is notable that amino-3-hydroxy-3H-phenoxazines exhibit a better general solubility 

than their corresponding oxidised forms, the amino-3H-phenoxazin-3-ones.  

In an attempt to increase the yield of the peptide coupling step for the 8-

aminophenoxazin-3-ones 165a-c, 8-amino-1,2,4-trichloro-3H-phenoxazin-3-one 165b 

was reduced to 8-amino-3-hydroxy-1,2,4-trichloro-3H-phenoxazines 166b and 

reacted with an excess of the mixed anhydride 232 under a nitrogen atmosphere 

(Scheme 2.54), according to the procedure described for the coupling of 7-amino-

3H-phenoxazin-3-ones. After reacting 166b and 232 for 48h, an aliquot of the 

reaction mixture was shaken with some Ag2O, in an attempt to re-oxidise the 

expected 8-N-(N-tBoc-β-alanyl)amino-1,2,4-trichloro-3H-phenoxazine 238b to the 

corresponding phenoxazin-3-one 236i, but this failed to yield the expected orange 

coloured product.  

 

Table 2.10: Key NMR and I.R. spectroscopic features of 8-N-(N'-tBoc-β-alanyl)aminophenoxazin-3-ones 

236a-i and their corresponding TFA salt 237a-i resulting from deprotection. 
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NMR analysis of the isolated product 240b clearly showed the presence of two        

N-tBoc-β-alanine groups (Figure 2.14), along with two extra aromatic protons to 

those expected, one attributed to the second N-tBoc-β-alanine group, the other to the 

bridging N-H of the phenoxazine ring, confirming the formation of 240b in fair yield 

(Scheme 2.54). The reaction was also successfully carried out on the trifluorinated 

analogue 240a. 

 

Scheme 2.54: Trapping of 8-amino-3-hydroxy-1,2,4-trihalogeno-3H-phenoxazines 166a-b 
i) H2, Pd/C 5%, DMF; ii) 232, dry THF, N-methylpiperidine, 0°C to R.T., N2 atm, 48h; iii) DCM, TFA. 

165a-b 166a-b 

238a X = F 
238b X = Cl 
 

i) ii) 

iii) 

239a X = F, 27.1% 
239b X = Cl, 47.8% 
 

240a X = F, 70.0% 
240b X = Cl, 80.8% 
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The subsequent deprotection step needed to be carried out carefully, as use of neat 

TFA led to an almost complete hydrolysis of the ester bond. A suspension of 239a-b 

in DCM followed by addition of a slight excess of TFA, allowed removal of both tBoc 

protecting groups in excellent yield, without any hydrolysis of the sensitive ester 

bond. The resulting products 240a and 240b showed a relatively low stability, 

particularly 240a which could not be fully characterised by NMR due to its 

decomposition in d6-DMSO, d6-acetone and D2O. Only the 1H NMR spectrum was 

obtained, which confirmed the presence of two β-alanine groups with the presence of 

four triplets at 2.98, 3.47, 4.10 and 4.19ppm along with the 3 aromatic protons at 

6.69, 6.95 and 7.28ppm corresponding to a doublet (6-H), a doublet of doublets (7-H) 

and a doublet (9-H).   

The mass corresponding to 240a could not be observed by mass spectrometry; 

however, the two main peaks observed at m/Z 340.1 and 338.1 are likely to 

10-H NH 3''-H NH 

2''-H  2'-H  3'-H  

3''-H (H2O overlapping) 

2x N
t
boc 

NH 

NH and 6-H  

overlapping 

9-H 

7-H 

Figure 2.14: 
1H NMR spectrum of 239b in d6-DMSO. 

239b 
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correspond to 241, resulting from the ester hydrolysis of 240a, and to 237h, resulting 

from the oxidation of 241 (Figure 2.15), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The preparation of the substrates 240a-b offered several advantages for the 

detection of enzymatic activity: firstly, the reduction of the imino-quinone system 

resulted in a total suppression of the substrate colour, hence avoiding any 

background colouration. Secondly, the presence of a double TFA salt dramatically 

increased the general solubility of substrates 240a-b. However, the apparent lack of 

stability of substrates 240a-b presented a certain disadvantage. 

  

2.4 U.V.-Visible absorption  

2.4.1 Comparison of 7- and 8-aminophenoxazin-3-ones 59d-e and 

167d-e  

The U.V. – visible absorbance spectra of 7- and 8-amino-4-tbutylphenoxazin-3-one 

5d and 167d, as well as 7- and 8-amino-2-pentylphenoxazin-3-one 59e and 167e, 

were recorded at a concentration of 50µM in MeOH in order to quantify the difference 

of colouration between 7- and 8-aminophenoxazin-3-ones. With a λmax ranging 

between 528-533nm (Table 2.11), 7-aminophenoxazin-3-ones 59d-e produced a 

H
N

OH

H
N F

F

F

O
O

H3N

H
N

O

N F

F

F

O
O

H3N

240a (not observed) 

237h (338.1, M+) 

241 (340.1, M+) 

Figure 2.15: Mass spectrum of 240a, positive ionisation mode. 
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bright red-pink coloured methanolic solution, whereas the 8-aminophenoxazin-3-ones 

167d-e produced in a violet coloured methanolic solution (λmax = 536-540nm). The 

extinction coefficient ε of 7-aminophenoxazinones was considerably higher than that 

of 8-aminophenoxazinones (Table 2.11, Figure 2.16). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 λmax (nm) A ε (dm
3
.mol

-1
.cm

-1
) 

167d 536 0.295 5900 

167e 540 0.322 6400 

59d 533 1.804 36080 

59e 528 1.554 31080 

Figure 2.16: U.V.-Visible absorption of  7- and 8-aminophenoxazin-3-ones 59d-e and 167d-e at 50µM in 
MeOH. 

Table 2.11: Visible absorption characteristics of 7- and 8-aminophenoxazin-3-ones 59d-e and 167d-e.  

at 50µM in MeOH 
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The high ε observed for 7-aminophenoxazin-3-one was rationalised by the existence 

of the extended electronic conjugation generated by the position of the auxochrome 

(Scheme 2.55), as evidenced by the single strong absorption band in the visible 

region (Figure 2.16). 

 

 

 

 

The presence of two absorption bands on the U.V. – visible spectra of 8-

aminophenoxazin-3-ones 167d-e (Figure 2.16) attest of their lesser conjugated 

character (Scheme 2.56): absorption in the U.V. region is thought to be related to 

electron movement within the benzene ring and absorption in the visible region could 

be related to electron movement within the quinoid ring of the phenoxazin-3-one 

(Scheme 2.56).  

 

 

 

 

 

This comparison highlights the importance of the auxochrome position on the 

chromophore in order to generate a potent chromogen. In the case of the two 

aminophenoxazin-3-one isomers studied, the ideal position for the amino group 

appears to be the 7-position.  

This also suggests that 8-aminophenoxazin-3-ones will be potentially less sensitive 

compared to 7-aminophenoxazin-3-ones for the detection of enzymatic activity. 

 

 

167

59 

Scheme 2.55: Electron conjugation within 7-amino-3H-phenoxazin-3-one.  

≡ 

Scheme 2.56: Electron conjugation within 8-amino-3H-phenoxazin-3-one. 
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2.4.2 Quenching effect of ββββ-alanine for substrates 235a-b and 237c-d 

The U.V.-visible absorbances of four substrates prepared (235a-b and 237c-d) were 

directly compared to their corresponding 7- and 8-aminophenoxazinones (59d-e, 

167d-e), in order to quantify the hypsochromic shift resulting from derivatisation with 

β-alanine (Table 2.12). 

 

 

 

 

 

The hypsochromic shifts resulting from β-alanine derivatisation were 64 and 65nm for 

237c and 237d, respectively (Table 2.12). This resulted in an important enough 

change of colour. The molar absorptivity corresponding to the visible λmax was slightly 

higher for both β-alanine derivatives (Table 2.12, Figure 2.17). 

Comparatively, the hypsochromic shifts resulting from β-alanine derivatisation were 

slightly more important for 235a and 235b with value of 75 and 71nm, respectively 

(Table 2.13). The most remarkable effect was the decrease of molar absorptivity by 

nearly a factor two for the β-alanine derivatives 235a-b (Table 2.13, Figure 2.18). 

This attests for the important quenching of electron movement due to the formation of 

a peptide bond and was the effect sought for chromogenic substrates. 

The effect of β-alanine derivatisation is more promising for the 7-aminophenoxazin-3-

one substrates 235a and 235b, compared to 8-aminophenoxazin-3-one substrates 

237c and 237d, and is the result of a more dramatic change in electron movement for 

235a-b. This suggests 235a and 235b will show a more important contrast once 

hydrolysed and could be more sensitive to weak enzymatic activity.

 λmax (nm) ∆λ (nm) A ε (dm
3
.mol

-1
.cm

-1
) 

167d 536 
64 

0.295 5900 

237c 472 0.348 6960 

167e 540 
65 

0.322 6400 

237d 475 0.388 7760 

59d 533 
75 

1.804 36080 

235a 458 0.922 18440 

59e 528 
71 

1.554 31080 

235b 457 0.861 17220 

Table 2.12: Comparison of visible absorption characteristic of aminophenoxazin-3-ones 59c-d  
and 167d-e with their corresponding β-alanine substrates 235a-b and 237c-db at 50µM in MeOH. 
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Figure 2.17: U.V.-Vis spectra of 8-aminophenoxazin-3-ones 167d-e and their corresponding β-alanyl substrate 237c-d at 50µM in MeOH. 
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Figure 2.18: U.V.-Vis spectra of 7-aminophenoxazin-3-ones 59d-e and their corresponding β-alanyl substrates 235a-b at 50µM in MeOH. 
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The chromogenic substrates prepared were divided into 3 different sets. Nitro-1,2,4-

trihalogenophenoxazin-3-ones were tested against general nitroreductase activity; 

testing was undertaken at the Freeman Hospital (Newcastle). The 8-N-β-

alanylaminotrihalogenophenoxazin-3-ones and their corresponding trapped reduced 

forms were tested for β-alanine aminopeptidase activity; testing was again 

undertaken at the Freeman Hospital (Newcastle). The third set, which included the 

alkyl derivatives of 7-N- and 8-N-β-alanylaminophenoxazin-3-ones was also tested 

for β-alanine aminopeptidase activity; the testing of this set was undertaken by 

bioMérieux (La Balme-Les-Grottes, France). 

 

3.1 Nitroreductase activity 

The reaction sought was the reduction of nitrophenoxazinones 130αααα-γγγγ a-c to their 

corresponding aminophenoxazinones 165αααα-γγγγ a-c (Scheme 3.1) by an unspecified 

nitroreductase enzyme, resulting in a dramatic change of colour at the site of 

hydrolysis. 

  

 

 

  

The nine substrates were screened against a set of twenty clinically important 

microorganisms (ten Gram negative bacteria, eight Gram positive bacteria, two 

yeasts, Table 3.1).  

 

 

 

 

 

Scheme 3.1: Expected nitroreductase enzyme activity and subsequent reaction of substrates 
130ααααa-c, 130ββββa-c and 130γγγγa-b 

i) Nitroreductase 

i)  

130ααααa-c, orange 
130βa-c, orange 

130γγγγa-b, orange 

165ααααa-c, pink-red 
165βa-c, blue-violet 
165γγγγa-b, brown-purple 
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The presence of a nitroreductase enzyme in microorganisms was demonstrated, 

using fluorogens such as 7-nitrocoumarin-3-carboxylic acid or 7-nitro-4-

methylcoumarin derivatives (Figure 3.1), by James et al., who 

reported nitroreductase activity in every strain tested over a 

sample of thirty microorganisms (2001LAM403). This 

suggested a wide distribution of nitroreductase activity 

amongst bacteria and the use of nitroreductase enzyme 

substrates as general microbial growth indicators 

(2001LAM403).    

Most bacteria used for the screening of nitrophenoxazin-3-

ones (Table 3.1) are already known to express nitroreductase activity, and were 

expected to reduce the substrates 130ααααa-c, 130ββββa-c and 130γγγγa-b, and hence 

allowing a comparison of the performance with previously reported nitroreductase 

substrates (Figure 3.1). 

 

 3.1.1 Results and discussion 

Gram negative Ref. Gram positive Ref. 

1 E. coli NCTC 10418 11 B. subtilis NCTC 9372 
2 S. marcescens NCTC 10211 12 E. faecalis NCTC 775 
3 Ps. aeruginosa NCTC 10662 13 E. faecium NCTC 7171 
4 B. cepacia LMG 1222 14 St. epidermidis NCTC 11047 
5 Y. enterocolitica NCTC 11176 15 St. aureus NCTC 6571 
6 S. typhimurium NCTC 74 16 MRSA NCTC 11939 
7 C. freundii 46262 (wild) 17 S. pyogenes NCTC 8306 
8 M. morganii 462403 (wild) 18 L. monocytogenes NCTC 11994 
9 E. cloacae NCTC 11936 19 C. albicans ATCC 90028 
10 P. rettgeri NCTC 7475 20 C. glabrata NCPF 3943 

Table 3.1: Strains of microorganism tested by multipoint inoculation. 

Figure 3.1: Nitroreductase 
substrates (2001LAM403) 
R1 = COOH, R2 = H 
R1 = COOCH3, R2 = H 
R1 = CH3, R2 = H 
R1 = CH3, R2 = CH2CH3 
 

OO2N O

R2

R1
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Bacterial Strain Control 130ααααa 130ααααb 130ααααc 130γγγγa 130γγγγb 

Gram negative Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ Red + ++ Orange   
(halo) + ++ Brown 

halo +/- ++ Brown 
halo + ++ Violet + 

S. marcescens ++ - ++ Red + ++ Orange 
(halo) + ++ Brown 

halo +/- ++ Brown 
halo + ++ Violet 

halo + 

Ps. aeruginosa ++ - ++ Red +/- ++ Orange 
(halo) + ++ - ++ Brown 

+/- ++ - 

B. cepacia ++ - ++ - ++ - ++ - ++ - ++ - 

Y. enterocolitica ++ - ++ Red +/- ++ - ++ - ++ - ++ Violet 
+/- 

S. typhimurium ++ - ++ Red + ++ Orange 
(halo) + ++ Brown 

halo +/- ++ Brown 
+/- ++ Violet 

halo + 

C. freundii ++ - ++ Red + ++ Orange 
(halo) + ++ - ++ Brown 

halo + ++ Violet + 

M. morganii ++ - ++ Red + ++ Orange 
(halo) + ++ Brown 

halo +/- ++ Brown 
halo + ++ Violet 

halo + 

E. cloacae ++ - ++ Red + ++ Orange 
(halo) + ++ Brown 

halo +/- ++ Brown 
halo + ++ Violet + 

P. rettgeri ++ - ++ Red + ++ Orange 
(halo) + ++ Brown 

halo +/- ++ Brown 
halo + ++ Violet 

halo +/- 

Background colour None Sepia Orange/brown Yellow/brown Sepia Lilac 

Table 3.2: Multi-point screening results for substrates 130ααααa-c and 130γγγγa-b against Gram negative bacteria after 24h of incubation at 37°C 
 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 
 
Substrate:                                                                

O

N

O

X

X

X

NO2

130ααααa X = F 

130ααααb X = Cl 
130ααααc X = Br O

N

O

X

X

X

N+O

O-

130γγγγa X = F 

130γγγγb X = Cl 
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Bacterial Strain Control 130ααααa 130ααααb 130ααααc 130γγγγa 130γγγγb 

Gram positive Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

B. subtilis + - NG - + - + - NG - + - 

E. faecalis + - + - + - + - + - + Violet 
+/- 

E. faecium + - + - + - + - + - + - 

St. epidermidis + - NG - Tr. - Tr. - NG - NG - 

St.aureus + - NG - NG - Tr. - NG - NG - 

MRSA + - Tr. - + - + - Tr. - + Violet + 

S. pyogenes + - NG - NG - NG - NG - NG - 

L. monocytogenes + - + Red +/- + - + - + - + - 

C. albicans + - + - + - + - Tr. - + - 

C. glabrata + - + - + - + - + - + - 

Background colour None Sepia Orange/brown Yellow/brown Sepia Lilac 

Table 3.3: Multi-point screening results for substrates 130ααααa-c and 130γγγγa-b against Gram positive bacteria and yeasts after 24h of incubation at 37°C 
 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 
 
Substrate:                                                                

O

N

O

X

X

X

NO2

130ααααa X = F 

130ααααb X = Cl 
130ααααc X = Br O

N

O

X

X

X

N+O

O-

130γγγγa X = F 

130γγγγb X = Cl 
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 Bacterial Strain Control 130ββββa 130ββββb 130ββββc 242 

Gram negative Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - ++ - ++ Salmon + 

S. marcescens ++ - ++ - ++ - ++ - ++ Salmon + 

Ps. aeruginosa ++ - ++ - ++ - ++ - ++ - 

B. cepacia ++ - ++ - ++ - ++ - ++ - 

Y. enterocolitica ++ - ++ - ++ - ++ - ++ - 

S. typhimurium ++ - ++ - ++ - ++ - ++ Salmon +/- 

C. freundii ++ - ++ - ++ - ++ - ++ Salmon +/- 

M. morganii ++ - ++ - ++ - ++ - ++ Salmon +/- 

E. cloacae ++ - ++ - ++ - ++ - ++ Salmon + 

P. rettgeri ++ - ++ - ++ - ++ - ++ Salmon + 

Background colour None Sepia Orange/brown Yellow/brown Orange 

Table 3.4: Multi-point screening results for substrates 130ββββa-c and 276 against Gram negative bacteria after 24h of incubation at 37°C 
 

Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 

Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 
Substrate:                                                                

O

N

O

X

X

X

N+
O

-O 130ββββa X = F 

130ββββb X = Cl 
130ββββc X = Br O

N

O

Cl

N+

O

-O 242 
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Bacterial Strain Control 130ββββa 130ββββb 130ββββc 242 

Gram positive Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

B. subtilis + - NG - + - + - + - 

E. faecalis + - Tr. - + - + - + Salmon +/- 

E. faecium + - Tr. - + - + - + Salmon +/- 

St. epidermidis + - NG - + - + - Tr. - 

St.aureus + - NG - + - + - + Salmon + 

MRSA + - NG - + - + - + Salmon + 

S. pyogenes + - NG - NG - + - + - 

L. monocytogenes + - NG - + - + - + Salmon + 

C. albicans + - Tr. - + - + - + - 

C. glabrata + - NG - + - + - + - 

Background colour None Sepia Orange/brown Yellow/brown Orange 

Table 3.5: Multi-point screening results for substrates 237h-c and 240a-b against Gram positive bacteria and yeasts after 24h of incubation at 37°C 
 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 

Substrate:                                                                

O

N

O

X

X

X

N+
O

-O
130ββββa X = F 

130ββββb X = Cl 
130ββββc X = Br O

N

O

Cl

N+

O

-O 242 
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Figure 3.3: Screening of 7-nitro-
1,2,4-trifluorophenoxazinones for 
nitroreductase activity. 

The growth control did not indicate any particular inhibition linked to the use of NMP 

and Tween 20. The growth of Gram negative 

bacteria was not affected by any of the substrates 

130αααα-γγγγ a-c and 242 (Table 3.2 and Table 3.4). 

However, these substrates showed a higher toxicity 

for Gram positive microorganisms (Table 3.3 and 

Table 3.5), particularly the nitro-

trifluorophenoxazin-3-ones 130ααααa, 130ββββa and 

130γγγγa.  

Nitroreductase enzymatic activity was evidenced by 

the appearance of a colour contrasting from the 

background within and around the bacterial colonies. The highest activity was 

recorded for 7-nitro-1,2,4-trifluorophenoxazin-3-one 130ααααa with the appearance of 

red colonies on dark yellow background (Figure 3.3, microorganism arrangement as 

depicted on Figure 3.2). Diffusion of the colour was 

significant around those colonies where the activity 

was more pronounced.  Substrate 130ααααa seemed to 

have a low affinity for the bacterial cell walls, despite 

the presence of fluorine atoms that usually increase 

lipophilicity. The substrate seemed to be reduced 

mainly by Gram negative bacteria, although strains 

3, 4, and 5 showed little to no activity at all (Figure 

3.3, Table 3.2). No obvious reduction of the 

substrate was noted for Gram positive 

microorganisms, possibly due to the important 

growth inhibition attributed to the substrate itself (Table 3.3).  

Nitroreductase activity was similar, but of a much weaker intensity, for the rest of the 

7-nitrophenoxazin-3-one series, substrates 130ααααb-c. Several factors could contribute 

to the observed reduced enzymatic activity for substrates 130ααααb-c: the reduced 

availability of the substrate in the medium and the low solubility compared to 130ααααa 

may have limited the quantity of substrate permeated into the bacteria, resulting in 

the production of weak colour. 

1 2 

3 4 5 6 7 

8 9 10 11 12 

13 14 15 16 17 

18 19 20 

Figure 3.2: Inoculation pattern. 
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Figure 3.4: Screening of 9-nitro-
1,2,4-trifluoro-3H-phenoxazin-3-one 
for nitroreductase activity. 

Figure 3.5: Screening of 9-nitro-
1,2,4-trichloro-3H-phenoxazin-3-one 
for nitroreductase activity. 

The series of 9-nitrophenoxazin-3-one substrates 130γγγγa-b showed similar results; 

both substrates 130γγγγa and 130γγγγb were reduced by most of the Gram negative 

organisms (Table 3.2 and Table 3.4). The colour generated (brown, substrate 130γγγγa 

and purple, substrate 130γγγγb) was sufficient to justify enzymatic activity; however 

visualisation was impaired by a weak contrast with the background (Figure 3.4 and 

Figure 3.5) and extensive diffusion in the medium (130γγγγb, Figure 3.5). The diffusion 

was particularly noticeable for colonies 8, 9 and 10, for which nitroreductase activity 

seems to be the more pronounced (130γγγγb, Figure 3.5), with the formation of a large 

halo around the colonies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, none of the substrates belonging to the 8-nitro-1,2,4-

trihalogenophenoxazinone series 130ββββa-c were reduced at all, despite a good growth 

for all Gram negative and Gram positive microorganisms tested.  

The position of the nitro group seemed to be 

the determinant factor responsible for the 

absence of activity. Kitamura (1983JPD18) 

tested a wide range of para-substituted 

nitrocompounds against nitroreductase 

activity and demonstrated the important 

difference of activity between 

nitrocompounds bearing an electron 

Figure 3.6: substituted para 
nitrobenzenes tested for nitroreductase 
activity. R = NH2, OCH3, COOH, OH, Cl, 
Br, SO3H, CHO, COCH3, SO2NH2, CO-
Ar, NO2, COOCH3, ranked by increasing 
nitroreductase activity (1983JPD18). 
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withdrawing group and an electron donating group: nitroreductase activity was much 

higher for para-nitrobenzenes bearing electron withdrawing groups (Figure 3.6). 
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The electron density present on the 8-position in the case of substrate 130ββββa-c was 

considerably higher compared to the 7- and 9- position in the case of substrate 

130ααααa-c, 130γγγγa-b and 242 respectively (Scheme 3.2). The 7-nitrocoumarin-3-

carboxylate previously reported to be efficiently reduced by microorganisms 

(2001LAM403) presented a similar reduced electron density at the 7- position, as 

illustrated by the resonance form (Scheme 3.2). These observations correlated well 

with Kitamura’s experiments and could explain the absence of visible reduction for 

substrates 130ββββa-c, while substrates 130ααααa-c, 130γγγγa-b and 242 were reduced to 

some extent. 

9-Nitro-6-chlorobenzo[a]phenoxazin-5-one, 242 (kindly provided by Prof. A.L. 

James), is a commercially available substrate for nitroreductase activity (B-

2005MI09). The company claim the substrate to be efficient for the detection of some 

Scheme 3.2: Resonance forms in 7-, 8- and 9-nitrophenoxazin-3-ones 130αααα-γγγγa-c 
and 7-nitrocoumarin-3-carboxylate. 

130ααααa-c 

130γγγγa-c 

130ββββa-c 
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Figure 3.7: Screening of 9-nitro-6-
chlorobenzo[a]phenoxazin-5-one for 
nitroreductase activity. 

bacterial nitroreductase activity with no further specification. Smaill et al. 

(2008WO030120) tested this compound for nitroreductase activity in mammalian 

cells and found decreased performance under aerobic conditions; however, no report 

on its microbiological application in agar media 

seems to have been undertaken. This substrate 

showed higher activity compared to substrate 

130ααααa-c, 130ββββa-b and 130γγγγa-c, with visible 

activity for both Gram negative and Gram 

positive bacteria (Table 3.4, Table 3.5, Figure 

3.7). The presence of a fused benzene ring 

seemed to contribute to the higher activity of this 

substrate, as well as a better retention of the 

colour by the bacteria (Figure 3.7). However, 

although the general performance was higher 

than for substrates 130ααααa-c, 130ββββa-c and 130γγγγa-b, the colour generated was still 

weak (Figure 3.7), suggesting such substrates have little application for 

microbiological use. 

 

3.2 Testing of substrates 237g-i and 240a-b for β-alanyl aminopeptidase 

For substrates 237g-i, aminopeptidase activity was required to release the 

chromogen 165a-c. Substrates 240a-b required aminopeptidase, along with 

carboxypeptidase or esterase, activity, followed by oxidation of the 3-hydroxy-8-

aminophenoxazine to produce the colourful 8-amino-1,2,4-trihalogenophenoxazin-3-

one (Scheme 3.3). 

As described previously in section 1.4.4.3, β-alanylaminopeptidase activity is very 

specific, and hydrolysis of the substrates 237g-i and 240a-b was expected only for 

the three bacteria known to express this activity: S. marcescens, B. cepacia and Ps. 

aeruginosa. 

Considering the novelty of substrates 237g-i and 240a-b, they were also screened 

against the set of microorganisms described in Table 3.1, to check for any 

unexpected enzymatic reactions. 
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  3.2.1 Toxicity screening 

Toxicity screenings were carried out to determine the concentration required for 

optimum observation of enzymatic activity: growth inhibition, colouration of the 

background and contrast of the bacterial colonies upon enzymatic hydrolysis were 

the main factors considered.   

The toxicity screening was carried out with the substrates 237g-i, at respective 

concentrations of 25mg/L, 50mg/L and 100mg/L. The results, depicted in Figure 3.8 

for substrate 237g, clearly showed that a concentration of 100mg/L (Figure 3.8, C) 

was inappropriate for any testing, as it fully inhibited the growth of Ps. aeruginosa 

and produced a significant background colour. 

 

 

 

 

 

 

 

 

Scheme 3.3: Expected enzyme activities and subsequent reaction of substrates 237g-i 
i) β-Alanyl aminopeptidase, ii) Carboxypeptidase or esterase, iii) Oxidation.  

i) 

i), ii) 

iii) 

Figure 3.8: Toxicity screening of 8-N-(β-alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-one TFA salt 
237g against Ps. aeruginosa at concentrations of A : 25mg/L, B : 50mg/L and C : 100mg/L. 

After 24h of incubation at 37°C 

A B C 

240a X = F, colourless 
240b X = Cl, colourless 
 

237g X = F, red 
237h X = Cl, pink 
237i X = Br, pink 

164a X = F, colourless 
164b X = Cl, colourless 
 

165a X = F, blue-violet 
165b X = Cl, blue 
165c X = Br, blue 
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The concentrations of 25mg/L (Figure 3.8, A) and 50mg/L (Figure 3.8, B) allowed a 

good growth of Ps. aeruginosa with little background colour and were considered for 

further testing. The absence of any enzyme activity for Ps. aeruginosa was also 

notable, but this issue was to be further investigated with screening against a wider 

range of microorganisms. 

   

 3.1.3 Results and discussion 

 A good general growth was observed for most microorganisms with substrates 

237g-i and 240a-b (Table 3.6 and Table 3.7); only some mild inhibition was noticed 

with substrates 237j and 240b for certain Gram positive strains (Table 3.7), 

particularly Streptococcus pyogenes. However, none of the initially expected 

enzymatic activity with S. marcescens, Ps. Aeruginosa and B. cepacia could be 

detected with substrates 237g-i or 240a-b. Furthermore, the multi-point screening 

test did not reveal any unexpected enzyme activity by other microorganisms. 

Previous results obtained with 7- and 9-nitro-1,2,4-trihalogenophenoxazinones 

130ααααa-c and 130γγγγa-b showed that those substrates were reduced to some extent by 

S. marcescens and Ps. aeruginosa (Table 3.2), indicating the substrates permeated 

the bacteria. Hence, it is reasonable to postulate that the absence of hydrolysis for 

substrates 237g-i is not related to a permeation problem, as the core of the molecule 

is also 1,2,4-trihalogenophenoxazin-3-one, but rather link to the enzyme itself. The 

possibility of enzyme inhibition, as a result of a nucleophilic substitution from an 

amino residue on the 1-position for substrates 237g-i, was considered; however this 

hypothesis could not be verified.  



CHAPTER THREE                                                       MICROBIOLOGICAL TESTING  

138 

Bacterial Strain Control 237g 237h 237i 240a 240b 

Gram negative Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - ++ - ++ - ++ - 

S. marcescens ++ - ++ - ++ - ++ - ++ - ++ - 

Ps. aeruginosa ++ - ++ - ++ - ++ - ++ - ++ - 

B. cepacia ++ - ++ - ++ - ++ - ++ - ++ - 

Y. enterocolitica ++ - ++ - ++ - ++ - ++ - ++ - 

S. typhimurium ++ - ++ - ++ - ++ - ++ - ++ - 

C. freundii ++ - ++ - ++ - ++ - ++ - ++ - 

M. morganii ++ - ++ - ++ - ++ - ++ - ++ - 

E. cloacae ++ - ++ - ++ - ++ - ++ - ++ - 

P. rettgeri ++ - ++ - ++ - ++ - ++ - ++ - 

Background colour None Brown-orange V. faint orange V. faint orange None None 

 
 
 
 

 

 

 

Table 3.6: Multi-point screening results at 50mg/L for substrates 237g-i and 240a-b against Gram negative bacteria after 24h of incubation at 37°C 
 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 

Substrate:                                                                

237 240 

237g X = F 

237h X = Cl 

237i X = Br 

240a X = F 

240b X = Cl 
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Bacterial Strain Control 237g 237h 237i 240a 240b 

Gram positive Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

B. subtilis ++ - ++ - ++ - ++ - ++ - + - 

E. faecalis + - + - + - + - + - + - 

E. faecium + - + - + - + - + - + - 

St. epidermidis ++ - + - + - + - ++ - Tr. - 

St.aureus ++ - ++ - ++ - ++ - ++ - ++ - 

MRSA ++ - ++ - ++ - ++ - ++ - Tr. - 

S. pyogenes + - + - + - NG - + - NG - 

L. monocytogenes ++ - + - + - ++ - ++ - + - 

C. albicans ++ - + - + - ++ - ++ - Tr. - 

C. glabrata + - + - + - Tr. - + - Tr. - 

Background colour None Brown-orange V. faint orange V. faint orange None None 

 

 

 

 

 

Table 3.7: Multi-point screening results for substrates 237g-i and 240a-b against Gram positive bacteria and yeasts after 24h of incubation at 37°C 
 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 

Substrate:                                                                

237 240 

237g X = F 

237h X = Cl 

237i X = Br 

240a X = F 

240b X = Cl 
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An important concern with substrates 240a and 240b was the release of the actual 

chromogen, 8-amino-1,2,4-trihalogeno-3H-phenoxazin-3-ones 165a-b. Three 

possible outcomes were considered with the hypothetical enzymatic hydrolysis of 

substrates 240a and 240b (Scheme 3.4). First, hydrolysis of either the ester or 

peptide bond alone would produce 241 or 243, respectively (Scheme 3.4). These 

two possibilities were unlikely, considering that the substrate had permeated into the 

bacteria; aminopeptidase activity would be expected to occur along with 

carboxypeptidase activity. The remaining possibility was the actual expression of 

both desired enzyme activities, resulting in the formation of 164 (Scheme 3.4) as 

expected, but a failure to re-oxidise 164 to the colourful 165. As discussed earlier, it 

was noted that 8-amino-3-hydroxy-1,2,4-trihalogenophenoxazines 164a-b slowly re-

oxidised to 8-amino-1,2,4-trihalogenophenoxazinones 165a-b under aerobic 

conditions. The hypothesis of 164 being present in the medium could be verified by 

adding a few drops of a 1% solution of sodium periodate in distilled water over the 

colonies of Pseudomonas aeruginosa. If 164 was present, a coloration of the 

Pseudomonas aeruginosa colonies would be expected. However, after a period of 15 

164a X = F 

164b X = Cl 
 

165a X = F 

165b X = Cl 
 

Enzymatic hydrolysis 

[O] 

241a X = F 

241b X = Cl 
 

243a X = F 

243b X = Cl 
 

240a X = F 

240b X = Cl 
 

Scheme 3.4: Possible outcomes from the enzymatic hydrolysis of 237a-b. 
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Figure 3.10: Background comparison between substrate 237g and its reduced analogue 240a. 

minutes, no evolution of colour could be noticed (Figure 48). These observations, 

including the absence of colouration for substrate 

237h-j, led to the conclusion that none of the 

substrates were hydrolysed. 

One positive observation resulting from this series of 

tests was the effective reduction of the background 

colour for the substrate 240a in comparison to 237g, 

in which the imino-quinone was not reduced (Figure 

3.10). This also suggests that, despite the relatively 

low stability of 240a noticed during its preparation, it 

was not converted to 237h during preparation and 

incubation of the agar plates. This was unfortunately 

not of any use for substrates 240a-b, as no hydrolysis occurred, but the technique is 

potentially adaptable to other, more efficient aminophenoxazinone substrates. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Testing of substrates 237a-f and 235a-b for ββββ-alanine aminopeptidase 

The enzymatic activity required was the hydrolysis of 7-N-β-alanyl-

aminophenoxazinone 235a-b and 8-N-β-alanyl-aminophenoxazinone 237a-f by β-

alanine aminopeptidase to release the 7- and 8-aminophenoxazin-3-one 

chromogens, respectively (Scheme 3.5).  

 

Figure 3.9: Substrate 240a against 
E. coli and Ps. aeruginosa after 
24h of incubation and addition of 
1% aq. NaIO4. 

Ps. aeruginosa 

E.coli 

237g 240a 
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As for substrates 237h-c, the substrates 237a-c and 235a-b were tested against S. 

marcescens, Ps. Aeruginosa and B. cepacia, for which enzyme activity was 

expected, and E. coli, which was used as the control. 

 

3.3.1 Results and discussion 

Scheme 3.5: Expected reaction upon enzymatic hydrolysis of substrates 237a-f and 235a-b 
i) β-alanine aminopeptidase 

i) 

i) 

237a R1 = R2 = R3 = H, orange-red 
237b R1 = R2 = CH3, R3 = H, orange-red 
237c R1 = R2 = R3 = CH3, orange-red 

237d R1 = R3 = H, R2 = tbu, orange-red 
237eR1 = R3 = H, R2 = n-pentyl, orange-red 

235a R1 = R3 = H, R2 = tbu, orange 
235b R1 = R3 = H, R2 = n-pentyl, orange 

167a R1 = R2 = R3 = H, purple 
167b R1 = R2 = CH3, R3 = H, purple 
167c R1 = R2 = R3 = CH3, purple 

167d R1 = R3 = H, R2 = tbu, purple 
167e R1 = R3 = H, R2 = n-pentyl, purple 

235a R1 = R3 = H, R2 = tbu, pink 
235b R1 = R3 = H, R2 = n-pentyl, pink 
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 P. aeruginosa S. marcescens  P. aeruginosa S. marcescens 

237a 237b 

237f 237c 

 

 P. aeruginosa S. marcescens  P. aeruginosa S. marcescens 

Table 3.8: Testing of substrates 237a,b,c,f after 24h of incubation at 37°C. Concentration 50mg/L. 
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 P. aeruginosa S. marcescens  P. aeruginosa S. marcescens 

237d 

  

235a 

237e 

  

235b 

 

Table 3.9: Testing of substrates 237d,e and 235a-b after 24h of incubation at 37°C. Concentration: 50mg/L. 



CHAPTER THREE                                                       MICROBIOLOGICAL TESTING  

145 

  

Control 

237a 237f 

25mg/L 50mg/L 100mg/L 25mg/L 50mg/L 100mg/L 

Growth Colour Growth Colour Growth Colour Growth Colour Growth Colo
ur Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - ++ +/- grey ++ - ++ - ++ +/- grey 

S. marcescens ++ - ++ - ++ - ++ +/- grey ++ - ++ - ++ +/- grey 

Ps. aeruginosa ++ - ++ - ++ - ++ +/- grey ++ - ++ - ++ +/- grey 

B. cepacia ++ - NA NA NA NA NA NA NA NA NA NA NA NA 

Background 
colour None Faint yellow Orange Red-orange Faint orange Orange Red-orange 

 Control 

237b 237c 

25mg/L 50mg/L 100mg/L 25mg/L 50mg/L 100mg/L 

 Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - + - ++ - ++ - ++ - 

S. marcescens ++ - ++ 
+/- 

violet 
(diff.) 

++ + violet 
(diff.) + 

++ 
violet 
(diff.) 

++ +/- 
violet ++ +/- 

violet Tr. +/- 
violet 

Ps. aeruginosa ++ - ++ 
+/- 

violet 
(diff.) 

++ + violet 
(diff.) + 

++ 
violet 
(diff.) 

++ +/- 
violet ++ +/- 

violet Tr. +/- 
violet 

B. cepacia ++ - NA NA NA NA NA NA NA NA NA NA NA NA 

Background 
colour None Yellow Orange Orange Faint yellow Faint orange Faint orange 

Table 3.10: Results for substrates 237a,b,c,f after 24h of incubation at 37°C 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour 
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Control 

237d 237e 

25mg/L 50mg/L 100mg/L 25mg/L 50mg/L 100mg/L 

Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - ++ - ++ - ++ - ++ - 

S. 
marcescens 

++ - ++ +/- violet 
(diff.) ++ ++ violet 

(diff.) Tr. - ++ +/- 
purple ++ + purple ++ ++ 

purple 
Ps. 

aeruginosa 
++ - ++ +/- violet 

(diff.) ++ ++ violet 
(diff.) Tr. - ++ +/- 

purple ++ + purple ++ ++ 
purple 

B. cepacia ++ - NA NA NA NA NA NA ++ - ++ - ++ - 

Background 
colour None Faint orange Orange Red-orange Faint yellow Orange Orange 

 Control 

235a 235b 

25mg/L 50mg/L 100mg/L 25mg/L 50mg/L 100mg/L 

 Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour Growth Colour 

E. coli ++ - ++ - ++ - ++ - ++ - ++ - ++ - 

S. 
marcescens 

++ - ++ + pink 
(diff.) ++ ++ pink 

(diff.) ++ ++ pink 
(diff.) ++ + pink  ++ + pink ++ + pink 

Ps. 
aeruginosa 

++ - ++ + pink 
(diff.) ++ ++ pink 

(diff.) ++ ++ pink 
(diff.) ++ + pink  ++ + pink ++ + pink 

B. cepacia ++ - ++ - ++ - ++ +/- pink NA NA NA NA NA NA 

Background 
colour None Yellow Orange Orange Orange Orange Red 

Table 3.11: Results for substrates 237d-e and 235a-b after 24h of incubation at 37°C 
Growth: NG: No growth, Tr.: Traces of growth, only a few colonies visible, +: Good growth, colonies are multiple and clearly visible, ++: Excellent 
growth, thick agglomeration of colonies 
Colour: -: No colour; +/-: Weak colour, uncertain; +: Obvious colour; ++: Bright colour, (diff.): diffusion 
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The optimum concentration for hydrolysis of substrates 237a-f and 235a-b was found 

to be 50mg/L. A greater concentration of 100mg/L produced a more intense 

colouration for 237b, 237e and 235a upon hydrolysis; however, the background 

colour generated was rather intense thus impeding visual result interpretation and 

growth inhibition was notable, particularly for substrates 237b, 237c and 237d (Table 

3.10 and Table 3.11).  

Both substrates 237a and 237f 

failed to show any obvious 

enzymatic hydrolysis (Table 3.8 

and Table 3.10). Some darkening 

of the bacterial colonies was 

noticeable (Table 3.8), along with a 

significant background coloration; 

however, the control plates (E. coli) 

showed a similar phenomenon. 

This was more obvious at a 

concentration of 100mg/L, 

particularly after 48h of incubation, 

as shown for substrate 237f (Table 

3.12).  These results suggested 

that substrates 237a and 237f 

were not suitable for the detection of β-alanine aminopeptidase activity, as the weak 

coloration observed could not be attributed to specific enzyme activity with certainty.  

The dimethyl 237b, trimethyl 237c, 4-tbutyl 237d 8-amino phenoxazinone substrates 

and 7-amino-4-tbutylphenoxazinone 235a substrates showed obvious enzymatic 

hydrolysis, with the production of a purple colour for 8-aminophenoxazin-3-ones 

237b-d and of a pink colour for 7-amino-4-tbutylphenoxazinone 235a (Table 3.8 and 

Table 3.9). This activity was more pronounced for the dimethyl and tbutyl substituted 

substrates with noticeable colour diffusion around the site of hydrolysis. The trimethyl 

substituted phenoxazinone 237c was less sensitive to enzymatic activity, with the 

production of faint purple colonies, but showed a better retention of the colour in the 

bacteria compared to 237b and 237d.  

 E. coli S. marcescens 

24h 

  

48h 

 
 

Table 3.12: Results for substrate 237f at 100mg/L after 
48h of incubation at 37°C. 
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7-Amino-4-tbutylphenoxazinone 235a exhibited a better contrast with the background 

compared to 8-amino-4-tbutylphenoxazinone 237d (Table 3.9), as this has been 

suggested in the U.V.-visible absorption study as discussed in section 2.4. 

Both the 7- and 8-amino-2-pentylphenoxazinone substrates (237e and 235b), 

showed enzymatic hydrolysis with good retention of the colour by the cells. The 

contrast with the background was weak in the case of 7-amino-2-

pentylphenoxazinone substrate 235b compared to the isomeric 8-amino-2-

pentylphenoxazinone substrate 237e. Better results were obtained after 48h of 

incubation (Figure 3.11).  

 

 

 

 

 

The colouration was weaker compared to the lead compound 7-amino-1-

pentylphenoxazin-3-one 74 in both instances, but the toxicity was also considerably 

lower: individual colonies were easily observed with 235b and 237e, but almost 

absent in the case of 74 (Figure 3.11). 

 

  3.3.2 Lipophilicity  

An approximation of the lipophilicity of each substrate tested was made by generating 

a calculated LogP value using ChemBioDraw (Table 3.12). The following values 

were calculated to give an order of comparison for substrates 235a-b and 237a-e.  

The resulting values showed some correlation with the level of hydrolysis and of 

colour retention: the comparatively low value for the non-substituted 8-

aminophenoxazin-3-one 237a corresponded to the absence of any obvious 

hydrolysis observed, whereas the highest calculated value found for 235b and 237e 

corresponded to a good level of hydrolysis. The high value obtained for 235b and 

Figure 3.11: Performance of substrate 74, 235b and 237e with Ps. aeruginosa at 50mg/L after 
48h of incubation 

A: 74, B: 235b, C: 237e 
 

A B C 
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237e also corresponded to the absence of colour diffusion within the medium (Table 

3.9 and Table 3.12). The high value found for 237f, suggested that the absence of 

any obvious hydrolysis in this case could be caused by steric hindrance from the 

phenyl substituent. 

 

 

CLogP 

237a, 8-position, R1 = R2 = R3 = H 0.658 

237b, 8-position, R1 = R2 = CH3, R3 = H 1.606 

237c, 8-position, R1 = R2 = R3 = CH3 2.105 

235a, 7-position, R1 = R2 = tbu, R3 = H 

237d, 8-position, R1 = R2 = tbu, R3 = H 
2.484 

237f, 8-position, R1 = R3 = Ph, R3 = H 2.547 

235b, 7-position, R1 = R2 = pentyl, R3 = H 

237e, 8-position, R1 = R2 = pentyl, R3 = H 
3.273 

 

 

 

 

3.4 Conclusion 

The preparation of 7- and 9-nitrophenoxazinone substrates showed positive results 

for the detection of nitroreductase activity; however, their performances were 

considered poor compared to existing substrates. 8-Nitrophenoxazinones failed to 

show any hydrolysis of the substrate; the position of the nitro group and resulting 

electron density was thought to be the cause for absence of reduction. 

All halogenated phenoxazinone substrates synthesised to detect β-alanine 

aminopeptidase failed to produce any colouration of the colonies. These included the 

trapped reduced form, which presented a higher solubility in the agar medium, 

indicating that the solubility of the substrate was not the cause for the absence of 

hydrolysis. Unlike the nitrophenoxazinone substrates, the position of the auxochrome 

could not be the causative factor here, as testing of substrates 237b-e showed 

positive results for β-alanine aminopeptidase. The possibility of enzyme inhibition 

was suggested. 

Table 3.12: Calculated LogP for substrates 235a-b and 237a-f. Values generated using ChemBioDraw 
Ultra v. 11.0. 
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All 7- and 8-aminophenoxazinone substrates substituted with an aliphatic alkyl chain 

produced coloured colonies. However, none of the substrates prepared performed as 

well as the lead compound, 7-amino-1-pentylphenoxazin-3-one 79. The lipophilicity of 

the substrates was linked to colour retention, and to a lesser extent the level of 

substrate hydrolysis. The position of the alkyl substituent also seemed to have 

important consequences on the level of hydrolysis as well as chromogen toxicity; this 

was evident with substrates 79 and 235a, and the relative position of the pentyl 

substituent in the 1- and 2-position, respectively.   
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4.1 Conclusion and future work 

Two synthetic routes were successfully explored within this work for the preparation 

of 8-aminophenoxazinone derivatives: the condensation of nitroaminophenols with 

halogenobenzoquinones and the reductive cyclisation of 

dinitrophenoxybenzoquinones. 

 

 4.1.1 Halogenophenoxazinone substrates 

  4.1.1.1 Summary 

The condensation of nitroaminophenol with tetrahalogenobenzoquinones presented 

the advantage of being a short synthetic pathway (Scheme 4.1), using readily 

available reagents. It was, however, limiting in terms of the range of analogues 

accessible from this synthetic route (Scheme 4.1).  
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The nitrophenoxazinone intermediates 130αααα-γγγγa-c tested for nitroreductase activity 

clearly showed some enzymatic reduction for the 7-nitro and 9-nitro series (Table 

4.1). The absence of hydrolysis for the 8-nitro series was thought to be linked to the 

electronic configuration of the phenoxazin-3-one. The chromogenic properties of 

these compounds were relatively poor compared to previously reported substrates 

Scheme 4.1: Recapitulative synthesis of susbtrates 130αααα-γγγγa-b and substrates 237g-h 
i) NaOAc, EtOH, R.T.; ii) H2, Pd/C 5% or Pt2O, MeOH/EtOAc; iii) Ag2O, MeOH; iv) 232, dry THF,  
N-methylpiperidine, 48-72h, R.T.; v) neat TFA. 
*Only substrates 130ααααa-c were subjected to reduction  

237g-h 

130αααα-γγγγa-c 

i) ii)*, iii) 

iv) 

v) 

165a-c 236g-h 
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such as 7-nitrocoumarin or nitrobenzoxazole derivatives. The background 

colouration, weak enzymatic activity and significant colour diffusion suggested 

nitrohalogenophenoxazinones were not suitable for the detection of nitroreductase 

enzymatic activity (Table 4.1).  

 

 

 

Hydrolysis 

Colour 

Toxicity 

Diffusion 
Gram 

negative 

Gram 

positive  

Gram 

negative 

Gram 

positive 

7-NO2 

130ααααa X = F YES NO Red NO YES YES 

130ααααb X = Cl YES NO Orange NO YES YES 

130ααααc X = Br YES NO Brown NO YES YES 

8-NO2 

130ββββa X = F NO NO - NO YES - 

130ββββb X = Cl NO NO - NO YES - 

130ββββc X = Br NO NO - NO YES - 

9-NO2 
130γγγγa X = F YES NO Brown NO YES YES 

130γγγγb X = Cl YES NO Violet NO YES YES 

 

 

 

The series of 8-amino-1,2,4-trihalogenophenoxazin-3-ones 237g-h prepared from 

this route failed to evidence any enzymatic activity; the nature of the substituent was 

thought to possibly result in some enzyme inhibition.  

The corresponding trapped reduced forms of 8-amino-3-hydroxy-3H-phenoxazines, 

substrates 240a-b, also failed to evidence enzymatic activity; however the reduction 

of the imino-quinone resulted in a total suppression of the background colour, and an 

improved solubility in agar medium.   

 

 

 

 

 

Table 4.1: Summary of microbiological testing results for substrates 130αααα-γγγγ a-c 

- : Data not available 
 

240a X = F 

240b X = Cl 
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  4.1.1.2 Future work 

The preparation of alkyl substituted nitrophenoxazinones would be interesting to 

complete this study. The relation made between lipophilicity and colour retention 

suggests nitroalkylphenoxazinones could produce better results for the chromogenic 

detection of bacterial nitroreductase activity, compared to their halogenated 

analogues. 

The preparation of nitrophenoxazinones bearing alkyl substituents 245 could be 

undertaken via condensation of nitroaminophenols 130αααα-γγγγ and substituted 

hydroxylbenzoquinones 244.  As described in section 1.3.3, numerous examples of 

condensations between aminophenols and hydroxybenzoquinones have been 

reported. However, some research might be required to find satisfactory conditions 

for the reaction described in Scheme 4.2.  

 

 

 

 

 

 

The presence of an alkyl substituent in the 2-position (R2) may be desirable to avoid 

the formation of triphendioxazinone by-products 

162, discussed in section 2.1.1.1, which result 

from subsequent nucleophilic attack of the 

aminophenol derivative 124αααα-γγγγ onto the formed 

phenoxazinone.  

If successful, the prepared nitroalkylphenoxazinones 245 could also be reduced 

readily to aminoalkylphenoxazin-3-ones, leading to further potential substrates for 

microbial aminopeptidase detection. 

The lead compound, 7-N-β-alanylamino-1-pentyl-3H-phenoxazin-3-one 74, produces 

a strong orange background colour. The absence of background colouration 

described for substrate 240a-b, suggests a similar trapping of 7-amino-3-hydroxy-1-

pentyl-3H-phenoxazine 229c would also result in a reduced colouration. 

Scheme 4.2: Possible preparation of nitroalkylphenoxazin-3-ones 245 
i) EtOH, base or AcOH, reflux 

i) 

245, R1, R2, R3 = alkyl group or H 244  

124αααα-γγγγ 

N

O

O2N

N

R1

O

R3

NO2

162 
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The method would require modification of the reaction conditions, as preparation of 

74 involved reduction to the 7-amino-3-hydroxyphenoxazine species 229c, where 

only the amino group was found to react with the amino acid mixed anhydride, unlike 

8-amino-3-hydroxy-1,2,4-trihalogenophenoxazines 165a-c. Isolation of 7-N-(N-
tbutoxycarbonyl-β-alanyl)amino-1-pentyl-3H-phenoxazin-3-one 234c followed by 

reduction and reaction with an acyl chloride could lead to the weakly coloured 

molecule 246 (Scheme 4.3). 

 

4.1.2 Alkylphenoxazinone substrates 

 4.1.2.1 Summary 

The preparation of 7- and 8-aminophenoxazin-3-one derivatives 59c-d and 167a-f 

was achieved. The general synthetic route adopted can be summarised as follows: 

preparation of 2,5-dimethoxybenzaldehydes, Baeyer-Villiger oxidation of the latter to 

2,5-dimethoxyphenols 150a-g, coupling of the latter with 2,4 or 2,5-

dinitrofluorobenzene 168 or 151 to yield 2,4- or 2,5-dinitrodiphenylethers 169a-g and 

152c-d, oxidation of the latter using CAN to 2,4- or 2,5-dinitrophenoxybenzoquinones 

179a,c,d,f and 219a-b. Finally, catalytic hydrogenation of 2,4- or 2,5-

Scheme 4.3: Possible preparation of a reduced 7-N-β-alanylamidophenoxazin-3-one 
i) [H], ii) Mixed anhydride, iii) aerial [O], iv) [H], v) acyl chloride. 

i) ii) 

iii) 

iv), v) 

59a 229c 

233c 234c 

246 
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dinitrophenoxybenzoquinones 169a,c,d,f and 219a-b, followed by oxidation led to the 

corresponding 7- or 8-aminophenoxazin-3-one (Scheme 4.4).  

 

 

 

 

 

 

Various strategies were explored to introduce substituents onto the phenoxazinone 

core; the most successful proved to be the derivatisation of 1,4-dimethoxy-2-

bromobenzene or 2,5-dimethoxy-3-bromobenzaldehyde. However, the resulting 

synthetic route required numerous steps to introduce specific substituents at a 

particular position. Attempts to shorten the pathway, via the direct preparation of a 

2,4-dinitrophenoxybenzoquinone 208, from the coupling of 2,4-dinitro-1-

fluorobenzene and a 2-hydroxybenzoquinone derivative failed, as a result of the poor 

nucleophilic character of the latter. Attempts to substitute 2,4-dinitro-2',5'-dimethoxy-

3'-bromodiphenylether failed, firstly due to its poor reactivity, secondly due to its 

susceptibility to some of the reagents, notably strong bases. 

The preparation of dinitrophenoxybenzoquinones 179 and 219, proved to be more 

convenient than the preparation of dinitro-2,5-dihydroxydiphenylethers, initially used 

within this synthetic route.  

With 2,4-dinitrophenoxybenzoquinones 179, evidence was given for the formation of 

2,4-diaminophenoxybenzoquinone 171, as a result of catalytic hydrogenation, 

confirming the species undergoes cyclisation to the 8-aminophenoxazin-3-one core 

167 (Scheme 4.5).  

150a-g 

179a,c,d,f 
219a-b 

169a-g 
152c-d 
 

167a-f 
59d-e 
 

Scheme 4.4: Recapitulative synthesis of phenoxazinones 167a-f and 59d-e  
i) DCM, m-CPBA, ii) aq. NaOH, MeOH, iii) Et3N, DMSO or NaH 60% w/w, DMF, iv) CAN, H2O : CH3CN, 
v) H2, Pd/C 5%, EtOAc : MeOH, vi) Ag2O, MeOH. 

 

i), ii) iii) iv) 

v), vi) 
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With 2,4-dinitro-2,5-dihydroxydiphenylethers 150, evidence was given for the 

formation of 2,4-diamino-2',5'-dihydroxydiphenylether 220, as a result of catalytic 

hydrogenation (Scheme 4.5). The oxidative conditions used to produce 8-

aminophenoxazinone from 2,4-diamino-2',5'-dihydroxydiphenylether favoured the 

formation of 2,4-diaminophenoxybenzoquinone 171 from 2,4-diamino-2',5'-

dihydroxydiphenylether 220 (Scheme 4.5). The suggested participation of a 

zwitterion 247 in the oxidation of diamino-2',5'-dihydroxydiphenylether (Scheme 1.50, 

section 1.3.9) seemed unlikely in the case of 220, as neutral conditions did not favour 

cyclisation to 8-aminophenoxazin-3-one 167 (Scheme 4.5). 

 

 

 

 

 

With 2,5-dinitrophenoxybenzoquinones, evidence was given for the formation of 2,5-

diamino-2',5'-dihydroxydiphenylether, as the product resulting from catalytic 

hydrogenation (Scheme 4.6). No evidence could be given here for the formation of a 

2,5-diaminophenoxybenzoquinone intermediate, and reason for the reduction of the 

quinone ring in this case (Scheme 4.6) could not be fully rationalised. 

 

 

 

Scheme 4.5: Relation between the evidenced intermediates and their role in the cyclisation of  
8-aminophenoxazin-3-one 167. 

Scheme 4.6: Evidenced intermediate in the cyclisation of 7-aminophenoxazin-3-ones 59. 

179 

248a-b 

170 220 

167 
171 

247 
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The microbiological testing of the corresponding β-alanine substrates prepared via 

this route did allow the successful detection of β-alanine aminopeptidase activity in 

most cases. The contrast resulting from the release of 8-aminophenoxazinones into 

the agar medium was significant enough for accurate observation of enzyme activity, 

despite the results suggested from the U.V.-visible study. However, the release of 7-

aminophenoxazinones resulted in a brighter colour, improving the quality of the 

readings, and may be considered more suitable to the detection of enzyme activity.  

Several factors influenced the hydrolysis of the substrates:  it appeared evident the 

nature of the chromogen substituent and its position on the phenoxazin-3-one ring 

were two determining factors (Table 4.2 and Table 4.3). The reduced lipophilic 

character of 8-N-β-alanyl-aminophenoxazinone 271a was thought to prevent 

hydrolysis, whereas the enhanced lipophilic character of substrates 271-f clearly 

improved enzymatic hydrolysis (Table 4.2 and Table 4.3).  

 

 

 Hydrolysis/Toxicity 

Colour Diffusion 
Ps. 

aeruginosa 

B. 

cepacia 

S. 

marcescens 
E. coli 

237a 

R1 = R2 = R3 = H 
NO / NO - / - NO / NO NO - - 

237f 

R1 = Ph, R2 = R3 = H 
NO / NO - / - NO / NO NO - - 

237b 

R1 = R2 = CH3, R3 = H 
YES / NO - / - YES / NO NO Violet YES 

237c 

R1 = R2 = R3 = CH3 
YES / NO - / - YES / NO NO Violet YES 

237d 

R1 = R3 = H, R2 = tbu 
YES / NO - / - YES / NO NO Violet YES 

237e 

R1 = R3 = H, R2 = pentyl 
YES / NO NO / NO YES / NO NO Violet NO 

 

 

 

 

 

Table 4.2: Summary of microbiological testing results for substrates 237a-e (at 50mg/L) 
-  : Data not available 
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 Hydrolysis 

Colour Diffusion 
Ps. 

aeruginosa 

B. 

cepacia 

S. 

marcescens 
E. coli 

59d 

R2 = tbu 
YES / NO NO / NO YES / NO NO Pink YES 

59e 

R1 = R3 = H, R2 = pentyl 
YES / NO - / - YES / NO NO Pink NO 

 

 

 

Hence the lipophilicity of substrates 237a-f and 269a-b was thought to be an 

important property for good permeation through the Gram positive bacterial outer-

membrane and hydrolysis of the substrate. However, as demonstrated with the two 

isomers 7-N-β-alanylamino-2-pentylphenoxazin-3-one 269b and 7-N-β-alanylamino-

1-pentylphenoxazin-3-one 79, and with 8-N-β-alanylamino-1-phenylphenoxazin-3-

one 271b, the lipophilic character of a substrate does not always permit good 

hydrolysis: in the instance of 269b, the 2-position considerably reduced the level of 

hydrolysis, and in the case of 271b, the presence of a phenyl group resulted in 

absence of hydrolysis, possibly due to some steric hindrance.  

The overall performance of all β-alanine substrates prepared did not match the 

efficiency of 7-N-β-alanylamino-1-pentylphenoxazin-3-one 74. 

 

4.1.2.2 Future work 

In view of the results obtained within this work, preparation of future substrates 

should focus on long alkyl substituents, as shorter alkyl chain substrates cannot 

precisely localise the site of hydrolysis, and preferably on the 1-position of the 

phenoxazin-3-one ring, as this seemed to favour hydrolysis.  

The preparation of 8-amino-1-pentylphenoxazin-3-one 167p, which could not be 

achieved despite numerous attempts, is now thought to be possible via the 2,5-

dimethoxy-6-pentynylbenzaldehyde 184 prepared, following the synthetic pathway 

summarised below (Scheme 4.7).  

Table 4.3: Summary of microbiological testing results for substrates 59d-e (at 50mg/L) 
-  : Data not available 
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An analogous compound, 8-amino-1-butoxyphenoxazinone 251 has also been 

envisaged, using 3-bromo-2,5-dimethoxyphenol 150e. Alkylation of the latter using 

NaH and butyl iodide, followed by introduction of a formyl group on the resulting 3-

bromo-1-butoxy-2,5-dimethoxybenzene 248 using n-BuLi and DMF would lead to 3-

butoxy-2,5-dimethoxybenzaldehyde 249 (Scheme 4.8). Preparation of 3-butoxy-2,5-

dimethoxyphenol 287 from 286 could lead to 8-amino-1-butoxyphenoxazinone 288 

following the pathway summarised below (Scheme 4.8). 

 

 

  

 

 

 

Scheme 4.7: Possible route to 8-amino-1-pentylphenoxazin-3-one 167p 
i) Baeyer-Villiger oxidation, ii) Base, 2,4-dinitrofluorobenzene, iii) CAN oxidation, iv) [H], v) [O] 

i) ii) 
iii) 

iv), v) 

Scheme 4.8: Possible route to 8-amino-1-butoxyphenoxazin-3-one 251 
i) NaH, DMF, ii) BuI, ∆, iii) n-BuLi, THF, -78°C, iv) DMF, -78°C to R.T., v) m-CPBA, DCM, vi) MeOH, 
NaOH, vii) Et3N, 2,4-dinitrofluorobenzene, viii) CAN oxidation, xi) H2, Pd/C 5%, MeOH, x) [O]. 

i), ii) iii), iv) v), vi) 

vii) 
viii) 

xi), x) 

184 247 
167p 

251 

150e 248 249 250 
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The preparation of 2,4-dinitro-2',5'-dimethoxy-3'-carbaldehydediphenylether 211  

offers a solution to the issue concerning the lack of versatile precursor allowing a 

quick preparation of several phenoxazin-3-one derivatives.  

Several interesting derivatives are thought to be accessible via reaction of the formyl 

group (Scheme 4.9). The resulting intermediates would lead to preparation of novel 

2-substituted 8-aminophenoxazinone derivatives suitable for testing as bacterial 

enzyme substrates. 

 

O
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211 

Scheme 4.8: Example of possibly interesting derivativatisation of 2,4-dinitro-2',5'-dimethoxy-3'-
carbaldehydediphenylether 238. 



                                                  

 

 

 

 

CHAPTER FIVE: 

 

EXPERIMENTAL



CHAPTER FIVE                                                        EXPERIMENTAL  

161 

5.1 General experimental 

 

All commercially available reagents and solvents were obtained from Sigma-Aldrich, 

Fluka or Riedel-de-Haan and were used without any further purification. In the case 

of dry conditions, solvents, amines and other reagents were dried according to the 

procedures described in the literature (B-2003MI07). All yields were recorded after 

purification by column chromatography, unless this technique is not mentioned. 

Melting points were recorded on a Reichart-Kofler hot-stage microscope apparatus 

and are uncorrected.  Infrared spectra were recorded in the range 4000 – 600 cm
-1

 

using a Perkin Elmer Spectrum BX FT-IR instrument with internal calibration and a 

Pike sampling system.  NMR spectra were obtained using a Bruker Ultrashield 300 

spectrometer at 300 MHz for 
1
H spectra or at 75 MHz for 

13
C spectra or a Bruker 

Ultrashield 500 spectrometer at 500 MHz for 
1
H spectra or at 125 MHz for 

13
C 

spectra. Signals are described as being broad (br), singlet (s), doublet (d), double 

doublet (dd), triplet of doublets (dt), doublet of double doublets (ddd), triplet (t), 

doublet of triplets (dt), quartet (q) or multiplet (m), as appropriate. Low-resolution 

mass spectra were recorded on a Bruker Esquire 3000plus analyser using an 

electrospray source in either positive or negative ion mode.  Elemental analyses were 

performed using an Exeter Analytical CE-440 Elemental Analyzer. 

 

5.2 Synthesis 

5.2.1 General procedure for the preparation of nitro-1,2,4-trihalegeno-3H-

phenoxazin-3-one  130αααα-γγγγ a-c (1933USP2020651) 

2-Aminonitrophenol (1mol equivalent), p-tetrahalogenobenzoquinone (1.1mol 

equivalent) and sodium acetate (1.2mol equivalent) were suspended in ethanol in a 

round bottomed flask. The solution was stirred for 24 hours or until no more 2-

aminonitrophenol was detected by TLC. A red precipitate (for brominated and 

chlorinated derivatives) progressively appeared as the reaction neared completion. 

Water was then added to precipitate completely the red solid out of solution. The 

solid was recovered by filtration and washed with water and a little ethanol, then 

either recrystallised from acetic acid or purified by column chromatography. 
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5.2.1.1 7-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 130ααααa 

 

The title compound was prepared from p-fluoranil 129a (1.90g, 10.57mmol) and 2-

amino-5-nitrophenol 124αααα (1.42g, 9.61mmol). Water (100mL) was added to the 

reaction mixture and the resulting mixture was extracted with EtOAc (3 × 60mL). The 

emulsion was filtered through a sintered funnel and the insoluble residue was 

washed several times with EtOAc. The aqueous layer was discarded and the 

combined EtOAc filtrates and layer were washed with water (150mL) and brine 

(150mL), and dried (MgSO4). The solvent was removed in vacuo and the residue 

subjected to column chromatography on silica, eluting with EtOAc : petroleum ether 

60-80° (20 : 80). 7-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 130ααααa was isolated as a 

dark purple solid (0.35g, 1.19mmol, 12.4%).  Dark red-purple needle-like crystals 

were obtained from acetic acid, m.p.: 218-220°C; (found: C, 48.5; H, 1.05; N, 9.15%. 

C12H3F3N2O4 requires C, 48.7; H, 1.0; N, 9.5%); m/Z 295.9 (M)-; ννννmax/cm-1 3104      

(C-H), 1660 (C=O), 1596 (C=C), 1531 and 1312 (NO2), 1003 (C-F); δH (300 MHz, d8-

THF) 6.41 (1H, d, J = 8.7Hz, 9-H), 6.58 (1H, dd, J = 8.7, 2.4Hz, 8-H), 6.74 (1H, d,      

J = 2.4Hz, 6-H); δC (75 MHz, d8-THF) 110.3 (CH, 6-C), 118.6 (CH, 8-C), 129.4 (CH, 

9-C), 130.1 (quat., ddd, J = 8.5, 5.2, 1.4Hz, 10a-C), 134.1 (quat., 9a-C), 136.0 (quat., 

dd, J = 262.7, 6.1Hz, 4-C), 141.3 (quat., dt, J = 273.4, 6.9Hz, 2-C), 142.2 (quat., dd,  

J = 273.4, 12.2Hz, 1-C), 141.4 (quat., d, J = 1.5Hz, 5a-C), 141.7 (quat., ddd, J = 18.1, 

4.8, 1.2Hz, 4a-C), 147.9 (quat., 7-C), 166.7 (quat., dt, J = 21.4, 5.4Hz, 3-C); δF (282 

MHz, d8-THF) -282.17 (1F, t, J = 2.3Hz, 4-F), -271.89 (1F, dd, J = 9.3, 2.0Hz, 2-F),    

-265.41 (1F, dd, J = 9.3, 2.0Hz, 1-F). 

  

5.2.1.2 7-Nitro-1,2,4-trichloro-3H-phenoxazin-3-one 130ααααb(1958ZOB2977) 

 

The title compound was prepared from p-chloranil 129b (3.52g, 14.32mmol) and 2-

amino-5-nitrophenol 124αααα (1.97g, 12.78mmol); 7-nitro-1,2,4-trichloro-3H-phenoxazin-
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3-one 130ααααb was isolated as a purple solid (4.06g, 11.75mmol, 90.4%). Purple 

lustrous plates of 130ααααb were obtained from glacial acetic acid; m.p.: 239-241°C    

[lit.: 238-240°C (from AcOH, 1958ZOB2977]; m/Z 343.8 (85%), 345.8 (100%),     

347.7 (26%), 348.9 (15%) (M)-; (found: C, 41.7; H, 0.9; N, 7.9%. C12H3Cl3N2O4 

requires: C, 41.7; H, 0.9; N 8.1%); ννννmax/cm-1 3094 (C-H), 1646 (C=O), 1584 (C=C), 

1519 and 1347 (NO2); δH (300 MHz, d6-DMSO) 8.24 (1H, d, J = 8.7Hz, 9-H), 8.32 

(1H, dd, J = 8.7, 2.4Hz, 8-H), 8.51 (1H, d, J = 2.4Hz, 6-H); δC (75 MHz, d6-DMSO) 

111.6 (quat., 4-C), 112.7 (CH, 6-C), 121.5 (CH, 8-C), 132.1 (CH, 9-C), 136.6 (quat., 

7-C), 137.2 (quat.,1-C or 2-C), 138.5 (quat., 1-C or 2-C), 143.5 (quat., 9a-C), 146.4 

(quat., 2 × C, 4a-C or 10a-C), 149.8 (quat., 7-C), 171.0 (quat., 3-C). 

 

 5.2.1.3 7-Nitro-1,2,4-tribromo-3H-phenoxazin-3-one 130ααααc 

 

The title compound was prepared from p-bromanil 129c (1.03g, 2.42mmol) and        

2-amino-5-nitrophenol 124αααα (0.34g, 2.20mmol); 7-nitro-1,2,4-tribromo-3H-

phenoxazin-3-one 130ααααc was isolated as a bright red solid (1.10g, 2.30mmol, 

95.0%). A microcrystalline dark red solid of 130ααααc was obtained from acetic acid, 

m.p.: 263-264°C; (found: C, 30.1; H, 0.7; N, 5.6%. C12H3Br3N2O4 requires: C, 30.1; 

H, 0.6; N 5.85%); m/Z 475.6 (33%), 477.6 (100%), 479.7 (84%), 481.7 (28%) (M)-; 

ννννmax/cm-1 3101 (C-H), 1641 (C=O), 1529 and 1346 (NO2); δH (300 MHz, d6-DMSO) 

8.21 (1H, d, J = 9.0Hz, 9-H), 8.29 (1H, dd, J = 8.7, 2.4Hz, 8-H), 8.44 (1H, d, J = 

2.4Hz, 6-H); δC (75 MHz, d6-DMSO) 103.2 (quat., 4-C), 112.45 (CH, 6-C), 121.4 (CH, 

8-C), 131.9 (CH, 9-C), 134.9 (quat., 1-C or 2-C), 137.0 (quat., 1-C or 2-C), 137.1 

(quat., 5a-C), 143.6 (quat., 9a-C), 147.2 (quat., 4a-C or 10a-C), 148.3 (quat.,  4a-C or 

10a-C), 149.7 (7-C), 171.5 (quat., 3-C). 

 

5.2.1.4 8-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 130ββββa 
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Method A. The title compound was prepared from p-fluoranil 129a (1.51g,             

8.39mmol) and 2-amino-4-nitrophenol 124ββββ (1.27g, 8.22mmol) according to the 

general procedure. The precipitate was dissolved in EtOAc (100mL) and the organic 

layer was washed with 10% aq. NaOH solution (4 x 100mL) and water (1 x 100mL), 

and dried with MgSO4. The solvent was removed under reduced pressure and the 

residue subjected to column chromatography, eluting with a gradient mixture of 

petroleum ether (60-80°C) : Et2O (50:50 to 0:100). 8-Nitro-1,2,3-trifluoro-3H-

phenoxazin-3-one 130ββββa was isolated as a red solid (0.94g, 3.17mmol, 38.5%). 

Analytical data were identical to that obtained for the product of method B below. 

Method B. In a 100mL 2 neck round bottomed flask, equipped with a pressure 

equalizing dropping funnel, was dissolved p-fluoranil (1.48g, 8.22mmol) in dry THF 

(50mL). A solution of 2-amino-4-nitrophenolate was prepared, by adding DBU 

(0.82mL, 5.48mmol) to a solution of 2-amino-4-nitrophenol 124ββββ (0.84g, 5.45mmol) in 

dry THF (15mL), and transferred into the pressure equalizing dropping funnel. The p-

fluoranil solution was cooled with an ice-bath and to it was added dropwise the 

phenolate solution. The resulting solution was stirred for 48 hours. Water (150mL) 

was then added and the resulting mixture was extracted with EtOAc (3 x 80mL). The 

insoluble solid was discarded and the organic layer was washed once with water 

(100mL) and dried with MgSO4. The solvent was evaporated in vacuo and the 

residue was purified by column chromatography using a gradient of petrolem ether 

(60-80°C) : EtOAc (75:25 to 60:40). 8-Nitro-1,2,3-trifluoro-3H-phenoxazin-3-one 

130ββββa was isolated as a red solid (0.44g, 1.49mmol, 27.3%). An orange crystalline 

solid 130ββββa of was obtained from acetic acid, m.p.: 212-214°C; (found: C, 48.6; H, 

1.05; N, 9.1%. C12H3F3N2O4 requires C, 48.7; H, 1.0; N, 9.5%); m/Z 295.9 (M)-; 

ννννmax/cm-1 3093 (C-H), 1648 (C=O), 1608 (C=C), 1518 and 1308 (NO2), 1004 (C-F); 

δH  (300 MHz, d8-THF) 6.03 (1H, d, J = 9.3Hz, 6-H), 6.80 (1H, dd, J = 9.0, 2.7Hz,     

7-H), 7.06 (1H, d, J = 2.7Hz, 9-H); δC (75 MHz, d8-THF) 115.4 (CH, 6-C), 123.8 (CH, 

9-C), 126.2 (CH, 7-C), 129.85 (quat., ddd, J = 9.6, 5.1, 1.3Hz, 10a-C), 130.2 (quat., 

9a-C), 136.0 (quat., dd, J = 262.4, 6.5Hz, 4-C), 141.3 (quat., dt, J = 272.7, 6.9Hz, 2-

C), 142.2 (quat., dd, J = 273.9, 12.0Hz, 1-C), 140.8 (quat., ddd, J = 18.3, 5.5Hz, 

1.1Hz, 4a-C), 143.4 (quat., 8-C), 145.3 (quat., d, J = 1.6Hz, 5a-C), 166.8 (quat., td,   

J = 21.0, 5.6Hz, 3-C); δF (282 MHz, d8-THF) -282.05 (1F, t, J = 2.8Hz, 4-F), -271.73 

(1F, dd, J = 9.6, 1.7Hz, 2-F), -266.07 (1F, dd, J = 9.3, 2.5Hz, 1-F). 
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 5.2.1.5 8-Nitro-1,2,4-trichloro-3H-phenoxazin-3-one 130ββββb (1971JC1875) 

 

The title compound was prepared from p-chloranil 129b (1.74g, 7.07mmol) and 2-

amino-4-nitrophenol 124ββββ (0.991g, 6.43mmol); 8-nitro-1,2,4-trichloro-3H-phenoxazin-

3-one 130ββββb was isolated as a red solid (2.19g, 6.34mmol, 98.6%). Red plates of 

130ββββb were obtained from glacial acetic acid; m.p.: 261-263°C [lit.: 248-250°C (from 

acetone, 1971JC1875)]; (found: C, 41.7; H, 0.9; N, 7.9%. C12H3Cl3N2O4 requires: C, 

41.7; H, 0.9; N 8.1%); m/Z 343.9 (92%), 345.8 (100%), 347.7 (32%), 348.9 (13.2%) 

(M)-; ννννmax/cm-1 3088 (C-H), 1649 (C=O), 1597 (C=C), 1510 and 1331 (NO2); δH  (300 

MHz, d6-DMSO) 7.95 (d, 1H, J = 9.0Hz, 6-H), 8.57 (dd, 1H, J = 9.0, 2.7Hz, 7-H), 8.73 

(d, 1H, J = 2.7Hz, 9-H); δC (75 MHz, d6-DMSO) 111.8 (quat., 4-C), 118.3 (CH, 6-C), 

125.85 (CH, 9-C), 129.1 (CH, 7-C), 132.6 (quat., 9a-C), 137.2 (quat., 1-C or 2-C), 

138.2 (quat., 1-C or 2-C), 145.3 (quat., 8-C), 145.6 (quat.,  4a-C or 10a-C), 146.2 

(quat., 4a-C or 10a-C), 147.7 (quat., 5a-C), 171.1 quat., 3-C). 

 

 5.2.1.6 8-Nitro-1,2,4-tribromo-3H-phenoxazin-3-one 130ββββc (1971JC1875) 

 

The title compound was prepared from p-bromanil 129c (4.05g, 9.57mmol) and 2-

amino-4-nitrophenol 124ββββ (1.34g, 8.70mmol). Elution with EtOAc : petroleum ether 

60-80 ° (40:60) gave 8-nitro-1,2,4-tribromo-3H-phenoxazin-3-one 130ββββc as a red 

solid (3.01g, 6.29mmol, 72.3%). Lustrous cardinal red crystals of 130ββββc were 

obtained from acetic acid, m.p.: 285-287°C [lit.: 287°C (from acetone, 1971JC1875)]; 

found: C, 30.1; H, 0.6; N, 5.6%. C12H3Br3N2O4 requires: C, 30.1; H, 0.6; N 5.85%); 

m/Z 475.8 (29%), 477.7 (100%), 479.7 (95%), 481.7 (27%) (M)-; ννννmax/cm-1 3078 (C-

H), 1638 (C=O), 1581 (C=C), 1508 and 1328 (NO2); δH  (300 MHz, d6-DMSO) 7.82 

(1H, d, J = 9.0 Hz, 6-H), 8.47 (1H, dd, J = 9.3, 2.7 Hz, 7-H), 8.60 (1H, d, J = 2.7 Hz, 

9-H); δC (75 MHz, d6-DMSO) 103.4 (quat., 4-C), 118.1 (CH, 6-C), 125.6 (CH, 9-C), 
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129.0 (CH, 7-C), 133.0 (quat., 9a-C), 134.8 (quat., 1-C or 2-C), 136.5 (quat., 1-C or 

2-C), 145.3 (quat., 8-C), 146.45 (quat., 4a-C or 10a-C), 147.9 (quat., 4a-C or 10a-C), 

148.2 (quat., 5a-C), 171.6 (quat., 3-C). 

 

5.2.1.7 9-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one 130γγγγa 

 

The title compound was prepared from p-fluoranil 129c (0.90g, 5.00mmol) and 2-

amino-3-nitrophenol 124γγγγ (0.74g, 4.82mmol); 9-nitro-1,2,4-trifluoro-3H-phenoxazin-3-

one 130γγγγa was isolated as a dark red solid (0.22g, 0.73mmol, 15.2%). Ruby red 

prisms of 130γγγγa with a metallic lustre were obtained from glacial acetic acid, m.p.: 

216-218°C; (found: C, 48.5; H, 1.0; N, 9.2%. C12H3F3N2O4 requires C, 48.7; H, 1.0; 

N, 9.5%); m/Z 295.9 (M -); ννννmax/cm-1 3084 (C-H), 1649 (C=O), 1603 (C=C), 1530 and 

1313 (NO2), 1004 (C-F); δH  (300 MHz, d8-THF) 6.04-6.13 (m, 3H, 6-H, 7-H and 8-H); 

δC (75 MHz, d8-THF) 117.6 (CH, 8-C), 117.9 (CH, 6-C), 123.0 (quat., 9a-C), 130.0 

(quat., ddd, J = 10.0, 5.0, 1.2Hz, 10a-C), 131.5 (CH, 7-C), 135.8 (quat., dd, J = 261.9, 

6.3Hz, 4-C), 141.4 (quat., dt, J = 273.2, 6.8Hz, 2-C), 142.1 (quat., dd, J = 274.7, 

12.2Hz, 1-C), 140.7 (quat., ddd, J = 18.2, 4.8, 1.2Hz, 4a-C), 141.5 (quat., d, J 

=1.7Hz, 5a-C), 146.4 (quat., 9-C), 166.7 (quat., td, J = 21.1, 5.5Hz, 3-C); δF (282 

MHz, d8-THF) -282.53 (1F, t, J = 2.3Hz, 4-F), -271.43 (1F, dd, J = 9.0, 2.3Hz, 1-F),           

-265.36 (1F, dd, J = 9.3, 2.3Hz, 2-F). 

 

 5.2.1.8 9-Nitro-1,2,4-trichloro-3H-phenoxazin-3-one 130γγγγb 

 

The title compound was prepared from p-chloranil 129c (1.17g, 7.61mmol) and 2-

amino-3-nitrophenol 124γγγγ (1.07g, 6.92mmol); 9-nitro-1,2,4-trichloro-3H-phenoxazin-3-

one 130γγγγb was isolated as a dark purple solid (1.08g, 3.13mmol, 45.3%). Lustrous 

dark purple needles of 130γγγγb were obtained from acetic acid, m.p.: 254-258°C; 

(found: C, 41.6; H, 0.9; N, 7.8%. C12H3Cl3N2O4 requires C, 41.7; H, 0.9; N, 8.1%); m/Z 
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343.9 (100%), 345.8 (91%), 347.7 (56%), 348.9 (21%) (M)-; ννννmax/cm-1 3100 (C-H), 

1647 (C=O), 1590 (C=C), 1532 and 1331 (NO2); δH  (300 MHz, d6-DMSO) 7.97 (1H, 

t, J = 8.4Hz, 7-H), 8.02 (1H, dd, J = 8.4, 2.1Hz, 8-H), 8.09 (1H, dd, J = 7.5, 2.1Hz,    

6-H); δC (75 MHz, d6-DMSO) 111.2 (quat., 4-C), 120.6 (CH, 8-C), 120.8 (CH, 6-C), 

125.3 (quat., 9a-C), 134.6 (CH, 7-C), 136.9 (quat., 1-C or 2-C), 138.6 (quat., 1-C or 

2-C), 143.7 (quat., 5a-C), 145.5 (quat., 4a-C or 10a-C), 146.3 (quat., 4a-C or 10a-C), 

147.8 (quat., 9-C), 171.0 (quat., 3-C). 

 

5.2.2 General procedure for the preparation of 8-amino-1,2,4-trihalogeno-3H-

phenoxazin-3-one 165a-c 

Nitro-1,2,3-trihalogeno-3H-phenoxazin-3-ones 130αααα-γγγγ a-c were dissolved in a solvent 

mixture of EtOAc : MeOH (1:1) and either Pd/C 10% or PtO2 (10% of the reactant 

mass) was added to the solution. The reaction mixture was then hydrogenated for 2 

to 20 hours, the initial hydrogen pressure being set around 2.4bars. Hydrogenation 

was continued until the hydrogen pressure was steady, after which the catalyst was 

removed from the reaction mixture by filtration through Celite 451. The Celite cake 

was washed several times with methanol. MnO2 (3mol equivalent) was added to the 

clear solution and the resulting mixture stirred until no more amino-3-

hydroxyphenoxazine was observed by TLC. The reaction mixture changed to a deep 

colour, ranging from blue to blue-violet, and was again filtered through Celite 451 to 

remove inorganic insoluble materials and the cake was washed several times with 

THF, until the filtrate was clear of colour. The solvent mixture was evaporated in 

vacuo and the residue was subjected to column chromatography on silica. 

 

5.2.2.1 8-Amino-1,2,4-trifluoro-3H-phenoxazin-3-one 165a 

 

The title compound was prepared from 8-nitro-1,2,3-trifluoro-3H-phenoxazin-3-one 

130ββββa (0.38g, 1.29mmol) using Pd/C 10%. Elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (30:70 to 10:90). 8-Amino-1,2,4-trifluoro-3H-

phenoxazin-3-one 165a was isolated as a dark violet solid (0.34g, 1.27mmol,        

98.0 %); m.p. : 277°C (dec.); (found: C, 54.2; H, 2.1; N, 10.1%. C12H5F3N2O2 
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requires C, 54.15; H, 1.9; N, 10.5%); m/Z 264.9 (M)-; ννννmax/cm-1 3503, 3358 and 3230 

(NH2), 1638 (C=O), 1610, 1575 and 1513 (C=C), 1002 (C-F); δH  (500 MHz, d1-TFA) 

8.17 (1H, d, J = 9.0Hz, 6-H), 8.35 (1H, dd, J = 9.0, 2.0Hz, 7-H), 8.74 (1H, d, J = 

1.5Hz, 9-H); δC (125 MHz, d1-TFA) 119.1 (CH, 6-C), 125.7 (CH, 9-C), 127.1 (quat., 

9a-C), 129.4 (CH, 7-C), 132.5 (quat., dd, J = 16.5, 3.9Hz, 10a-C), 132.8 (quat., 8-C), 

138.2 (quat., dd, J = 263.5, 5.4Hz, 4-C), 141.6 (quat., dd, J = 18.0, 7.8Hz, 4a-C), 

143.9 (quat., dt, J = 275.0, 5.4Hz, 2-C), 144.2 (quat., 5a-C), 144.4 (quat., dd,             

J = 279.2, 13.2Hz, 1-C), 172.3 (quat., td, J = 19.0, 6.6Hz, 3-C). 

  

5.2.3 General procedure for the preparation of 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-1,2,4-trihalogeno-3H-phenoxazin-3-ones 236g-i (adapted from 

2008OBC682) 

8-Nitro-1,2,4-trihalogeno-3H-phenoxazin-3-ones 130ββββb-c were dissolved in a solvent 

mixture of EtOAc / MeOH (1:1) and PtO2 (10% of the reactant mass) was added to 

the solution. The reaction mixture was then hydrogenated for 2h, the initial hydrogen 

pressure being set around 2.4bars. Hydrogenation was continued until the hydrogen 

pressure was steady, after which the catalyst was removed from the reaction mixture 

by filtration through Celite 451. The Celite cake was washed several times with 

methanol. MnO2 (3mol equivalent) was added to the clear solution and the resulting 

mixture stirred until no more 8-amino-1,2,4-trihalogeno-3-hydroxyphenoxazine 165a-

c was observed by TLC. The reaction mixture changed to a deep blue colour and 

was again filtered through Celite 451 to remove inorganic insoluble materials. The 

celite cake was washed several times with THF, until the filtrate was clear of colour. 

The solvent mixture was evaporated in vacuo and the crude product was used 

without further purification for peptide coupling. 

In a 100mL two necked flame dried flask flushed with nitrogen, N-tBoc-β-alanine 

(3.5mol equivalent) was dissolved in dry THF (15mL). The solution was cooled in an 

ice bath to 2-3°C (internal temperature) and N-methylpiperidine (3.7mol equivalent) 

was added slowly. The resulting solution was stirred for 10-15min before 

isobutylchloroformate (3.5mol equivalent) was added dropwise; the temperature rose 

to 5°C and a white solid precipitated. The resulting mixture was stirred at 3°C for 1h 

30min to allow the mixed anhydride to form. A solution of the appropriate 8-amino-

1,2,4-trihalogeno-3H-phenoxazin-3-one 165a-c was prepared in dry THF in a round 

bottomed flask flushed with nitrogen and then added via syringe to the mixed 
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anhydride. The resulting mixture was stirred under nitrogen for 48-72h. A 10% aq. 

solution of Na2CO3 was added to quench the reaction and the resulting mixture was 

extracted with EtOAc (3 x 70mL). The combined organic layers were washed once 

with a 10% aq. solution of Na2CO3 (100mL), once with water (100mL), once with 

brine (100mL), and dried (MgSO4). The solvent mixture was removed in vacuo and 

the residue was subjected to column chromatography using a gradient mixture of 

petroleum ether (60-80°C) : EtOAc. 

 

5.2.3.1 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2,4-trifluoro-3H-phenoxazin-3-

one 236g 

 

The title compound was prepared as described from 8-amino-1,2,4-trifluoro-3H-

phenoxazin-3-one 165a (0.30g, 1.13mmol). Elution used a gradient mixture of 

petroleum ether (60-80°) : EtOAc (25:75 to 0:100). 8-N-(N-tButoxycarbonyl-β-

alanyl)amino-1,2,4-trifluoro-3H-phenoxazin-3-one 236g was isolated as a cherry red 

solid (0.36g, 0.82mmol, 72.8%); m.p.: 195-196°C (dec.); (found: C, 54.75; H, 4.2; N, 

9.4%. C20H18F3N3O5 requires C, 54.9; H, 4.15; N, 9.6%); m/Z 436.0 (M-H)-; ννννmax/cm-1 

3362 and 3304 (N-H), 1680 (C=O), 1654 (C=O), 1632 (C=O), 1158 (C-O), 1001     

(C-F); δH  (300 MHz, d6-DMSO) 1.40 (9H, s, C(CH3)3), 2.53 (2H, t, J = 7.2Hz, 2'-H), 

3.27 (2H, q, J = 6.9Hz, 3'-H), 6.88 (1H, br. s, NH-tBoc), 7.64 (1H, d, J = 9.3Hz, 6-H), 

7.83 (1H, dd, J = 9.0, 2.4Hz, 7-H), 8.26 (1H, d, J = 2.1Hz, 9-H), 10.33 (1H, s, Ar-NH); 

δC (75 MHz, d6-DMSO) 28.7 (3 × CH3, 6'/7'/8'-C), 36.9 (CH2, 3'-C), 37.3 (CH2, 2'-C), 

78.2 (quat., 5'-C), 117.1 (CH, 6-C), 119.1 (CH, 9-C), 125.95 (CH, 7-C), 132.4 (quat., 

9a-C), 133.1 (quat., dd, J = 9.2, 5.1Hz, 10a-C), 137.65 (quat., dd, J = 253.7, 6.6Hz, 

4-C), 137.95 (quat., 5a-C), 138.8 (quat., 8-C), 140.1 (quat., dd, J = 16.7, 3.3Hz,     

4a-C), 143.1 (quat., dt, J = 267.1, 7.5Hz, 2-C), 144.0 (quat., dd, J = 270.0, 11.9Hz,  

1-C), 156.1 (quat., 4'-C), 168.7 (quat., dt, J = 20.4, 6.6Hz, 3-C), 170.4 (quat., 1'-C);  

δF (282 MHz, d6-DMSO) -163.18 (1F, s, 4-F), -149.40 (1F, d, J = 11.9Hz, 1-F),            

-145.69 (1F, dd, J = 11.9, 2.5Hz, 2-F). 
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5.2.3.2 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-

one 236h 

 

8-Amino-1,2,4-trichloro-3H-phenoxazin-3-one 165b was prepared as described 

earlier from 8-nitro-1,2,4-trichloro-3H-phenoxazin-3-one 130ββββb (0.16g, 0.46mmol).   

8-Amino-1,2,4-trichloro-3H-phenoxazin-3-one 165b (0.14g, 0.45mmol, 97.6%) was 

isolated as a dark blue solid, m.p.: >290°C; m/Z 312.8 (94%), 314.8 (100%), 316.8 

(42%), 318.8 (28%) (M)-; ννννmax/cm-1 3387, 3321 and 3226 (NH2), 1634 (C=O), 1616, 

1570 and 1502 (C=C). Due to the poor solubility of the product, no NMR data could 

be obtained. 

 

The title compound was prepared as described earlier from 8-amino-1,2,4-trichloro-

3H-phenoxazin-3-one 165b (0.173g, 0.55mmol). Elution using a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (30:70 to 0:100) yielded 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-one 236h as a dark pinkish solid 

(0.075g, 0.155mmol, 28.2%); m.p.: 220°C (dec.); (found: C, 49.3; H, 3.7; N, 8.4%. 

C20H18Cl3N3O5 requires C, 49.35; H, 3.7; N, 8.6%); m/Z 485.9 (73%), 487.9 (100%), 

489.8 (24%), 491.9 (5%) (M-H)-; ννννmax/cm-1 3359 and 3318 (N-H), 1681 (C=O), 1652 

(C=O), 1628 (C=O), 1165 (C-O); δH  (300 MHz, d6-DMSO) 1.40 (9H, s, C(CH3)3), 

2.54 (2H, t, J = 6.9Hz, 2'-H), 3.27 (2H, q, J = 6.6Hz, 3'-H), 6.89 (1H, br. s, NH-tBoc), 

7.64 (1H, d, J = 9.0Hz, 6-H), 7.83 (1H, dd, J = 9.0, 2.4Hz, 7-H), 8.32 (1H, d, J = 

2.4Hz, 9-H), 10.32 (1H, s, Ar-NH); δC (75 MHz, d6-DMSO) 28.7 (3 x CH3, 6'/7'/8'-C), 

36.9 (CH2, 3'-C), 37.4 (CH2, 2'-C), 78.2 (quat., 5'-C), 110.2 (quat., 4-C), 116.9 (CH,   

6-C), 119.1 (CH, 9-C), 126.3 (CH, 7-C), 132.9 (quat., 9a-C), 136.6 (quat., 1-C or      

2-C), 137.4 (quat., 1-C or 2-C), 138.1 (quat., 8-C), 139.3 (quat., 5a-C), 143.3 (quat., 

4a-C or 10a-C), 146.4 (quat., 4a-C or 10a-C), 156.1 (quat., 4'-C), 170.4 (quat., 1'-C), 

170.6 (quat., 3-C). 
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5.2.3.3 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2,4-tribromo-3H-phenoxazin-3-

one 236i 

 

8-Amino-1,2,4-tribromo-3H-phenoxazin-3-one 165c was prepared as described from 

8-nitro-1,2,4-tribromo-3H-phenoxazin-3-one 130ββββc (0.43g, 0.89mmol). 8-Amino-

1,2,4-tribromo-3H-phenoxazin-3-one 165c (0.38g, 0.85mmol, 94.8%) was isolated as 

a dark blue solid, m.p.: > 290°C; m/Z 447 (37%), 449 (100%), 451 (91%), 453 (29%) 

(MH)+; ννννmax/cm-1 3376, 3319 and 3216 (NH2), 1628 (C=O). Due to the poor solubility 

of the product, no NMR data could be obtained. 

 

 

The title compound was prepared as described from 8-amino-1,2,4-tribromo-3H-

phenoxazin-3-one 165c (0.28g, 0.62mmol). Elution using a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (50:50 to 0:100), then EtOAc : MeOH (95:5), 

yielded 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-1,2,4-tribromo-3H-phenoxazin-3-one 

236i as a dark pinkish solid (0.26g, 0.42mmol, 67.3%), m.p.: 245°C (dec.); (found:  

C, 38.8; H, 3.0; N, 6.5%. C20H18Br3N3O5 requires C, 38.7; H, 2.9; N, 6.8%); m/Z 615.8 

(25%), 617.8 (100%), 619.8 (92%), 621.8 (33%) (M-H)-; ννννmax/cm-1 3357 (N-H), 1685 

(C=O), 1678 (C=O), 1613 (C=O), 1170 (C-O); δH  (300 MHz, d6-DMSO) 1.40 (9H, s, 

C(CH3)3), 2.54 (2H, t, J = 6.9Hz, 2'-H), 3.27 (2H, q, J = 6.6Hz, 3'-H), 6.89 (1H, br. s, 

NH-tBoc), 7.61 (1H, d, J = 8.7Hz, 6-H), 7.82 (1H, dd, J = 8.7, 2.1Hz, 7-H), 8.33 (1H, 

d, J = 2.1Hz, 9-H), 10.30 (1H, s, Ar-NH); δC (75 MHz, d6-DMSO) 28.7 (3 × CH3, 

6'/7'/8'-C), 36.9 (CH2, 3'-C), 37.4 (CH2, 2'-C), 78.2 (quat., 5'-C), 101.5 (quat., 4-C), 

116.8 (CH, 6-C), 119.0 (CH, 9-C), 126.2 (CH, 7-C), 133.4 (quat., 9a-C), 134.2 (quat., 

1-C or 2-C), 135.7 (quat., 1-C or 2-C), 138.0 (quat., 8-C), 139.5 (quat., 5a-C), 144.2 

(quat., 4a-C or 10a-C), 148.3 (quat., 4a-C or 10a-C), 156.1 (quat., 4'-C), 170.4 (quat., 

1'-C), 171.0 (quat., 3-C). 
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5.2.4 General procedure for the deprotection of 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-1,2,4-halogeno-3H-phenoxazin-3-one 237g-i (adapted from 

2008OBC682) 

To the protected substrate in a round bottomed flask, an excess of neat TFA (3-4mL) 

was added and the resulting dark solution was swirled for a minute and left standing 

for another 5 min. The TFA was then removed in vacuo. The residue was taken into 

methanol and the solvent from the resulting mixture was removed in vacuo. This 

procedure was repeated until most of the remaining TFA was removed. The residue 

was then redissolved in a minute amount of MeOH and the resulting solution was 

diluted with Et2O, which produced a lasting turbidity. The cloudy suspension was left 

overnight and the microcrystals formed were collected by filtration and washed with 

Et2O. The filtrate was concentrated in vacuo to recover more product, which was 

triturated and washed with Et2O. 

 

5.2.4.1 8-N-(β-Alanyl)amino-1,2,4-trifluoro-3H-phenoxazin-3-one TFA salt 237g 

 

The title compound was prepared as described earlier from 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-trifluoro-3H-phenoxazin-3-one 236g (0.152g, 0.348mmol). 8-N-

(β-Alanyl)amino-1,2,4-trifluoro-3H-phenoxazin-3-one TFA salt 237g was isolated as a 

red solid (0.154g, 0.341mmol, 98.0%); m.p.: 220°C (dec.); (Found (M)+, 338.0749. 

Calc. for C15H11F3N3O3: (M)+, 338.0747); m/Z 338.1 (MH)+, 350.1 (MNa)+; ννννmax/cm-1 

3255 (N-H), 3032 (N+-H), 1663 (C=O), 1642 (C=O), 1131 (C-O), 1007 (C-F); δH  (500 

MHz, d6-DMSO) 2.79 (2H, t, J = 7.0Hz, 2'-H), 3.15 (2H, br. s, 3'-H), 7.72 (1H, d,         

J = 9.0Hz, 6-H), 7.87 (1H, dd, J = 8.4, 2.0Hz, 7-H), 7.91 (3H, br. s, NH3
+), 8.32 (1H, 

d, J = 2.5Hz, 9-H), 10.68 (1H, s, NH-Ar); δC (125 MHz, d6-DMSO) 33.8 (CH2, 2'-C), 

35.3 (CH2, 3'-C), 117.3 (CH, 6-C), 119.4 (CH, 7-C), 126.05 (CH, 9-C), 132.5 (quat., 

9a-C), 133.25 (quat., dd, J = 9.4, 5.6Hz, 4a-C), 137.65 (quat., dd, J = 253.6, 6.3Hz, 

4-C), 137.6 (quat., 8-C), 139.1 (quat., 5a-C), 140.35 (quat., d, J = 16.9Hz, 10a-C), 

143.1 (quat., dt, J = 267.3, 11.6Hz, 2-C), 144.1 (quat., dd, J = 267.3, 11.6Hz, 1-C), 

168.8 (quat., td, J = 20.0, 5.7Hz, 3-C), 169.3 (quat., 1'-C); δF (282 MHz, d6-DMSO)     
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-163.31 (1F, d, J = 2.8 Hz, 4-F), -149.43 (1F, dd, J = 12.1 Hz, 2.0 Hz , 1-F), -145.65 

(1F, dd, J = 12.1 Hz, 3.4 Hz, 2-F). 

 

5.2.4.2 8-N-(β-Alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-one TFA salt 237h 

 

The title compound was prepared as described earlier from 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-one 236h (0.07g, 0.14mmol). 8-N-(β-

alanyl)amino-1,2,4-trichloro-3H-phenoxazin-3-one TFA salt 237h was obtained as a 

purple solid (0.06g, 0.115mmol, 82.1%); m.p.: > 290°C; (Found (M)+, 385.98635. 

Calc. for C15H11
35Cl3N3O3: (M)+, 385.98605); m/Z 386.0 (100%), 388.0 (97%), 390.0 

(42%), 392.0 (10%) (MH)+; ννννmax/cm-1 3348 (N-H), 3073 (N-H+), 1671 (C=O), 1619 

(C=O), 1124 (C-O); δH  (300 MHz, d6-DMSO) 2.69 (2H, t, J = 6.9Hz, 2'-H), 3.06 (2H, 

br. s, 3'-H), 7.64 (1H, d, J = 9.0Hz, 6-H), 7.72 (3H, br. s, NH3
+), 7.77 (1H, dd,             

J = 9.0, 2.1Hz, 7-H), 8.28 (1H, d, J = 2.1Hz, 9-H), 10.51 (1H, s, NH-Ar); δC (75 MHz, 

d6-DMSO) 33.9 (CH2, 2'-C), 35.35 (CH2, 3'-C), 110.2 (quat., 4-C), 117.0 (CH, 6-C), 

119.3 (CH, 9-C), 126.35 (CH, 7-C), 132.9 (quat., 9a-C), 136.6 (quat., 1-C or 2-C), 

137.4 (quat., 1-C or 2-C), 137.8 (quat., 8-C), 139.5 (quat., 5a-C), 143.4 (quat., 4a-C), 

146.4 (quat., 10a-C), 169.3 (quat., 1'-C), 170.6 (quat., 3-C).  

 

5.2.4.3 8-N-(β-Alanyl)amino-1,2,4-tribromo-3H-phenoxazin-3-one TFA salt 237i 

 

The title compound was prepared as described earlier from 8-N-(N-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-tribromo-3H-phenoxazin-3-one 236i (0.18g, 0.29mmol). 8-N-(β-

Alanyl)amino-1,2,4-tribromo-3H-phenoxazin-3-one TFA salt 237i was obtained as a 

purple solid (0.17g, 0.27mmol, 93.2%); m.p.: >290°C (dec.); (Found (M)+, 517.8351. 

Calc. for C15H11
79Br3N3O3: (M)+, 517.8345); m/Z 517.8 (35%), 519.8 (100%), 521.8 

(89%), 523.8 (35%) (MH)+; ννννmax/cm-1 3344 (N-H), 3060 (N+-H), 1663 (C=O), 1609 

(C=O), 1140 (C-O); δH  (300 MHz, d6-DMSO) 2.77 (2H, t, J = 6.3Hz, 2'-H), 3.13 (2H, 
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t, J = 6.0Hz, 3'-H), 7.65 (1H, d, J = 9.0Hz, 6-H), 7.84 (1H, dd, J = 9.0, 3.0Hz, 7-H), 

7.96 (3H, br. s, NH3
+), 8.36 (1H, d, J = 3.0Hz, 9-H), 10.69 (1H, s, NH-Ar); δC (75 MHz, 

d6-DMSO) 33.8 (CH2, 2'-C), 35.4 (CH2, 3'-C), 101.5 (quat., 4-C), 117.0 (CH, 6-C), 

119.3 (CH, 9-C), 126.3 (CH, 7-C), 133.4 (quat., 1-C or 2-C), 134.3 (quat., 9a-C), 

135.7 (quat., 1-C or 2-C), 137.7 (quat., 5a-C), 139.7 (quat., 8-C), 144.4 (quat., 4a-C), 

148.4 (quat., 10a-C), 169.3 (quat., 1'-C), 171.1 (quat., 3-C). 

 

5.2.5 General procedure for the preparation of 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-1,2,4-trihalogeno-10H-phenoxazin-3-yl 3''-(N-tbutoxycarbonyl-

amino)propanoate  239a-b (adapted from 2008OBC682) 

8-Amino-1,2,4-trihalogeno-3H-phenoxazin-3-ones 165a-b (1mol eq.) were dissolved 

in DMF (10mL) in a 20mL round bottomed flask. Pd/C 5% was added to the solution 

and the resultant mixture was hydrogenated for 2h. In the meantime, in a flame-dried 

two necked flask flushed with nitrogen, N-tBoc-β-alanine (4mol eq.) was dissolved in 

dry THF (10mL) and the resulting solution was cooled in an ice-bath. N-

Methylpiperidine (4mol eq.) was then added dropwise and the resulting solution was 

stirred for 5 min, before IBCF (4mol eq.) was added dropwise. A white precipitate 

appeared upon addition of IBCF and the resulting mixture was stirred for a further 1h 

at 0°C. The DMF solution of 8-amino-3-hydroxy-1,2,4-trihalogeno-10H-phenoxazines 

164a-b was protected by a N2 atmosphere to avoid reoxidation and was transferred 

via canula to the THF mixture, now containing a mixed anhydride. The resulting 

mixture was left stirring at 0°C for another hour and under a continuous N2 flow at 

room temperature for 72h. The reacting mixture was diluted with MeOH and filtered 

through celite to remove the catalyst. The cake was washed several times with 

MeOH. The filtrate was evaporated in vacuo and the residue was diluted with a 5% 

aqueous solution of LiCl (100mL). The resulting mixture was extracted with EtOAc (3 

× 70 mL). The combined organic layers were successively washed with a 5% 

aqueous solution of LiCl (100mL), a 10% aqueous Na2CO3 solution (100mL), a 10% 

aqueous citric acid solution (100mL), water (100mL), brine (100mL) and then dried 

(MgSO4). The solvent was evaporated in vacuo and the residue subjected to column 

chromatography on silica gel.  
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5.2.5.1 8-N-(N-tButoxycarbonyl-β-alanyl)amino-1,2,4-trifluoro-10H-phenoxazin-3-

yl-3''-(N-tbutoxycarbonylamino)propanoate 239a 

 

The title compound was prepared as described earlier from 8-amino-1,2,4-trifluoro-

3H-phenoxazin-3-one 165a (0.285g, 1.07mmol), N-tBoc-β-alanine (1.22g, 6.43mmol), 

IBCF (0.83mL, 6.43mmol) and 1-methylpiperidine (0.85mL, 6.99mmol). Elution with 

petroleum ether (60-80°) : EtOAc (40:60) gave 239a as an off-white solid (0.17g, 

0.28mmol, 27.1%), m.p.: 168-170°C; (found: C, 55.1; H, 5.4 ; N, 8.9%. C28H33F3N4O8 

requires C, 55.1; H, 5.45; N, 9.2%); m/Z 609.2 (M-H)-; m/Z 611.2 (MH)+, 633.3 (MNa)+; 

ννννmax/cm-1 3399, 3321 and 3367 (N-H), 2978 (C-H), 1777 (C=O), 1679 (C=O), 1657 

(C=O), 1170 (C-O), 1119 (C-O), 994 (C-F); δH  (300 MHz, (CD3)2CO) 1.27 (9H, s, 

(CH3)3), 1.29 (9H, s, (CH3)3), 2.40 (2H, t, J = 6.6Hz, 2'-H), 2.79 (2H, t, J = 6.6Hz,     

2''-H), 3.24 (2H, q, J = 6.6Hz, 3'-H), 3.34 (2H, q, J = 6.6Hz, 3''-H), 5.86 (1H, br. s,  

3''a-NH or 3'a-NH), 5.99 (1H, br. s, 3''a-NH or 3'a-NH), 6.53 (1H, d, J = 8.7Hz, 6-H), 

6.71 (1H, dd, J = 8.7, 2.4Hz, 7-H), 7.21 (1H, d, J = 2.1Hz, 9-H), 7.71 (1H, s, 10-NH), 

8.95 (1H, s, NH-Ar); δC (75 MHz, (CD3)2CO) 27.7 (3 × CH3, 6'/7'/8'-C or 6''/7''/8''-C), 

27.8 (3 × CH3, 6'/7'/8'-C or 6''/7''/8''-C), 33.4 (CH2, 2''-C), 36.2 (CH2, 3''-C), 36.7 (CH2, 

3'-C), 37.0 (CH2, 2'-C), 77.9 (quat., 5'-C or 5''-C), 78.1 (quat., 5'-C or 5''-C), 106. 4 

(CH, 9-C), 112.6 (CH, 7-C), 115.6 (CH, 6-C), 120.4 (quat., td, J = 14.6, 3.1Hz, 3-C), 

121.3 (quat., dt, J = 14.3, 3.1Hz, 10a-C), 128.7 (quat., dt, J = 13.1, 3.8Hz, 4a-C), 

129.4 (quat., 9a-C), 134.8 (quat., ddd, J = 239.0, 14.9, 3.8Hz, 1-C), 136.4 (quat.,     

8-C), 137.4 (quat., 5a-C), 139.9 (quat., dt, J = 244.1, 3.9Hz, 2-C), 140.1 (quat., ddd, J 

= 243.5, 13.1, 4.8Hz, 4-C), 155.7 (quat., 4''-C), 155.8 (quat., 4'-C), 168.5 (quat., 1''-

C), 169.5 (quat., 1'-C); δF (282 MHz, (CD3)2CO) -166.27 (1F, dd, J = 21.5, 7.3Hz,     

1-F), -160.16 (1F, dd, J = 21.5, 4.0Hz, 2-F), -156.56 (1F, br s, 4-F). 
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5.2.5.2 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2,4-trichloro-10H-phenoxazin-

3-yl 3''-(N''-tbutoxycarbonylamino)propanoate 239b 

 

The title compound was prepared as described earlier from 8-amino-1,2,4-trichloro-

3H-phenoxazin-3-one 165b (0.40g, 1.28mmol), N-tBoc-β-alanine (0.97g, 5.12mmol), 

IBCF (0.66mL, 5.12mmol) and 1-methylpiperidine (0.62mL, 5.12mmol). Elution with 

petroleum ether (60-80°C) : EtOAc (40:60) gave 239b as a white solid (0.40g, 

0.61mmol, 47.8%); m.p. (from EtOAc : hexane): 150-151°C; (found: C, 50.9; H, 5.1; 

N, 8.7%. C28H33Cl3N4O8 requires C, 51.0; H, 5.0; N, 8.5%); m/Z 657.0 (82%), 659.0 

(100%), 661.1 (35%), 663 (12%); ννννmax/cm-1 3374 (N-H), 3319 (N-H), 1758 (C=O), 

1686 (C=O), 1672 (C=O), 1166 (C-O), 1129 (C-O); δH  (300 MHz, d6-DMSO) 1.32 

(18H, s, 2 × (CH3)3), 2.37 (2H, t, J = 6.9Hz, 2''-H), 2.76 (2H, t, J = 6.9Hz, 2'-H), 3.14 

(2H, q, J = 6.9Hz, 3''-H), 3.22 (2H, q, J = 6.9Hz, 3'-H), 6.59 (1H, d, J = 8.7Hz, 6-H), 

6.73 (2H, br. dd, J = 8.7, 2.1Hz, 7-H and 3a'-NH or 3a''-NH), 6.87 (1H, br s, 3a'-NH  

or 3a''-NH), 7.32 (1H, d, J = 2.1Hz, 9-H), 8.43 (1H, s, 10-NH), 9.70 (1H, s, NH-Ar);  

δC (75 MHz, d6-DMSO) 28.7 (6 × CH3, 6'/7'/8'-C and 6''/7''/8''-C), 33.8 (CH2, 3''-C), 

36.45 (CH2, 2''-C), 37.05 (CH2, 2'-C or 3'-C), 37.2 (CH2, 2'-C or 3'-C), 78.1 (quat., 5'-C 

or 5''-C), 78.3 (quat., 5'-C or 5''-C), 107.1 (CH, 9-C), 113.0 (CH, 7-C), 113.85 (quat., 

1-C or 2-C), 113.95 (quat., 1-C or 2-C), 115.6 (CH, 6-C), 120.7 (quat., 4-C), 130.0 

(quat., 9a-C), 130.5 (quat., 10a-C), 136.6 (quat., 8-C), 136.9 (quat., 3-C), 137.4 

(quat., 5a-C), 139.6 (quat., 4a-C), 155.9 (quat., 4'-C or 4''-C), 156.0 (quat., 4'-C or 4''-

C), 168.8 (quat., 1'-C), 169.6 (quat., 1''-C). 

 

5.2.6 General procedure for the deprotection of 8-N-(N-tbutoxycarbonyl-β-

alanyl)amino-1,2,4-trihalogeno-10H-phenoxazin-3-yl-                                                    

3''-(N-tbutoxycarbonyl-amino)propanoate 239a-b 

The protected substrates 239a-b were suspended in DCM (15mL) and TFA (10 mol 

eq.) was added dropwise to the mixture. Upon addition of TFA, the solid fully 

dissolved and this was accompanied by a slight change of colour, from colourless to 

faint brown. The resulting solution was left with stirring for 24-48h while cloudiness 

started to appear. Once completion of the reaction was indicated by TLC, the DCM 
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was removed under reduced pressure and the resulting solid triturated several times 

with dry Et2O. 

 

5.2.6.1 3-O-(8-N-(β-Alanyl)amino-1,2,4-trifluoro-10H-phenoxazin-3-yloxy)-1''-

oxopropane-3''-aminium ditrifluoroacetate salt 240a 

 

The title compound was prepared as described earlier from 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-trifluoro-10H-phenoxazin-3-yl-3''-(N''-
tbutoxycarbonylamino)propanoate 239a (0.10g, 0.17mmol). The product 240a was 

isolated as an off-white solid (0.075g, 0.12mmol, 70.0%); m.p.: 120-125°C; (Found        

(M-C3H6NO)+, 340.0906. Calc. for C15H13F3N3O3: (M-C3H6NO)+, 340.09035); m/Z 

338.1 (M-C3H8NO)+, 340.0 (M-C3H6NO)+;  ννννmax/cm-1 3290 (N-H), 3226 (N-H), 3026 

(N+-H), 1769 (C=O), 1664 (C=O), 1201 and 1180 (C-O), 1126 (C-O), 1001 (C-F);    

δH  (500 MHz, (CD3)2CO) 2.98 (2H, t, J = 6.5Hz, 3' or 3''-H), 3.47 (2H, t, J = 6.5Hz, 3' 

or 3''-H), 4.10 (2H, t, J = 6.5Hz, 2' or 2''-H), 4.19 (2H, t, J = 6.5Hz, 2' or 2''-H), 6.69 

(1H, d, J = 8.5Hz, 6-H), 6.95 (1H, dd, J = 8.5, 2.5Hz, 7-H), 7.28 (1H, d, J = 2.5Hz,    

9-H);  δF (282 MHz, (CD3)2CO) -165.93 (1F, dd, J = 21.4, 7.3Hz, 1-F), -159.70 (1F, 

dd, J = 21.5, 4.2Hz, 2-F), -156.31 (1F, dd, J = 4.8, 2.8Hz, 4-F). 

 

5.2.6.2 3-O-(8-N-(β-Alanyl)amino-1,2,4-trichloro-10H-phenoxazin-3-yloxy)-1''-

oxopropane-3''-aminium ditrifluoroacetate salt 240b 

 

The title compound was prepared as described earlier from 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1,2,4-trichloro-10H-phenoxazin-3-yl-3''-(N''-tbutoxycarbonylamino)-

propanoate 239b (0.10g, 0.155mmol). 3-O-(8-N-(β-alanyl)amino-1,2,4-trichloro-10H-

phenoxazin-3-yloxy)-1''-oxopropane-3''-aminium ditrifluoroacetate salt 240b was 

isolated as an off-white solid (0.09g, 0.125mmol, 80.8%); m.p.: 150-153°C; (Found 
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(M-H)+, 459.0395. Calc. for C18H18
35Cl3N4O4: (M-H)+, 459.0388); m/Z 230.1 (90%), 

231.1 (100%), 232.1 (38%), (M)2+; 388.1 (100%), 390.1 (94%), 392.1 (28%), 394.1 

(3%), (M-COC2H4NH2)
+; 459.1 (93%), 461.1 (100%), 463.1 (29%), 465.1 (4%), (M-

H)+; ννννmax/cm-1 3378 (N-H), 3041 (N+-H), 1759 (C=O), 1670 (C=O), 1198 and 1180  

(C-O), 1128 (C-O); δH (300 MHz, d6-DMSO) 2.69 (2H, t, J = 6.6Hz, 2'-H), 3.07-3.12 

(4H, m, 3'-H and 2''-H), 3.18 (2H, q, J = 6.3Hz, 3''-H), 6.71 (1H, d, J = 8.7Hz, 6-H), 

6.89 (1H, dd, J = 8.7, 2.1Hz, 7-H), 7.36 (1H, d, J = 2.1Hz, 9-H), 7.92 (3H, br. s, 

NH3
+), 8.10 (3H, br. s, NH3

+), 8.59 (1H, s, 10-NH), 10.08 (1H, s, NH-Ar); δC (75 MHz, 

d6-DMSO) 31.3 (CH2, 3'-C), 33.7 (CH2, 2'-C), 34.8 (CH2, 3''-C), 35.5 (CH2, 2''-C), 

107.2 (CH, 9-C), 113.2 (CH, 7-C), 113.7 (quat., 1-C or 2-C), 114.0 (quat., 1-C or 2-

C), 115.7 (CH, 6-C), 120.7 (quat., 4-C), 130.0 (quat., 9a-C), 130.7 (quat., 10a-C), 

136.4 (quat., 8-C), 136.6 (quat., 3-C), 137.55 (quat., 5a-C), 139.6 (quat., 4a-C), 168.1 

(quat., 1''-C), 168.5 (quat., 1'-C). 

 

5.2.7 General procedure for the preparation of dimethoxybenzenes 172a-c 

(2008OBC682) 

In a 3 necked round-bottomed flask equipped with a reflux condenser, a calcium 

chloride drying tube, a pressure equalizing dropping funnel (all the glassware was 

dried prior to use) and a thermometer, the substituted hydroquinone 173a-c (1mol 

equivalent) was dissolved in DMF (50mL to 180mL depending on the batch size) and 

NaH in an oil dispersion 60% w/w (2.2mol equivalent) was added portion-wise to the 

hydroquinone solution. Once the evolution of hydrogen had stopped, methyl iodide 

was introduced in the pressure equalizing dropping funnel and added dropwise to the 

phenolate solution. The rate of addition was adjusted to maintain the temperature 

below 40°C. Once the addition was finished, the solution was heated at 50°C for 3 

hours. After cooling, brine (200 to 400mL) was added to the reaction mixture and 

then extracted with diethyl ether (3 x 70mL to 3 x 200mL). The combined organic 

layers were washed once with water (100mL to 300mL), once with a 5% aqueous 

solution of LiCl (100mL to 300mL) and once with brine (100mL to 300mL). It was then 

dried with MgSO4, the solvent was removed in vacuo and the residue was subjected 

to column chromatography on silica. 
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5.2.7.1 1,4-Dimethoxy-2,3-dimethylbenzene 172a (2004T9131) 

�

�
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O
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The title compound was prepared as described from 2,3-dimethylhydroquinone 173a 

(5.57g, 40.31mmol); elution used petroleum ether (60-80°C) : Et2O (95:5). 1,4-

Dimethoxy-2,3-dimethylbenzene 172a was isolated as a white solid (6.11g, 

36.78mmol, 91.2%). White plates were obtained from petroleum ether (60-80°C); 

m.p.: 78-79°C [lit.: 78°C (from MeOH, 2004T9131)]; (found: C, 72.3; H, 8.6%. 

C10H14O2 requires C, 72.3; H, 8.5%); m/Z 166.0 (M)+, 179.1 (MNa)+; ννννmax/cm-1 2956 

(C-H), 1462 (C=C), 1257 (C-O), 1094 (C-O); δH  (300 MHz, CDCl3) 2.25 (6H, s, 2 x 

CH3, 8-H and 9-H), 3.85 (6H, s, 2 x OCH3, 7-H and 10-H), 6.74 (2H, s, 5-H and 6-H); 

δC (75 MHz, CDCl3) 12.1 (CH3, 8-C and 9-C), 56.1 (CH3, 7-C and 10-C), 107.9 (CH, 

5-C and 6-C), 126.8 (quat., 2-C and 3-C), 152.0 (quat., 1-C and 4-C). 

 

5.2.7.2 1,4-Dimethoxy-2,3,5-trimethylbenzene 172b (1962JOC841) 
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The title compound was prepared as described from 2,3,4-trimethylhydroquinone 

173b (9.06g, 59.53mmol); elution used petroleum ether (60-80°C) : Et2O (95:5). 1,4-

Dimethoxy-2,3,5-trimethylbenzene 172b was isolated as a white solid (9.05g, 

50.20mmol, 84.4%); m.p. (petroleum ether 60-80°): 34-35.5°C [lit.: 35-36°C (from 

MeOH, 1962JOC841)]; ννννmax/cm-1 2990 (C-H), 1485 (C=C), 1229 (C-O), 1092 (C-O); 

δH  (300 MHz, CDCl3) 2.19 (3H, s, 8-H), 2.24 (3H, s, 9-H), 2.35 (3H, s, 11-H), 3.72 

(3H, s, OCH3, 7-H or 10-H), 3.85 (3H, s, OCH3, 7-H or 10-H), 6.60 (1H, s, 6-H);       

δC (75 MHz, CDCl3) 12.5 (CH3, 8-C), 13.1 (CH3, 9-C), 16.75 (CH3, 11-C), 56.3 (CH3, 

7-C), 60.55 (CH3, 10-C), 110.9 (CH, 6-C), 124.4 (quat., 5-C), 128.2 (quat., 2-C or 3-

C), 130.1 (quat., 2-C or 3-C), 151.2 (quat., 1-C or 4-C), 154.1 (quat., 1-C or 4-C). 
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5.2.7.3 1,4-Dimethoxy-2-tbutylbenzene 172c (2000MI924) 
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The title compound was prepared as described from tbutylhydroquinone 173c (9.99g, 

60.10mmol); elution used petroleum ether (60-80°C) : Et2O (98:2). 1,4-Dimethoxy-2-
tbutylbenzene 172c was isolated as a pale yellow oil (9.17g, 47.19mol, 78.5%);      

b.p. (0.4mbar): 58-62°C [lit.: 240°C (at 66.7mbar, 2000MI924)]; ννννmax/cm-1 2951 (C-H), 

1583 (C=C), 1217 (C-O); δH  (300 MHz, CDCl3) 1.28 (9H, s, C(CH3)3), 3.675 (3H, s, 

OCH3, 7-H or 12-H), 3.70 (3H, s, OCH3, 7-H or 12-H), 6.60 (1H, dd, J = 8.7, 3.0Hz,  

5-H), 6.71 (1H, d, J = 8.7Hz, 6-H), 6.80 (1H, d, J = 3.0Hz, 3-H); δC (75 MHz, CDCl3) 

29.7 (3 × CH3, 10/11/12-C), 35.0 (quat., 9-C), 55.7 (2 × CH3, 7-C and 8-C), 109.9 

(CH, 5-C), 112.4 (CH, 6-C), 114.3 (CH, 3-C), 139.95 (quat., 2-C), 153.0 (quat.,1-C or 

4-C), 153.35 (quat., 1-C or 4-C). 

 

5.2.8 Procedure for the lithiation of 2-bromo-1,4-dimethoxybenzene 178 

(adapted from 1997TA913) 

5.2.8.1 1,4-Dimethoxy-2-pentylbenzene 196 (1972CPB1968) 
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A 250mL flame dried round bottomed flask, flushed with N2, was charged with 1-

bromo-2,5-dimethoxybenzene 178 (4.0mL, 5.78g, 26.63mmol), TMEDA (8.03mL, 

6.18g, 53.20mmol) and dry THF (150mL). The resulting solution was cooled to -75°C 

using a dry ice-acetone bath, followed by a dropwise addition of a 2.5M hexane 

solution of n-BuLi (24mL, 60.00mmol). The lithium-halogen exchange was allowed to 

take place during 1h at -75°C and after this period of time, neat 1-bromopentane 

(18.65mL, 150.0mmol) was added dropwise. The resulting solution was left with 
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stirring at -75°C under N2 flow during 1h, allowed to warm-up to room temperature, 

and then refluxed for a period of 15h. The formation of a white precipitate was noted 

after the reflux. The resulting mixture was allowed to cool to room temperature, 

quenched with water (200mL) and extracted with Et2O (2 × 200mL). The combined 

organic layers were successively washed with water (200mL) and brine (200mL), and 

dried (MgSO4). The solvent was removed in vacuo and the residue purified by 

column chromatography eluting with petroleum ether (60-80°C) : Et2O (95:5). 1,4-

Dimethoxy-2-pentylbenzene 196 was isolated as a pale yellow oil (4.75g, 22.80mmol, 

85.7%), b.p.: 81-82°C at 0.2mbar [lit.: 114°C (at 6.7mbar, 1972CPB1968)]; m/Z 209.0 

(MH)+; (found: C, 74.65; H, 9.5%. C13H20O2 requires C, 75.0; H, 9.7%); ννννmax/cm-1 

2832-2928 (C-H), 1498 (C=C), 1219 (C-O), 1048 (C-O); δH (300 MHz, CDCl3) 0.81 

(3H, t, J = 6.9Hz, 5'-H), 1.24-1.28 (4H, m, 3'-H and 4'-H), 1.45-1.52 (2H, m, 2'-H), 

2.49 (2H, t, J = 7.5Hz, 1'-H), 3.67 (3H, s, OCH3, 7-H or 8-H), 3.68 (3H, s, OCH3, 7-H 

or 8-H), 6.59 (1H, dd, J = 8.7, 3.0Hz, 5-H), 6.65 (1H, d, J = 3.0Hz, 3-H), 6.67 (1H, d,  

J = 8.7Hz, 6-H); δC (75 MHz, CDCl3) 14.1 (CH3, 5'-C), 22.6 (CH2, 3'-C or 4'-C), 29.6 

(CH2, 2'-C), 30.3 (CH2, 1'-C), 31.8 (CH2, 3'-C or 4'-C), 55.7 (CH3, 8'-C), 56.0 (CH3, 7'-

C), 110.6 (CH, 5-C), 111.3 (CH, 6-C), 116.3 (CH, 3-C), 132.8 (quat., 2-C), 151.9 

(quat., 1-C), 153.55 (quat., 4-C). 

  

5.2.9 General procedure for the formylation of substituted dimethoxybenzene 

172a-c, 196 and 169g via the Duff reaction (1972JOC3972) 

In a 250mL round bottomed flask equipped with a reflux condenser, the appropriately 

substituted dimethoxybenzene (1mol equivalent) was dissolved in TFA (50 to 120mL) 

and hexamethylene tetramine (2mol equivalent) was added to the resulting solution 

which was gently refluxed (temperature oil bath: 95°C) overnight (15 to 20  hours). 

The solution was allowed to cool to room temperature; most of the TFA was removed 

in vacuo and the residue was neutralised by the portion-wise addition of solid 

Na2CO3. When no more evolution of CO2 was observed following addition of Na2CO3, 

the resulting mixture was diluted with water and then extracted with Et2O (3 x 80mL 

to 3 x 200mL), washed with brine (1 x 100mL to 1 x 200mL) and dried (MgSO4). The 

solvent was removed in vacuo and the residue subjected to column chromatography. 
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5.2.9.1 2,5-Dimethoxy-3,4-dimethylbenzaldehyde 149a (1983T781) 
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The title compound was prepared as described from 1,4-dimethoxy-2,3-

dimethylbenzene 172a (4.08g, 24.55mmol); elution used petroleum ether (60-80°C) : 

Et2O (80:20). 2,5-Dimethoxy-3,4-dimethylbenzaldehyde 149a was isolated as a white 

solid (2.99g, 15.39mmol, 62.6%). Crystals were obtained from petroleum ether (60-

80°C); m.p.: 68-69°C [lit.: 72°C (from hexane, 1983T781)]; (found: C, 67.9; H, 7.2%. 

C11H14O3 requires C, 68.0; H, 7.3%); m/Z 195.0 (M)+, 217.0 (MNa)+; ννννmax/cm-1 2957 

and 2855 (C-H), 1681 (C=O), 1593 (C=C), 1128 and 1091 (C-O); δH  (300 MHz, 

CDCl3) 2.22 (3H, s, CH3, 9-H), 2.26 (3H, s, CH3, 10-H), 3.83 (3H, s, OCH3, 11-H), 

3.85 (3H, s, OCH3, 8-H), 7.15 (1H, s, 6-H), 10.35 (1H, s, 7-H); δC (75 MHz, CDCl3) 

12.1 (CH3, 10-C ), 12.9 (CH3, 9-C ), 55.7 (CH3, 8-C), 63.8 (CH3, 11-C), 105.0 (CH, 6-

C), 126.6 (quat., 1-C), 131.9 (quat., 3-C), 135.3 (quat., 4-C), 154.3 (quat., 2-C), 156.5 

(quat., 5-C), 189.9 (CH, 7-C). 

 

5.2.9.2 2,5-Dimethoxy-3,4,6-trimethylbenzaldehyde 149b (1998S1153) 

 

The title compound was prepared as described from 1,4-dimethoxy-2,3,5-

trimethylbenzene 172b (7.94g, 44.05mmol). Recrystallisation from petroleum ether 

(60-80°C) gave 2,5-dimethoxy-3,4,6-trimethylbenzaldehyde 149b as cream coloured 

plates (7.83g, 37.60mmol, 85.3%); m.p.: 79-80°C [lit.: 80°C (from aq. EtOH, 

1998S1153)] m/Z 209.0 (MH)+; ννννmax/cm-1 2925 and 2867 (C-H), 1681 (C=O), 1586 

and 1560 (C=C), 1452, 1254 and 1075 (C-O); δH  (300 MHz, CDCl3) 2.13 (3H, s, CH3, 

11-H), 2.19 (3H, s, CH3, 10-H), 2.42 (3H, s, CH3, 7-H), 3.57 (3H, s, OCH3, 9-H), 3.70 

(3H, s, OCH3, 12-H), 10.41 (1H, s, CHO, 8-H), δC (75 MHz, CDCl3) 12.1 (CH3, 11-C), 

12.8 (CH3, 7-C), 13.7 (CH3, 10-C), 60.2 (CH3, 9-C), 63.2 (CH3, 11-C), 126.2 (quat., 1-
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C), 129.0 (quat., 4-C), 131.0 (quat., 6-C), 138.4 (quat., 3-C), 153.6 (quat., 2-C), 159.0 

(quat., 5-C), 192.8 (CH, 8-C). 

 

5.2.9.3 2,5-Dimethoxy-4-tbutylbenzaldehyde 149c (1974JME1100) 
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The title compound was prepared as described from 1,4-dimethoxy-2-tbutylbenzene 

(10.14g, 52.20mmol); elution used a gradient mixture of petroleum ether (60-80°C): 

Et2O (95:5 to 70:30). 2,5-Dimethoxy-4-tbutylbenzaldehyde was isolated as a white 

solid (6.58g, 29.58mmol, 56.7%). Long translucent plates were obtained from 

petroleum ether (60-80°C); m.p.: 125-126°C [lit. 125°C (1974JME1100)]; (found:     

C, 70.3; H, 8.2%. C13H18O3 requires C, 70.25; H, 8.2%); m/Z 223.1 (MH)+, 245.05 

(MNa)+; ννννmax/cm-1 2965 and 2832 (C-H), 1673 (C=O), 1611 (C=C), 1200 and 1043 

(C-O); δH  (300 MHz, CDCl3) 1.42 (9H, s, C(CH3)3), 3.87 (3H, s, OCH3, 8-H), 3.93 

(3H, s, OCH3, 13-H), 6.98 (1H, s, 3-H), 7.32 (1H, s, 6-H), 10.43 (1H, s, CHO, 7-H);   

δC (75 MHz, CDCl3) 29.4 (3 × CH3, 10/11/12-C), 35.9 (quat., 9-C), 55.5 (CH3, 8-C), 

56.2 (CH3, 13-C), 109.3 (CH, 6-C), 111.4 (CH, 3-C), 122.9 (quat., 1-C), 147.9 (quat., 

4-C), 152.9 (quat., 2-C), 156.5 (quat., 5-C), 189.1 (CH, 7-C). 

 

5.2.9.4 2,5-Dimethoxy-4-pentylbenzaldehyde 197 
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The title compound was prepared as described from 2,5-dimethoxy-1-pentylbenzene 

196 (4.49g, 21.56mmol). The product was purified by column chromatography, 

eluting with a mixture of petroleum ether (60-80°C) : Et2O (80:20). 2,5-Dimethoxy-4-

pentylbenzaldehyde 197 was isolated as a pale yellow oil (4.19g, 17.73mmol, 

82.4%); b.p.: 119-120°C at 0.2mbar; (found C, 71.0; H, 8.5. C14H20O3 requires C, 
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71.2; H, 8.5%); m/Z 237.0 (MH)+, 259.0 (MNa)+; ννννmax/cm-1 2929 and 2859 (C-H), 1675 

(C=O), 1610 (C=C), 1210 and 1040 (C-O); δH  (300 MHz, CDCl3) 0.94 (3H, t, J = 

6.9Hz,      5'-H), 1.35-1.42 (4H, m, 3'-H and 4'-H), 1.60-1.65 (2H, m, 2'-H), 2.67 (2H, t, 

J = 7.5Hz, 1'-H), 3.85 (3H, s, OCH3, 8-H), 3.92 (3H, s, OCH3, 9-H), 6.82 (1H, s, 3-H), 

7.29 (1H, s, 6-H), 10.43 (1H, s, CHO, 7-H); δC (75 MHz, CDCl3) 14.0 (CH3, 5'-C), 

22.5 (CH2, 3'-C or 4'-C), 29.2 (CH2, 2'-C), 31.0 (CH2, 1'-C), 31.8 (CH2, 3'-C or 4'-C), 

55.8 (CH3, 8-C), 56.2 (CH3, 9-C), 108.1 (CH, 6-C), 113.8 (CH, 3-C), 122.9 (quat., 1-

C), 141.2 (quat., 4-C), 151.8 (quat., 2-C), 156.7 (quat., 5-C), 189.15 (quat., 7-C). 

 

5.2.9.5 2,4-Dinitro-2',5'-dimethoxy-4'-carbaldehydediphenylether 211 

 

The title compound was prepared as described from 2,4-dinitro-2',5'-

dimethoxydiphenylether 169g (1.99g, 6.20mmol). The crude product was 

recrystallised from EtOAc, giving 2,4-dinitro-2',5'-dimethoxy-4'-

carbaldehydediphenylether 211 as amber prisms (1.58g, 4.54mmol, 73.2%), m.p.: 

202-205°C; (found: C, 51.6; H, 3.55; N, 8.0%. C15H12N2O8 requires C, 51.7; H, 3.5; N, 

8.0%); m/Z 349.0 (MH)+; ννννmax/cm-1 2997 and 2882 (C-H), 1682 (C=O), 1603, 1518 

and 1500 (C=C),  1539 and 1345 (NO2), 1215 and 1035 (C-O); δH  (300 MHz,         

d1-TFA) 3.30 (3H, s, OCH3, 8'-H), 3.40 (3H, s, OCH3, 9'-H), 6.455 (1H, s, 6'-H), 6.57 

(1H, d, J = 9.3Hz, 6-H), 7.14 (1H, s, 3'-H), 7.89 (1H, dd, J = 9.3, 2.7Hz, 5-H), 8.41 

(1H, d, J = 2.7Hz, 3-H), 9.75 (1H, s, CHO, 7'-H); δC (75 MHz, d1-TFA) 55.7 (CH3,    

9'-C), 56.0 (CH3, 8'-C), 106.15 (CH, 6'-C), 113.6 (CH, 3'-C), 118.9 (CH, 6-C), 121.4 

(quat., 4'-C), 122.3 (CH, 3-C), 129.3 (CH, 5-C), 142.1 (quat., 2-C), 142.1 (quat., 4-C), 

144.8 (quat., 5'-C), 150.5 (quat., 1'-C), 155.3 (quat., 1-C), 159.9 (quat., 2'-C), 193.5 

(CH, 7'-C). 
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5.2.10  Halogenation of 2-hydroxy-5-methoxybenzaldehyde 182 

5.2.10.1 3-Bromo-2-hydroxy-5-methoxybenzaldehyde  183 (2004OL525) 

 

In a 500mL 3 necked round bottomed flask equipped with a thermometer and a 

pressure equalizing dropping funnel, 2-hydroxy-5-methoxybenzaldehyde 182 

(11.51g, 75.65mmol) was dissolved in glacial AcOH (300mL). To this solution was 

added AcONa (10.34g, 126.05mmol) and the resulting solution was cooled with a 

water/ice bath. A solution of Br2 (4.91mL, 95.33mmol) in AcOH (50mL) was then 

introduced into the pressure equalizing dropping funnel and added dropwise to the 2-

hydroxy-4-methoxybenzaldehyde solution. Once the addition was finished (1h), the 

ice/water bath was removed and the resulting orange solution was left with stirring 

overnight. The reaction was quenched with a 10% aqueous solution of sodium 

thiosulfate (Na2S2O3), resulting in the instantaneous formation of a yellow precipitate. 

It was recovered by filtration, washed several times with water and dried. More 

product was recovered from the filtrate by extraction with DCM (4 × 200mL). The 

combined organic layers were washed with water (2 × 150mL) and brine (150mL), 

and dried (MgSO4). The solvent was evaporated in vacuo and the residual yellow-

brown crystals were recrystallised from aq. EtOH. 3-Bromo-2-hydroxy-5-

methoxybenzaldehyde 183 was isolated as a yellow crystalline solid (12.86g, 

55.66mmol, 75.1%). Small crescent-like yellow plates were obtained from aq. EtOH, 

m.p.: 108-109°C [lit.: 108°C (from EtOH, 2004OL525)]; ννννmax/cm-1 3071 (O-H), 3006, 

2944, 2901 and 2840 (C-H), 1644 (C=O), 1609 and 1582 (C=C), 1315, 1237, 1129 

and 1036 (C-O); (found C, 41.6; H, 2.95%. C8H7BrO3 requires C, 41.6; H, 3.05%);    

δH  (300 MHz, d6-DMSO) 3.78 (3H, s, OCH3), 7.31 (1H, d, J = 3.0Hz, 6-H), 7.51 (1H, 

d, J = 3.0Hz, 4-H), 10.08 (1H, s, CHO), 10.65 (1H, s, OH) ; δC (75 MHz, d6-DMSO) 

56.5 (CH3, 8-C), 112.4 (quat., 3-C), 114.7 (CH, 6-C), 123.3 (quat., 1-C), 126.6 (CH, 

4-C), 151.4 (quat., 2-C), 153.1 (quat., 5-C), 194.5 (CH, 7-C). 
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5.2.10.2 3-Iodo-2-hydroxy-5-methoxybenzaldehyde 186a and 2,2'-

dihydroxy-5,5'-dimethoxybiphenyl-3,3'-dicarboxaldehyde  186b (1996T3841) 
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Procedure adapted from 1995TL8217. 2-Hydroxy-5-methoxybenzaldehyde 182 

(2.48g, 16.30mmol) was dissolved in DCM (120mL) in a 250mL round-bottomed flask 

equipped with a thermometer and the resulting solution was cooled to -15°C (internal 

temperature) using an ice and salt bath. Bis(sym-collidine)iodine (I) 

hexafluorophosphate (8.38g, 16.30mmol; prepared according to the literature 

[2004OSC122]) was added portion-wise to the resulting solution, keeping the 

temperature below 10°C. The reaction was left with stirring at -15°C for further 3h 

after the addition. The resulting brown solution was washed with 10% aq. HCl (2 × 

150mL) and brine (150mL), and dried (MgSO4). The solvent was removed in vacuo 

and the residue purified by column chromatography eluting with petroleum ether (60-

80°C) : EtOAc (70:30). 3-Iodo-2-hydroxy-5-methoxybenzaldehyde 186a was isolated 

as a yellow crystalline solid (2.26g, 7.72mmol, 47.4%). Recrystallisation from EtOH 

produced yellow needles; m.p.: 102-103.5°C [lit.: 102-104°C (1996T3841)]; (found: 

C, 34.6; H, 2.6%. C8H7IO3 requires C, 34.6; H, 2.5%); ννννmax/cm-1 3062 (O-H), 3003, 

2939, 2887 and 2836 (C-H), 1641 (C=O), 1311, 1235, 1124 and 1034 (C-O); δH  (300 

MHz, CDCl3) 3.75 (3H, s, OCH3, 8-C), 6.99 (1H, d, J = 3.0Hz, 6-H), 7.54 (1H, d, J = 

3.0Hz, 4-H), 9.66 (1H, s, CHO, 7-H), 11.26 (1H, s, OH); δC (75 MHz, CDCl3) 56.2 

(CH3, 8-C), 85.65 (quat., 3-C), 116.9 (CH, 6-C), 119.5 (quat., 1-C), 133.4 (CH, 4-C), 

153.3 (quat., 5-C), 154.9 (quat., 1-C), 195.5 (CH, 7-C). Further elution gave 2-

hydroxy-5-methoxybenzaldehyde dimer 186b as an orange-brown solid (0.56g, 

1.86mmol, 22.8%). Recrystallisation from EtOAc/EtOH produced small orange/brown 

plates, m.p.: 212-214°C [lit.: 217-218°C (1996T3841)]; (found: C, 63.5; H, 4.7%. 

C16H14O6 requires C, 63.6; H, 4.7%); ννννmax/cm-1 3047 (O-H), 2871 and 2835 (C-H), 

1643 (C=O), 1599 (C=C), 1257, 1147 and 1050 (C-O); δH  (300 MHz, d6-DMSO) 3.81 

(6H, s, OCH3, 8-H), 7.21 (2H, d, J = 3.3Hz, 4-H), 7.32 (2H, d, J = 3.0Hz, 6-H), 10.12 

(2H, s, CHO, 7-H), 10.48 (2H, s, OH); δC (75 MHz, d6-DMSO) 56.2 (CH3, 8-C), 114.9 
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(CH, 6-C), 122.1 (quat., 1-C), 126.4 (CH, 4-C), 127.2 (quat., 3-C), 152.3 (quat., 5-C), 

153.0 (quat., 2-C), 196.1 (CH, 7-C). 

 

5.2.11  Protection of 3-halogeno-2-hydroxy-5-methoxybenzaldehyde  

5.2.11.1 3-Bromo-2,5-dimethoxybenzaldehyde 178 (2004OL525) and 2,5-

dimethoxybenzaldehyde 149 (2006T3550) 

 

Method A (adapted from 2008OBC682). In an oven dried 250mL two necked round 

bottomed flask, equipped with a condenser and CaCl2 drying tube, 3-bromo-2-

hydroxy-5-methoxybenzaldehyde 183 (10.52g, 45.55mmol) was dissolved in dry 

DMF (300mL) and NaH in an oil dispersion 60%w/w was added portion-wise to the 

resulting solution. A strong evolution of H2 was observed, and as soon as it stopped, 

methyl iodide was added slowly to the reaction mixture. The reaction was heated at 

50°C (oil bath) for 5h and then allowed to cool to room temperature. The reaction 

was quenched with brine (300mL) and extracted with Et2O (3 × 300mL). The 

combined organic layers were washed with water (2 × 250mL), 5% aqueous solution 

of LiCl (2 × 200mL) and brine (200mL), and dried (MgSO4). The solvent was 

evaporated in vacuo and the residue purified by column chromatography, eluting with 

petroleum ether (60-80°C) : Et2O (70 : 30). The more mobile fraction gave 3-bromo-

2,5-dimethoxybenzaldehyde 178 as a white crystalline solid (5.65g, 23.05mmol, 

50.7%). Analytical data were identical to that obtained for the product of method B 

below. Continued elution gave 2,5-dimethoxybenzaldehyde 149 as pale yellow oil 

which crystallised upon standing (1.08g, 6.50mmol, 14.3%); m.p.:47-48°C [lit.: 48-

50°C (2006T3550)]; δH (300 MHz, CDCl3) 3.73 (3H, s, OCH3, 8-H), 3.82 (3H, s, 

OCH3, 9-H), 6.87 (1H, d, J = 9.0 Hz, 3-H), 7.06 (1H, dd, J = 9.0, 3.3 Hz, 4-H), 7.26 

(1H, d, J = 3.3 Hz, 6-H), 10.375 (1H, s, 8-H); δC (75 MHz, CDCl3) 55.8 (CH3, 8-C), 

56.2 (CH3, 9-C), 110.5 (CH, 6-C), 113.4 (CH, 3-C), 123.4 (CH, 4-C), 125.0 (quat.,     

1-C), 153.7 (quat., 5-C), 156.7 (quat., 2-C), 189.5 (CH, 8-C). 
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Method B (2004OL525). An oven dried 500mL round bottomed flask was charged 

with 3-bromo-2-hydroxy-5-methoxybenzaldehyde 183 (12.86g, 55.70mmol), K2CO3 

(10.78g, 77.98mmol) and dry DMF (300mL). The resulting mixture was stirred for 5 

min and DMS (7.38mL, 77.98mmol) was then added dropwise. The reaction was left 

overnight, with stirring, at ambient temperature. The resulting olive green coloured 

mixture was quenched with water resulting in the formation of a white precipitate. 

This mixture was extracted with Et2O (4 × 300mL). The combined organic layers 

were washed with brine (3 × 250mL) and dried (MgSO4). The solvent was removed in 

vacuo and 3-bromo-2,5-dimethoxybenzaldehyde 178 was isolated as a white 

crystalline solid (13.61g, 55.54mmol, 99.7%). White crystals were obtained from 

petroleum ether (60-80°C); m.p.: 62.5-63.5°C [lit.: 68°C (2004OL525)]; (found: C, 

41.1; H, 3.6%. C9H9BrO3 requires C, 41.1; H, 3.7%); ννννmax/cm-1 2935, 2854 and 2832 

(C-H), 1685 (C=O), 1600 (C=C), 1225, 1205 and 1042 (C-O); δH  (300 MHz, CDCl3) 

3.85 (3H, s, OCH3, 8-H), 3.97 (3H, s, OCH3, 9-H), 7.30 (1H, d, J = 3.0Hz, 6-H), 7.41 

(1H, d, J = 3.0Hz, 4-H), 10.34 (1H, s, CHO); δC (75 MHz, CDCl3) 56.0 (CH3, 8-C), 

63.8 (CH3, 9-C), 110.3 (CH, 6-C), 118.6 (quat., 3-C), 126.5 (CH, 4-C), 130.6 (quat., 

1-C), 154.4 (quat., 5-C), 156.5 (quat., 2-C), 189.0 (CH, 7-C). 

 

5.2.11.2 3-Iodo-2,5-dimethoxybenzaldehyde 185 
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The title compound was prepared from 3-iodo-2-hydroxy-5-methoxybenzaldehyde 

186a (1.98g, 7.12mmol) following method B. 3-Iodo-2,5-dimethoxybenzaldehyde 

185 was isolated as a white crystalline solid (1.95g, 6.66mmol, 93.5%). White plates 

were obtained from petroleum ether (60-80°C); m.p.: 61.5-63.5°C; (found C, 37.0; H, 

3.0. C9H9IO3 requires C, 37.0; H, 3.1%); m/Z 315.1 (MNa)+; ννννmax/cm-1 2934, 2858 and 

2745 (C-H), 1680 (C=O), 1592 (C=C), 1208 and 1043 (C-O); δH  (300 MHz, CDCl3)  

3.85 (3H, s, OCH3, 8-H), 3.93 (3H, s, OCH3, 9-H), 7.34 (1H, d, J = 3.0Hz, 6-H), 7.63 

(1H, d, J = 3.3Hz, 4-H), 10.305 (1H, s, CHO, 7-H); δC (75 MHz, CDCl3) 56.02 (CH3, 
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8-C), 64.3 (CH3, 9-C), 93.1 (quat., 3-C), 111.5 (CH, 6-C), 129.7 (quat., 1-C), 132.4 

(CH, 4-C), 156.8 (quat., 2-C), 157.1 (quat., 5-C), 189.3 (CH, 7-C). 

 

5.2.12 Sonogoshira cross-couping  

5.2.12.1 Preparation of 2,5-dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 

 

Method A (adapted from 1975TL4467): A flame dried sealed tube flushed with N2 

was charged 3-bromo-2,5-dimethoxybenzaldehyde 178 (0.21g, 0.84mmol), 

[Ph3P]2PdCl2 (0.014g, 0.02mmol), pentyne (0.15mL, 1.50mmol) and dried Et3N 

(3mL). The resulting suspension was stirred and heated at 40°C for 15 min, before 

addtion of CuI (0.008g, 0.04mmol). The resulting mixture turned brown and was 

heated at 80°C for 48h. The reaction mixture was allowed to cool to room 

temperature, quenched with 10% aq. HCl (10mL) and extracted with Et2O (2 × 

10mL). The combined organic extracts were washed with brine (15mL) and dried 

(MgSO4). The solvent was removed in vacuo and the residue purified by column 

chromatography eluting with petroleum ether (60-80°C) : Et2O (90:10). The more 

mobile fraction gave 2,5-dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 as a yellow 

coloured oil, which crystalised upon standing (0.021g, 0.09mmol, 10.7%). Analytical 

data were identical to that obtained for the product of method C below. Continued 

elution gave the starting material 3-bromo-2,5-dimethoxybenzaldehyde 178 as a 

white solid (0.16g, 0.67mmol, 79.8%). 

Method B (adapted from 2000OL1729): A 25mL, flame dried round bottomed flask, 

flushed with N2 was charged with 3-bromo-2,5-dimethoxybenzaldehyde 178 (0.21g, 

0.86mmol), [PhCN]2PdCl2 (0.01g, 0.03mmol), pentyne (0.13mL, 1.29mmol) and dry 

dioxane (1mL), followed by successive addition of a 0.25M dioxane solution of tris-
tbutylphosphine (0.22mL, 0.06mmol) and (iPr)2NH (0.18mL). The resulting dark 

solution was stirred for 48h at R.T. under a N2 atmosphere. The mixture was then 

diluted with EtOAc (10mL), washed with 10% aq. HCl (10mL) and brine (10mL). The 

organic layer was dried (MgSO4) and the solvent evaporated in vacuo. The solvent 
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was removed in vacuo and the residue purified by column chromatography eluting 

with petroleum ether (60-80°C) : Et2O (90:10). The more mobile fraction gave 2,5-

dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 as a slightly brown coloured oil, which 

crystalised upon standing (0.03g, 0.11mmol, 13.2%). Analytical data were identical to 

that obtained for the product of method C below. Continued elution gave the starting 

material 3-bromo-2,5-dimethoxybenzaldehyde as a white solid (0.17g, 0.71mmol, 

82.5%). 

Method C (adapted from 1975TL4467): A 100mL two-necked flask equipped with a 

reflux condenser was flame dried and kept under an N2 atmosphere. It was then 

charged with 3-iodo-2,5-dimethoxybenzaldehyde 185 (1.58g, 5.42mmol), 

[Ph3P]2PdCl2 (0.08g, 0.11mmol), 1-pentyne (1.10mL, 0.74g, 10.83mmol), dry Et3N 

(10mL) and dry DMF (15mL). The resulting mixture was stirred and heated at 40°C 

for 5min, before the addition of copper (I) iodide. The resulting mixture turned slightly 

brown, then was heated at 95°C under N2 for 24h. The reaction mixture was allowed 

to cool to room temperature and was then filtered through celite and the celite 

washed several times with Et2O. The filtrate was diluted with 100mL of Et2O, washed 

with a saturated solution of NH4Cl (2 × 50mL), a 5% aq. solution of NaHCO3 (2 × 

50mL) and water (100mL), and dried (MgSO4). The solvent was removed in vacuo 

and the residue purified by column chromatography eluting with petroleum ether (60-

80°C) : Et2O (90:10). 2,5-Dimethoxy-1-pentyn-1'-ylbenzaldehyde 184 was isolated a 

a yellow coloured oil, which crystalised upon standing (1.06g, 4.58mmol, 84.6%). 

Recrystallisation from petroleum ether 60-80°C produced white prisms; m.p.: 31-

33°C; (found: C, 72.2; H, 6.8%. C14H16O3 requires C, 72.4; H, 6.9%); m/Z 233.0 

(MH)+, 255.0 (MNa)+; ννννmax/cm-1 2961 and 2867 (C-H), 2236 (C≡C), 1680 (C=O), 1591 

(C=C), 1244 and 1047 (C-O); δH  (300 MHz, CDCl3) 0.995 (3H, t, J = 7.5Hz, 5'-H), 

1.59 (2H, sex., J = 7.5Hz, 4'-H), 2.37 (2H, t, J = 6.9Hz, 3'-H), 3.71 (3H, s, OCH3,      

8-H), 3.93 (3H, s, OCH3, 9-H), 7.09 (1H, d, J = 3.3Hz, 4-H), 7.15 (1H, d, J = 3.0Hz,  

6-H), 10.26 (1H, s, CHO, 7-H); δC (75 MHz, CDCl3) 13.5 (CH3, 5'-C), 21.6 (CH2, 3'-C), 

22.0 (CH2, 4'-C), 55.8 (CH3, 8-C), 63.0 (CH3, 9-C), 75.5 (quat., 1'-C), 96.55 (quat., 2'-

C), 110.1 (CH, 6-C), 120.1 (quat., 3-C), 126.5 (CH, 4-C), 129.5 (quat., 1-C), 155.4 

(quat., 2-C), 158.5 (quat., 5-C), 189.5 (CH, 7-C). 
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5.2.13 Suzuki cross-coupling 

5.2.13.1 Preparation of 2,5-dimethoxybiphenyl-3-carbaldehyde 194 
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A 250mL two necked round bottomed flask equipped with a reflux condenser was 

charged with 3-bromo-2,5-dimethoxybenzaldehyde 178 (2.72g, 11.10mmol), 

phenylboronic acid (1.62g, 13.29mmol) and DME (75mL). The resulting solution was 

degassed with N2, under stirring, over 15min. A separate round bottomed flask was 

charged with a 2M aqueous solution of Na2CO3 (20mL) and EtOH (20mL); the 

resulting mixture was also degassed with N2 over 15min. It was then transferred, 

along with Pd(Ph3)4 (0.64g, 0.56mmol), into the two necked round bottomed flask 

containing the 3-bromo-2,5-dimethoxybenzaldehyde 178 solution. The resulting 

mixture was brought to reflux (Toil bath = 100°C), while keeping a constant N2 flow over 

the reaction. The reflux was stopped after 23h and the reaction cooled to room 

temperature. Once at room temperature, the reaction was cooled with an ice bath 

and acidified with a 10% aqueous solution of HCl (pH=1-2). The resulting mixture 

was diluted with EtOAc and filtered through celite. The celite was washed several 

times with small portions of EtOAc. The filtrate was decanted into a separating funnel 

and the aqueous layer was further extracted with EtOAc (3 × 50mL). The combined 

organic layers were washed with water (100mL) and brine (100mL), and dried 

(MgSO4). The solvent was evaporated in vacuo and the residue subjected to column 

chromatography, eluting with petroleum ether (60-80°C) : Et2O (80:20). 2,5-

Dimethoxybiphenyl-3-carbaldehyde 194 was isolated as clear cubic white plates 

(2.29g, 9.43mmol, 85.0%); m.p. (Et2O : petroleum ether 60-80°C): 64.5-65.5°C; 

(found: C, 74.3; H, 5.9%. C15H14O3 requires C, 74.4; H, 5.8%); m/Z 243.0 (MH)+,         

265.0 (MNa)+; ννννmax/cm-1 2877 and 2754 (C-H), 1680 (C=O), 1596 (C=C), 1229 and 

1041 (C-O); δH  (300 MHz, CDCl3) 3.51 (3H, s, OCH3, 9-H), 3.89 (3H, s, OCH3, 8-H), 

7.22 (1H, d, J = 3.3Hz, 6-H), 7.36 (1H, d, J = 3.3Hz, 4-H), 7.41-7.53 (3H, m, 3'-H,     

4'-H and 5'-H), 7.60-7.64 (2H, m, 2'-H and 6'-H), 10.48 (1H, CHO, 7-H); δC (75 MHz, 

CDCl3) 55.8 (CH3, 8-C), 62.9 (CH3, 9-C), 109.1 (CH, 4-C), 124.75 (CH, 6-C), 127.9 
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(CH, 4'-C), 128.6 (CH, 3'-C and 5'-C), 128.9 (CH, 2'-C and 6'-C), 130.1 (quat., 3-C), 

136.9 (quat., 1-C), 137.3 (quat., 1'-C), 155.4 (quat., 2-C), 156.0 (quat., 5-C), 190.05 

(CH, 7-C). 

 

5.2.13.2 Attempted preparation of 3-(2',4'-dinitrophenoxy)-2,5-

dimethoxybiphenyl 169f 

 

Preparation of the title compound was attempted following the method described 

above from 2,4-dinitro-2',5'-dimethoxy-3'-bromodiphenylether 169e (0.65g, 

1.64mmol) and phenyl boric acid 193 (0.27g, 2.13mmol); elution used petroleum 

ether (60-80°C) : Et2O (80:30) yielding 2,5-dimethoxy-biphenyl-3-ol 150f as a pale 

yellow oil which crystallised upon standing (0.35g, 1.53mmol, 93.3%). Analytical data 

where identical to that obtained for the product resulting from Baeyer-Villiger 

oxidation of 2,5-dimethoxybiphenyl-3-carbaldehyde 194. 

 

5.2.14  General procedure for the Baeyer-Villiger oxidation of 

benzaldehydes 149a-d, 178, 194 and 197 

Method A (adapted from 2000J(P1)2681). In a two necked round bottomed flask 

equipped with a dropping funnel, a suspension of magnesium monoperoxyphthalate 

(0.55mol equivalent) in methanol (50mL) was prepared. A few drops of concentrated 

sulphuric acid were added to the suspension until all the MMPP dissolved in the 

resulting acidic methanolic solution. It was then cooled with an ice-bath and a 

solution of the substituted benzaldehyde (1mol equivalent) in DCM (50mL) was 

added dropwise to the MMPP solution. Once the addition was finished, the resulting 

solution was left with stirring overnight. The solvent mixture was then removed under 

reduced pressure and the residue was redissolved in a 10% aqueous potassium 

carbonate solution (70mL). The resulting mixture was extracted with ethyl acetate 

(2x100mL) and the combined organic layers washed once with brine (100mL). The 

solvent was removed under reduced pressure and the residue subjected to column 
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chromatography on silica. Recrystallisation was achieved from petroleum ether (60-

80°C). 

Method B (adapted from 1987T2653). In a two necked round bottomed flask 

equipped with a reflux condenser, the correctly substituted benzaldehyde (1 mol 

equivalent) was dissolved in DCM (70 mL). The resulting solution was cooled with an 

ice bath and meta-chloroperbenzoic acid (1.7mol equivalent) was added portion-

wise. The ice bath was removed 1h after the end of the addition and the resulting 

solution left with stirring overnight at room temperature. The reaction progress was 

monitored by TLC and the reaction was refluxed for 5-6h to drive it to completion, 

when necessary. The reaction was then allowed to cool to room temperature and 

washed several times with a 5% aqueous solution of NaHCO3  (3 x 100mL). The 

DCM layer was then dried (MgSO4) and the solvent was removed in vacuo. The 

residual oil was dissolved in methanol (20mL) and a 10% aqueous solution of NaOH 

(excess) was added to hydrolyse the formyl phenylate ester formed; the resulting 

dark solution was stirred for 2-3 hours and was then acidified (pH 1-2) with a 10% 

aqueous solution of HCl. The resulting mixture was extracted with DCM (3 x 80mL) 

and the combined organic extracts were successively washed with a 5% aqueous 

solution of NaHCO3 (100mL), water (100mL) and brine (100mL), and dried (MgSO4). 

The solvent was removed in vacuo and the residue subjected to column 

chromatography on silica gel. The product was recrystallised from petroleum ether 

(60-80°C). 

 

5.2.14.1 2,5-Dimethoxyphenol 150g (1987T2653) 
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Method A. The title compound was prepared as described from 2,5-

dimethoxybenzaldehyde 149d (4.14g, 24.91mmol). 2,5–Dimethoxyphenol 150g 

(2.33g, 15.12mmol, 60.7%) was isolated as a pale yellow oil; ννννmax/cm-1 3416 (O-H), 

1596 and 1504 (C=C), 1232, 1147 and 1039 (C-O); δH (300 MHz, CDCl3) 3.67 (3H, s, 

OCH3, 8-H), 3.76 (3H, s, OCH3, 7-H), 5.58 (1H, s, OH), 6.30 (1H, dd, J = 8.9, 3.0Hz, 

4-H), 6.49 (1H, d, J = 3.0Hz, 6-H), 6.69 (1H, d, J = 8.7Hz, 3-H); δC(75 MHz, CDCl3) 
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56.1 (CH3, 8-C), 57.0 (CH3, 7-C), 102.2 (CH, 6-C), 104.7 (CH, 4-C), 112.0 (CH, 3-C), 

141.4 (quat., 2-C), 146.9 (quat., 1-C), 155.0 (quat., 5-C). 

 

5.2.14.2 2,5-Dimethoxy-3,4-dimethylphenol 150a (2008OBC682) 
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Method A. The title compound was prepared as described from 2,5-dimethoxy-3,4-

dimethylbenzaldehyde 149a (0.19g, 1.02mmol). Elution with petroleum ether (60-

80°C) : Et2O (70:30) yielded 2,5-dimethoxy-3,4-dimethylphenol as a white solid 

(0.03g, 0.18mmol, 17.3%). Analytical data were identical to that obtained for the 

product of method B. 

Method B.  The title compound was prepared as described from 2,5-dimethoxy-3,4-

dimethylbenzaldehyde 149a (1.04g, 5.35mmol). Elution with petroleum ether (60-

80°C) : EtOAc (70:30) yielded 2,5-dimethoxy-3,4-dimethylphenol 150a as a white 

solid (0.78g, 4.27mmol, 79.8%). White needles were obtained from petroleum ether 

(60-80°C); m.p.: 69-71°C [lit.: 69-71°C (2008OBC682)]; (found C, 65.9; H, 7.7%. 

C10H14O3 requires C, 65.9; H, 7.7%); m/Z 183.2 (MH)+; ννννmax/cm-1 3263 (O-H), 1598 

and 1508 (C=C), 1330, 1262, 1214 and 1038 (C-O); δH  (300 MHz, CDCl3) 2.12 (3H, 

s, CH3, 8-H), 2.26 (3H, s, CH3, 9-H), 3.77 (3H, s, OCH3, 7-H), 3.81 (3H, s, OCH3, 10-

H), 5.77 (1H, br. s, OH), 6.48 (1H, s, 6-H); δC (75 MHz, CDCl3) 11.4 (CH3, 8-C ), 12.7 

(CH3, 7-C ), 55.8 (CH3, 9-C), 61.1 (CH3, 10-C), 96.7 (CH, 6-C), 117.0 (quat., 4-C), 

130.2 (quat., 3-C), 139.1 (quat., 2-C), 146.7 (quat., 1-C), 154.3 (quat., 5-C). 

 

5.2.14.3 2,5-Dimethoxy-3,4,6-trimethylphenol 150b (2008OBC682) 
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Method A. The title compound was prepared as described from 2,5-dimethoxy-3,4,6-

trimethylbenzaldehyde 149b (1.11g, 5.32mmol). Elution with petroleum ether (60-

80°C) EtOAc : (80:20) yielded 2,5-dimethoxy-3,4,6-trimethylphenol 150b as a white 

solid (0.65g, 3.29mmol, 61.8%). Analytical data were identical to that obtained for the 

product of method B. 

Method B. The title compound was prepared as described from 2,5-dimethoxy-3,4,6-

trimethylbenzaldehyde 149b (2.61g, 12.53mmol). Elution with petroleum ether (60-

80°C): Et2O (70:30) yielded 2,5-dimethoxy-3,4,6-trimethylphenol 150b as a white 

solid (2.09g, 10.65mmol, 85.0%). White needles were obtained from petroleum ether 

(60-80°C); m.p.: 105-106°C [lit.:105-106°C (2008OBC682)]; (found C, 67.4; H, 8.2%. 

C11H16O3 requires C, 67.3; H, 8.2%); m/Z 219.0 (MNa)+; ννννmax/cm-1  3401 (O-H), 1612 

(C=C), 1309, 1264 and 1070 (C-O); δH  (300 MHz, d6-DMSO) 2.18 (3H, s, CH3, 9-H), 

2.23 (3H, s, CH3, 7-H), 2.23 (3H, s, CH3, 10-H), 3.71 (3H, s, OCH3, 11-H), 3.77 (3H, 

s, OCH3, 8-H), 5.71 (1H, s, OH); δC (75 MHz, d6-DMSO) 9.1 (CH3, 10-C), 12.0 (CH3, 

7-C), 12.5 (CH3, 9-C), 60.2 (CH3, 11-C), 60.9 (CH3, 8-C), 115.0 (quat., 6-C), 121.0 

(quat., 4-C), 126.8 (quat., 3-C), 141.7 (quat., 2-C), 145.3 (quat., 1-C), 153.4 (quat., 5-

C). 

 

5.2.14.4 2,5-dimethoxy-4-tbutylphenol 150c (1968JC1438) 
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Method A. The title compound was prepared as described from 2,5-dimethoxy-4-
tbutylbenzaldehyde 149c (2.03g, 9.10mmol); elution used petroleum ether (60-80°C): 

EtOAc (70:30). 2,5-Dimethoxy-4-tbutylphenol 150c was obtained as a white solid 

(0.39g, 1.87mmol, 20.5%). Analytical data were identical to that obtained for the 

product of method C. 

Method B. The title compound was prepared as described from 2,5-dimethoxy-4-
tbutylbenzaldehyde 149c (1.59g, 7.13mmol). Elution with petroleum ether (60-80°C): 

Et2O (60:40). 2,5-Dimethoxy-4-tbutylphenol 150c was obtained as a white solid 

(0.82g, 3.86mmol, 54.15%). Analytical data were identical to that obtained for the 

product of method C. 
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Method C (2008OBC). In a flame dried 250mL 2 neck round bottomed flask, flushed 

with argon, 1,4-dimethoxy-2-tbutylbenzene 172c (6.84g, 35.21mmol) was dissolved 

in dry THF (75mL). The solution was cooled in a dry ice-acetone bath to -75°C and a 

solution of 2.5 M n-BuLi (24mL, 60.0mmol) was added slowly to it. The resulting 

orange solution was allowed to warm up to room temperature and stirred for a further 

45min. The orange-brown coloured solution was cooled again to -75°C and 

triisopropyl borate was added to it. The solution was left overnight under Ar with the 

dry-ice/acetone bath, so that the temperature slowly warmed up to room temperature 

overnight. The clear yellow solution was then quenched with a 10% aqueous 

ammonium chloride solution and extracted with diethyl ether (3 x 150mL). The 

combined organic layers were dried (MgSO4) and the solvent removed under 

reduced pressure. The residue was dissolved in THF (20mL) and H2O2 35% (20mL) 

was added to the resulting solution and the emulsion was stirred for 1 hour 

(exothermic reaction). Water was added to the reaction mixture, which was then 

extracted with diethyl ether (3 x 150mL) and the combined organic extracts were 

washed once with brine (150mL) and dried (MgSO4). The solvent was removed in 

vacuo and the residue was subjected to column chromatography on silica eluting with 

petroleum ether (60-80°C) : Et2O (70:30). Residual starting material was recovered 

as a yellow oil (1.13g, 5.84 mmol, 16.6%) and 2,5-dimethoxy-4-tbutylphenol 150c 

was isolated as a white solid (3.9527g, 18.79mmol, 53.4%). Recrystallisation from 

petroleum ether (60-80°C) yielded a white crystaline solid; m.p.: 52-54°C [lit.:54-55°C 

(from petroleum ether, 1968JC1438)]; (found C, 68.6; H, 8.7%. C12H18O3 requires C, 

68.55; H, 8.6%); ννννmax/cm-1  3381, 3280 (O-H), 1597 and 1511 (C=C), 1300, 1192 and 

1043 (C-O); δH  (300 MHz, CDCl3) 1.41 (9H, s, C(CH3)3), 3.83 (3H, s, OCH3, 7-H), 

3.90 (3H, s, OCH3, 12-H), 5.60 (1H, s, OH), 6.63 (1H, s, 6-H), 6.90 (1H, s, 3-H);       

δC (75 MHz, CDCl3) 30.0 (CH3, 9-C, 10-C and 11-C), 34.5 (quat., 8-C), 55.7 (CH3, 7-

C), 57.0 (CH3, 12-C), 100.6 (CH, 6-C), 110.9 (CH, 3-C), 129.7 (quat., 4-C), 139.6 

(quat., 5-C), 144.2 (quat., 1-C), 153.2 (quat., 2-C). 
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5.2.14.5 2,5-Dimethoxy-4-pentylphenol 150d 
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Method B. The title compound was prepared as described from 2,5-dimethoxy-4-

pentylbenzaldehyde 197 (3.44g, 14.58mmol); elution used petroleum ether (60-80°C) 

: Et2O (70:30). 2,5-Dimethoxy-4-pentylphenol 150d was isolated as a white 

crystalline solid (2.66g, 11.87mmol, 81.4%). Recrystallisation from Et2O : petroleum 

ether (60-80°C) produced white needles, m.p.: 33-35°C; (found: C, 69.55; H, 9.0%. 

C13H20O3 requires C, 69.6; H, 9.0%); m/Z 225.0 (MH)+; ννννmax/cm-1 3354 (O-H), 2953 

and 2930 (C-H), 1598 and 1515 (C=C), 1192 and 1038 (C-O);  δH  (300 MHz, CDCl3) 

0.96 (3H, t, J = 6.9Hz, 5'-H), 1.38-1.415 (4H, m, 3'-H and 4'-H), 1.58-1.63 (2H, m,    

2'-H), 2.59 (2H, t, J = 7.5Hz, 1'-H), 3.81 (3H, s, OCH3, 8-H), 3.89 (3H, s, OCH3, 7-H), 

5.61 (1H, s, OH), 6.60 (1H, s, 6-H), 6.73 (1H, s, 3-H); δC (75 MHz, CDCl3) 14.1 (CH3, 

5'-C), 22.6 (CH2, 3'-C or 4'-C), 29.8 (CH2, 1'-C), 30.1 (CH2, 2'-C), 31.8 (CH2, 3'-C or 

4'-C), 56.1 (CH3, 8-C), 56.8 (CH3, 7-C), 99.5 (CH, 6-C), 113.3 (CH, 3-C), 122.3 

(quat., 4-C), 140.1 (quat., 2-C), 144.1 (quat., 1-C), 152.0 (quat., 5-C). 

 

5.2.14.6 3-Bromo-2,5-dimethoxyphenol 150e(1998JOC5831) 
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The title compound was prepared as described from 3-bromo-2,5-

dimethoxybenzaldehyde 178 (5.24g, 21.38mmol); elution used petroleum ether (60-

80°C) : Et2O (70:30) yielded 3-bromo-2,5-dimethoxyphenol 150e as a white solid 

(3.51g, 15.06mmol, 70.4%). White needle-like plates were obtained from petroleum 

ether (60-80°C); m.p.: 70.5-72.0°C [lit.: 73-74°C (1998JOC5831)]; (found C, 41.2; H, 

3.8%. C12H18O3 requires C, 41.2; H, 3.8%); ννννmax/cm-1 3377 (O-H), 1609 and 1573 
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(C=C), 1323, 1165 and 1041 (C-O); δH  (300 MHz, CDCl3) 3.78 (3H, s, 7-H, OCH3), 

3.89 (3H, s, 8-H, OCH3), 5.90 (1H, s, OH), 6.55 (1H, d, J = 3.0Hz, 6-H), 6.67 (1H, d,   

J = 2.7Hz, 4-H); δC (75 MHz, CDCl3) 55.8 (CH3, 7-C), 61.35 (CH3, 8-C), 101.5 (CH,  

6-C), 109.9 (CH, 4-C), 115.8 (quat., 3-C), 138.7 (quat., 5-C), 150.3 (quat., 1-C), 157.0 

(quat., 2-C). 

 

5.2.14.7 2,5-Dimethoxy-biphenyl-3-ol 150f 
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The title compound was prepared as described from 2,5-dimethoxybiphenyl-3-

carbaldehyde 194 (2.02g, 8.34mmol); elution used petroleum ether (60-80°C) : Et2O  

(70:30) yielded 2,5-dimethoxy-biphenyl-3-ol 150f as a white crystalline solid (1.43g, 

6.19mmol, 74.2%). White needles were obtained from petroleum ether (60-80°C); 

m.p.: 67-69°C; (found: C, 73.1; H, 6.2%. C14H14O3 requires C, 73.0; H, 6.1%); m/Z 

231.0 (MH)+; ννννmax/cm-1 3396 (O-H), 1619, 1591 and 1573 (C=C), 1206 and 1049 (C-

O); δH  (300 MHz, CDCl3) 3.44 (3H, s, OCH3, 7-H), 3.85 (3H, s, OCH3, 8-H), 6.10 (1H, 

s, OH), 6.51 (1H, d, J = 3.0Hz, 6-H), 6.64 (1H, d, J = 3.0Hz, 4-H), 7.39-7.52 (3H, m, 

3'-H, 5'-H and 4'-H), 7.64-7.67 (2H, m, 2'-H and 6'-H); δC (75 MHz, CDCl3) 55.6 (CH3, 

8-C), 60.9 (CH3, 7-C), 100.6 (CH, 4-C), 107.2 (CH, 6-C), 127.6 (CH, 4'-C), 128.5 (CH, 

3'-C and 5'-C), 128.8 (CH, 2'-C and 6'-C), 134.7 (quat., 1-C), 138.0 (quat., 1'-C), 

138.5 (quat., 2-C), 149.9 (quat., 3-C), 156.45 (quat., 5-C). 

 

5.2.15 Bromination  

5.2.15.1 2,6-Dibromo-3,5-dimethoxyphenol 176 (1989CJC335) 

 

3,5-Dimethoxyphenol 177 (2.01g, 13.04mmol) was dissolved in DCM (40mL) and a 

solution of bromine (1.34mL, 26.02mmol) in DCM (20mL) was added dropwise to the  
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3,5-dimethoxyphenol solution. The resulting solution was stirred during 6 hours, then 

washed with water (2 × 100mL) and dried (MgSO4). The solvent was removed under 

reduced pressure and the residue was recrystallised from a solvent mixture of 

petroleum ether (60-80°C) : CHCl3. 2,6-Dibromo-3,5-dimethoxyphenol 176 was 

isolated as white crystals (2.97g, 9.52mmol, 72.6%); m.p. : 163-164°C [lit.: 164-

165°C (from petroleum ether (65-110°C): CHCl3, 1989CJC335)]; (found C, 30.75; H, 

2.55%. C8H8Br2O3 requires C, 30.8; H, 2.6%); ννννmax/cm-1 3488 (O-H), 1583 and 1567 

(C=C), 1343 and 1065 (C-O); δH  (300 MHz, CDCl3) 3.93 (6H, s, 2 x OCH3, 7-H and 

8-H), 6.06 (1H, br s, OH), 6.20 (1H, s, 4-H); δC (75 MHz, CDCl3) 56.7 (CH3, 7-C and 

8-C), 89.6 (CH, 4-C), 91.1 (quat., 2-C and 6-C), 150.8 (quat., 1-C), 156.4 (quat., 3-C 

and 5-C). 

 

5.2.15.2 2,4,6-Tribromoolivetol 205 (1936CB1643) 
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In a 250mL two-necked round bottomed flask equipped with a pressure equalizing 

dropping funnel, olivetol 181 (4.92g, 27.30mmol) was dissolved in glacial AcOH 

(150mL). To this solution was added NaOAc (8.28g, 100.94mmol) and the resulting 

suspension was cooled with an ice-bath. The pressure equalizing funnel was 

charged with a solution of Br2 (4.62mL, 89.70mmol) in glacial AcOH (30mL), which 

was then added dropwise to the olivetol suspension. After the end of the addition, the 

resulting solution was allowed to warm up to room temperature and stirred for a 

further 5h. The reaction was quenched with a 10% aq. solution of Na2S2O3 (300mL), 

resulting in the formation of a white precipitate. The precipitate was filtered off, 

washed several times with water, and dried under vacuum. It was then redissolved in 

Et2O and the resulting solution was dried (MgSO4), before removing the solvent in 

vacuo. The residue was purified by column chromatography, eluting with petroleum 

ether (60-80°C) : Et2O (75 : 25), giving 2,4,6-tribromoolivetol 205 as a white solid 

(10.49g, 25.17mmol, 92.2%). 2,4,6-Tribromoolivetol 205 was recrystallised from 

petroleum ether (60-80°C), producing a white fluffy solid; m.p.: 80-82°C [lit.: 87°C 
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(from AcOH, 1936CB1643)]; (found C, 31.4; H, 3.2%. C11H13Br3O2 requires C, 31.7; 

H, 3.2%); ννννmax/cm-1 3585-3405 (O-H), 2952-2854 (C-H), 1622, 1573 and 1558 (C=C), 

1210 and 1195 (C-O), 676 (C-Br); δH  (300 MHz, CDCl3) 0.975 (3H, t, J = 7.2Hz,      

5'-H), 1.43-1.49 (4H, m, 3'-H and 4'-H), 1.57-1.68 (2H, m, 2'-H), 3.00 (2H, t, J = 

7.8Hz, 1'-H), 6.10 (2H, s, 2 × OH); δC (75 MHz, CDCl3) 14.0 (CH3, 5'-C), 22.4 (CH2, 

4'-C), 27.7 (CH2, 2'-C), 31.8 (CH2, 3'-C), 37.6 (CH2, 1'-C), 95.0 (quat., 2-C), 103.1 

(quat., 4-C and 6-C), 141.2 (quat., 5-C), 149.4 (quat., 1-C and 3-C). 

 

5.2.16 Oxidation of tribromoolivetol 205 (adapted from 1983J(P1)2595):  

2,6-Dibromo-3-hydroxy-5-pentyl-1,4-benzoquinone 206 

6
1

2

3
4

5

1'

O OH

Br O

Br

2'

3' 4'

5'

 

Into a 250mL round-bottomed flask, 2,4,6-tribromoolivetol 205 (1.11g, 2.67mmol) was 

dissolved in a mixture of a 0.1M K2HPO4 phosphate buffer (50mL) and CH3CN 

(70mL). Potassium nitrosodisulfonate 201 (2.15g, 8.00mmol, prepared according to 

1970CR229) was dissolved in 0.1M K2HPO4 phosphate buffer (50mL) and the 

resulting deep purple solution was added to the 2,4,6-tribromoolivetol solution. The 

resulting solution was left with stirring at room temperature for 5h. The reaction was 

then quenched with 10% aq. HCl, resulting in the formation of an orange oil. The 

mixture was extracted with DCM (2 × 70mL) and the combined organic extracts were 

washed with brine (100mL) and dried (MgSO4). The solvent was removed in vacuo 

and the oily residue was recrystallised from n-hexane, yielding 2,6-dibromo-3-

hydroxy-5-pentyl-1,4-benzoquinone 206 as bright orange plates (0.77g, 2.18mmol, 

81.6%); m.p.: 81-83°C; (found: C, 37.6; H, 3.4%. C11H12Br2O5 requires C, 37.5; H, 

3.4%); m/Z 348.7 (41%), 350.7 (100%), 352.7 (43%) (M-H)-; ννννmax/cm-1 3186 (O-H), 

2853-2931 (C-H), 1660 and 1638 (C=O, quinone), 1591 (C=C), 1348, 1270 and 1245 

(C-O), 727 (C-Br), 686 (C-Br); δH  (300 MHz, CDCl3) 0.95 (3H, t, J = 6.9Hz, 5'-H), 

1.39-1.44 (4H, m, 3'-H and 4'-H), 1.53-1.58 (2H, m, 2'-H), 2.75 (2H, t, J = 7.5Hz,      

1'-H), 7.54 (1H, br. s, OH); δC (75 MHz, CDCl3) 13.9 (CH3, 5'-C), 22.3 (CH2, 3'-C or      
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4'-C), 27.1 (CH2, 2'-C), 30.5 (CH2, 1'-C), 31.8 (CH2, 3'-C or 4'-C), 106.0 (quat., 3-C), 

137.8 (quat., 5-C), 145.7 (quat., 6-C), 153.2 (quat., 2-C), 172.9 (quat., 4-C), 178.1 

(quat., 1-C). 

 

5.2.17  4-Nitro-2-fluoroaniline 210a and 6-nitro-2-fluoroaniline 210b 

(1976ACB141) 

 

A 500mL 3 necked round bottomed flask equipped with a dropping funnel and a 

thermometer was charged with 2-fluoroacetanilide 209 (16.8651g, 0.1101mol) and 

glacial acetic acid (90mL). The resulting solution was cooled to 10°C (internal T). The 

dropping funnel was charged with a solution of fuming HNO3 (55mL) and conc. 

H2SO4 (55mL), which was added dropwise to the 2-fluoroacetanilide solution. The 

temperature was maintained at 10°C during the addition (1h). The ice-bath was then 

removed and the resulting solution was stirred for a further 1h 30min. The reaction 

mixture was then poured into ice, resulting in the formation of a cream coloured 

precipitate. The precipitate was recovered by filtration, washed several times with 

water until the filtrate was of a clear colour, and dried under vacuum. The resulting 

solid was partially redissolved in EtOH (250mL) and a 10% aq. solution of NaOH 

(150mL) was added to the mixture. The resulting orange solution was stirred for 5h or 

until the acetyl product was fully hydrolysed. The reaction was then quenched with 

10% aq. HCl (200mL) resulting in the formation of a yellow precipitate. The 

precipitate was recovered by filtration, washed several times with water and dried. It 

was then redissolved into EtOAc, dried (MgSO4) and purified by column 

chromatography, eluting with petroleum ether (60-80°C) : EtOAc (70:30). The more 

mobile band gave 6-nitro-2-fluoroaniline 210b (2.64g, 16.91mmol, 15.3%) as a yellow 

solid. Recrystallisation from EtOH produced yellow plates; m.p.: 71.5-72.5°C [lit. 

75.5-76.5°C (1976ACB141)]; (found: C, 46.0; H, 3.2; N, 17.9%. C6H5FN2O2 requires 

C, 46.2; H, 3.2; N, 17.9%); ννννmax/cm-1 3487 and 3366 (NH2), 1583 (C=C), 1525 and 

1329 (NO2), 1068 (C-F); δH  (300 MHz, d6-DMSO) 6.62 (1H, td, J = 8.7, 5.4Hz, 4-H), 

7.22 (2H, br. s, NH2), 7.42 (1H, dd, J = 10.2, 7.8Hz, 3-H), 7.82 (1H, d, J = 8.7Hz,      

5-H); δC (75 MHz, d6-DMSO) 113.95 (CH, d, J = 7.9Hz, 4-C), 120.2 (CH, d, J = 
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18.3Hz, 3-C), 121.5 (CH, d, J = 3.3Hz, 5-C), 132.4 (quat., d, J = 5.1Hz, 6-C), 136.45 

(quat., d, J = 16.6Hz, 1-C), 152.2 (quat., d, J = 242.7Hz, 2-C). Further elution gave 4-

nitro-2-fluoroaniline 210a (11.61g, 74.37mmol, 67.5%) as a bright yellow crystalline 

solid. Recrystallisation from ethanol gave small yellow needles; m.p.: 130-131°C [lit. 

135-136°C (1976ACB141)]; ννννmax/cm-1 3493 and 3395 (NH2), 1626 (C=C), 1523 and 

1314 (NO2), 1079 (C-F); δH  (300 MHz, d6-DMSO) 6.77 (2H, br. s, NH2), 6.85 (1H, t,   

J = 8.7Hz, 6-H), 7.87-7.93 (2H, m, 3-H and 5-H); δC (75 MHz, d6-DMSO) 111.8 (CH, 

d, J = 22.3Hz, 3-C), 114.3 (CH, d, J = 5.4Hz, 6-C), 122.7 (CH, d, J = 1.8Hz, 5-C), 

135.3 (quat., d, J = 7.8Hz, 4-C), 144.8 (quat., d, J = 13.1Hz, 1-C), 148.4 (quat., d, J = 

241.2Hz, 2-C). 

 

5.2.18 General procedure for the oxidation of fluoroanilines (adapted from 

1992TL4835) 

In a 250mL 3 necked flask equipped with a pressure equalizing dropping funnel and 

a thermometer, urea hydrogen peroxide adduct (12mol equivalent) was suspended in 

acetonitrile (100mL) and the resulting suspension was cooled in a salt-ice bath to    -

10°C (internal temperature). The pressure equalizing dropping funnel was charged 

with a solution of trifluoroacetic anhydride (10mol equivalent) in acetonitrile (20mL), 

which was added dropwise to the urea hydrogen peroxide adduct suspension. The 

rate of the addition was adjusted in such a way that the temperature did not rise 

above 5°C. The resulting clear solution was then stirred at -5°C during 45 min. A 

solution of the correctly substituted fluoroaniline (1mol equivalent) was prepared in 

acetonitrile (50mL) and then added dropwise via the pressure equalizing dropping 

funnel to the trifluoroperacetic acid solution. The temperature was kept around -5°C 

during the addition by adjusting the addition rate. Once the addition was finished, the 

cooling bath was removed and the resulting solution left with stirring at ambient 

temperature overnight. The solution colour ranged from emerald green to blue during 

addition of the fluoroaniline and then slowly turned to yellow toward completion of the 

reaction. Most of the acetonitrile was then removed under reduced pressure and the 

acidic residue was neutralised by addition of a 10% aqueous Na2CO3 solution, until 

no more evolution of CO2 was observed. The resulting mixture was extracted with 

Et2O (3 x 80mL) and the combined organic layers washed once with water (100mL) 

and brine (100mL), and dried (MgSO4). The solvent was removed under reduced 

pressure and the residue subjected to column chromatography. 
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5.2.18.1 2,5-Dinitro-1-fluorobenzene 151 (2002TL3221) 

 

The title compound was prepared from 2-fluoro-4-nitroaniline 210a (9.90g, 

63.40mmol). The crude product was recrystallised from petroleum ether (60-80°C) 

using decolourising charcoal. 2,5-Dinitro-1-fluorobenzene 151 (6.97g, 37.45mmol, 

59.1%) was isolated as large pale yellow plates; m.p.: 72-74°C [lit.: 74-75°C (from 

hexane, 2002TL3221)]; (found: C, 38.5; H, 1.6; N, 14.7%. C6H3FN2O4 requires C, 

38.7; H, 1.6; N,15.05%); ννννmax /cm-1 3118 (C-H), 1549 and 1343 (NO2); δH (300 MHz, 

d6-DMSO) 8.26 (1H, ddd, J = 9.0, 2.4, 1.5 Hz, 4-H), 8.42 (1H, dd, J = 9.0, 7.5 Hz, 3-

H), 8.53 (1H, dd, J = 10.5, 2.4 Hz, 6-H); δC(75 MHz, d6- DMSO) 115.05 (CH, d, J = 

26.0 Hz, 6-C), 120.75 (CH, d, J = 4.45 Hz, 4-C), 128.2 (CH, d, J = 2.5 Hz, 3-C), 141.2 

(quat., d, J = 7.9 Hz, 5-C), 151.2 (quat., d, J = 8.5 Hz, 2-C), 154.8 (quat., d, J = 264.9 

Hz, 1-C). 

 

5.2.19 General procedure for the preparation of biarylethers 169a-g and 152c-d 

Method A: 2,4-dinitrofluorobenzene 168 (adapted from 1957JOC1743). The 

correctly substituted phenol (1mol equivalent) was dissolved in DMSO (50mL) in a 

round bottomed flask and a base, Et3N (1mol equivalent) was added to the resulting 

solution. The resulting solution was stirred for 5min, before 2,4-dinitro-1-

fluorobenzene (1mol equivalent) was added; the solution colour turned to orange-red. 

The reaction was left with stirring for 5 hours, then water (200mL) was added, 

resulting in the formation of a precipitate. The mixture was then extracted with DCM 

(3 × 100mL) and the combined DCM extracts were successively washed with a 10% 

aqueous solution of sodium hydroxide (3 × 100mL), water (100mL) and brine 

(150mL), and then dried (MgSO4). The solvent was removed in vacuo and the 

residue was either subjected to column chromatography or directly recrystallised from 

ethanol. 

Method B: 2,5-dinitrofluorobenzene 151 (adapted from 2008OBC682). The 

correctly substituted phenol (1mol equivalent) was dissolved in dry DMF (30mL) in an 

oven dried two necked flask equipped with reflux condenser and CaCl2 drying tube. 

NaH in an oil dispersion 60% w/w (2.2mol equivalent) was then added portion-wise 

and, once evolution of H2 had stopped, a solution of 2,5-dinitrofluorobenzene (1mol 
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equivalent) was added in DMF (10mL). The resulting deep red solution was left with 

stirring for 5h and then heated at 50°C for another 5h. The reaction was then allowed 

to cool down to room temperature and quenched with brine (100mL). The resulting 

mixture was extracted with DCM (3 × 80 mL) and the combined DCM layers washed 

with water (100mL), brine (2 × 100mL) and then dried (MgSO4). The solvent was 

removed in vacuo and the residue subjected to column chromatography, eluting with 

a solvent mixture of petroleum ether (60:80°C) : EtOAc. The product was 

recrystallised from EtOH. 

 

5.2.19.1 2,4-Dinitro-2',5'-dimethoxydiphenylether 169g 
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The title compound was prepared as described (method A) from 2,5-

dimethoxyphenol 150g (6.38g, 41.37mmol) and 2,4-dinitrofluorobenzene 168 (7.70g, 

41.37mmol). 2,4–Dinitro–2,5–dimethoxydiphenylether 169g (11.68g, 36.47mmol, 

88.2%) was isolated as crescent shaped yellow crystals from EtOH; m.p. 95-96°C; 

m/Z 343.1 (MNa)+; (found C, 52.4; H, 3.7; N, 8.7%. C14H12N2O6 requires C, 52.5; H, 

3.8; N, 8.75%); ννννmax /cm-1 1604 (C=C), 1506 and 1340 (NO2), 1274, 1035 and 1014 

(C-O); δH (300 MHz, d6-DMSO) 3.69 (3H, s, OCH3, 7'-H), 3.74 (3H, s, OCH3, 8'-H), 

6.92 (1H, dd, J =  9.0, 3.0Hz, 4'-H), 6.98 (1H, d,  J = 2.7Hz, 6'-H), 6.99 (1H, d,  J = 

9.3Hz, 6-H), 7.20 (1H, d, J = 9.0Hz, 3'-H), 8.39 (1H, dd, J = 9.3, 3.0Hz, 5-H), 8.86 

(1H,d, J = 3.0Hz, 3-H); δC(75 MHz, d6-DMSO) 56.2 (CH3, 7'-C), 56.8 (CH3, 8'-C), 

109.1 (CH, 6'-C), 113.1 (CH, 4'-C), 115.3 (CH, 3'-C), 117.9 (CH, 6-C), 122.2 (CH, 3-

C), 129.9 (CH, 5-C), 138.6 (quat., 2-C), 141.4 (quat., 4-C), 141.7 (quat., 1'-C), 145.1 

(quat., 2'-C), 154.3 (quat., 5'-C), 155.6 (quat., 1-C).  
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5.1.19.2 2,4-Dinitro-2',5'-dimethoxy-3',4'-dimethyldiphenylether 169a 

 

The title compound was prepared as described (method A) from 2,5-dimethoxy-3,4-

dimethylphenol 150a (0.65g, 3.56mmol). Elution with petroleum ether (60-80°C) : 

EtOAc (70:30) yielded 2,4-dinitro-2',5'-dimethoxy-3',4'-dimethyldiphenylether 169a as 

an orange solid (0.76g, 2.19mmol, 61.6%). Orange crystals were obtained from 

aqueous ethanol, m.p.: 100°C; (found C, 55.4; H, 4.6; N, 8.0%. C16H16N2O7 requires 

C, 55.2; H, 4.6; N, 8.0%); m/Z 371.0 (MNa)+; ννννmax/cm-1 1606 (C=C), 1529 and 1345 

(NO2), 1263, 1233 and 1026 (C-O); δH  (300 MHz, d6-DMSO) 2.13 (3H, s, CH3, 9'-H), 

2.19 (3H, s, CH3, 8'-H), 3.60 (3H, s, OCH3, 7'-H), 3.77 (3H, s, OCH3, 10'-H), 6.89 (1H, 

s, 6'-H), 7.01 (1H, d, J = 9.0Hz, 6-H), 8.38 (1H, dd, J = 9.3, 3.0Hz, 5-H), 8.88 (1H, d, 

J = 3.0Hz, 3-H); δC (75 MHz, d6-DMSO) 12.3 (CH3, 9'-C), 12.8 (CH3, 8'-C), 56.5 (CH3, 

10'-C), 61.4 (CH3, 7'-C), 103.4 (CH, 6'-C), 118.0 (CH, 6-C), 122.1 (CH, 3-C), 124.4 

(quat., 4'-C), 129.9 (CH, 5-C), 132.9 (quat., 3'-C), 138.7 (quat., 2-C), 141.3 (quat.,     

4-C), 143.2 (quat., 1'-C), 143.7 (quat., 2'-C), 154.4 (quat., 5'-C), 155.7 (quat., 1-C). 

 

5.1.19.3 2,4-Dinitro-2',5'-dimethoxy-3',4',6'-trimethyldiphenylether 169b 

 

The title compound was prepared as described (method A) from 2,5-dimethoxy-

3,4,6-trimethylphenol 150b (0.37g, 1.89mmol), using 1,8-diazabicyclo[5-4-0]undec-7-

ene (DBU) (0.30mL, 2.00mmol) instead of Et3N. Elution with petroleum ether (60-

80°C) : EtOAc (30:70) yielded 2,4-dinitro-2',5'-dimethoxy-3',4',6'-

trimethyldiphenylether 169b as an off-white solid (0.59g, 1.63mmol, 85.7%). Long off-

white needles were obtained from ethanol; m.p.: 142°C; (found C, 56.4; H, 5.05; N, 

7.7%. C17H18N2O7 requires C, 56.35; H, 5.0; N, 7.7%); m/Z 385.1 (MNa)+; ννννmax/cm-1 
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1609 (C=C), 1540 and 1345 (NO2), 1260, 1250 and 1072 (C-O); δH  (300 MHz, 

CDCl3) 2.04 (3H, s, CH3, 7'-H), 2.12 (3H, s, CH3, 10'-H), 2.16 (3H, s, CH3, 9'-H), 3.59 

(3H, s, OCH3, 8'-H), 3.63 (3H, s, OCH3, 11'-H), 6.69 (1H, d, J = 9.3Hz, 6-H), 8.15 

(1H, dd, J = 9.3, 2.7Hz, 5-H), 8.76 (1H, d, J = 2.7Hz, 3-H); δC (75 MHz, CDCl3) 9.6 

(CH3, 7'-C), 12.4 (CH3, 9'-C or 10'-C), 12.8 (CH3, 9'-C or 10'-C), 60.5 (CH3, 8'-C), 

61.2 (CH3, 11'-C), 116.6 (CH, 6-C), 122.0 (CH, 3-C), 122.1 (quat., 6'-C), 128.9 (CH, 

5-C), 129.6 (quat., 3'-C or 4'-C), 130.0 (quat., 3'-C or 4'-C), 138.15 (quat., 2-C), 141.0 

(quat., 4-C), 142.2 (quat., 1'-C), 146.1 (quat., 2'-C), 153.5 (quat., 5'-C), 155.8 (quat., 

1-C). 

 

5.1.19.4 2,4-Dinitro-2',5'-dimethoxy-4'-tbutyldiphenylether 169c 

 

The title compound was prepared as described (method A) from 2,5-dimethoxy-4-
tbutylphenol 150c (3.55g, 16.88mmol). Elution with petroleum ether (60-80°C) : Et2O 

(70:30) yielded 2,4-dinitro-2',5'-dimethoxy-4'-tbutyldiphenylether 169c as a yellow 

crystalline solid (6.06g, 16.09mmol, 95.8%). Recrystallisation from EtOH produced 

small bright yellow needles; m.p.: 131-132°C; (found C, 57.45; H, 5.4; N, 7.4%. 

C18H20N2O7 requires C, 57.4; H, 5.4; N, 7.4%); m/Z 399.1 (MNa)+; ννννmax/cm-1 1608 

(C=C), 1535 and 1342 (NO2), 1209 and 1031 (C-O); δH  (300 MHz, CDCl3) 1.32 (9H, 

s, C(CH3)3), 3.64 (3H, s, OCH3, 7'-H), 3.72 (3H, s, OCH3, 12'-H), 6.66 (1H, s, 6'-H), 

6.84 (1H, d, J = 9.3Hz, 6-H), 6.94 (1H, s, 3'-H), 8.17 (1H, dd, J = 9.3, 3.0Hz, 5-H), 

8.74 (1H, d, J = 2.7Hz, 3-H); δC (75 MHz, CDCl3) 29.7 (3 × CH3, 9'/10'/11'-C), 35.2 

(quat., 8'-C), 55.8 (CH3, 7'-C), 57.1 (CH3, 12'-C), 106.5 (CH, 6'-C), 113.8 (CH, 3'-C), 

117.5 (CH, 6-C), 122.0 (CH, 3-C), 128.6 (CH, 5-C), 138.1 (quat., 4'-C), 138.3 (quat., 

2-C), 139.5 (quat., 1'-C), 141.0 (quat., 4-C), 143.8 (quat., 2'-C), 153.4 (quat., 5'-C), 

156.5 (quat., 1-C). 
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5.1.19.5 2,4-Dinitro-2',5'-dimethoxy-3'-pentyldiphenylether 169d 

 

The title compound was prepared as described (method A) from 2,5-dimethoxy-4-

pentylphenol 150d (2.71g, 12.09mmol). 2,4-Dinitro-2',5'-dimethoxy-3'-

pentyldiphenylether 169d was isolated as a yellow crystalline solid (4.36g, 

11.17mmol, 92.4%). Recrystallisation from EtOH yielded a yellow crystalline solid; 

m.p. (EtOH): 85-87°C; (found: C, 58.3; H, 5.7; N, 7.2%. C19H22N2O7 requires C, 58.5; 

H, 5.7; N, 7.2%); m/Z 390.1 (MH)+, 413.1 (MNa)+; ννννmax/cm-1 2855-2957 (C-H), 1608, 

1508 (C=C), 1536 and 1342 (NO2), 1212 and 1037 (C-O); δH  (300 MHz, CDCl3) 0.96 

(3H, t, J = 6.9Hz, 5''-H), 1.39-1.43 (4H, m, 3''-H or 4''-H), 1.62-1.67 (2H, m, 2''-H), 

2.66 (2H, t, J = 7.5Hz, 1''-H), 3.755 (3H, s, OCH3, 7'-H), 3.82 (3H, s, OCH3, 8'-H), 

6.76 (1H, s, 6'-H), 6.91 (1H, s, 3'-H), 6.96 (1H, d, J = 9.3Hz, 6-H), 8.31 (1H, dd, J = 

9.3, 2.7Hz, 5-H), 8.87 (1H, d, J = 3.0Hz, 3-H); δC(75 MHz, CDCl3) 14.1 (CH3, 5''-C), 

22.6 (CH2, 3''-C or 4''-C), 29.6 (CH2, 2''-C), 30.1 (CH2, 1''-C), 31.75 (CH2, 3''-C or 4''-

C), 56.1 (CH3, 8'-C), 56.9 (CH3, 7'-C), 105.6 (CH, 6'-C), 115.85 (CH, 3'-C), 117.4 

(CH, 6-C), 122.0 (CH, 3-C), 128.65 (CH, 5-C), 131.0 (quat., 4'-C), 138.3 (quat., 2-C), 

139.3 (quat., 1'-C), 141.0 (quat., 4-C), 144.3 (quat., 2'-C), 152.2 (quat., 5'-C), 156.6 

(quat., 1-C) 

 

5.1.19.6 2,4-Dinitro-6'-bromo-2',5'-dimethoxydiphenylether 169e 

 

The title compound was prepared as described (method A) from 3-bromo-2,5-

dimethoxyphenol 150e (0.70g, 2.99mmol); elution used petroleum ether (60-80°C) : 

EtOAc (70:30). 2,4-Dinitro-6'-bromo-2',5'-dimethoxydiphenylether 169e was isolated 

as a white crystalline solid (0.87g, 2.17mmol, 72.6%). Recrystallisation from EtOH 
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produced white plates; m.p. (EtOH): 109-110°C; (found: C, 42.1; H, 2.75; N, 6.8%. 

C14H11BrN2O7 requires C, 42.1; H, 2.8; N, 7.0%); m/Z 421.0 (95%), 423.0 (100%) 

(MNa)+; ννννmax/cm-1 1601, 1567 and 1529 (C=C), 1528 and 1337 (NO2), 1270, 1228 

and 1039 (C-O); δH  (300 MHz, CDCl3) 3.79 (3H, s, OCH3, 7'-H), 3.84 (3H, s, OCH3, 

8'-H), 6.76 (1H, d, J =  3.0Hz, 6'-H), 6.96 (1H, d, J = 9.3Hz, 6-H), 7.13 (1H, d, J = 

2.7Hz, 4'-H), 8.33 (1H, dd, J = 9.3, 2.7Hz, 5-H), 8.88 (1H, d, J = 2.7Hz, 3-H); δC (75 

MHz, CDCl3) 56.1 (CH3, 7'-C), 61.7 (CH3, 8'-C), 108.2 (CH, 6'-C), 116.7 (CH, 4'-C), 

117.7 (CH, 6-C), 119.2 (quat., 3'-C), 122.0 (CH, 3-C), 128.9 (CH, 5-C), 138.7 (quat., 

2-C), 141.7 (quat., 4-C), 143.0 (quat., 2'-C), 146.9 (quat., 1-C), 155.3 (quat., 1'-C), 

156.9 (quat., 5'-C).  

 

5.1.19.7 3-(2',4'-Dinitrophenoxy)-2,5-dimethoxybiphenyl 169f 

 

The title compound was prepared as described (method A) from 2,5-

dimethoxybiphenyl-3-ol 150f (0.98g, 4.25mmol). The crude product was recrystallised 

from EtOH. 3-(2',4'-Dinitrophenoxy)-2,5-dimethoxybiphenyl 169f was isolated as 

cream plates (1.55g, 3.96mmol, 91.8%); m.p.: 146-148°C; (found: C, 60.6; H, 4.1; N, 

7.0%. C20H16N2O7 requires C, 60.6; H, 4.1; N, 7.1%); m/Z 397.1 (MH)+, 419.1 (MNa)+; 

ννννmax/cm-1 1610 (C=C), 1529 and 1337 (NO2), 1271 and 1048 (C-O); δH  (300 MHz, 

CDCl3) 3.32 (3H, s, OCH3, 7-H), 3.75 (3H, s, OCH3, 8-H), 6.68 (1H, d, J = 3.0Hz,     

6-H), 6.81 (1H, d, J = 3.0Hz, 4-H), 7.01 (1H, d, J = 9.3Hz, 6'-H), 7.26-7.37 (3H, m,   

3''-H, 5''-H and 4''-H), 7.42 (2H, m, 2''-H and 6''-H), 8.25 (1H, dd, J = 9.3, 2.7Hz, 5'-H), 

8.76 (1H, d, J = 2.7Hz, 3'-H); δC (75 MHz, CDCl3) 55.95 (CH3, 8-C), 61.4 (CH3, 7-C), 

107.2 (CH, 6-C), 114.3 (CH, 4-C), 117.7 (CH, 6'-C), 121.95 (CH, 3'-C), 128.0 (CH,  

4''-C), 128.5 (CH, 3''-C and 5''-C), 128.9 (CH, 5'-C), 129.0 (CH, 2''-C and 6''-C), 136.9 

(quat., 3-C), 138.1 (quat., 1''-C), 138.6 (quat., 4'-C), 141.4 (quat., 2'-C), 142.7 (quat., 

2-C), 146.7 (quat., 1-C), 156.1 (quat., 1'-C), 156.4 (quat., 5-C). 
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5.1.19.8 2,4-Dinitro-3',5'-dimethoxydiphenylether 175c 

 

The title compound was prepared as described (method A) from 3,5-

dimethoxyphenol 177 (3.14g, 20.37mmol). Recrystallisation from EtOH yielded 2,4-

dinitro-3',5'-dimethoxydiphenylether 175c (5.96g, 18.61mmol, 91.2%) as pale yellow 

needles; m.p.: 105-107°C; (found: C, 52.3; H, 3.8; N, 8.75%. C14H12N2O7 requires C, 

52.5; H, 3.8; N, 8.75%); m/Z 321.1 (MH)+; ννννmax/cm-1 1598 and 1582 (C=C), 1535 and 

1343 (NO2), 1261 and 1055 (C-O); δH  (300 MHz, CDCl3) 3.71 (6H, s, 2 × OCH3, 7'-H 

and 8'-H), 6.20 (2H, d, J = 2.4Hz, 2'-H and 6'-H), 6.32 (1H, t, J = 2.1Hz, 4'-H), 7.05 

(1H, d, J = 9.3Hz, 6-H), 8.24 (1H, dd, J = 9.3, 3.0Hz, 5-H), 8.73 (1H, d, J = 2.7Hz,    

3-H); δC (75 MHz, CDCl3) 55.7 (CH3, 7'-C and 8'-C), 98.5 (CH, 4'-C), 99.0 (CH, 2'-C 

and 6'-C), 118.8 (CH, 6-C), 122.0 (CH, 3-C), 128.8 (CH, 5-C), 139.5 (quat., 4-C), 

141.5 (quat., 2-C), 155.2 (quat., 1'-C), 156.0 (quat., 1-C), 162.3 (quat., 3'-C and 5'-C). 

 

5.1.19.9 2,4-Dinitro-2',6'-dibromo-3',5'-dimethoxydiphenylether 175b 

 

The title compound was prepared as described (method A) from 2,6-dibromo-3,5-

dimethoxyphenol 176 (2.00g, 6.41mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (70:30 to 50:50) yielded 2,4-dinitro-2',6'-dibromo-

3',5'-dimethoxydiphenylether 175b as an off white solid (1.99g, 4.17mmol, 65.0%). 

White crystals were obtained from petroleum ether (60-80°C) : EtOAc; m.p. : 236-

239°C; (found: C, 35.1; H, 2.15; N, 5.8%. C14H10Br2N2O7 requires C, 35.2; H, 2.1; N, 

5.9%); m/Z 477.0 (43%), 479.0 (100%), 481.1 (45%) (MH)+; ννννmax/cm-1 1614 and 1579 

(C=C), 1535 and 1345 (NO2), 1215 and 1093 (C-O); δH  (300 MHz, d6-DMSO) 4.00 

(6H, s, 2 x OCH3, 7'-H and 8'-H), 6.96 (1H, s, 4'-H), 6.96 (1H, d, J = 9.0Hz, 6-H), 8.39 

(1H, dd, J = 9.0, 3.0Hz, 5-H), 8.94 (1H, d, J = 3.0Hz, 3-H); δC (75 MHz, d6-DMSO) 

57.7 (CH3, 7'-C and 8'-C), 97.2 (quat., 2'-C and 6'-C), 97.3 (CH, 4'-C), 117.0 (CH,     
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6-C), 122.6 (CH, 3-C), 130.1 (CH, 5-C), 138.7 (quat., 2-C), 142.3 (quat., 4-C), 147.9 

(quat., 1'-C), 152.9 (quat., 1-C), 157.7 (quat., 3'-C and 5'-C). 

  

5.1.19.10 2,5-Dinitro-4'-tbutyl-2',5'-dimethoxydiphenylether 152c (2008OBC682) 

 

The title compound was prepared as described (method B) from 2,5-dimethoxy-4-
tbutylphenol 150c (1.88g, 8.92mmol). 2,5-Dinitro-4'-tbutyl-2',5'-

dimethoxydiphenylether 152c was isolated as an orange solid (1.59g, 4.23mmol, 

47.4%). Recrystallisation from EtOH produced bright orange plates; m.p. (EtOH): 

138°C; (found: C, 57.4; H, 5.35; N, 7.25%. C18H20N2O7 requires C, 57.4; H, 5.4; N, 

7.4%); m/Z 399.1 (MNa)+; ννννmax/cm-1 1586 (C=C), 1537 and 1348 (NO2), 1206 and 

1038 (C-O); δH  (300 MHz, CDCl3) 1.33 (9H, s, C(CH3)3), 3.64 (3H, s, OCH3, 7'-H), 

3.72 (3H, s, OCH3, 8'-H),  6.66 (1H, s, 6'-H), 6.94 (1H, s, 3'-H), 7.56 (1H, d,  J = 

3.0Hz, 6-H), 7.82 (1H, dd,  J = 8.7, 2.1Hz, 4-H), 7.92 (1H, d, J = 8.7Hz, 3-H); δC (75 

MHz, CDCl3) 29.7 (CH3, 10'/11'/12'-C), 35.2 (quat., 4'-C), 55.8 (CH3, 8'-C), 57.0 (CH3, 

7'-C), 106.5 (CH, 6'-C), 112.8 (CH, 6-C), 113.8 (CH, 3'-C), 116.3 (CH, 4-C), 126.1 

(CH, 3-C), 137.9 (quat., 4'-C), 139.7 (quat., 1'-C), 142.8 (quat., 5-C), 143.9 (quat., 2'-

C), 150.4 (quat., 2-C), 152.3 (quat., 1-C), 153.4 (quat., 5'-C).  

 

5.1.19.11 2,5-Dinitro-2',5'-dimethoxy-3'-pentyldiphenylether 152d 

 

The title compound was prepared as described (method B) from 2,5-dimethoxy-4-

pentylphenol 150d (2.07g, 9.25mmol). The product was purified by column 

chromatography, eluting with petroleum ether (60-80°C) : Et2O (75:25). 2,5-Dinitro-

2',5'-dimethoxy-3'-pentyldiphenylether 152d was isolated as a bright orange solid 
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(1.69g, 4.33mmol, 46.8%). Recrystallisation from EtOH produced small yellow 

needles; m.p.: 77-79°C; (found: C, 58.3; H, 5.65; N, 7.2%. C19H22N2O7 requires C, 

58.5; H, 5.7; N, 7.2%); m/Z 391.2 (MH)+, 413.2 (MNa)+; ννννmax/cm-1 2853-2952 (C-H), 

1629 (C=C), 1531 and 1347 (NO2), 1209 and 1038 (C-O); δH  (300 MHz, CDCl3) 0.84 

(3H, t, J = 6.9Hz, 5''-H), 1.25-1.30 (4H, m, 3''-H and 4''-H), 1.48-1.55 (2H, m, 2''-H), 

2.54 (2H, t, J = 8.1Hz, 1''-H), 3.63 (3H, s, OCH3, 7'-H), 3.70 (3H, s, OCH3, 8'-H), 6.63 

(1H, s, 6'-H), 6.785 (1H, s, 3'-H), 7.53 (1H, d, J = 2.4Hz, 6-H), 7.83 (1H, dd, J = 9.0, 

2.4Hz, 4-H), 7.93 (1H, d, J = 8.7Hz, 3-H); δC (75 MHz, CDCl3) 14.0 (CH3, 5''-C), 22.6 

(CH2, 3''-C or 4''-C), 29.6 (CH2, 2''-C), 30.1 (CH2, 1''-C), 31.8 (CH2, 3''-C or 4''-C), 

56.1 (CH3, 8'-C), 56.9 (CH3, 7'-C), 105.6 (CH, 6'-C), 112.6 (CH, 6-C), 115.9 (CH,      

3'-C), 116.25 (CH, 4-C), 126.1 (CH, 3-C), 130.8 (quat., 4'-C), 139.5 (quat., 1'-C), 

142.8 (quat., 5-C), 144.4 (quat., 2'-C), 150.4 (quat., 2-C), 152.2 (quat., 5'-C), 152.4 

(quat., 1-C). 

 

5.1.19.12 Attempted preparation of 2,4-dinitro-3'-pentyl-2',5'-

dimethoxydiphenylether 169p 

 

Method A (adapted from 1997TA913): Preparation of the title compound was 

attempted from 2,4-dinitro-3'-bromo-2',5'-dimethoxydiphenylether 169e (0.69g, 

1.72mmol) following the method described earlier for 1,4-dimethoxy-2-pentylbenzene 

196. Overnight reaction resulted in the formation of a black, inextractable tar. No 

products could be isolated.  

Method B (adapted from 2005OS33): A 100mL two-necked round-bottomed flask 

equipped with a pressure equilizing dropping funnel and a reflux condenser was 

charged with Mg turnings (0.08g, 3.07mmol) and flame dried under a flow of N2. Dry 

THF (10mL) and 1,2-dibromoethane (0.5mL) were then successively added to the Mg 

turnings and the resulting suspension stirred. The pressure equilizing dropping funnel 

was charged with a solution of THF (10mL) and 1-bromopentane (0.31mL, 

2.50mmol), which was added dropwise to the Mg turnings suspension.  The resulting 

mixture was gently heated with an air gun until the Mg turning started to react; once 
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all Mg turnings were consummed, the resulting solution was refluxed for 10min. In the 

mean time, a flame dried 100mL two-necked round-bottomed flask flushed with N2 

was charged with 2,4-dinitro-3'-bromo-2',5'-dimethoxydiphenylether 169e (0.77g, 

1.92mmol), Fe(acac)3 (0.035g, 0.10mmol), dry THF (30mL) and dry N-methyl-2-

pyrrolidone (NMP, 5mL). The resulting orange solution was cooled with an ice bath 

and the previously prepared solution of pentylmagnesium bromide was added to it via 

canula. This resulted in the formation of a white precipitate and the resulting mixture 

was allowed to warm to R.T. and stirred for 24h. TLC monitoring of the reaction 

showed no evolution of the reaction, and quenching of the reaction with water 

(100mL) followed by extraction with EtOAc (2 × 50mL) resulted in full recovery of the 

starting materials. 

 

5.1.20 General procedure for the deprotection of substituted 2,4-dinitro-2',5'-

dimethoxydiphenyl ethers 169b and 169g 

In a 250 mL flame dried 2 necked round bottomed flask equipped with a thermometer 

and flushed with N2, the substituted biarylether (1mol equivalent) was dissolved in dry 

DCM (70mL). The resulting solution was cooled to -78°C in a dry ice/acetone bath. 

Once the temperature reached -78°C, a 1M DCM solution of BBr3 (3.8mol 

equivalents) was slowly added to the biarylether solution. The temperature was kept 

below -55°C during the addition. The resulting solution was stirred with the dry 

ice/acetone bath over 40 min, then was allowed to warm up to room temperature and 

left with stirring overnight under a nitrogen atmosphere. After 18-20 hours the 

solution was cooled again to -78°C and more 1M DCM solution of BBr3 (1.6 mol 

equivalents) was added. The resulting solution was allowed to warm to room 

temperature and stirred for a further 5 hours. It was then quenched with ice to 

neutralise the excess BBr3, and the DCM was removed under reduced pressure. The 

resulting mixture was extracted with diethyl ether (3x100mL) and the combined 

organic extracts were washed once with brine (200mL) and dried (MgSO4). The 

solvent was removed in vacuo and the residue subjected to column chromatography.  
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5.1.20.1 2,4-Dinitro-2',5'-dihydroxydiphenylether 170a 

 

The title compound was prepared as described from 2,4-dinitro-2',5'-

dimethoxydiphenylether 169g (4.01g, 12.50mmol). The product was purified by 

column chromatography, eluting with petroleum ether (60-80°C) : EtOAc (30:70). 

2,4–Dinitro–2',5'–dihydroxydiphenylether 170a was isolated as an amorphous 

hygroscopic yellow solid (3.53g, 12.10mmol, 96.7%) and was further purified by 

precipitation from DCM; m.p.: 113-115°C; (found: C, 49.0; H, 2.8; N, 9.55%. 

C12H8N2O6 requires C, 49.3; H, 2.8; N, 9.6%); m/Z 243.9 (M-H2NO2)
-, 290.9 (M-H)-; 

ννννmax/ cm-1 3401 and 3347 (OH), 1600 (C=C), 1506 and 1340 (NO2); δH (300 MHz, d6-

DMSO) 6.29 (1H, dd, J = 8.7, 2.7Hz, 4'-H), 6.49 (1H, d, J = 2.7Hz, 6'-H), 6.97 (1H, d, 

J = 3.3Hz, 6-H), 7.00 (1H, d, J = 2.7Hz, 3'-H), 8.39 (1H, dd, J = 9.3, 3.0Hz, 5-H), 8.82 

(1H, d, J = 3.0Hz, 3-H), 9.49 (1H, s, 5'-OH), 9.84 (1H, s, 2'-OH); δC (75 MHz, d6-

DMSO) 104.8  (CH, 6'-C ), 107.2 (CH, 4'-C), 117.6 (CH, 6-C), 122.1 (CH, 3-C), 123.2 

(CH, 3'-C ), 129.8 (CH, 5-C ), 133.0 (quat., 2'-C ), 138.5 (quat., 2-C ), 140.85 (quat., 

4-C ), 149.8 (quat., 1'-C ), 156.7 (quat., 5'-C), 157.1 (quat., 1-C ). 

 

5.1.20.2 2,4-Dinitro-2',5'-dihydroxy-3',4',6'-trimethyldiphenylether 170b and 

2,4-dinitrophenoxy-3',4',6'-trimethyl-2',5'-benzoquinone 179b 

 

The title compounds were prepared as described from 2,4-dinitro-2',5'-dimethoxy-

3',4',6'-trimethyldiphenylether (3.38g, 9.32mmol); elution used petroleum ether (60-

80°C) : Et2O (70:30). The collected fractions were combined and left at room 

temperature until crystals of 2,4-dinitro-2',5'-dihydroxy-3',4',6'-trimethyldiphenylether 

170b formed. The crystals were removed by filtration yielding 2,4-dinitro-2',5'-

dihydroxy-3',4',6'-trimethyldiphenylether 170b (1.67g, 4.99mmol, 53.5%) as cream 

coloured prisms; m.p. : 131-139°C; (found: C, 53.8; H, 4.2; N, 8.3%. C15H14N2O7 

requires C, 53.9; H, 4.2; N, 8.4%); m/Z 285.9 (M-H2NO2)
-, 332.9 (M-H)-; ννννmax/cm-1 
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3431 (O-H), 1602 and 1517 (C=C), 1537 and 1348 (NO2), 1244 (C-O); δH (300 MHz, 

d6-DMSO) 1.99 (3H, s, CH3, 7'-H), 2.09 (6H, s, 2 × CH3, 8'-H and 9'-H), 6.83 (1H, d,  

J = 9.6Hz, 6-H), 7.965 (1H, s, 5'-OH), 8.40 (1H, dd, J = 9.6, 3.0Hz, 5-H), 8.79 (1H, s, 

2'-OH), 8.84 (1H, d, J = 3.0Hz, 3-H); δC (75 MHz, d6-DMSO) 10.2 (CH3, 7'-C), 12.7 

(CH3, 8'-C or 9'-C), 12.8 (CH3, 8'-C or 9'-C), 111.9 (quat., 3'-C), 115.8 (quat., 4'-C), 

116.85 (CH, 6-C), 122.2 (CH, 3-C), 126.1 (quat., 6'-C), 130.0 (CH, 5-C), 132.7 (quat., 

1'-C), 138.6 (quat., 4-C), 140.8 (quat., 2-C), 145.1 (quat., 2'-C), 152.0 (quat., 5'-C), 

156.6 (quat., 1-C). 

The filtrate was evaporated under reduced pressure and the residue was  

recrystallised from MeOH and 2,4-dinitrophenoxy-3',4',6'-trimethyl-2',5'-benzoquinone 

179b was isolated as orange fluffy crystals (0.40g, 1.22 mmol, 13.0%); m.p.: 142-

145°C; ννννmax/cm-1 1666 and 1648 (C=O), 1602 (C=C), 1526 and 1343 (NO2), 1249  

(C-O); (found: C, 54.2; H, 3.6; N, 8.4%. C12H8N2O6 requires C, 54.2; H, 3.6; N, 8.4%); 

m/Z  330.9 (M-H)-; δH  (300 MHz, d6-DMSO) 1.95 (3H, d, J = 1.2Hz, CH3, 7'-H), 1.97 

(3H, s, CH3, 9'-H), 2.04 (3H, d, J = 0.9Hz, CH3, 8'-H), 7.54 (1H, d, J = 9.3Hz, 6-H), 

8.38 (1H, dd, J = 9.3, 2.7Hz, 5-H), 8.89 (1H, d, J = 2.7Hz, 3-H); δC (75 MHz, d6-

DMSO) 9.85 (CH3, 9'-C), 12.2 (CH3, 7'-C), 12.9 (CH3, 8'-C), 119.2 (CH, 6-C), 122.3 

(CH, 5-C), 129.7 (CH, 3-C), 134.3 (quat., 6'-C), 138.6 (quat., 2-C), 139.1 (quat., 4'-C), 

141.7 (quat., 3'-C), 142.3 (quat., 4-C), 149.0 (quat., 1'-C), 154.1 (quat., 1-C), 180.5 

(quat., 2'-C), 186.9 (quat., 5'-C). 

 

5.1.20.3 2,4-dinitro-2',6'-dibromo-3'-hydroxy-5'-methoxydiphenylether 212 

and 2,4-dinitro-2',6'-dibromo-3',5'-dihydroxydiphenylether 214 

               

The two products were prepared as described from 2,4-dinitro-2',6'-dibromo-3',5'-

dimethoxydiphenylether 175b (1.90g, 3.98mmol); elution used petroleum ether (60-

80°C) : Et2O (50 : 50). The more mobile fraction yielded 2,4-dinitro-2',6'-dibromo-3'-

hydroxy-5'-methoxydiphenylether 212 (0.7516g, 1.620mmol, 40.7%) as a white solid. 

Recrystallisation from aq. EtOH produced small cream coloured needles; m.p. : 

150.5-152.5°C; (found: C, 33.4; H, 1.7; N, 5.9%. C13H8Br2N2O7 requires C, 33.65; H, 

1.7; N, 6.0%); m/Z 460.9 (52%), 462.8 (100%), 464.8 (48%) (M-H)-; ννννmax/cm-1 3487 
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(O-H), 1593 and 1518 (C=C), 1533 and 1349 (NO2), 1091 (C-O), 682 (C-Br); δH  (300 

MHz, d6-DMSO) 3.88 (3H, s, OCH3), 6.78 (1H, s, 4'-H), 6.98 (1H, d, J = 9.3Hz, 6-H), 

8.43 (1H, dd, J = 9.3, 2.7Hz, 5-H), 8.945 (1H, d, J = 2.7Hz, 3-H), 11.14 (1H, s,         

5'-OH); δC (75 MHz, d6-DMSO) 57.1 (CH3, 7'-C), 95.6 (quat., 6'-C), 96.0 (quat., 2'-C), 

99.6 (CH, 4'-C), 117.0 (CH, 6-C), 122.5 (CH, 3-C), 130.1 (CH, 5-C), 138.6 (quat.,     

2-C), 142.2 (quat., 4-C), 148.0 (quat., 1'-C), 153.0 (quat., 1-C), 156.6 (quat., 5'-C), 

157.05 (quat., 3'-C). Continued elution gave 2,4-dinitro-2',4',6'-tribromo-3',5'-

hydroxydiphenylether 214 (0.30g, 0.49mmol, 12.3%) as a cream solid. 

Recrystallisation from EtOAc : petroleum ether (60-80°C) gave cream coloured 

needles; m.p.: 174.5-176.5°C; (found: C, 27.6; H, 1.1; N, 5.0%. C12H5Br3N2O7 

requires C, 27.25; H, 0.95; N, 5.3%); m/Z 525.0 (27%), 526.8 (100%), 528.6 (100%), 

530.6 (34%) (M-H)-; ννννmax/cm-1  3364 (O-H), 1606 (C=C), 1518 and 1344 (NO2),1183 

and 1068 (C-O), 682 (C-Br); δH  (300 MHz, d6-DMSO) 7.10 (1H, d, J = 9.3Hz, 6-H), 

8.33 (1H, dd, J = 9.3, 3.0Hz, 5-H), 8.95 (1H, d, J = 9.0Hz, 3-H), 10.53 (2H, br. s,         

2 × OH); δC (75 MHz, d6-DMSO) 97.7 (quat., 2'-C and 6'-C), 101.85 (quat., 4'-C), 

117.2 (CH, 6-C), 122.5 (CH, 3-C), 130.1 (CH, 5-C), 138.6 (quat., 2-C), 142.3 (quat., 

4-C), 146.7 (quat., 1'-C), 152.8 (quat., 1-C), 153.0 (quat., 3'-C and 5'-C). 

 

5.1.21 General procedure for the oxidation of the substituted 2,4-dinitro-2',5'-

dimethoxydiphenylether 169a,c,d,f and 2,4-dinitro-2',5'-dimethoxydiphenylether 

219a-b (adapted from 1976JOC3627) 

The correctly substituted dinitro-2',5'-dimethoxydiphenylether (1mol equivalent) was 

dissolved in CH3CN (50 to 500 mL) in a 2 necked round bottomed flask equipped 

with a thermometer and a dropping funnel. Cerium (IV) ammonium nitrate (3mol 

equivalent) was dissolved in the minimum amount of water and the resulting solution 

charged into the dropping funnel. This solution was then added slowly to the biaryl 

ether solution. The yellow solution usually darkened upon addition of the cerium (IV) 

ammonium nitrate solution, followed by the formation of a yellow precipitate soon 

after the addition was finished. The resulting mixture was stirred for a further 1h to 

ensure completion of the reaction. CH3CN was removed under reduced pressure 

and, whenever possible, the precipitate formed was collected by filtration and washed 

with water. It was then redissolved in DCM, the resulting solution dried (MgSO4) and 

the solvent was then removed in vacuo. The resulting solid was recrystallised from 

ethanol. When no precipitate, but a yellow oil/syrup, was observed, the reaction 
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mixture was extracted twice with DCM and the combined organic layers washed once 

with brine and dried (MgSO4). The solvent was then removed under reduced 

pressure and the residue either subjected to column chromatography or recrystallised 

from EtOH. 

 

5.1.21.1 2,4-Dinitrophenoxy-3',4'-dimethyl-2',5'-benzoquinone 179a 

 

The title compound was prepared as described from 2,4-dinitro-2',5'-dimethoxy-3',4'-

dimethyldiphenylether 169a (0.57g, 1.63mmol). Elution with petroleum ether 

(60:80°C) : EtOAc (30:70) yielded 2,4-dinitrophenoxy-3',4'-dimethyl-2',5'-

benzoquinone 179a as a yellow solid (0.47g, 1.48mmol, 90.9%). Recrystallisation 

from EtOH produced yellow prisms; m.p.: 110-111°C; (found: C, 52.8; H, 3.2; N, 

8.7%. C14H10N2O7 requires C, 52.8; H, 3.2; N, 8.8%); m/Z 316.9 (M-H)-; ννννmax/cm-1 

1666 and 1648 (C=O, quinone), 1600 (C=C), 1537 and 1347 (NO2), 1190 (C-O); δH  

(300 MHz, d6-DMSO) 2.01 (6H, s, 2 x CH3, 7'-H and 8'-H), 6.46 (1H, s, 6'-H), 7.77 

(1H, d, J = 9.0 Hz, 6-H), 8.55 (1H, dd, J = 9.0, 2.7 Hz, 5-H), 8.91 (1H, d, J = 2.7 Hz, 

3-H); δC (75 MHz, d6-DMSO) 12.3 (CH3, 7'-C or 8'-C), 12.6 (CH3, 7'-C or 8'-C), 117.9 

(CH, 6'-C), 122.5 (CH, 3-C), 123.5 (CH, 6-C), 130.3 (CH, 5-C), 139.5 (quat., 3'-C), 

140.5 (quat., 2-C), 141.4 (quat., 4'-C), 144.1 (quat., 4-C), 152.1 (quat., 1-C), 155.2 

(quat., 1'-C), 180.8 (quat., 2'-C), 187.1 (quat., 5'-C).  

 

5.1.21.2 2,4-Dinitrophenoxy-4'-tbutyl-2',5'-benzoquinone 179c 

 

The title compound was prepared as described from 2,4-dinitro-4'-tbutyl-2',5'-

dimethoxydiphenylether 169c (2.87g, 7.69mmol). The crude product was 

recrystallised from MeOH yielding 2,4-dinitrophenoxy-4'-tbutyl-2',5'-benzoquinone 

179c as a yellow fluffy solid (1.68g, 4.85mmol, 63.0%); m.p.: 179.5-182.5°C; (found: 
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C, 55.5; H, 4.1; N, 8.1%. C16H14N2O7 requires C, 55.5; H, 4.1; N, 8.1%); ννννmax/cm-1 

2870-2957 (C-H), 1665 and 1647 (C=O, quinone), 1611 (C=C), 1591 (C=C), 1533 

and 1341 (NO2), 1145 (C-O); δH  (300 MHz, d6-DMSO) 1.27 (9H, s, C(CH3)3), 6.40 

(1H, s, 6'-H), 6.67 (1H, s, 3'-H), 7.82 (1H, d, J = 9.3Hz,   6-H), 8.56 (1H, dd, J = 9.0, 

2.7Hz, 5-H), 8.92 (1H, d, J = 2.7Hz, 3-H); δC (75 MHz,   d6-DMSO) 29.5 (CH3, 

8'/9'/10'-C), 35.5 (quat., 7'-C), 119.6 (CH, 6'-C), 122.5 (CH, 3-C), 123.9 (CH, 6-C), 

130.3 (CH, 3'-C or 5-C), 130.5 (CH, 3'-C or 5-C), 140.6 (quat.,  2-C), 144.3 (quat., 4-

C), 151.8 (quat., 1-C), 154.5 (quat., 1'-C), 156.3 (quat., 4'-C), 181.4 (quat., 2'-C), 

187.6 (quat., 5'-C). 

 

5.1.21.4 2,4-Dinitrophenoxy-4'-pentyl-2',5'-benzoquinone 179d 

 

The title compound was prepared as described from 2,4-dinitro-2',5'-dimethoxy-3'-

pentyldiphenylether 169d (2.65g, 6.79mmol). The crude product was purified by 

column chromatography, eluting with petroleum ether (60-80°C) : EtOAc (70:30). 2,4-

Dinitrophenoxy-2',5'-dimethoxy-4'-pentylbenzoquinone 179d was isolated as a yellow 

solid (2.36g, 6.56mmol, 96.7%). Recrystallisation from EtOH produced shiny yellow 

plates; m.p.: 110-114°C; (found: C, 56.5; H, 4.4; N, 7.7%. C17H16N2O7 requires        

C, 56.7; H, 4.5; N, 7.8%); m/Z 358.95 (M-H)-; ννννmax/cm-1 2927 (C-H), 1673 and 1649 

(C=O), 1610 (C=C), 1530 and 1342 (NO2), 1224 (C-O); δH  (300 MHz, CDCl3) 0.83 

(3H, t, J = 6.9Hz, 5''-H), 1.26-1.29 (4H, m, 3''-H and 4''-H), 1.43-1.48 (2H, m, 2''-H), 

2.38 (2H, td, J = 7.8, 1.2Hz, 1''-H), 6.03 (1H, s, 6'-H), 6.53 (1H, t, J = 1.5Hz, 3'-H), 

7.31 (1H, d, J = 9.0Hz, 6-H), 8.43 (1H, dd, J = 9.0, 2.7Hz, 5-H), 8.88 (1H, d, J = 

2.7Hz, 3-H); δC(75 MHz, CDCl3) 13.9 (CH3, 5''-C), 22.4 (CH2, 3''-C or 4''-C), 27.6 

(CH2, 1''-C), 28.9 (CH2, 2''-C), 31.45 (CH2, 3''-C or 4''-C), 116.3 (CH, 6'-C), 122.5 

(CH, 3-C), 123.6 (CH, 6-C), 129.4 (CH, 5-C), 130.6 (CH, 3'-C), 140.7 (quat., 2-C), 

144.5 (quat., 4-C), 151.2 (quat., 4'-C), 151.8 (quat., 1-C), 155.3 (quat., 1'-C), 180.3 

(quat., 2'-C), 186.6 (quat., 5'-C). 
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5.1.21.3 2,4-Dinitrophenoxy-3'-phenyl-2',5'-benzoquinone 179e 

 

The title compound was prepared as described from 3-(2',4'-dinitrophenoxy)-2,5-

dimethoxybiphenyl 169f (1.48g, 3.97mmol). Elution with petroleum ether (60-80°C) : 

EtOAc (20:80) yielded 2,4-dinitrophenoxy-2',5'-dimethoxy-3'-phenylbenzoquinone 

179e as a yellow crystalline solid (1.23g, 3.36mmol, 84.6%). Recrystallisation from 

EtOH/EtOAc produced golden orange plates; m.p.: 158.5-160°C; (found: C, 58.8; H, 

2.8; N, 7.6%. C18H10N2O7 requires C, 59.0; H, 2.75; N, 7.65%); m/Z 364.9 (M-H)-; 

ννννmax/cm-1 1676 and 1649 (C=O, quinone), 1590 and 1523 (C=C), 1543 and 1347 

(NO2), 1226 and 1082 (C-O); δH (300 MHz, d6-DMSO) 6.59 (1H, d, J = 2.4Hz, 6-H), 

7.00 (1H, d, J = 2.4Hz, 4-H), 7.48-7.51 (3H, m, 3''-H, 5''-H and 4''-H), 7.54-7.58 (2H, 

m, 2''-H and 6''-H), 7.90 (1H, d, J = 9.3Hz, 6'-H), 8.60 (1H, dd, J = 9.3, 2.7Hz, 5'-H), 

8.94 (1H, d, J = 2.7Hz, 3'-H); δC (75 MHz, d6-DMSO) 117.95 (CH, 6'-C), 122.5 (CH, 

3-C), 123.6 (CH, 6-C), 128.8 (CH, 3''-C and 5''-C), 129.8 (CH, 2''-C and 6''-C), 130.4 

(CH, 5-C and 4''-C), 132.7 (quat., 1''-C), 133.15 (CH, 4'-C), 140.6 (quat., 2-C), 144.1 

(quat., 4-C), 144.7 (quat., 3'-C), 152.2 (quat., 1-C), 155.9 (quat., 1'-C), 179.9 (quat., 

2'-C), 187.3 (quat., 5'-C). 

 

5.1.21.5 2,5-Dinitrophenoxy-4'-t butyl-2',5'-benzoquinone 219a 

 

The title compound was prepared as described from 2,5-dinitro-4'-tbutyl-2',5'-

dimethoxydiphenylether 152c (1.57g, 4.18mmol). 2,5-Dinitrophenoxy-4'-tbutyl-2',5'-

benzoquinone 219a was isolated as a pale yellow solid (1.35g, 3.89mmol, 93.2%). 

Recrystalisation from EtOH produced a pale yellow microcrystalline solid; m.p.: 165-

168°C; (found: C, 55.1; H, 4.0; N, 8.0%. C16H14N2O7 requires C, 55.5; H, 4.1; N, 

8.1%); ννννmax/cm-1 2952 (C-H), 1672 and 1650 (C=O, quinone), 1594 (C=C), 1540 and 
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1347 (NO2), 1237 (C-O); δH (300 MHz, d6-DMSO) 1.26 (9H, s, C(CH3)3), 6.19 (1H, s, 

6'-H), 6.66 (1H, s, 3'-H), 8.33 (1H, dd, J = 9.0, 2.4Hz, 4-H), 8.41 (1H, d, J = 9.0Hz,   

3-H), 8.51 (1H, d, J = 2.4Hz, 6-H); δC (75 MHz, d6-DMSO) 29.5 (3 × CH3, 8'/9'/10'-C), 

35.4 (quat., 7'-C), 116.5 (CH, 6'-C), 119.9 (CH, 6-C), 122.3 (CH, 4-C), 127.9 (CH,    

3-C), 130.4 (CH, 3'-C), 145.3 (quat., 2-C), 146.65 (quat., 5-C), 151.1 (quat., 1-C), 

155.8 (quat., 1'-C), 156.1 (quat., 4'-C), 181.4 (quat., 2'-C), 187.8 (quat., 5'-C). 

 

5.1.21.6 2,5-Dinitrophenoxy-4'-pentyl-2',5'-benzoquinone 219b 

 

The title compound was prepared as described from 2,4-dinitro-2',5'-dimethoxy-3'-

pentyldiphenylether 152d (1.41g, 3.62mmol). The crude product was purified by 

column chromatography eluting with petroleum ether (60-80°C) : EtOAc (75:25). 2,5-

Dinitrophenoxy-2',5'-dimethoxy-4'-pentylbenzoquinone 219b was isolated as a yellow 

solid (1.19g, 3.31mmol, 91.4%). Recrystallisation from EtOH produced golden 

prisms; m.p. (EtOH): 91-94°C; (found: C, 56.4; H, 4.5; N, 7.8%. C17H16N2O7 requires 

C, 56.7; H, 4.5; N, 7.8%); ννννmax/cm-1 2870-2957 (C-H), 1676 and 1651 (C=O, 

quinone), 1603 (C=C), 1544 and 1343 (NO2), 1230 (C-O); δH (300 MHz, d6-DMSO) 

0.79 (3H, t, J = 6.9Hz, 5''-H), 1.24-1.19 (4H, m, 3''-H and 4''-H), 1.42-1.35 (2H, m,    

2''-H), 2.29 (2H, t, J = 6.9Hz, 1''-H), 6.18 (1H, s, 6'-H), 6.675 (1H, s, 3'-H), 8.23 (1H, 

dd, J = 9.0, 2.4Hz, 4-H), 8.32 (1H, d, J = 9.0Hz, 3-H), 8.41 (1H, d, J = 2.4Hz, 6-H); δC 

(75 MHz, d6-DMSO) 14.3 (CH3, 5''-H), 22.3 (CH2, 3''-C or 4''-C), 27.75 (CH2, 2''-C), 

28.6 (CH2, 1''-C), 31.4 (CH2, 3''-C or 4''-C), 115.1 (CH, 6'-C), 119.8 (CH, 6-C), 122.2 

(CH, 4-C), 127.9 (CH, 3-C), 131.2 (CH, 3'-C), 145.25 (quat., 2-C), 146.7 (quat., 5-C), 

150.2 (quat., 4'-C), 151.1 (quat., 1-C), 156.6 (quat., 1'-C), 181.0 (quat., 2'-C), 187.65 

(quat., 5'-C). 
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5.1.22 General procedure for the trapping of 2,4-diamino-2',5'-

dihydroxydiphenylether 220a and diaminophenoxy-2',5'-benzoquinone 171a,c,d  

and 152a 

Either 2,4-dinitro-2',5'-dihydroxydiphenylether 170a (1mol equivalent) or the correctly 

substituted 2,4-dinitrophenoxy-2',5'-benzoquinone 179 (1mol equivalent) was 

dissolved in MeOH or an EtOAc:MeOH (1:1) solvent mixture and Pd/C 5% (10% w/w 

of starting material) was added to the resulting solution. The resulting mixture was 

hydrogenated in a Berghof apparatus, the H2 pressure being set to 2.4bar. The usual 

hydrogenation time was about 3h or when no more evolution of the H2 pressure could 

be noted. Acetic anhydride (10mol equivalent) was added as soon as the 

hydrogenation was stopped and the resulting mixture was stirred at ambient 

atmosphere overnight. The reaction mixture was filtered through a pad of celite, the 

celite washed several times with MeOH and the filtrate was evaporated in vacuo. A 

5% aq. solution of NaHCO3 was added to the residue and the resulting mixture 

extracted with EtOAc (2 × 60 mL). The combined organic layers were washed with a 

5% aq. solution of NaHCO3 (70mL) and brine (100mL), and dried (MgSO4). The 

solvent was removed in vacuo and the crude product was purified by column 

chromatography. 

 

5.1.22.1 2,4-Diacetamido-2',5'-dihydroxydiphenylether 222 
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The title compound was prepared as described from 2,4-dinitro-2',5'-

dihydroxydiphenylether 170a (0.57g, 1.955mmol). The crude product was purified by 

column chromatography, eluting with EtOAc (100%). 2,4-Diacetamido-2',5'-

dihydroxydiphenylether 222 (0.49g, 1.555mmol, 79.5%) was isolated as a white solid. 

Recrystallisation was achieved from petroleum ether (60-80°C) : EtOAc; m.p.: 194.5-

196°C; (found: C, 60.5; H, 5.1; N, 8.65%. C16H16N2O5 requires C, 60.75; H, 5.1; N, 

8.9%); m/Z 314.9 (M-H)-; ννννmax/cm-1 3416 (N-H), 3317 (N-H), (br., O-H), 1698 (C=O), 

1665 (C=O), 1616 (C=C), 1240 and 1205 (C-O); δH (300 MHz, d6-DMSO) 2.025 (3H, 
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s, COCH3, 1b-H), 2.11 (3H, s, COCH3, 1a-H), 6.28 (1H, d, J = 2.7Hz, 6'-H), 6.45 (1H, 

dd, J = 8.7, 2.7Hz, 4'-H), 6.70 (1H, d, J = 8.7Hz, 6-H), 6.78 (1H, d, J = 8.7Hz, 3'-H), 

7.35 (1H, dd, J = 9.0, 2.4Hz, 5-H), 8.12 (1H, d, J = 2.1Hz, 3-H),  8.67 (1H, s, 2'-OH), 

8.88 (1H, s, 5'-OH), 9.44 (1H, s, 2-NH), 9.89 (1H, s, 4-NH); δC (75 MHz, d6-DMSO) 

24.2 (CH3, 2a-C or 2b-C), 24.3 (CH3, 2a-C or 2b-C), 108.3 (CH, 6'-C), 111.85 (CH,  

4'-C), 114.9 (CH, 3-C), 116.1 (CH, 5-C), 117.0 (CH, 6-C), 118.0 (CH, 3'-C), 128.85 

(quat., 4-C), 134.6 (quat., 2-C), 141.3 (quat., 2'-C), 144.0 (quat., 1-C and 1'-C), 150.8 

(quat., 5'-C), 168.5 (quat., 1b-C), 169.1 (quat., 1a-C). 

 

5.1.22.2 2,4-Diacetamido-3',4'-dimethyl-2',5'-benzoquinone 223a 

 

The title compound was prepared as described from 2,4-dinitrophenoxy-3',4'-

dimethyl-2',5'-benzoquinone 179a (0.26g, 0.88mmol) and acetic anhydride (2.5mL). 

The crude product was purified by column chromatography on silica eluting with a 

gradient mixture of petroleum ether (60-80°C) : EtOAc (10:90 to 0:100). 2,4-

Diacetamido-3',4'-dimethyl-2',5'-benzoquinone 223a was isolated as a bright orange 

crystalline solid (0.26g, 0.77mmol, 95.8%). Recrystallisation from EtOAc : hexane 

produced small orange prisms, m.p. : 161°C (dec.); (found: C, 63.4; H, 5.4; N, 8.1%. 

C18H18N2O5 requires C, 63.15; H, 5.3; N, 8.2%); m/Z 298.9 (M-CH3CO)-, 340.9 (M-H)-; 

ννννmax/cm-1 3403 and 3277 (N-H), 1711 (C=O), 1655 and 1648 (C=O, quinone), 1606 

(C=C), 1207 (C-O); δH (300 MHz, d8-THF) 2.00 (3H, d, J = 1.2Hz, 7'-H), 2.05-2.06 

(6H, m, 2 × CH3, 8'-H and 2a-H or 2b-H), 2.08 (3H, s, 2a-H or 2b-H), 5.655 (1H, s, 6'-

H), 6.98 (1H, d, J = 9.0Hz, 6-H), 7.915 (1H, dd, J = 8.7, 2.1Hz, 5-H), 8.30 (1H, d, J = 

2.4Hz, 3-H), 8.63 (1H, s, 2-NH), 9.31 (1H, s, 4-NH); δC (75 MHz, d8-THF) 9.1 (CH3, 

7'-C or 8'-C), 9.3 (CH3, 7'-C or 8'-C), 21.1 (CH3, 2a-C or 2b-C), 21.25 (CH3, 2a-C or 

2b-C), 108.5 (CH, 6'-C), 110.45 (CH, 3-C), 113.0 (CH, 5-C), 118.8 (CH, 6-C), 129.5 

(quat., 2-C), 135.35 (quat., 4-C), 136.2 (quat., 1-C), 136.6 (quat., 3'-C), 138.8 (quat., 

4'-C), 156.1 (quat., 1'-C), 165.8 (quat., 1a-C or 1b-C), 166.3 (quat., 1a-C or 1b-C), 

179.0 (quat., 2'-C), 184.3 (quat., 5'-C). 
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5.1.22.3 2,4-Diacetamido-4'-tbutyl-2',5'-benzoquinone 223b 

 

The title compound was prepared as described from 2,5-dinitrophenoxy-4'-tbutyl-2',5'-

benzoquinone 179c (0.18g, 0.51mmol). The crude product was purified by column 

chromatography on silica gel eluting with petroleum ether (60-80°) : EtOAc (20 : 80). 

2,4-Diacetamido-4'-tbutyl-2',5'-benzoquinone 223b was isolated as a yellow-brown 

solid (0.19g, 0.51mmol, 99.0%). Recrystalisation from petroleum ether (60-80°C) : 

EtOAc produced light brown micro-crystalline solid; m.p.: 174-178°C; (found: C, 64.9; 

H, 6.1; N, 7.5%. C20H22N2O5 requires C, 64.85; H, 6.0; N, 7.6%); m/Z 371.2 (MH)+;  

ννννmax/cm-1 3330 (N-H), 2997-2868 (C-H), 1697 (C=O), 1665 and 1639 (C=O, quinone), 

1594 and 1534 (C=C), 1168 (C-O); δH (300 MHz, d6-DMSO) 1.25 (9H, s, C(CH3)3), 

2.03 (3H, s, 2a-H or 2b-H), 2.055 (3H, s, 2a-H or 2b-H), 5.42 (1H, s, 6'-H), 6.63 (1H, 

s, 3'-H), 7.13 (1H, d, J = 9.0Hz, 6-H), 7.55 (1H, dd, J = 9.0, 2.4Hz, 5-H), 8.18 (1H, d, 

J = 2.4Hz, 3-H), 9.33 (1H, s, 2-NH), 10.07 (1H, s, 4-NH); δC (75 MHz, d6-DMSO) 24.1 

(CH3, 2a-C or 2b-C), 24.4 (CH3, 2a-C or 2b-C), 29.5 (CH3, 8'/9'/10'-C), 35.3 (quat., 7'-

C), 112.2 (CH, 6'-C), 115.2 (CH, 3-C), 116.2 (CH, 5-C), 121.9 (CH, 6-C), 130.4 (CH, 

3'-C), 130.9 (quat., 2-C), 137.9 (quat., 1-C), 138.5 (quat., 4-C), 155.7 (quat., 4'-C), 

157.6 (quat., 1'-C), 168.8 (quat., 1a-C or 1b-C), 169.2 (quat., 1a-C or 1b-C), 182.1 

(quat., 2'-C), 187.8 (quat., 5'-C). 

 

5.1.22.4 2,4-Diacetamido-4'-pentyl-2',5'-benzoquinone 223c 

 

The title compound was prepared as described from 2,5-dinitrophenoxy-4'-pentyl-

2',5'-benzoquinone 179d (0.46g, 1.26mmol). The crude product was purified by 

column chromatography on silica eluting with petroleum ether (60-80°C) : EtOAc 
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(90:10). 2,4-Diacetamido-4'-pentyl-2',5'-benzoquinone 223c was isolated as a dark 

orange crystalline solid (0.48g, 1.24mmol, 98.3%). Recrystallisation from EtOAc : 

hexane produced red prisms, m.p.: 90-93°C; (found: C, 65.6; H, 6.4; N, 7.2%. 

C21H24N2O5 requires C, 65.6; H, 6.3; N, 7.3%); m/Z 341.0 (M-CH3CO)-, 383.0 (M-H)-; 

ννννmax/cm-1 3357 (N-H), 3269 (N-H), 2955 (C-H), 2929 (C-H), 1726 (C=O), 1663 and 

1647 (C=O, quinone), 1599 (C=C), 1206 (C-O); δH (300 MHz, d8-THF) 0.931 (3H, t, J 

= 6.9Hz, 5''-H), 1.34-1.39 (4H, m, 3''-H and 4''-H), 1.48-1.55 (2H, m, 2''-H), 2.04 (3H, 

s, 2a-H or 2b-H), 2.07 (3H, s, 2a-H or 2b-H), 2.40 (2H, dt, J = 7.5, 1.2Hz, 1''-H), 5.67 

(1H, s, 6'-H), 6.59 (1H, br. s, 3'-H), 6.98 (1H, d, J = 8.7Hz, 6-H), 7.91 (1H, dd, J = 9.0, 

2.1Hz, 5-H), 8.28 (1H, d, J = 2.1Hz, 3-H), 8.63 (1H, s, 2-NH), 9.31 (1H, s, 4-NH);      

δC (75 MHz, d8-THF) 13.3 (CH3, 5''-C), 22.3 (CH2, 3''-C or 4''-C), 23.0 (CH3, 2a-C or 

2b-C), 23.1 (CH3, 2a-C or 2b-C), 27.85 (CH2, 2''-C), 28.6 (CH2, 1''-C), 31.5 (CH2, 3''-C 

or 4''-C), 110.8 (CH, 6'-C), 112.5 (CH, 3-C), 114.9 (CH, 5-C), 120.7 (CH, 6-C), 130.45 

(CH, 3'-C), 131.3 (quat., 2-C), 137.15 (quat., 1-C), 138.2 (quat., 4-C), 149.8 (quat.,  

4'-C), 158.2 (quat., 1'-C), 167.7 (quat., 1a-C or 1b-C), 168.1 (quat., 1a-C or 1b-C), 

181.0 (quat., 2'-C), 186.6 (quat., 5'-C). 

 

5.1.22.5 2,5-Diacetamido-2',5'-dihydroxy-4'-tbutyldiphenylether 227 

 

The title compound was prepared as described from 2,5-dinitrophenoxy-4'-tbutyl-2',5'-

benzoquinone 219a (0.11g, 0.32mmol). The crude product was purified by column 

chromatography on silica eluting with petroleum ether (60-80°C) : EtOAc (20:80). 2,5-

Diacetamido-2',5'-dihydroxy-4'-tbutyldiphenylether 227 (0.12g, 0.31mmol, 97.5%) was 

isolated as a white solid. Recrystallisation from petroleum ether (60-80°C) : EtOAc 

produced a white crystalline solid; m.p.: 148-152°C; (found: C, 64.7; H, 6.55; N, 

7.6%. C20H24N2O5 requires C, 64.5; H, 6.5; N, 7.5%); m/Z 371.0 (M-H)-; ννννmax/cm-1  

3345 (N-H), 3259 (N-H), (br., O-H), 2957 (C-H), 1701 (C=O), 1667 (C=O), 1605 

(C=C); δH (300 MHz, d6-DMSO) 1.25 (9H, s, C(CH3)3), 1.87 (3H, s, 2a-H or 2b-H), 
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1.99 (3H, s, 2a-H or 2b-H), 6.36 (1H, s, 3'-H), 6.69 (1H, s, 6'-H), 6.85 (1H, d, J = 

1.8Hz, 6-H), 7.25 (1H, dd, J = 8.4, 1.5Hz, 4-H), 7.60 (1H, d, J = 8.7Hz, 3-H), 8.44 

(1H, s, 2'-OH), 8.76 (1H, s, 5'-OH), 9.33 (1H, s, 2-NH), 9.77 (1H, s, 5-NH); δC (75 

MHz, d6-DMSO) 24.0 (CH3, 2a-C or 2b-C), 24.3 (CH3, 2a-C or 2b-C), 29.9 (CH3, 

8'/9'/10'-C), 34.5 (quat., 7'-C), 107.1 (CH, 6-C), 109.7 (CH, 3'-C), 113.1 (CH, 4-C), 

115.9 (CH, 6'-C), 123.55 (quat., 2-C), 124.2 (CH, 3-C), 132.8 (quat., 4'-C), 136.9 

(quat., 5-C), 140.4 (quat., 1'-C), 140.7 (quat., 2'-C), 148.8 (quat., 5'-C), 149.7 (quat., 

1-C), 168.5 (quat., 1a-C or 1b-C), 169.0 (quat., 1a-C or 1b-C). 

 

5.1.22.6 2-Acetoxy-5-acetamido-1-phenylamino-3',4'-dimethyl-2',5'-

benzoquinone 224 
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Method A. The title compound was prepared from 2,4-dinitrophenoxy-3',4'-dimethyl-

2',5'-benzoquinone 179a (0.13g, 0.43mmol) following the general trapping method 

described above and using an hydrogenation time of 48h. The residue was purified 

by column chromatography, eluting with a gradient mixture of petroleum ether (60-

80°C) : EtOAc (10 : 90) to (0 : 100). The title compound 224 was isolated as a red 

solid (0.13g, 0.38mmol, 88.1%). Recrystalisation from EtOAc : petroleum ether (68-

80°C) yielded a red microcrystalline solid. 

Method B. The title compound was prapred by refluxing 2,4-diacetamido-3',4'-

dimethyl-2',5'-benzoquinone 257a (0.15g, 0.44mmol) in MeOH (10mL) for 12h. The 

solvent was then evaporated in vacuo and the residue purified by column 

chromatography, eluting with a gradient mixture of petroleum ether (60-80°C) : 

EtOAc (10 : 90) to (0 : 100). The title compound 224 was isolated as a red solid 

(0.11g, 0.32mmol, 73.2%). Recrystalisation from EtOAc : petroleum ether (68-80°C) 

produced a microcrystalline red solid; ννννmax/cm-1 3334 (N-H), 1754 (C=O), 1697 

(C=O), 1662 and 1644 (C=O), 1186 (C-O); δH (300 MHz, d6-DMSO) 1.95 (3H, d, J = 

0.9Hz, CH3, 7'-H or 8'-H), 1.98 (3H, d, J = 1.2Hz, CH3, 7'-H or 8'-H), 2.065 (3H, s, 
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CH3, 2b-H), 2.22 (3H, s, CH3, 2a-H), 5.61 (1H, s, 6'-H), 7.18 (1H, d, J = 8.7Hz, 6-H), 

7.45 (1H, dd, J = 8.7, 2.4Hz, 4-H), 7.71 (1H, d, J = 2.4Hz, 3-H), 8.26 (1H, s, 1-NH), 

10.09 (1H, s, 5-NH); δC (75 MHz, d6-DMSO) 12.3 (CH3, 7'-C or 8'-C), 12.8 (CH3, 7'-C 

or 8'-C), 21.1 (CH3, 2a-C), 24.45 (CH3, 2b-C), 100.8 (CH, 6'-C), 115.4 (CH, 6-C), 

117.0 (CH, 4-C), 124.0 (CH, 3-C), 130.5 (quat., 1-C), 137.1 (quat., 4'-C), 138.0 

(quat., 5'-C), 139.5 (quat., 2-C), 142.8 (quat., 3'-C), 144.0 (quat., 1'-C), 169.0 (quat., 

1a-C or 1b-C), 169.1 (quat., 1a-C or 1b-C), 183.6 (quat., 2'-C), 185.8 (quat., 5'-C). 

 

5.1.23 General procedure for the preparation of 8-amino-alkyl-3H-phenoxazin-3-

ones 167a-e and 7-amino-2-alkyl-3H-phenoxazin-3-ones 59d-e 

Method A. The correctly substituted 2,4-dinitro-2',5'-dihydroxydiphenyl ether 170 was 

dissolved in MeOH. Pd/C 5% (10% w/w of starting material) was added to the 

solution and the resulting mixture was hydrogenated in a Berghof apparatus. The H2 

pressure was set to 2.4bar and reset to this pressure when necessary. Once the H2 

pressure was steady, the reacting mixture was filtered through celite to remove the 

catalyst and the celite washed several time with small portions of MeOH. Either AgO, 

Ag2O or MnO2 (3mol equivalent) was then added quickly to the filtrate, followed by 

the addition of Et3N (1mL), which rapidly produced a dark purple-violet suspension 

after stirring. Once the oxidative-cyclisation was complete (TLC monitoring), the 

inorganic materials were removed by filtration through celite and the celite was 

washed several times with THF and MeOH, until the filtrate was of a clear colour. The 

combined filtrates were evaporated in vacuo and the residue subjected to column 

chromatography. 

Method B. The correctly substituted 2,4-dinitrophenoxy-2',5'-benzoquinone 179a-e or 

2,5-dinitrophenoxy-2',5'-benzoquinone 219a-b was dissolved in an EtOAc : MeOH 

(1:1) solvent mixture. Pd/C 5% (10% w/w of the starting material) was added to the 

solution and the resulting mixture was hydrogenated in a Berghof apparatus. The H2 

pressure was set to 2.4bar and reset to this pressure when necessary. Once the H2 

pressure was steady, the reacting mixture was filtered through celite to remove the 

catalyst and the celite was washed several times with MeOH. Either AgO or Ag2O 

(3mol equivalent) were then added quickly to the filtrate, which rapidly produced a 

dark purple-violet solution for 8-aminophenoxazinone derivatives and a dark red-

purple fluorescent solution for 7-aminophenoxazinone derivatives during stirring. 

Once the oxidative-cyclisation was complete (TLC monitoring), the inorganic 
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materials were removed by filtration through celite and the celite was washed several 

times with THF and MeOH, until the filtrate was of a clear colour. The combined 

filtrates were evaporated in vacuo and the residue subjected to column 

chromatography. 

 

5.1.23.1 8-Amino-3H-phenoxazin-3-one 167a 

 

Method A. The title compound was prepared as described earlier from 2,4-dinitro-2'-

5'-dihydroxydiphenylether 170a (0.56g, 1.91mmol). The crude product was purified 

by column chromatography on silica, eluting with a gradient mixture of petroleum 

ether (60-80°C) : EtOAc (70:30 to 100:0), yielding 8-amino-3H-phenoxazin-3-one 

167a as a dark purple solid (0.37g, 1.75mmol, 91.3%). Analytical data were identical 

to that obtained for the product of method C below. 

Method C. 8-Nitro-1,2,4-tribromophenoxazin-3-one (0.30g, 0.62mmol) was dissolved 

in 20mL of MeOH : EtOAc (1:1) solvent mixture. Pd/C 10% (60mg) and Et3N (1mL) 

were then added to the resuting suspension. The resulting reaction mixture was 

hydrogenated for 48h in a Berghof apparatus; the initial H2 pressure was set to 

3.4bar. After 48h, the catalyst was removed by filtering the reaction mixture over 

celite, and the celite was washed several times with small portions of MeOH. Ag2O 

was added to the filtrate, which rapidly produced a dark violet solution. The resulting 

suspension was again filtered over celite, and the celite was washed several times 

with small portions of THF. The filtrate was evaporated in vacuo, and the residue was 

purified by column chromatography on silica, eluting with a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (70:30 to 100:0), yielding 8-amino-3H-

phenoxazin-3-one 167a as a dark purple solid (0.07g, 0.34mmol, 54.1%); m.p. 

>290°C; m/Z 213.0 (MH)+ and 234.9 (MNa)+; ννννmax/cm-1 3387, 3320, 3200 (NH2), 1640 

(C=O), 1591 (C=C); δH (300 MHz, d6-DMSO)  5.45 (2H, br. s, NH2), 6.21 (1H, d, J = 

2.1Hz, 4-H), 6.82 (1H, dd, J = 9.6, 2.1Hz, 2-H), 6.97 ( 2H, m, 7-H and 9-H), 7.24 (1H, 

d, J = 9.6Hz, 6-H), 7.49 (1H, d, J = 9.9Hz, 1-H); δC (75 MHz, d6-DMSO) 105.3 (CH,  

4-C), 111.6 (CH, 9-C), 116.7 (CH, 6-C), 121.0 (CH, 7-C), 134.3 (quat., 8-C), 135.0 
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(CH, 1-C and 2-C), 135.5 (quat., 9a-C), 147.4 (quat., 5a-C), 148.2 (quat., 10a-C), 

150.4 (quat., 4a-C), 185.6 (quat., 3-C).  

 

5.1.23.2 8-Amino-1,2-dimethyl-3H-phenoxazin-3-one 167b 

 

The title compound was prepared as described (method B) from 2,4-dinitrophenoxy-

3',4'-dimethyl-2',5'-benzoquinone 179a (0.41g, 1.28mmol); elution used petroleum 

ether (60-80°C) : EtOAc yielded 8-amino-1,2-dimethyl-3H-phenoxazin-3-one 167b 

(0.28g, 1.18mmol, 92.0%) as a dark violet solid; m.p.: 260-265°C; m/Z 241.0 (MH)+; 

ννννmax/cm-1 3414, 3332 and 3225 (NH2), 2851-2920 (C-H), 1638 (C=O), 1570 (C=C); 

δH (300 MHz, d6-DMSO) 2.05 (3H, d, J = 0.9 Hz, 12-H), 2.35 (3H, d, J = 0.9Hz,      

11-H), 5.38 (2H, br. s, NH2), 6.12 (1H, s, 4-H), 6.90 (1H, dd, J = 9.0, 2.7Hz, 7-H), 

6.96 (1H, d, J = 2.7Hz, 9-H), 7.20 (1H, d, J = 8.7Hz, 6-H); δC (75 MHz, d6-DMSO) 

13.1 (CH3, 11-C or 12-C), 13.2 (CH3, 11-C or 12-C), 104.0 (CH, 4-C), 112.0 (CH,     

9-C), 116.3 (CH, 6-C), 120.1 (CH, 7-C), 133.7 (quat., 8-C), 135.3 (quat., 9a-C), 137.5 

(quat., 1-C), 139.1 (quat., 2-C), 147.1 (quat., 5a-C), 148.2 (quat., 10a-C), 149.8 

(quat., 4a-C), 184.5 (quat., 3-C). 

 

5.1.23.3 8-Amino-1,2,4-trimethyl-3H-phenoxazin-3-one 167c 

 

Method A. The title compound was prepared as described earlier from 2,4-

dinitrophenoxy-3',4',6'-trimethylbenzoquinone 179b (0.27g, 0.81mmol); elution used 

petroleum ether (60-80°C) : EtOAc (30:70), yielding 8-amino-1,2,4-trimethyl-3H-

phenoxazin-3-one 167c (0.19g, 0.77mmol, 94.0%) as a dark violet solid. Analytical 

data were identical to that obtained for the product of method B below. 

Method B. The title compound was prepared as described earlier from 2,4-dinitro-

2',5'-dihydroxy-3',4',6'-trimethyldiphenylether 170b (0.33g, 0.98mmol); elution used 

petroleum ether (60-80°C) : EtOAc (30:70), yielding 8-amino-1,2,4-trimethyl-3H-
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phenoxazin-3-one 167c (0.22g, 0.85mmol, 86.7%) as a dark violet solid; m.p.: 235-

246°C; m/Z 255.0 (MH)+; ννννmax/cm-1 3355, 3332 and 3219 (NH2), 2850-2920 (C-H), 

1649 (C=O), 1595, 1577 and 1505 (C=C); δH (300 MHz, d6-DMSO) 1.95 (3H, s,     

13-H), 2.06 (3H, d, J = 0.9Hz, 12-H), 2.32 (3H, d, J = 0.9Hz, 11-H), 5.32 (2H, br. s, 

NH2), 6.86 (1H, dd, J = 8.7, 2.7Hz, 7-H), 6.93 (1H, d, J = 2.7Hz, 9-H), 7.19 (1H, d, J = 

8.7Hz, 6-H); δC (75 MHz, d6-DMSO) 8.08 (CH3, 13-C), 13.0 (CH3, 11-C), 13.4 (CH3, 

12-C), 111.75 (quat., 4-C), 112.1 (CH, 9-C), 116.3 (CH, 6-C), 119.6 (CH, 7-C), 133.3 

(quat., 8-C), 135.8 (quat., 9a-C), 136.6 (quat., 1-C or 2-C), 138.4 (quat., 1-C or 2-C), 

145.9 (quat., 4a-C), 146.8 (quat., 5a-C), 148.1 (quat., 10a-C), 184.1 (quat.,3-C). 

 

5.1.23.4 8-Amino-2-tbutyl-3H-phenoxazin-3-one 167d 

 

The title compound was prepared as described (method B) from 2,4-dinitrophenoxy-

4'-tbutyl-2',5'-benzoquinone 179b (0.62g, 1.78mmol); elution used petroleum ether 

(60-80°C) : EtOAc (40:60) yielding 8-amino-2-tbutyl-3H-phenoxazin-3-one 167d 

(0.41g, 1.55mmol, 86.8%) as a dark violet solid; m.p.: 217-226°C; (found: C, 71.6; H, 

6.3; N, 10.1%. C16H16N2O2 requires C, 71.6; H, 6.0; N, 10.4%); m/Z 269.0 (MH)+; 

ννννmax/cm-1 3420 and 3337 (NH2), 2952 (C-H), 1649 (C=O), 1601 and 1575 (C=C); δH 

(300 MHz, CDCl3) 1.31 (9H, s, C(CH3)3), 3.74 (2H, br. s, NH2), 6.12 (1H, s, 4-H), 6.78 

(1H, dd, J = 8.7, 2.7Hz, 7-H), 6.94 (1H, d, J = 2.7Hz, 9-H), 7.05 (1H, d, J = 8.7Hz,    

6-H), 7.20 (1H, s, 1-H); δC (75 MHz, CDCl3) 29.3 (CH3, 12/13/14-C), 35.8 (quat.,    

11-C), 107.6 (CH, 4-C), 113.6 (CH, 9-C), 116.5 (CH, 6-C), 119.9 (CH, 7-C), 129.4 

(CH, 1-C), 134.25 (quat., 8-C), 137.0 (quat., 9a-C), 143.9 (quat., 5a-C), 148.7 (quat., 

4a-C or 10a-C), 149.8 (quat., 4a-C or 10a-C), 154.9 (quat., 2-C), 185.9 (quat., 3-C). 

 

5.1.23.5 8-Amino-2-pentyl-3H-phenoxazin-3-one 167e  
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The title compound was prepared as described (method B) from 2,4-dinitrophenoxy-

2',5'-dimethoxy-4'-pentyl-2',5'-benzoquinone 179d (0.38g, 1.07mmol); elution used a 

gradient mixture of petroleum ether (60-80°C) : EtOAc (50 : 50 to 35 : 65), yielding    

8-amino-2-pentyl-3H-phenoxazin-3-one 167e as a dark violet solid (0.29g, 1.01mmol, 

94.7%), m.p.: 141-144°C; (found: C, 71.9; H, 6.6; N, 9.65%. C17H18N2O2 requires C, 

72.2; H, 6.4; N, 9.9%); m/Z 283.1 (MH)+; ννννmax/cm-1 3400, 3337 and 3222 (N-H), 2853 

and 2928 (C-H), 1639 (C=O), 1585, 1566 and 1508 (C=C); δH (300 MHz, d6-DMSO) 

0.87 (3H, t, J = 6.9Hz, 5'-H), 1.28-1.32 (4H, m, 3'-H and 4'-H), 1.46-1.56 (2H, m,      

2'-H), 2.45 (2H, t, J = 6.9Hz, 1'-H), 5.41 (2H, br. s, NH2), 6.17 (1H, s, 4-H), 6.90-6.93 

(2H, m, 6-H and 7-H), 7.21 (1H, d, J = 9.3Hz, 6-H), 7.25 (1H, s, 1-H); δC (75 MHz,  

d6-DMSO) 14.3 (CH3, 5'-C), 22.4 (CH2, 3'-C or 4'-C), 28.1 (CH2, 2'-C), 29.5 (CH2,    

1'-C), 31.5 (CH2, 3'-C or 4'-C), 105.0 (CH, 4-C), 111.55 (CH, 9-C), 116.55 (CH, 6-C), 

120.3 (CH, 7-C), 130.6 (CH, 1-C), 134.3 (quat., 8-C), 135.3 (quat., 9a-C), 147.25 

(quat., 2-C or 5a-C), 147.3 (quat., 2-C or 5a-C), 148.4 (quat., 4a-C), 149.7 (quat., 

10a-C), 184.8 (quat., 3-C).  

 

5.1.23.6 8-Amino-1-phenyl-3H-phenoxazin-3-one 167f 

 

The title compound was prepared by reduction of 2,4-dinitrophenoxy-2',5'-dimethoxy-

3'-phenylbenzoquinone 179e (0.065g, 0.18mmol), using THF as solvent (method A). 

Hydrogenation time of 48h was required; cyclisation occured in the presence of Ag2O 

(0.16g, 0.71mmol) and Et3N (1mL); elution used petroleum ether (60-80°C) : EtOAc  

(30:70) yielded 8-amino-1-phenyl-3H-phenoxazin-3-one 167f as a dark violet solid 

(0.04g, 0.13mmol, 73.4%); m.p.: 205°C (dec.); m/Z 289.0 (MH)+, 301.1 (MNa)+; 

ννννmax/cm-1 3421, 3308 and 3198 (N-H), 1634 (C=O), 1586, 1560 and 1502 (C=C); δH 

(300 MHz, d6-DMSO) 5.31 (2H, br. s, NH2), 6.18 (1H, d, J = 2.1Hz, 4-H), 6.68 (1H, d, 

J = 2.1Hz, 2-H), 6.77 (1H, d, J = 2.7Hz, 9-H), 6.87 (1H, dd, J = 8.7, 2.7Hz, 7-H), 7.17 

(1H, d, J = 8.7Hz, 6-H), 7.38-7.40 (3H, m, 3'-H, 4'-H and 5'-H), 7.48-7.53 (2H, m, 2'-H 

and 6'-H); δC (75 MHz, d6-DMSO) 105.15 (CH, 4-C), 112.0 (CH, 9-C), 116.5 (CH,     

6-C), 121.15 (CH, 7-C), 128.3 (CH, 3'-C and 5'-C), 129.1 (CH, 4'-C), 130.6 (CH, 2'-C 
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and 6'-C), 133.0 (CH, 2-C), 133.9 (quat., 8-C), 135.3 (quat., 9a-C), 135.5 (quat., 1-C), 

144.9 (quat., 1'-C), 147.2 (quat., 5a-C or 10a-C), 147.3 (quat., 5a-C or 10a-C), 150.6 

(quat., 4a-C), 184.5 (quat., 3-C). 

 

5.1.23.7 7-Amino-2-tbutyl-3H-phenoxazin-3-one 59d 

 

The title compound was prepared as described from 2,5-dinitrophenoxy-4'-tbutyl-2',5'-

benzoquinone 219a (1.01g, 2.91mmol); elution used petroleum ether (60-80°C) : 

EtOAc (40:60), yielding 7-amino-2-tbutyl-3H-phenoxazin-3-one 59d as a dark solid 

with a metallic shine (0.76g, 2.84mmol, 97.5%); m.p.: 255-260°C; (found: C, 71.5; H, 

6.1; N, 10.4%. C16H16N2O2 requires C, 71.6; H, 6.0; N, 10.4%); m/Z 269.1 (MH)+; 

ννννmax/cm-1 3408, 3317 and 3205 (NH2), 2944 (C-H), 1643 (C=O), 1589, 1568 and 

1547 (C=C); δH (300 MHz, d6-DMSO) 1.31 (9H, s, C(CH3)3), 6.04 (1H, s, 4-H), 6.475 

(1H, d, J = 2.4Hz, 6-H), 6.69 (1H, dd, J = 9.0, 2.4Hz, 8-H), 6.81 (2H, br. s, NH2), 7.14 

(1H, s, 1-H), 7.43 (1H, d, J = 8.7Hz, 9-H); δC (75 MHz, d6-DMSO) 29.4 (CH3, 

12/13/14-C), 35.4 (quat., 11-C), 97.9 (CH, 6-C), 106.5 (CH, 4-C), 113.6 (CH, 8-C), 

126.4 (quat., 7-C), 129.45 (CH, 1-C), 132.0 (CH, 9-C), 140.7 (quat., 10a-C), 146.6 

(quat., 9a-C), 149.0 (quat., 4a-C), 150.4 (quat., 2-C), 155.1 (quat., 5a-C), 184.6 

(quat., 3-C). 

 

5.1.23.8 7-Amino-2-pentyl-3H-phenoxazin-3-one 59e 

 

The title compound was prepared as described from 2,5-dinitrophenoxy-4'-pentyl-

2',5'-benzoquinone 219b (0.80g, 2.23mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (40:60 to 0:100), yielding 7-amino-2-pentyl-3H-

phenoxazin-3-one 59e as a dark violet solid (0.62g, 2.18mmol, 97.6%); m.p.: 250-

254°C; m/Z 283.2 (MH)+; ννννmax/cm-1 3420, 3329 and 3226 (NH2), 2923 (C-H), 1654 

(C=O), 1599 and 1565 (C=C); δH (300 MHz, d6-DMSO) 0.88 (3H, t, J = 6.9Hz, 5'-H), 
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1.29-1.33 (4H, m, 3'-H and 4'-H), 1.47-1.54 (2'-H), 2.45 (2H, t, J = 7.5Hz, 1'-H), 6.17 

(1H, s, 4-H), 6.51 (1H, d, J = 2.4Hz, 6-H), 6.71 (1H, dd, J = 8.7, 2.4Hz, 8-H), 6.83 

(2H, br. s, NH2), 7.24 (1H, s, 1-H), 7.48 (1H, d, J = 8.7Hz, 9-H); δC (75 MHz, d6-

DMSO) 14.4 (CH3, 5'-C), 22.4 (CH2, 3'-C or 4'-C), 28.3 (CH2, 2'-C), 29.5 (CH2, 1'-C), 

31.55 (CH2, 3'-C or 4'-C), 97.8 (CH, 6-C), 105.1 (CH, 4-C), 113.8 (CH, 8-C), 126.4 

(quat., 7-C), 130.8 (CH, 1-C), 132.1 (CH, 9-C), 140.6 (quat., 9a-C), 144.0 (quat.,     

4a-C), 146.7 (quat., 10a-C), 149.8 (quat., 2-C), 155.1 (quat., 5a-C), 184.3 (quat., 3-

C). 

 

5.1.24 General procedure for the preparation of 7-N and 8-N-(N'-

tbutoxycarbonyl-β-alanyl)amino-3H-phenoxazin-3-ones 234a-b and 236a-f 

(2008OBC682) 

In a 250mL flame dried flask flushed with nitrogen, N-tboc-β-alanine (3 mol 

equivalent) was dissolved in dry THF (10mL) and the solution was cooled with an ice 

bath to 2-3°C (internal temperature). N-Methylpiperidine (3.5mol equivalent) was then 

added dropwise, the resulting solution stirred for 5min and isobutylchloroformate 

(3mol equivalent) was added dropwise (temperature rose to 5°C). The resulting 

cloudy solution was stirred at 3°C for 1h to allow the mixed anhydride to form.  

Method A. In the mean time, the correctly substituted 7-amino-3H-phenoxazin-3-one 

(1mol equivalent) was dissolved in dry DMF (5mL) in a 10mL round-bottomed flask, 

and Pd/C 5% (10% w/w of the starting material) was added to the resulting solution. 

The resulting mixture was hydrogenated in a Berghof apparatus for 1h with the H2 

pressure initially set at 2 bar. The flask was immediately sealed after hydrogenation 

and protected with an N2 atmosphere. The resulting 7-amino-3-hydroxy-phenoxazine 

was added via canula to anhydride mixture. 

Method B. The correctly substituted 8-amino-3H-phenoxazin-3-one (1mol equivalent) 

was directly added as a solid to the anhydride mixture.  

The resulting mixture (method A or method B) was stirred under nitrogen for 48-

72h. The reaction mixture was quenched with a 5% aq. solution of NaHCO3 and 

extracted with EtOAc (3 x 70 mL). The combined organic extracts were washed once 

with a 5% aq. solution of NaHCO3 (100mL), once with water (100mL) and once with 

brine (100mL), then dried (MgSO4). The solvent was evaporated in vacuo and the 

residue was subjected to column chromatography on silica.  
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5.1.24.1 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-3H-phenoxazin-3-one 236a 

 

The title compound was prepared as described (method B) from 8-amino-3H-

phenoxazin-3-one 167a (0.37g, 1.75mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (20:80 to 0:100) yielded 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-3H-phenoxazin-3-one 236a as a dark orange solid (0.36g, 0.95mmol, 

54.3%); m.p.: 213-215°C; (found: C, 62.3; H, 5.6; N, 10.7%. C20H21N3O5 requires C, 

62.65; H, 5.5; N, 11.0%); m/Z 384.1 (MH)+, 406.1 (MNa)+; ννννmax/cm-1 3385 (N-H), 3304 

(N-H), 1683 (C=O), 1644 (C=O), 1172 and 1136 (C-O); δH (300 MHz, d6-DMSO) 1.38 

(9H, s, C(CH3)3), 2.51 (2H, t, J = 7.8Hz, 2'-H), 3.25 (2H, q, J = 6.9Hz, 3'-H), 6.24 (1H, 

d, J = 2.1Hz, 4-H), 6.81 (1H, dd, J = 9.9, 2.1Hz, 2-H), 6.86 (1H, br. s, NHtBoc), 7.42 

(1H, d, J = 8.7Hz, 6-H), 7.52 (1H, d, J = 9.9Hz, 1-H), 7.73 (1H, dd, J = 9.0, 2.7Hz,    

7-H), 8.14 (1H, d, J = 2.7Hz, 9-H), 10.20 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 

28.75 (CH3, 6'/7'/8'-C), 37.0 (CH2, 3'-C), 37.35 (CH2, 2'-C), 78.2 (quat., 5'-C), 106.1 

(CH, 4-C), 116.6 (CH, 6-C), 119.3 (CH, 9-C), 124.7 (CH, 7-C), 133.3 (quat., 9a-C), 

135.3 (2 × CH, 1-C and 2-C), 137.1 (quat., 8-C), 139.65 (quat., 5a-C), 149.2 (quat., 

10a-C), 150.1 (quat., 4a-C), 156.1 (quat., 4'-C), 170.2 (quat., 1'-C), 185.9 (quat., 3-

C). 

 

5.1.24.2 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2-dimethyl-3H-

phenoxazin-3-one 236b 

 

The title compound was prepared as described (method B) from 8-amino-1,2-

dimethyl-3H-phenoxazin-3-one 167b (0.27g, 1.14mmol). Elution with petroleum ether 

(60-80°C) : EtOAc : (30:70) yielded 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-1,2-

dimethyl-3H-phenoxazin-3-one 236b as a bright orange solid (0.46g, 1.12mmol, 

98.3%). Recrystallisation from EtOAc produced a microcrystalline orange solid; m.p.: 

216-217°C; (found: C, 64.2; H, 6.2; N, 10.2%. C22H25N3O5 requires C, 64.2; H, 6.1;          

N, 10.2%); m/Z 412.1 (MH)+, 434.1 (MNa)+; ννννmax/cm-1 3337 (N-H), 2973 and 2927    
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(C-H), 1700 (C=O), 1679 (C=O), 1647 (C=O), 1166 (C-O); δH  (300 MHz, d6-DMSO) 

1.31 (9H, s, C(CH3)3), 1.95 (3H, s, CH3, 12-H), 2.24 (3H, s, CH3, 11-H), 2.425 (2H, t, 

J = 7.2 Hz, CH2, 2'-H), 3.175 (2H, q, J = 7.2 Hz, 3'-H), 6.06 (1H, s, 4-H), 6.78 (1H,    

br. s, NHtBoc), 7.28 (1H, d, J = 8.7Hz, 6-H), 7.53 (1H, dd, J = 9.0, 2.4Hz, 7-H), 8.08 

(1H, d, J = 2.4Hz, 9-H), 10.06 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 13.0 (CH3,     

11-C or 12-C), 13.15 (CH3, 11-C or 12-C), 28.7 (CH3, 6'/7'/8'-C), 37.0 (CH2, 3'-C), 

37.3 (CH2, 2'-C), 78.15 (quat., 5'-C), 104.9 (CH, 4-C), 116.2 (CH, 6-C), 119.3 (CH,    

9-C), 123.8 (CH, 7-C), 132.7 (quat., 9a-C), 136.8 (quat., 8-C), 137.8 (quat., 1-C), 

139.4 (quat., 2-C or 5a-C), 139.5 (quat., 2-C or 5a-C), 149.0 (quat., 10a-C), 149.4 

(quat., 4a-C), 156.05 (quat., 4'-C), 170.1 (quat., 1'-C), 184.8 (quat., 3-C). 

 

5.1.24.3 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1,2,4-trimethyl-3H-

phenoxazin-3-one 236c 

 

The title compound was prepared as described (method B) from 8-amino-1,2,4-

trimethyl-3H-phenoxazin-3-one 167c (0.67g, 2.65mmol).  Elution with petroleum 

ether (60-80°C) : EtOAc (30:70) yielded 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-

1,2,4-trimethyl-3H-phenoxazin-3-one 236c (0.38g, 0.98mmol, 37.0%) as a dark 

orange solid ; m.p.: 195-198°C; m/Z 426.2 (MH)+, 448.2 (MNa)+; ννννmax/cm-1 3333     

(N-H), 1713 (C=O), 1690 (C=O), 1650 (C=O), 1167 (C-O);  δH  (300 MHz, d6-DMSO) 

1.42 (9H, s, C(CH3)3), 1.98 (3H, s, 13-H), 2.07 (3H, s, 12-H), 2.33 (3H, s, 11-H), 

2.545 (2H, t, J = 6.9Hz, 2'-H), 3.32 (2H, q, J = 6.6Hz, 3'-H), 6.49 (1H, br. s, NHtBoc), 

7.32 (1H, d, J = 8.7Hz, 6-H), 7.64 (1H, dd, J = 8.7, 2.1Hz, 7-H), 8.09 (1H, d, J = 

1.8Hz, 9-H), 9.90 (1H, s, Ar-NHCO); δC (75 MHz, d6-DMSO) 7.9 (CH3, 13-C), 12.8 

(CH3, 11-C), 13.2 (CH3, 12-C), 28.8 (CH3, 6'/7'/8'-C), 37.3 (CH2, 3'-C), 37.5 (CH2,    

2'-C), 78.3 (quat., 5'-C), 113.0 (quat., 4-C), 116.0 (CH, 6-C), 119.8 (CH, 9-C), 123.7 

(CH,  7-C), 132.55 (quat., 9a-C), 136.55 (quat., 1-C or 2-C), 136.9 (quat., 8-C), 138.9 

(quat., 1-C or 2-C), 140.1 (quat., 5a-C), 145.6 (quat., 4a-C), 149.1 (quat., 10a-C), 

156.0 (quat., 4'-C), 170.1 (quat., 1'-C), 184.4 (quat., 3-C).  
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5.1.24.4 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-2-tbutyl-3H-phenoxazin-3-

one 236d 

 

The title compound was prepared as described (method B) from 8-amino-2-tbutyl-

3H-phenoxazin-3-one 167d (0.53g, 1.96mmol); elution used petroleum ether (60-

80°C) : EtOAc (30:70) yielded 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-4-tbutyl-3H-

phenoxazin-3-one 236d (0.53g, 1.21mmol, 61.7%) as a dark orange solid; m.p.: 

191.5-193.5°C; (found: C, 65.5; H, 6.8; N, 9.5%. C24H29N3O5 requires C, 65.6; H, 

6.65; N, 9.6%); m/Z 438.1 (M-H)-; ννννmax/cm-1 3340 (N-H), 3304 (N-H), 2962 (C-H), 

1682 (C=O), 1648 (C=O), 1167 (C-O); δH  (300 MHz, d6-DMSO) 1.375 (9H, s, 

12/13/14-H, C(CH3)3), 1.44 (9H, s, 6'/7'/8'-H, C(CH3)3), 2.57 (2H, t, J = 7.2Hz, 2'-H), 

3.31 (2H, q, J = 7.2Hz, 3'-H), 6.21 (1H, s, 4-H), 6.90 (1H, br. s, NHtBoc), 7.29 (1H, s, 

1-H), 7.78 (1H, dd, J = 9.0, 2.4Hz, 7-H), 8.17 (1H, d, J = 2.4Hz, 9-H), 10.24 (1H, s, 

NH-Ar); δC (75 MHz, d6-DMSO) 28.7 (CH3, 6'/7'/8'-C), 29.4 (CH3, 12/13/14-C), 35.7 

(quat., 11-C), 37.0 (CH2, 3'-C), 37.3 (CH2, 2'-C), 78.1 (quat., 5'-C), 107.4 (CH,   4-C), 

116.5 (CH, 6-C), 119.1 (CH, 9-C), 124.1 (CH, 7-C), 129.8 (CH, 1-C), 133.5 (quat., 9a-

C), 137.0 (quat., 8-C), 139.4 (quat., 5a-C), 148.0 (quat., 4a-C or 10a-C), 149.6 (quat., 

4a-C or 10a-C), 154.05 (quat., 2-C), 156.05 (quat., 4'-C), 170.1 (quat., 1'-C), 185.5 

(quat., 3-C). 

 

5.1.24.5 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-2-pentyl-3H-phenoxazin-3-

one 236e 

 

The title compound was prepared as described (method B) from 8-amino-2-pentyl-

3H-phenoxazin-3-one 167e (0.50g, 1.78mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (35:65 to 20:80) yielded 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-2-pentyl-3H-phenoxazin-3-one 236e as an orange solid (0.73g, 

1.60mmol, 90.1%); m.p.:176-179°C; (found: C, 66.2; H, 6.8; N, 9.1%. C25H31N3O5 

requires C, 66.2; H, 6.9; N, 9.3%); m/Z 454.3 (MH)+, 476.3 (MNa)+; ννννmax/cm-1 3322 
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(N-H), 2954 and 2930 (C-H), 1684 (C=O), 1658 (C=O), 1648 (C=O), 1171 (C-O); δH  

(300 MHz, d6-DMSO) 0.78 (3H, t, J = 6.6Hz, 5'-H), 1.21-1.23 (4H, m, 3'-H and 4'-H), 

1.30 (9H, s, C(CH3)3), 1.38-1.40 (2H, m, 2'-H), 2.34 (2H, t, J = 7.2Hz, 1'-H), 2.42 (2H, 

t, J = 6.6Hz, 2''-H), 3.19 (2H, q, J = 6.6Hz, 3''-H), 6.095 (1H, s, 4-H), 6.77 (1H, br. s, 

NHtBoc), 7.15 (1H, s, 1-H), 7.28 (1H, d, J = 8.7Hz, 6-H), 7.60 (1H, dd, J = 8.7, 2.4Hz, 

7-H), 8.00 (1H, d, J = 2.1Hz, 9-H), 10.08 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 14.3 

(CH3, 5'-C), 22.4 (CH2, 3'-C or 4'-C), 28.0 (CH2, 2'-C), 28.7 (CH3, 6''/7''/8''-C), 29.4 

(CH2, 1'-C), 31.5 (CH2, 3'-C or 4'-C), 36.95 (CH2, 3''-C), 37.3 (CH2, 2''-C), 78.1 (quat., 

5''-C), 105.8 (CH, 4-C), 116.5 (CH, 6-C), 119.0 (CH, 9-C), 124.0 (CH, 7-C), 130.7 

(CH, 1-C), 133.3 (quat., 9a-C), 137.0 (quat., 8-C), 139.3 (quat., 5a-C), 147.6 (quat., 

2-C), 149.2 (quat., 4a-C or 10a-C), 149.3 (quat., 4a-C or 10a-C), 156.0 (quat., 4''-C), 

170.05 (quat., 1''-C), 185.1 (quat., 3-C). 

 

5.1.24.6 8-N-(N'-tButoxycarbonyl-β-alanyl)amino-1-phenyl-3H-phenoxazin-3-

one 236f 

 

The title compound was prepared as described (method B) from 8-amino-1-phenyl-

3H-phenoxazin-3-one 167f (0.12g, 0.39mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (50:50 to 40:60) yielding 8-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-1-phenyl-3H-phenoxazin-3-one 236f as an orange-red solid (0.12g, 

0.27mmol, 69.6%); m.p.: 241-243°C; (found: C, 67.7; H, 5.6; N, 8.9%. C26H25N3O5 

requires C, 68.0; H, 5.5; N, 9.1%); m/Z 460.2 (MH)+; ννννmax/cm-1 3422 (N-H), 3263 (N-

H), 1679 (C=O), 1639 (C=O), 1167 (C-O); δH  (300 MHz, d6-DMSO) 1.385 (9H, s, 

C(CH3)3), 2.50 (2H, t, J = 7.2Hz, 2''-H), 3.24 (2H, q, J = 6.9Hz, 3''-H), 6.32 (1H, d, J = 

2.1Hz, 4-H), 6.80 (1H, d, J =2.1Hz, 2-H), 6.86 (1H, br. s, NHtBoc), 7.45 (1H, d, J = 

9.0Hz, 6-H), 7.49-7.51 (3H, m, 3'-H, 4'-H and 5'-H), 7.59-7.63 (2H, m, 2'-H and 6'-H), 

7.68 (1H, dd, J = 9.0, 2.4Hz, 7-H), 8.12 (1H, d, J = 2.4Hz, 9-H), 10.17 (1H, s, NH-Ar); 

δC (75 MHz, d6-DMSO) 28.7 (CH3, 6''/7''/8''-C), 37.0 (CH2, 3''-C), 37.3 (CH2, 2''-C), 

78.1 (quat., 5''-C), 106.0 (CH, 4-C), 116.5 (CH, 6-C), 119.6 (CH, 9-C), 124.8 (CH,    

7-C), 128.4 (CH, 3'-C and 5'-C), 129.3 (CH, 4'-C), 130.55 (CH, 2'-C and 6'-C), 133.0 
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(quat., 9a-C), 133.2 (CH, 2-C), 135.2 (quat., 1-C), 136.95 (quat., 8-C), 139.5 (quat., 

5a-C), 145.2 (quat., 1'-C), 148.25 (quat., 10a-C), 150.4 (quat., 4a-C), 156.0 (quat., 

4''-C), 170.1 (quat., 1''-C), 184.9 (quat., 3-C). 

 

5.1.24.7 7-N-(N'-tButoxycarbonyl-β-alanyl)amino-2-tbutyl-3H-phenoxazin-3-

one 234a 

 

The title compound was prepared as described (method A) from 7-amino-2-tbutyl-

3H-phenoxazin-3-one 59d (0.52g, 1.92mmol); elution used a gradient mixture of 

petroleum ether (60-80°C) : EtOAc (50:50 to 30:70) yielded 7-N-(N'-tbutoxycarbonyl-

β-alanyl)amino-2-tbutyl-3H-phenoxazin-3-one 234a as an orange solid (0.38g, 

0.87mmol, 45.3%); m.p.: 194.5-197.5°C; (found: C, 65.3; H, 6.7; N, 9.4%. 

C24H29N3O5 requires C, 65.6; H, 6.65; N, 9.6%); m/Z 438.1 (M-H)-; 440.2 (MH)+; 

ννννmax/cm-1 3373 (N-H), 3311 (N-H), 3001-2883 (C-H), 1712 (C=O), 1685 (C=O), 1644 

(C=O), 1165 (C-O); δH  (300 MHz, d6-DMSO) 1.32 (9H, s, 12/13/14-H, C(CH3)3), 1.39 

(9H, s, 6'/7'/8'-H, C(CH3)3,), 2.56 (2H, t, J = 6.9Hz, 2'-H), 3.26 (2H, q, J = 6.9Hz,      

3'-H), 6.16 (1H, s, 4-H), 6.88 (1H, br. s, NHtBoc), 7.20 (1H, s, 1-H), 7.47 (1H, dd, J = 

8.7, 2.1Hz, 8-H), 7.69 (1H, d, J = 8.7Hz, 9-H), 7.87 (1H, d, J = 2.1Hz, 6-H), 10.485 

(1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 28.7 (CH3, 12/13/14-C), 29.4 (CH3, 6'/7'/8'-C), 

35.6 (quat., 11-C), 36.8 (CH2, 3'-C), 37.5 (CH2, 2'-C), 78.2 (quat., 5'-C), 105.35 (CH, 

6-C), 107.5 (CH, 4-C), 116.7 (CH, 8-C), 129.7 (quat., 7-C), 129.8 (CH, 1-C), 130.7 

(CH, 9-C), 143.5 (quat., 9a-C), 144.4 (quat., 5a-C), 146.9 (quat., 4a-C), 148.75 

(quat.,10a-C), 153.1 (quat., 2-C), 156.05 (quat., 1'-C), 170.8 (quat., 4'-C), 185.3 

(quat., 3-C). 

 

5.1.24.8 7-N-(N'-tButoxycarbonyl-β-alanyl)amino-2-pentyl-3H-phenoxazin-3-

one 234b 
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The title compound was prepared as described (method A) from 7-amino-2-pentyl-

3H-phenoxazin-3-one 59e (0.48g, 1.69mmol); elution used petroleum ether (60-

80°C) : EtOAc (40:60) yielding 7-N-(N'-tbutoxycarbonyl-β-alanyl)amino-2-pentyl-3H-

phenoxazin-3-one 234b as an orange solid (0.36g, 0.78mmol, 46.0%). 

Recrystallisation from EtOAc produced microcrystalline orange solid with a green 

metallic shine, m.p.: 205-209°C; (found: C, 66.35; H, 6.9; N, 9.25%. C25H21N3O5 

requires C, 66.2; H, 6.9; N, 9.3%); m/Z 453.2 (M-H)-; 454.3 (MH)+; ννννmax/cm-1 3263 and 

3190 (N-H), 2951 and 2922 (C-H), 1710 (C=O), 1651 (C=O); δH  (300 MHz, d6-

DMSO) 0.79 (3H, t, J = 6.9Hz, 5'-H), 1.20-1.245 (4H, m, 3'-H and 4'-H), 1.30 (9H, s, 

C(CH3)3), 1.39-1.46 (2H, m, 2'-H), 2.39 (2H, t, J = 7.5Hz, 1'-H), 2.47 (2H, t, J = 7.2Hz, 

2''-H), 3.17 (2H, q, J = 7.2Hz, 3''-H), 6.20 (1H, s, 4-H), 6.80 (1H, br. s, NHtBoc), 7.22 

(1H, s, 1-H), 7.40 (1H, dd, J = 8.7, 2.1Hz, 7-H), 7.66 (1H, d, J = 8.7Hz, 9-H), 7.82 

(1H, d, J = 2.1Hz, 6-H), 10.41 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 14.3 (CH3,     

5'-C) , 22.4 (CH2, 3'-C or 4'-C), 28.1 (CH2, 2'-C), 28.7 (CH2, 1'-C), 29.4 (CH3,  

6''/7''/8''-C), 31.5 (CH2, 3'-C or 4'-C), 36.8 (CH2, 3''-C), 37.5 (CH2, 2''-C), 78.2 (quat., 

5''-C), 105.3 (CH, 6-C), 106.05 (CH, 4-C), 116.8 (CH, 8-C), 129.6 (quat.,7-C), 130.7 

(CH, 9-C), 130.9 (CH, 1-C), 143.4 (quat., 9a-C), 144.5 (quat., 5a-C), 146.7 (quat., 

10a-C and 2-C), 149.5 (quat., 4a-C), 156.0 (quat., 4''-C), 170.8 (quat., 1''-C), 185.1 

(quat., 3-C).  

 

5.1.25 General procedure for the deprotection of 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-alkyl-3H-phenoxazin-3-one 236a-f and 7-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-alkyl-3H-phenoxazin-3-one 234a-b 

To the 7-N- or 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-alkyl-3H-phenoxazin-3-one in 

a round bottomed flask, an excess of neat TFA was added and the resulting solution 

was swirled for one minute. TFA was evaporated in vacuo, and MeOH was added to 

the residue. The resulting solution was again evaporated in vacuo, and the procedure 

was repeated several times until no more TFA remained. The residue was then 

redissolved in a minute amount of MeOH and the resulting solution diluted with Et2O. 

The cloudy suspension was left standing overnight to allow for the formation of a 

microcrystalline solid. The latter was filtered and washed with Et2O. The filtrate was 

evaporated under reduced pressure for further recovery of the product. 

 

 



CHAPTER FIVE                                                        EXPERIMENTAL  

238 

5.1.25.1 8-N-(β-Alanyl)amino-3H-phenoxazin-3-one TFA salt 237a 

 

The title compound was prepared as described from 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-3H-phenoxazin-3-one 236a (0.16g, 0.43mmol). 8-N-(β-Alanyl)amino-

3H-phenoxazin-3-one TFA salt 237a was isolated as a dark red solid (0.14g, 

0.35mmol, 80.7%); m.p.: 167-170°C; (Found (M)+, 284.1031. Calc. for C15H14N3O3: 

(M)+, 284.1030); m/Z 284.0 (M)+; ννννmax/cm-1 3408-2907 (N+-H), 3053 (N-H), 1671 

(C=O), 1643 (C=O); δH  (300 MHz, d6-DMSO) 2.77 (2H, t, J = 6.6Hz, 2'-H), 3.14 (2H, 

br. s, 3'-H), 6.245 (1H, d, J = 1.8Hz, 4-H), 6.835 (1H, dd, J = 9.9, 1.5Hz, 2-H), 7.44 

(1H, d, J = 9.0Hz, 6-H), 7.52 (1H, d, J = 9.9Hz, 1-H), 7.77 (1H, dd, J = 9.0, 2.1Hz,    

7-H), 7.98 (3H, br. s, NH3
+), 8.15 (1H, d, J = 2.4Hz, 9-H), 10.56 (1H, s, NH-Ar); δC (75 

MHz, d6-DMSO) 33.8 (CH2, 2'-C), 35.4 (CH2, 3'-C), 106.1 (CH, 4-C), 116.7 (CH, 6-C), 

119.4 (CH, 9-C), 124.7 (CH, 7-C), 133.3 (quat., 9a-C), 135.3 (CH, 1-C and 2-C), 

136.8 (quat., 8-C), 139.8 (quat., 5a-C), 149.2 (quat., 10a-C), 150.1 (quat., 4a-C), 

169.05 (quat., 1'-C), 185.95 (quat., 3-C). 

 

5.1.25.2 8-N-(β-Alanyl)amino-1,2-dimethyl-3H-phenoxazin-3-one TFA salt 

237b 

 

The title compound was prepared as described from 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-1,2-dimethyl-3H-phenoxazin-3-one 236b (0.20g, 0.49mmol). 8-N-(β-

Alanyl)amino-1,2-dimethyl-3H-phenoxazin-3-one TFA salt 237b was isolated as an 

orange-red solid (0.20g, 0.47mmol, 96.1%); m.p.: 202-207°C; (Found (M)+, 

312.1344. Calc. for C17H18N3O3: (M)+, 312.1343); m/Z 312.2 (M+); ννννmax/cm-1 3282 (N-

H), 3082 (N+-H), 1671 (C=O), 1645 (C=O); δH  (300 MHz, d6-DMSO) 2.00 (3H, s, 12-

H), 2.26 (3H, s, 11-H), 2.77 (2H, t, J = 6.6 Hz, 2'-H), 3.16 (2H, t, J = 6.6 Hz, 3'-H), 

6.08 (1H, s, 4-H), 7.32 (1H, d, J = 8.7 Hz, 6-H), 7.60 (1H, dd, J = 8.7, 1.8 Hz, 7-H), 

7.99 (3H, br. s, NH3
+), 8.11 (1H, d, J = 1.8 Hz, 9-H), 10.46 (1H, s, NH-Ar); δC (75 
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MHz, d6-DMSO) 13.0 (CH3, 11-C or 12-C), 13.05 (CH3, 11-C or 12-C), 33.75 (CH2, 

2'-C), 35.4 (CH2, 3'-C), 104.9 (CH, 4-C), 116.25 (CH, 6-C), 119.3 (CH, 9-C), 123.7 

(CH, 7-C), 132.6 (quat., 9a-C), 136.5 (quat., 8-C), 137.7 (quat., 1-C or 2-C), 139.4 

(quat., 5a-C or 1-C or 2-C), 139.45 (quat., 5a-C or 1-C or 2-C), 148.9 (quat., 4a-C or 

10a-C), 149.2 (quat., 4a-C or 10a-C), 168.9 (quat., 1'-C), 184.7 (quat., 3-C).  

 

5.1.25.3 8-N-(β-Alanyl)amino-1,2,4-trimethyl-3H-phenoxazin-3-one TFA salt 

237c 

 

Prepared from 8-N-(N'-tbutoxycarbonyl-β-alanyl)amino-1,2,4-trimethyl-3H-

phenoxazin-3-one 236c (0.06g, 0.16mmol). 8-N-(β-Alanyl)amino-1,2,4-trimethyl-3H-

phenoxazin-3-one TFA salt 237c was isolated as a red solid (0.06g, 0.14mmol, 

91.2%); m.p.: 231-235°C; (Found (M)+, 326.1501. Calc. for C18H20N3O3: (M)+, 

326.1499); m/Z 326.2 (M+); ννννmax/cm-1 3322 (N-H), 3054 (N+-H), 1670 (C=O), 1649 

(C=O); δH  (300 MHz, d6-DMSO) 1.97 (3H, s, 13-H), 2.07 (3H, s, 12-H), 2.33 (3H, s, 

11-H), 2.76 (2H, t, J = 6.6Hz, 2'-H), 3.15 (2H, t, J = 6.3Hz, 3'-H), 7.41 (1H, d, J = 

8.7Hz, 6-H), 7.64 (1H, dd, J = 8.7, 2.1Hz, 7-H), 7.855 (3H, br. s, NH3
+), 8.15 (1H, d,  

J = 2.1Hz, 9-H), 10.40 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 7.9 (CH3, 13-C), 12.8 

(CH3, 12-C), 13.2 (CH3, 11-C), 33.9 (CH2, 2'-C), 35.8 (CH2, 3'-C), 113.2 (quat., 4-C), 

116.1 (CH, 6-C), 120.0 (CH, 9-C), 123.8 (CH, 7-C), 132.6 (quat., 9a-C), 136.2 (quat., 

8-C), 136.9 (quat., 1-C or 2-C), 139.0 (quat., 1-C or 2-C), 140.2 (quat., 5a-C), 145.5 

(quat., 4a-C), 149.15 (quat., 10a-C), 169.0 (quat., 1'-C), 184.4 (quat., 3-C). 

 

5.1.25.4 8-N-(β-Alanyl)amino-2-tbutyl-3H-phenoxazin-3-one TFA salt 237d 

 

The title compound was prepared as described from 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-4-tbutyl-3H-phenoxazin-3-one 236d (0.16g, 0.37mmol). 8-N-(β-

Alanyl)amino-4-tbutyl-3H-phenoxazin-3-one TFA salt 237d was obtained as an 
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orange-brown solid (0.16g, 0.35mmol, 93.5%); m.p.: 119-126°C; (Found (M)+, 

340.1657. Calc. for C19H22N3O3: (M)+, 340.1656); m/Z 340.2 (M+); ννννmax/cm-1 3462    

(N-H), 3308-2965 (N+-H) and (C-H), 1678 (C=O), 1649 (C=O); δH  (300 MHz, d6-

DMSO)  1.32 (9H, s, C(CH3)3), 2.78 (2H, t, J = 6.6Hz, 2'-H), 3.30 (2H, br. s, 3'-H), 

6.15 (1H, s, 4-H), 7.225 (1H, s, 1-H), 7.42 (1H, d, J = 9.0Hz, 6-H), 7.74 (1H, dd, J = 

9.0, 1.8Hz, 7-H), 7.97 (3H, br. s, NH3
+), 8.13 (1H, d, J = 1.8Hz, 9-H); δC (75 MHz, d6-

DMSO) 29.4 (CH3, 12/13/14-C), 33.8 (CH2, 2'-C), 35.4 (quat., 11-C), 35.7 (CH2, 3'-C), 

107.4 (CH, 4-C), 116.6 (CH, 6-C), 119.3 (CH, 9-C), 124.2 (CH, 1-C), 129.8 (CH, 7-C), 

133.5 (quat., 9a-C), 136.6  (quat., 8-C), 139.5 (quat., 5a-C), 148.65 (quat., 4a-C or 

10a-C), 149.6 (quat., 4a-C or 10a-C), 154.1 (quat., 2-C), 169.0 (quat., 1'-C), 183.2 

(quat., 3-C). 

 

5.1.25.5 8-N-(β-alanyl)amino-2-pentyl-3H-phenoxazin-3-one TFA salt 237e 

 

The title compound was prepared as described from 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-2-pentyl-3H-phenoxazin-3-one 236e (0.08g, 0.18mmol). 8-N-(β-

Alanyl)amino-2-pentyl-3H-phenoxazin-3-one TFA salt 237e was isolated as a dark 

red solid (0.07g, 0.15mmol, 87.0%); m.p.: 132-139°C; (Found (M)+, 354.1813. Calc. 

for C20H24N3O3: (M)+, 354.1812); m/Z 354.2 (M+);  ννννmax/cm-1 3312   (N-H), 3077      

(N+-H), 2932-2861 (C-H), 1672 (C=O), 1649 (C=O); δH (300 MHz, d6-DMSO) 0.80 

(3H, t, J = 6.6Hz, 5'-H), 1.22-1.25 (4H, m, 3'-H and 4'-H), 1.425-1.47 (2H, m, 2'-H), 

2.41 (2H, t, J = 8.1Hz, 1'-H), 2.67 (2H, t, J = 6.6Hz, 2''-H), 3.05 (2H, br. s, 3''-H), 6.21 

(1H, s, 4-H), 7.27 (1H, s, 1-H), 7.40 (1H, d, J = 9.0Hz, 6-H), 7.65 (1H, dd, J = 9.0, 

2.4Hz, 7-H), 7.75 (3H, br. s, NH3
+), 8.08 (1H, d, J = 2.4Hz, 9-H), 10.39 (1H, s, NH-

Ar); δC (75 MHz, d6-DMSO) 14.3 (CH3, 5'-C), 22.4 (CH2, 3'-C or    4'-C), 28.1 (CH2, 2'-

C), 29.4 (CH2, 1'-C), 31.5 (CH2, 3'-C or 4'-C), 33.9 (CH2, 2''-C), 35.4 (CH2, 3''-C), 

105.9 (CH, 4-C), 116.7 (CH, 6-C), 119.2 (CH, 9-C), 124.1 (CH, 7-C), 130.9 (CH, 1-C), 

133.4 (quat., 9a-C), 136.7 (quat., 8-C), 139.6 (quat., 5a-C), 147.75 (quat., 2-C), 149.4 

(quat., 4a-C or 10a-C), 149.5 (quat., 4a-C or 10a-C), 169.0 (quat., 1''-C), 185.2 

(quat., 3-C). 
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5.1.25.6 8-N-(β-Alanyl)amino-1-phenyl-3H-phenoxazin-3-one TFA salt 237f 

 

The title compound was prepared as described from 8-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-1-phenyl-3H-phenoxazin-3-one 236f (0.05g, 0.12mmol). 8-N-(β-

Alanyl)amino-1-phenyl-3H-phenoxazin-3-one TFA salt 237f was isolated as a dark 

red solid (0.05g, 0.10mmol, 82.2%); m.p.: 236-243°C; (Found (M)+, 360.1345. Calc. 

for C21H18N3O3: (M)+, 360.1343); m/Z 360.2 (M)+; ννννmax/cm-1 3262 (N-H), 3068 (N+-H), 

2903 (C-H), 1670 (C=O), 1640 (C=O); δH  (300 MHz, d6-DMSO) 2.67 (2H, t, J = 

6.3Hz, 2''-H), 3.05 (2H, t, J = 6.3Hz, 3''-H), 6.23 (1H, d, J = 1.5Hz, 4-H), 6.72 (1H, d,  

J = 1.5Hz, 2-H), 7.37-7.42 (4H, m, 3'-H, 4'-H, 5'-H and 6-H), 7.52-7.53 (2H, m, 2'-H 

and 6'-H), 7.62 (1H, dd, J = 8.7, 1.8Hz, 7-H), 7.80 (3H, s, NH3
+), 8.03 (1H, d, J = 

1.2Hz, 9-H), 10.33 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 33.8 (CH2, 2''-C), 35.5 

(CH2, 3''-C), 106.1 (CH, 4-C), 116.5 (CH, 6-C), 120.0 (CH, 9-C), 125.0 (CH, 7-C), 

128.35 (CH, 3'-C and 5'-C), 129.2 (CH, 4'-C), 130.5 (CH, 2'-C and 6'-C), 133.0 (quat., 

9a-C), 135.2 (quat., 2-C), 136.6 (quat., 1-C), 139.7 (quat., 8-C), 145.3 (quat., 5a-C), 

148.4 (quat., 10a-C), 150.35 (quat., 4a-C), 169.1 (quat., 1''-C), 184.9 (quat., 3-C). 

 

5.1.25.7 7-N-(β-Alanyl)amino-2-tbutyl-3H-phenoxazin-3-one TFA salt 235a 

 

The title compound was prepared as described from 7-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-2-tbutyl-3H-phenoxazin-3-one 234a (0.11g, 0.25mmol). 7-N-(β-

Alanyl)amino-2-tbutyl-3H-phenoxazin-3-one TFA salt 235a (Found (M)+, 340.1657. 

Calc. for C19H22N3O3: (M)+, 340.1656); m/Z 340.2 (M+); ννννmax/cm-1 3180 (N-H), 3028 

(N+-H), 2961 (C-H), 1672 (C=O); δH  (300 MHz, d6-DMSO) 1.235 (9H, s, C(CH3)3), 

2.73 (2H, t, J = 6.6Hz, 2'-H), 3.07 (2H, t, J = 6.6Hz, 3'-H), 6.07 (1H, s, 4-H), 7.12 (1H, 

s , 1-H), 7.42 (1H, dd, J = 8.7, 1.8Hz, 8-H), 7.62 (1H, d, J = 8.7Hz, 9-H), 7.77 (1H, d, 

J = 2.1Hz, 6-H), 7.84 (3H, br. s, NH3
+), 10.69 (1H, s, NH-Ar);  δC (75 MHz, d6-DMSO) 
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29.4 (CH3, 12/13/14-C), 34.1 (CH2, 2'-C), 35.3 (CH2, 3'-C), 35.6 (quat., 11-C), 105.7 

(CH, 6-C), 107.6 (CH, 4-C), 116.9 (CH, 8-C), 129.8 (CH, 1-C), 129.89 (quat., 7-C), 

130.7 (CH, 9-C), 143.1 (quat., 7-C), 144.4 (quat., 5a-C), 147.2 (quat., 10a-C), 148.7 

(quat., 4a-C), 153.3 (quat., 2-C), 169.7 (quat., 1'-C), 185.35 (quat., 3-C). 

 

5.1.25.8 7-N-(β-Alanyl)amino-2-pentyl-3H-phenoxazin-3-one TFA salt 235b 

 

The title compound was prepared as described from 7-N-(N'-tbutoxycarbonyl-β-

alanyl)amino-2-pentyl-3H-phenoxazin-3-one 234b (0.14g, 0.30mmol). 7-N-(β-

Alanyl)amino-2-pentyl-3H-phenoxazin-3-one TFA salt 235b was isolated as a brown-

red solid with a green metallic shine (0.12g, 0.27mmol, 88.5%); m.p.: 213-223°C; 

(Found (M)+, 354.1815. Calc. for C20H24N3O3: (M)+, 354.1812); m/Z 354.2 (M+) 

ννννmax/cm-1 3263 (N-H), 3188-3060 (N+-H), 2928 (C-H), 1674 (C=O), 1651 (C=O); δH  

(300 MHz, d6-DMSO) 0.88 (3H, t, J = 6.9Hz, 5'-H), 1.30-1.33 (4H, m, 3'-H and 4'-H), 

1.485-1.53 (2H, m, 2'-H), 2.45 (2H, t, J = 7.5Hz, 1'-H), 2.82 (2H, t, J = 6.3Hz, 2''-H), 

3.15 (2H, t, J = 6.3Hz, 3''-H), 6.25 (1H, s, 4-H), 7.26 (1H, s, 1-H), 7.50 (1H, dd, J = 

8.7, 1.8Hz, 8-H), 7.73 (1H, d, J = 8.7Hz, 9-H), 7.89 (1H, d, J = 1.8Hz, 6-H), 7.97 (3H, 

br. s, NH3
+), 10.83 (1H, s, NH-Ar); δC (75 MHz, d6-DMSO) 14.4 (CH3, 5'-C), 22.4 

(CH2, 3'-C or 4'-C), 28.1 (CH2, 2'-C), 29.4 (CH2, 1'-C), 31.5 (CH2, 3'-H or 4'-H), 34.1 

(CH2, 2''-C), 35.2 (CH2, 3''-C), 105.5 (CH, 6-C), 106.1 (CH, 4-C), 116.8 (CH, 8-C), 

129.8 (quat., 7-C), 130.8 (quat., 9-C or 1-C), 130.9 (quat., 9-C or 1-C), 143.1 (quat., 

9a-C), 144.4 (quat. 5a-C), 146.7 (quat., 2-C or 10a-C), 146.8 (quat., 2-C or 10a-C), 

149.4 (quat., 4a-C), 169.7 (quat., 1''-C), 185.1 (quat., 3-C). 
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5.3 Microbiological testing 

5.3.1 Preparation of the medium 

Standard Columbia agar medium was used and the solutions were prepared 

according to the manufacturer’s recommendations. The resulting agar solution was 

sterilised by either autoclaving or microwave irradiation and maintained at around 

40°C in a water bath before incorporation of the substrate. 

The substrate solutions were prepared in N-methylpyrrolidone (NMP), with the 

solvent volume kept to an absolute minimum (below 0.6% v/v of agar solution) to 

avoid any significant growth inhibition. When the substrate’s poor solubility resulted in 

precipitation during incorporation to the agar solution, new solutions were prepared 

by either increasing the volume of NMP or using a combination of NMP and a 

surfactant (Tween 20). The use of Tween 20 along with NMP was prefered, as this 

combination always resulted in the production of a clear homogeneous medium. This 

quality was essential to maximise substrate uptake by bacteria and to ensure clear 

reading of the results. 

When relatively large volume of NMP and/or Tween were used, a control plate 

containing the highest volume of NMP and of Tween 20 used was prepared to 

monitor any resulting growth inhibition. 

Screening for enzyme activity using novel substrates is generally performed at a 

standard concentration of 100mg/L of agar solution (communication, Prof. John 

Perry); however, due to the strong background coloration generated by 

phenoxazinones substrates at 100mg/L, a concentration of 50mg/L was usually 

preferred. Tests at 25mg/L and 100mg/L were also undertaken for comparison of the 

performances. 

The final media solutions were poured into separate Petri dishes and left to settle into 

a gel. All plates were then dried at 110°C for 5 minutes to remove extra moisture 

before inoculation. 

 

   5.3.1.1 Nitrophenoxazinones substrates 

The chromogenic media containing the nitrophenoxazinones 130ααααa-c, 130ββββa-c, 

130γγγγa-b and 242 were prepared following the general method described above and 

according to Table 5.1. 
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The final substrate concentration in the medium for all nitroreductase substrates was 

within the range 0.010 mmol/L to 0.017 mmol/L (Table 5.1). 

 

   5.3.1.2 Trihalogenophenoxazin-3-one substrates 237g-i and 

240a-b 

The chromogenic media containing the 8-N-(β-alanyl)amino-1,2,4-trihalogeno-3H-

phenoxazin-3-one 237g-i and 3-O-(8-N-(β-alanyl)amino-1,2,4-trifluoro-10H-

phenoxazin-3-yloxy)-1''-oxopropane-3''-aminium 240a-b were prepared following the 

general method described above and according toTable 5.2. 

 

 

 

Substrate 
Mass 

(mg) 

V (NMP) 

(µL) 

V (Tween 20) 

(µL) 

V (Columbia agar) 

(mL) 

Final conc. 

(mmol/L) 

130ααααa 5 100 100 100 0.017 

130ααααb 5 100 100 100 0.0145 

130ααααc 5 100 100 100 0.010 

130ββββa 5 100 100 100 0.017 

130ββββb 5 100 100 100 0.0145 

130ββββc 5 100 100 100 0.010 

130γγγγa 5 100 100 100 0.017 

130γγγγb 5 100 100 100 0.0145 

242 5 200 100 100 0.015 

 

Substrate 

 

Mass 

(mg) 

V (NMP) 

(µL) 

V (Tween 20) 

(µL) 

V (Columbia agar) 

(mL) 

Final conc. 

(mmol/L) 

237g 5 200 - 100 0.11 

237h 5 400 - 100 0.10 

237i 5 200 300 100 0.08 

240a 5 200 - 100 0.08 

240b 5 200 - 100 0.07 

Table 5.1: Preparation of the medium for substrates 130ααααa-c, 130ββββa-c, 130γγγγa-b and 242  

Table 5.2: Preparation of the medium for substrates 237g-i and 240a-b  
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The final concentration in the medium for substrates 237g-i and 240a-b was within 

the range 0.07mmol/L to 0.11mmol/L (Table 5.2). This factor was considered 

regarding the availability of each substrate in the medium.  

 

5.3.1.3 Alkylphenoxazin-3-one substrates 237a-g and 235a-b 

The chromogenic media containing the 7-N- and 8-N-(β-alanyl)amino-alkyl-3H-

phenoxazin-3-one 235a-b and 237a-f were prepared following the general method 

described above, starting from a stock solution matching a concentration of 10g/L, 

and according to Table 5.3 to match a final concentration of 25mg/L, 50mg/L and 

100mg/L. 

 

 

 

The final concentration in the medium for substrates 235a-b and 237a-f ranged from 

0.053 to 0.063 mmol/L (25mg/L), 0.106 to 0.126 mmol/L (50mg/L) and 0.211 to 0.252 

mmol/L (100mg/L). 

 

5.3.2 Inoculation 

 5.3.2.1 Individual inoculation 

Separate suspensions of Ps. aeruginosa, B. cepacia, S. marcescens and E. coli, 

corresponding to a turbidity of 0.5 McFarland (1.5 × 108 organisms/mL), were made 

up in distilled water in McFarland tubes.  

Substrate 

V 

(stock 

sol.) µL 

V 

(agar) 

mL 

Conc. 

(mmol/

L) 

V 

(stock 

sol.) 

µL 

V 

(agar) 

(mL) 

Conc. 

(mmol/L) 

V 

(stock 

sol.) 

µL 

V 

(agar) 

µL 

Conc. 

(mmol/L) 

237a 200 80 0.063 400 80 0.126 800 80 0.252 

237b 200 80 0.053 400 80 0.106 800 80 0.211 

237c 200 80 0.059 400 80 0.118 800 80 0.235 

237d 200 80 0.057 400 80 0.114 800 80 0.228 

237e 200 80 0.055 400 80 0.110 800 80 0.221 

237f 200 80 0.053 400 80 0.107 800 80 0.214 

235a 200 80 0.055 400 80 0.110 800 80 0.221 

235b 200 80 0.053 400 80 0.107 800 80 0.214 

Table 5.3: Preparation of medium for substrates 235a-b and 237a-f 
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Each petri dish containing the solidified chromogenic medium was then inoculated 

separately, using plastic disposable loops, with strains of Ps. aeruginosa, B. cepacia, 

S. marcescens and E. coli.  

The preparation of Petri dishes containing directly the control E. coli was also 

possible by inoculating one side of the Petri dish with colonies of E. coli and the strain 

of interest on the other.  

The Petri dishes were then incubated for 24h, before recording the results. When 

required, the Petri dishes were incubated for a further 24h before a second recording. 

 

   5.3.2.2 Multipoint inoculation 

Multipoint inoculation was used to screen the activity of novel substrates over a 

relatively large range of microorganisms, and, to allow for the detection of any 

unexpected enzymatic activity. 

The substrates were screened against twenty different microorganisms, a set of ten 

Gram negative bacteria and a set of ten Gram positive microorganisms (eight 

bacteria strains and two yeast strains, Table 5.4). 

 

 

 

 

A suspension of each microorganism, corresponding to a turbidity of 0.5 McFarland 

(1.5 × 108 organisms/mL), was made up in distilled water in McFarland tubes. Each 

Petri dish containing the medium was then inoculated using a multipoint inoculator, 

receiving the twenty strains concurrently, organised in the pattern depicted on Figure 

Gram negative Ref. Gram positive Ref. 

1 E. coli NCTC 10418 11 B. subtilis NCTC 9372 

2 S. marcescens NCTC 10211 12 E. faecails NCTC 775 

3 Ps. aeruginosa NCTC 10662 13 E. faecium NCTC 7171 

4 B. cepacia LMG 1222 14 St. epidermidis NCTC 11047 

5 Y. enterocolitica NCTC 11176 15 St. aureus NCTC 6571 

6 S. typhimurium NCTC 74 16 MRSA NCTC 11939 

7 C. freundii 46262 (wild) 17 S. pyogenes NCTC 8306 

8 M. morganii 462403 (wild) 18 L. monocytogenes NCTC 11994 

9 E. cloacae NCTC 11936 19 C. albicans ATCC 90028 

10 P. rettgeri NCTC 7475 20 C. glabrata NCPF 3943 

Table 5.4: Strains of microorganism tested by multipoint inoculation. 
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5.1. The Petri dishes were then incubated at 37°C for 24h, before recording the 

results. 
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Figure 5.1: Inoculation pattern of a Petri dish. 
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