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Abstrat

It is the intention of this paper to stimulate interest
and highlight the possibilities and hallenges of at-
tempting to transfer knowledge between neural net-
works. The goal of knowledge transfer is to take ad-
vantage of previous training experiene to solve related
but new tasks. This paper takles the issue of transfer
of knowledge between radial basis funtion neural net-
works. We present some preliminary work illustrating
how a neural network trained on one task (the soure)
an be used to assist in the synthesis of a new but
similar task (the target).

1 Introdution

The robustness and pattern mathing harateristis
of neural networks has enabled them to be applied to
many real-world, large-sale problems of onsiderable
omplexity [Bishop, 1995℄. They provide solutions to a
variety of lassi�ation problems suh as speeh, har-
ater and signal reognition, as well as funtional pre-
dition and system modeling where the physial pro-
esses are not understood or are highly omplex. Most
of this neural network development e�ort has onen-
trated upon what has beome known as the tabula rasa
approah, i.e. eah neural network is developed from
srath using the appropriate training data and does
not take advantage of previous task-related work.

However, humans tend to perform better at learning
new tasks after having been previously trained on a
similar task. It has been argued for a long time that
transfer of knowledge is an essential human apabil-
ity [Ellis, 1965℄. In most situations humans �rst try to
rely on our experiene and adapt knowledge or a strat-
egy whih has been suessful before. Neural networks
generally have diÆulties sharing their task experiene
beause eah network is trained individually on a spe-
i� task that may involve the modeling of a omplex
funtion. The learned funtion is stored aross the

weights and thresholds in a distributed form. This
diÆulty hinders the isolation and transfer of desir-
able feature or ativity learned by the neural network
to another task [Pratt, 1993℄. This may not appear
to be a problem sine it is a relatively simple matter
to train a neural network given enough data. How-
ever, suh a methodology for network development is
learly not biologially plausible and also reates se-
vere diÆulties for on-line adaptive learning. Sharkey
desribes the proess of knowledge transfer as \adap-
tive generalisation" and argues the ase for inserting
prior knowledge into a neural network and is worth
repeating here at length:

\If onnetionist nets are to be able to exhibit
adaptive behaviour, they need to be prestru-
tured. Suh prestruturing an be aom-
plished through training on related tasks... A
net an be said to exhibit a degree of adap-
tive generalisation when training on one task
results in positive transfer to another task.
In suh a ase, information has been ex-
trated that failitates the performane of a
seond task. On the other hand, when neg-
ative transfer is obtained, prior experiene
interferes with subsequent learning. In this
way, not only an previous knowledge be in-
orporated by means of postive transfer, but
a net an be seen as having a predisposition
to learn ertain tasks rather than others."
[Sharkey and Sharkey, 1993℄

The remainder of this paper is strutured as follows:
setion two disusses the terminology and details of
task transfer as applied to neural networks; setion
three highlights the arhiteture and harateristis of
radial basis funtion neural networks; setion four de-
sribes the experimental methodology; setion �ve dis-
usses the results and setion six presents the onlu-
sions.



2 Knowledge Transfer

In this setion we disuss motivations, tehniques and
methodology for knowledge transfer between RBF net-
works.

2.1 Task Transfer Terminology

In the literature, some terms used in task transfer
have several meanings whih an be onfusing. It will
be useful to de�ne the meanings of the various terms
whih are used in the following setions:
(i) Task. A task is the partiular funtion of the RBF
network to be transferred. In all the instanes pre-
sented in this thesis it will refer to lassi�ation tasks
of some type e.g. Vibration fault lassi�ation, Iris
speies lassi�ation or Vowel lassi�ation.
(ii) Data. Data refers to the training and test exam-
ples used to train the RBF networks. It is e�etively
what the tasks are performed on.
(iii) Network. The RBF network is trained on a par-
tiular lassi�ation task using data from a partiular
domain.
(iv) Ativity. An ativity is a spei� instane of a
task transfer operation e.g ativity 10 in table 3 refers
to task E being transferred over to task A.
(v) Domain. A domain is a general area of expertise
and an refer to all the knowledge in a given area e.g.
the Iris data set is a olletion of three types of Iris in
the domain of owers.

Early researh on task transfer by Ellis has provided
some metris to gauge the progress of transfer within
humans [Ellis, 1965℄. This researh an equally be ap-
plied to neural network learning. Ellis identi�ed three
results of attempting task transfer:
(i) Positive transfer. Learning the �rst task aided in
learning the seond task.
(ii) Negative transfer. The �rst task has hindered
learning on the seond task. The two tasks were so
dissimilar that the network parameters were initialized
to unsuitable values. This would result in the seond
task not reahing an aeptable level of auray or
taking far longer than normal to train.
(iii) Zero transfer. No overall e�et was observed by
learning the �rst task. This ould be as a result of
small but equal positive and negative e�ets aneling
eah other out.

2.2 Potential advantages of task transfer

Assuming positive transfer has ourred, the following
harateristis should be present in the target network:

(i) Modeling tasks of inreased omplexity. The ratio-
nale for knowledge transfer is based upon the fat that
humans are able to learn tasks that are of inreasing
diÆulty. However, if a diÆult task is presented be-
fore the simpler prerequisite tasks then it is possible
that the learner may not be able to suessfully om-
plete or will at best �nish the task by taking an inor-
dinate amount of time.
(ii) Learning on fewer training examples. A good in-
diation of the level of intelligene in humans is the
ability of a learner to quikly understand how to a-
omplish a task without being repeatedly told how to
do it. Assuming task transfer was suessful then the
previous task should have provided the network pa-
rameters with useful initial values (or better than ran-
dom values).
(iii) Training speedup. Humans tend to perform re-
lated tasks faster, it may be possible for neural net-
works to bene�t from a similar speedup in training
time.

3 Radial Basis Funtion Networks

Radial basis funtion (RBF) neural networks are a
model that has funtional similarities found in many
biologial neurons [Moody and Darken, 1989℄. RBF
networks have been proved to be apable of univer-
sal funtion approximation. RBF networks have been
applied to several real-world, large-sale problems of
onsiderable omplexity [Guang and Billings, 1996;
Fung et al., 1996℄. They are exellent at pattern reog-
nition and are robust lassi�ers, with the ability to
generalize in making deisions about impreise input
data. They o�er robust solutions to a variety of las-
si�ation problems suh as speeh, harater and sig-
nal reognition, as well as funtional predition and
system modeling where the physial proesses are not
understood or are highly omplex.

The RBF network onsists of feedforward arhiteture
with an input layer, a hidden layer of RBF units and
an output layer of linear units. The input layer simply
transfers the input vetor to the hidden units, whih
form a loalized response to the input pattern. This
property appears to be very attrative for knowledge
transfer in neural networks. The ativation levels of
the output units provide an indiation of the nearness
of the input vetor to the lasses. Learning is nor-
mally undertaken as a two-stage proess. An unsuper-
vised lustering tehnique is appropriate for the hid-
den layer while a supervised method is applied to the
output layer units. The nodes in the hidden layer are
implemented by kernel funtions, whih operate over



a loalized area of input spae. The e�etive range
of the kernels is determined by the values alloated
to the entre and width of the radial basis funtion.
While the Gaussian funtion is normally used as the
reeptive �eld other funtions suh as the thin-plate-
spline funtion, multi-quadrati funtion and the in-
verse multi-quadrati funtions have been used [Lowe,
1997℄.

4 Methodology

This setion disusses the data sets used in the exper-
imental work and the task transfer tehnique.

4.1 Data Sets

The data sets represent a variety of syntheti and real
world problems of varying omplexity (i.e. number of
examples, input features and lasses.).

Figure 1 gives the details of the data sets. The
olumns indiate the number of examples, the number
of lasses, the number of input features, if the data set
ontains ontinuous data, disrete data and the last
olumn indiates if any data is missing.

4.2 Task spei� onstraints

Fators whih must be onsidered are the di�erenes
between the soure and target tasks. A soure task
onsists of a pre-trained RBF network and/or the orig-
inal data. A target task onsists of the available train-
ing data (whih may be insuÆient) and information
about the number of input features and output lasses.
A number of fators must be taken into aount when
judging the similarity between two tasks:
(i) Strutural di�erenes. For example, the number
of inputs and outputs may not be the same for eah
task. If the soure task has a greater number of inputs
than the target task then the additional features may
enable a better lassi�er to be built.
(ii) Symboli di�erenes. For example, the inputs and
outputs present in the soure task may not orrespond
to the same features on the target task. Even in
strongly related domains suh di�erenes an our.
(iii) Complexity di�erenes. For example, either the
soure or the target task may be more omplex. The
omplexity for eah task is determined by the number
of the degrees of freedom within the RBF network,
training time, and the auray of the RBF network.
(iv) Spatial di�erenes. For example, it is likely that
the numerial values omprising the input spae may
di�er to a great extent, this an be partially alleviated

by saling before the training the networks. Large nu-
merial values would adversely a�et the lassi�ation
ability.
(v) Ordering di�erenes. For example, related to the
omplexity di�erene as it may be easier to under-
stand a simpler task before takling a more omplex
task. Hene, the order in whih task transfer ours
may be ruial.

4.3 Experimental approah for task transfer

We suggest it may be more appropriate to view task
transfer within an RBF network as an analysis of the
hidden units with the objetive of reruiting those
units that may be useful in representing the seond
task. The seleted hidden units and weights are then
opied and assigned to the new task.

The seletion of RBF units deemed useful for transfer
was based upon the ativation levels of those units
when presented with the seond task training set.
Those radial basis units that had onsistently high
(near 1) mean ativation levels were seleted for trans-
fer. A variable set-point S for seleting the most a-
tive hidden units was used. A high value is initially
assigned to S whih an be redued depending upon
the strength of the task similarity. Figure 2 desribes
the transfer algorithm in detail.

S is used as a metri to judge the task similarity. It
may be redued where appropriate to inlude hidden
units that may ontribute towards a useful lassi�a-
tion. Those hidden units that are seleted are om-
bined with the hiddden units generated from the ap-
propriate seond task training data. The hidden units
are grouped with the appropriate output lass units
by alulating a new output weight matrix.

5 Experimental Results

The tasks were organized into seven ombinations of
training sets. Task G ontains all three lasses and
therefore ats as a ontrol to monitor the e�ets of
transfer. Table 1 lists the ontents of eah task.

Figure 3 shows the order in whih the tasks were per-
formed and the e�ets of the transfer proess in terms
of: lassi�ation auray, number of oating point op-
erations required for training, number of hidden units
involved in transfer and the overall result of transfer
(positive, negative or zero).

Overall, the proess of transfer worked quite well. The
�rst six ativities onsisted of single lass tasks. A-



Figure 1: Composition of data sets used in experimental work

Data set Cases Classes Attrib Contin Disrete Missing
Xor(binary) 4 2 2 No Yes No
Xor(ontinuous) 100 2 2 Yes No No
Iris 150 3 4 Yes No No
Housing(see notes) 506 3 12 Yes Yes No
Vowell(Peterson) 1520 10 5 Yes Yes No
Vowell(Deterding) 990 11 11 Yes Yes No
Protein(yeast) 1484 10 8 Yes No No
Protein(eoli) 336 8 8 Yes No No
Dna(splie) 3190 3 60 No Yes No
Credit(German) 1000 2 20 No Yes Yes
Credit(Japanese) 125 2 9 Yes Yes Yes
Credit(Australian) 690 2 15 Yes Yes Yes
Abalone(see notes) 4177 3 8 Yes Yes No
Diabetes(Pima) 768 2 8 Yes No No
Monks1 556 2 6 No Yes No
Sonar 208 2 60 Yes No No
Vibration 1 1028 3 9 Yes No No
Vibration 2 1862 8 20 Yes No No

Figure 3: Results of knowledge transfer on Iris dataset

Ativity Task Classi�ation Complexity RBF units Total of Overall
Sequene Auray (%) (MFlops) Transferred RBF units Transfer

1 A ! B 90 3.37 16 56 Positive
2 A ! C 86 1.68 1 41 Positive
3 B ! C 97 1.88 1 41 Positive
4 B ! A 75 3.68 19 59 Negative
5 C ! A { { 0 { Zero
6 C ! B { { 0 { Zero
7 A ! E 86 2.4 7 47 Positive
8 B ! F 90 3.9 9 49 Positive
9 C ! D { { 0 { Zero
10 E ! A 88 4.41 20 60 Positive
11 F ! B 92 3.99 11 45 Positive
12 D ! C 36 3.69 8 48 Negative
13 G 94 7.72 N/A 60 N/A

Table 1: Task training set omposition

Task Composition

Task A Versaolor
Task B Virginia
Task C Setosa
Task D Versaolor + Virginia
Task E Setosa + Virginia
Task F Setosa + Versaolor
Task G Setosa + Virginia + Versaolor

tivities 1, 2 and 4 had soure tasks that were losely
related to the target task and were able to ontribute
hidden units to the seond task. Ativities 5, 6 and
9 onsisted of those soure tasks that were too disim-

ilar to the target task and were unable to ontibute
any hidden units. It would have been possible to re-
due the setpoint value S and thus ollet some hidden
units. However, in pratie the value of suh units in
ontributing towards a useful lassi�ation is insignif-
iant. Therefore the order in whih the tasks are pre-
sented is also an important feature of neural network
transfer, i.e. the zero transfer ativities 5 and 6 are
the reverse of positive ativities 2 and 3.

Ativities 7-12 are more omplex onsisting of one lass
task transferred to two lass tasks and vie-versa. A-
tivity 13 is a task trained on all three lasses and ats
as a ontrol to measure the e�ets of transfer upon the
other tasks. Ativity 13 (TaskG) is the usual method
of training a neural network, i.e. all the training exam-



Input:
Soure task A network parameters
Soure task A training data
Target task B training data
Set-point S
Gaussian radius spread �

Output:
Target task B network
Hidden units from task A

Proedure:
Train soure task on A data
Set-point = upper value
Apply task B data to soure network A
While set-point � lower value

If Task A hidden unit ativations � S
Save hidden units

Else
Derement S

If Hidden units found
Extrat hidden unit parameters
Train task B network on task B data
Merge extrated units with task B network
Adjust � for all RBF enters
Compute new output unit weights
Save �nal network

Else
Exit program

Figure 2: Knowledge transfer algorithm

ples were supplied on a single training run. Ativity
3 is interesting beause its lassi�ation auray is
better than the ontrol task G. This was due to the
ativity 3 onsisting of two lasses. The absent third
lass always auses mis-lassi�ation errors.

5.1 Inter-Task Transfer Experiments

This setion desribes the work performed on inter-
task transfer i.e. transfer between entire data sets
rather than a deomposed task (intra-task) as that
performed on the Iris data set. Unfortunately, in most
ases task transfer failed to obtain favorable results.

The task transfer algorithm desribed in �gure 2 was
then applied to the other problem domains. It was ex-
peted that previous learning on tasks within a related
family would give signi�ant training advantages. The
tasks were organised into related tasks of training sets,
table 2 identi�es the ontents of eah task. Those tasks
pre�xed with a \U" are unrelated to all other tasks.

Modi�ations were made to the original task trans-
fer algorithm. This involved developing a similarity
heking algorithm whih was used as a pre-proessor
to task transfer. This new algorithm heked several

Table 2: Task naming onvention and omplexity rat-
ing

Task id Domain Complexity
A1 Xor(bin) 16
A2 Xor(ontinuous) 16
B1 Vowel(peterson) 347.00
B2 Vowel(deterding) 1509.80
C1 Protein(yeast) 764.57
C2 Protein(eoli) 287.18
D1 Credit(german) 211.70
D2 Credit(japan) 149.73
D3 Credit(australian) 118.57
E1 Vibration(1) 96.93
E2 Vibration(2) 879.78
U1 Iris 22.23
U2 Housing 102.73
U3 Dna 380.51
U4 Monks1 56.82
U5 Sonar 115.90
U6 Diabetes 630.36

of the task riteria disussed earlier (strutural and
omplexity similarities). The omplexity measure was
easily assessed by using equation 1:

Complexity = (Ni+Nh+No+Nw2)=(100=Na) (1)

where: Ni is the number of input features, Nh is the
number of hidden units, No is the number of output
units and Nw2 is the number of hidden to output unit
weights (W2). Na was the auray of the network
and was given a greater role in determining the om-
plexity than the other parameters.

5.2 Analysis of inter-task transfer

The disapointing results obtained from majority of the
inter-task experiments ould be traed down to a num-
ber of potential soures of error.

� The averaged spread � values alulated for trans-
ferred hidden units were inappropriate. A hid-
den unit reeiving a larger spread than it was
trained on is apt to over generalize and give false
positives. Conversely, a hidden unit reeiving a
smaller spread than it was trained on is unlikely
to detet the appropriate input patterns and thus
generate false negatives.

� The averaged input feature values (� entres)
alulated for the transferred hidden units with
\missing" input features were inappropriate. No



Figure 4: Results of knowledge transfer for related tasks

Ativity Task A Comp Symb RBFs Total Overall
Sequene (%) Di� Di�(%) Trans RBFs Transfer

1 A1 ! A2 100:100 Equal 0.0 4 6 Positive
2 A2 ! A1 100:100 Equal 0.0 4 4 Positive
3 B1 ! B2 86:86 Greater 50.0 9 209 Zero
4 B2 ! B1 62:62 Less 0.0 6 36 Zero
5 C1 ! C2 87:87 Less 45.0 45 80 Zero
6 C2 ! C1 57:57 Greater 35.0 11 131 Zero
7 D1 ! D2 93:93 Less 50.0 0 50 Zero
8 D1 ! D3 71:71 Less N/A 0 50 Zero
9 D2 ! D1 72:72 Greater 0.0 0 90 Zero
10 D2 ! D3 71:71 Less N/A 0 50 Zero
11 D3 ! D1 72:72 Greater N/A 0 90 Zero
12 D3 ! D2 93:93 Greater N/A 0 50 Zero
13 E1 ! E2 94:85 Greater 68.0 12 112 Negative
14 E2 ! E1 73:73 Less 0.0 23 46 Zero

analysis was performed to verify this hypothe-
sis. However, given the authors knowledge of how
spread and entre position values an a�et las-
si�ation auray it is likely that this was a par-
tiulary damaging soure of error.

6 Conlusions

The results of the initial experimental work on intra-
task transfer were enouraging. Although it was sus-
peted that the Iris domain may have been too simple
to enable useful transfer of knowledge to our. How-
ever, positive transfer did our in a number of ases
beause of the deomposition of the Iris data. This en-
abled the formation of three tasks that had the same
number of input features with RBF entre loations
that were numerially similar. The main fator likely
to prevent the uptake of knowledge transfer by the neu-
ral network ommunity would onern to the prati-
alities of training a network afresh versus the tradeo�
between the omputational overheads of the transfer
proess. There are undoubtably many appliation ar-
eas where neural networks would not bene�t from task
transfer e.g. those soure to target tasks that have
di�erent numbers of input features and those whih
are from drastially di�erent domains. Conversely, to
bene�t from task transfer the RBF networks under
srutiny should have the same number of inputs and
be from fairly similar domains.

Referenes

[Bishop, 1995℄ C. Bishop. Neural Networks for Pat-
tern Reognition. Oxford University Press, 1995.

[Ellis, 1965℄ H. Ellis. The Transfer of Learning. The
MaMillan Company, New York, 1965.

[Fung et al., 1996℄ C. F. Fung, S. Billings, and
W. Luo. On-line supervised adaptive training us-
ing radial basis funtion neural networks. Neural
Networks, 9(9):1597{1617, 1996.

[Guang and Billings, 1996℄ L. Z. Guang and S. A.
Billings. Radial basis funtion network on�gu-
ration using mutual information and the orthog-
onal least squares algorithm. Neural Networks,
9(9):1619{1637, 1996.

[Lowe, 1997℄ D. Lowe. Charaterising omplexity in
a radial basis funtion network. In Proeedings of
the 5th International Conferene on Arti�ial Neu-
ral Networks, pages 19{23, Cambridge, UK, 1997.

[Moody and Darken, 1989℄ J. Moody and C. J.
Darken. Fast learning in networks of loally tuned
proessing units. Neural Computation, pages 281{
294, 1989.

[Pratt, 1993℄ L. Pratt. Transfering Previously Learned
Bak-Propagation Neural Networks to New Learning
Tasks. PhD thesis, Rutgers, State University of New
Jersey, May 1993.

[Sharkey and Sharkey, 1993℄ N. E. Sharkey and
A. J. C. Sharkey. Adaptive generalization. Arti-
�ial Intelligene Review, 7:313{328, 1993.


