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Abstra
t

It is the intention of this paper to stimulate interest
and highlight the possibilities and 
hallenges of at-
tempting to transfer knowledge between neural net-
works. The goal of knowledge transfer is to take ad-
vantage of previous training experien
e to solve related
but new tasks. This paper ta
kles the issue of transfer
of knowledge between radial basis fun
tion neural net-
works. We present some preliminary work illustrating
how a neural network trained on one task (the sour
e)

an be used to assist in the synthesis of a new but
similar task (the target).

1 Introdu
tion

The robustness and pattern mat
hing 
hara
teristi
s
of neural networks has enabled them to be applied to
many real-world, large-s
ale problems of 
onsiderable

omplexity [Bishop, 1995℄. They provide solutions to a
variety of 
lassi�
ation problems su
h as spee
h, 
har-
a
ter and signal re
ognition, as well as fun
tional pre-
di
tion and system modeling where the physi
al pro-

esses are not understood or are highly 
omplex. Most
of this neural network development e�ort has 
on
en-
trated upon what has be
ome known as the tabula rasa
approa
h, i.e. ea
h neural network is developed from
s
rat
h using the appropriate training data and does
not take advantage of previous task-related work.

However, humans tend to perform better at learning
new tasks after having been previously trained on a
similar task. It has been argued for a long time that
transfer of knowledge is an essential human 
apabil-
ity [Ellis, 1965℄. In most situations humans �rst try to
rely on our experien
e and adapt knowledge or a strat-
egy whi
h has been su

essful before. Neural networks
generally have diÆ
ulties sharing their task experien
e
be
ause ea
h network is trained individually on a spe-

i�
 task that may involve the modeling of a 
omplex
fun
tion. The learned fun
tion is stored a
ross the

weights and thresholds in a distributed form. This
diÆ
ulty hinders the isolation and transfer of desir-
able feature or a
tivity learned by the neural network
to another task [Pratt, 1993℄. This may not appear
to be a problem sin
e it is a relatively simple matter
to train a neural network given enough data. How-
ever, su
h a methodology for network development is

learly not biologi
ally plausible and also 
reates se-
vere diÆ
ulties for on-line adaptive learning. Sharkey
des
ribes the pro
ess of knowledge transfer as \adap-
tive generalisation" and argues the 
ase for inserting
prior knowledge into a neural network and is worth
repeating here at length:

\If 
onne
tionist nets are to be able to exhibit
adaptive behaviour, they need to be prestru
-
tured. Su
h prestru
turing 
an be a

om-
plished through training on related tasks... A
net 
an be said to exhibit a degree of adap-
tive generalisation when training on one task
results in positive transfer to another task.
In su
h a 
ase, information has been ex-
tra
ted that fa
ilitates the performan
e of a
se
ond task. On the other hand, when neg-
ative transfer is obtained, prior experien
e
interferes with subsequent learning. In this
way, not only 
an previous knowledge be in-

orporated by means of postive transfer, but
a net 
an be seen as having a predisposition
to learn 
ertain tasks rather than others."
[Sharkey and Sharkey, 1993℄

The remainder of this paper is stru
tured as follows:
se
tion two dis
usses the terminology and details of
task transfer as applied to neural networks; se
tion
three highlights the ar
hite
ture and 
hara
teristi
s of
radial basis fun
tion neural networks; se
tion four de-
s
ribes the experimental methodology; se
tion �ve dis-

usses the results and se
tion six presents the 
on
lu-
sions.



2 Knowledge Transfer

In this se
tion we dis
uss motivations, te
hniques and
methodology for knowledge transfer between RBF net-
works.

2.1 Task Transfer Terminology

In the literature, some terms used in task transfer
have several meanings whi
h 
an be 
onfusing. It will
be useful to de�ne the meanings of the various terms
whi
h are used in the following se
tions:
(i) Task. A task is the parti
ular fun
tion of the RBF
network to be transferred. In all the instan
es pre-
sented in this thesis it will refer to 
lassi�
ation tasks
of some type e.g. Vibration fault 
lassi�
ation, Iris
spe
ies 
lassi�
ation or Vowel 
lassi�
ation.
(ii) Data. Data refers to the training and test exam-
ples used to train the RBF networks. It is e�e
tively
what the tasks are performed on.
(iii) Network. The RBF network is trained on a par-
ti
ular 
lassi�
ation task using data from a parti
ular
domain.
(iv) A
tivity. An a
tivity is a spe
i�
 instan
e of a
task transfer operation e.g a
tivity 10 in table 3 refers
to task E being transferred over to task A.
(v) Domain. A domain is a general area of expertise
and 
an refer to all the knowledge in a given area e.g.
the Iris data set is a 
olle
tion of three types of Iris in
the domain of 
owers.

Early resear
h on task transfer by Ellis has provided
some metri
s to gauge the progress of transfer within
humans [Ellis, 1965℄. This resear
h 
an equally be ap-
plied to neural network learning. Ellis identi�ed three
results of attempting task transfer:
(i) Positive transfer. Learning the �rst task aided in
learning the se
ond task.
(ii) Negative transfer. The �rst task has hindered
learning on the se
ond task. The two tasks were so
dissimilar that the network parameters were initialized
to unsuitable values. This would result in the se
ond
task not rea
hing an a

eptable level of a

ura
y or
taking far longer than normal to train.
(iii) Zero transfer. No overall e�e
t was observed by
learning the �rst task. This 
ould be as a result of
small but equal positive and negative e�e
ts 
an
eling
ea
h other out.

2.2 Potential advantages of task transfer

Assuming positive transfer has o

urred, the following

hara
teristi
s should be present in the target network:

(i) Modeling tasks of in
reased 
omplexity. The ratio-
nale for knowledge transfer is based upon the fa
t that
humans are able to learn tasks that are of in
reasing
diÆ
ulty. However, if a diÆ
ult task is presented be-
fore the simpler prerequisite tasks then it is possible
that the learner may not be able to su

essfully 
om-
plete or will at best �nish the task by taking an inor-
dinate amount of time.
(ii) Learning on fewer training examples. A good in-
di
ation of the level of intelligen
e in humans is the
ability of a learner to qui
kly understand how to a
-

omplish a task without being repeatedly told how to
do it. Assuming task transfer was su

essful then the
previous task should have provided the network pa-
rameters with useful initial values (or better than ran-
dom values).
(iii) Training speedup. Humans tend to perform re-
lated tasks faster, it may be possible for neural net-
works to bene�t from a similar speedup in training
time.

3 Radial Basis Fun
tion Networks

Radial basis fun
tion (RBF) neural networks are a
model that has fun
tional similarities found in many
biologi
al neurons [Moody and Darken, 1989℄. RBF
networks have been proved to be 
apable of univer-
sal fun
tion approximation. RBF networks have been
applied to several real-world, large-s
ale problems of

onsiderable 
omplexity [Guang and Billings, 1996;
Fung et al., 1996℄. They are ex
ellent at pattern re
og-
nition and are robust 
lassi�ers, with the ability to
generalize in making de
isions about impre
ise input
data. They o�er robust solutions to a variety of 
las-
si�
ation problems su
h as spee
h, 
hara
ter and sig-
nal re
ognition, as well as fun
tional predi
tion and
system modeling where the physi
al pro
esses are not
understood or are highly 
omplex.

The RBF network 
onsists of feedforward ar
hite
ture
with an input layer, a hidden layer of RBF units and
an output layer of linear units. The input layer simply
transfers the input ve
tor to the hidden units, whi
h
form a lo
alized response to the input pattern. This
property appears to be very attra
tive for knowledge
transfer in neural networks. The a
tivation levels of
the output units provide an indi
ation of the nearness
of the input ve
tor to the 
lasses. Learning is nor-
mally undertaken as a two-stage pro
ess. An unsuper-
vised 
lustering te
hnique is appropriate for the hid-
den layer while a supervised method is applied to the
output layer units. The nodes in the hidden layer are
implemented by kernel fun
tions, whi
h operate over



a lo
alized area of input spa
e. The e�e
tive range
of the kernels is determined by the values allo
ated
to the 
entre and width of the radial basis fun
tion.
While the Gaussian fun
tion is normally used as the
re
eptive �eld other fun
tions su
h as the thin-plate-
spline fun
tion, multi-quadrati
 fun
tion and the in-
verse multi-quadrati
 fun
tions have been used [Lowe,
1997℄.

4 Methodology

This se
tion dis
usses the data sets used in the exper-
imental work and the task transfer te
hnique.

4.1 Data Sets

The data sets represent a variety of syntheti
 and real
world problems of varying 
omplexity (i.e. number of
examples, input features and 
lasses.).

Figure 1 gives the details of the data sets. The

olumns indi
ate the number of examples, the number
of 
lasses, the number of input features, if the data set

ontains 
ontinuous data, dis
rete data and the last

olumn indi
ates if any data is missing.

4.2 Task spe
i�
 
onstraints

Fa
tors whi
h must be 
onsidered are the di�eren
es
between the sour
e and target tasks. A sour
e task

onsists of a pre-trained RBF network and/or the orig-
inal data. A target task 
onsists of the available train-
ing data (whi
h may be insuÆ
ient) and information
about the number of input features and output 
lasses.
A number of fa
tors must be taken into a

ount when
judging the similarity between two tasks:
(i) Stru
tural di�eren
es. For example, the number
of inputs and outputs may not be the same for ea
h
task. If the sour
e task has a greater number of inputs
than the target task then the additional features may
enable a better 
lassi�er to be built.
(ii) Symboli
 di�eren
es. For example, the inputs and
outputs present in the sour
e task may not 
orrespond
to the same features on the target task. Even in
strongly related domains su
h di�eren
es 
an o

ur.
(iii) Complexity di�eren
es. For example, either the
sour
e or the target task may be more 
omplex. The

omplexity for ea
h task is determined by the number
of the degrees of freedom within the RBF network,
training time, and the a

ura
y of the RBF network.
(iv) Spatial di�eren
es. For example, it is likely that
the numeri
al values 
omprising the input spa
e may
di�er to a great extent, this 
an be partially alleviated

by s
aling before the training the networks. Large nu-
meri
al values would adversely a�e
t the 
lassi�
ation
ability.
(v) Ordering di�eren
es. For example, related to the

omplexity di�eren
e as it may be easier to under-
stand a simpler task before ta
kling a more 
omplex
task. Hen
e, the order in whi
h task transfer o

urs
may be 
ru
ial.

4.3 Experimental approa
h for task transfer

We suggest it may be more appropriate to view task
transfer within an RBF network as an analysis of the
hidden units with the obje
tive of re
ruiting those
units that may be useful in representing the se
ond
task. The sele
ted hidden units and weights are then

opied and assigned to the new task.

The sele
tion of RBF units deemed useful for transfer
was based upon the a
tivation levels of those units
when presented with the se
ond task training set.
Those radial basis units that had 
onsistently high
(near 1) mean a
tivation levels were sele
ted for trans-
fer. A variable set-point S for sele
ting the most a
-
tive hidden units was used. A high value is initially
assigned to S whi
h 
an be redu
ed depending upon
the strength of the task similarity. Figure 2 des
ribes
the transfer algorithm in detail.

S is used as a metri
 to judge the task similarity. It
may be redu
ed where appropriate to in
lude hidden
units that may 
ontribute towards a useful 
lassi�
a-
tion. Those hidden units that are sele
ted are 
om-
bined with the hiddden units generated from the ap-
propriate se
ond task training data. The hidden units
are grouped with the appropriate output 
lass units
by 
al
ulating a new output weight matrix.

5 Experimental Results

The tasks were organized into seven 
ombinations of
training sets. Task G 
ontains all three 
lasses and
therefore a
ts as a 
ontrol to monitor the e�e
ts of
transfer. Table 1 lists the 
ontents of ea
h task.

Figure 3 shows the order in whi
h the tasks were per-
formed and the e�e
ts of the transfer pro
ess in terms
of: 
lassi�
ation a

ura
y, number of 
oating point op-
erations required for training, number of hidden units
involved in transfer and the overall result of transfer
(positive, negative or zero).

Overall, the pro
ess of transfer worked quite well. The
�rst six a
tivities 
onsisted of single 
lass tasks. A
-



Figure 1: Composition of data sets used in experimental work

Data set Cases Classes Attrib Contin Dis
rete Missing
Xor(binary) 4 2 2 No Yes No
Xor(
ontinuous) 100 2 2 Yes No No
Iris 150 3 4 Yes No No
Housing(see notes) 506 3 12 Yes Yes No
Vowell(Peterson) 1520 10 5 Yes Yes No
Vowell(Deterding) 990 11 11 Yes Yes No
Protein(yeast) 1484 10 8 Yes No No
Protein(e
oli) 336 8 8 Yes No No
Dna(spli
e) 3190 3 60 No Yes No
Credit(German) 1000 2 20 No Yes Yes
Credit(Japanese) 125 2 9 Yes Yes Yes
Credit(Australian) 690 2 15 Yes Yes Yes
Abalone(see notes) 4177 3 8 Yes Yes No
Diabetes(Pima) 768 2 8 Yes No No
Monks1 556 2 6 No Yes No
Sonar 208 2 60 Yes No No
Vibration 1 1028 3 9 Yes No No
Vibration 2 1862 8 20 Yes No No

Figure 3: Results of knowledge transfer on Iris dataset

A
tivity Task Classi�
ation Complexity RBF units Total of Overall
Sequen
e A

ura
y (%) (MFlops) Transferred RBF units Transfer

1 A ! B 90 3.37 16 56 Positive
2 A ! C 86 1.68 1 41 Positive
3 B ! C 97 1.88 1 41 Positive
4 B ! A 75 3.68 19 59 Negative
5 C ! A { { 0 { Zero
6 C ! B { { 0 { Zero
7 A ! E 86 2.4 7 47 Positive
8 B ! F 90 3.9 9 49 Positive
9 C ! D { { 0 { Zero
10 E ! A 88 4.41 20 60 Positive
11 F ! B 92 3.99 11 45 Positive
12 D ! C 36 3.69 8 48 Negative
13 G 94 7.72 N/A 60 N/A

Table 1: Task training set 
omposition

Task Composition

Task A Versa
olor
Task B Virgini
a
Task C Setosa
Task D Versa
olor + Virgini
a
Task E Setosa + Virgini
a
Task F Setosa + Versa
olor
Task G Setosa + Virgini
a + Versa
olor

tivities 1, 2 and 4 had sour
e tasks that were 
losely
related to the target task and were able to 
ontribute
hidden units to the se
ond task. A
tivities 5, 6 and
9 
onsisted of those sour
e tasks that were too disim-

ilar to the target task and were unable to 
ontibute
any hidden units. It would have been possible to re-
du
e the setpoint value S and thus 
olle
t some hidden
units. However, in pra
ti
e the value of su
h units in

ontributing towards a useful 
lassi�
ation is insignif-
i
ant. Therefore the order in whi
h the tasks are pre-
sented is also an important feature of neural network
transfer, i.e. the zero transfer a
tivities 5 and 6 are
the reverse of positive a
tivities 2 and 3.

A
tivities 7-12 are more 
omplex 
onsisting of one 
lass
task transferred to two 
lass tasks and vi
e-versa. A
-
tivity 13 is a task trained on all three 
lasses and a
ts
as a 
ontrol to measure the e�e
ts of transfer upon the
other tasks. A
tivity 13 (TaskG) is the usual method
of training a neural network, i.e. all the training exam-



Input:
Sour
e task A network parameters
Sour
e task A training data
Target task B training data
Set-point S
Gaussian radius spread �

Output:
Target task B network
Hidden units from task A

Pro
edure:
Train sour
e task on A data
Set-point = upper value
Apply task B data to sour
e network A
While set-point � lower value

If Task A hidden unit a
tivations � S
Save hidden units

Else
De
rement S

If Hidden units found
Extra
t hidden unit parameters
Train task B network on task B data
Merge extra
ted units with task B network
Adjust � for all RBF 
enters
Compute new output unit weights
Save �nal network

Else
Exit program

Figure 2: Knowledge transfer algorithm

ples were supplied on a single training run. A
tivity
3 is interesting be
ause its 
lassi�
ation a

ura
y is
better than the 
ontrol task G. This was due to the
a
tivity 3 
onsisting of two 
lasses. The absent third

lass always 
auses mis-
lassi�
ation errors.

5.1 Inter-Task Transfer Experiments

This se
tion des
ribes the work performed on inter-
task transfer i.e. transfer between entire data sets
rather than a de
omposed task (intra-task) as that
performed on the Iris data set. Unfortunately, in most

ases task transfer failed to obtain favorable results.

The task transfer algorithm des
ribed in �gure 2 was
then applied to the other problem domains. It was ex-
pe
ted that previous learning on tasks within a related
family would give signi�
ant training advantages. The
tasks were organised into related tasks of training sets,
table 2 identi�es the 
ontents of ea
h task. Those tasks
pre�xed with a \U" are unrelated to all other tasks.

Modi�
ations were made to the original task trans-
fer algorithm. This involved developing a similarity

he
king algorithm whi
h was used as a pre-pro
essor
to task transfer. This new algorithm 
he
ked several

Table 2: Task naming 
onvention and 
omplexity rat-
ing

Task id Domain Complexity
A1 Xor(bin) 16
A2 Xor(
ontinuous) 16
B1 Vowel(peterson) 347.00
B2 Vowel(deterding) 1509.80
C1 Protein(yeast) 764.57
C2 Protein(e
oli) 287.18
D1 Credit(german) 211.70
D2 Credit(japan) 149.73
D3 Credit(australian) 118.57
E1 Vibration(1) 96.93
E2 Vibration(2) 879.78
U1 Iris 22.23
U2 Housing 102.73
U3 Dna 380.51
U4 Monks1 56.82
U5 Sonar 115.90
U6 Diabetes 630.36

of the task 
riteria dis
ussed earlier (stru
tural and

omplexity similarities). The 
omplexity measure was
easily assessed by using equation 1:

Complexity = (Ni+Nh+No+Nw2)=(100=Na

) (1)

where: Ni is the number of input features, Nh is the
number of hidden units, No is the number of output
units and Nw2 is the number of hidden to output unit
weights (W2). Na

 was the a

ura
y of the network
and was given a greater role in determining the 
om-
plexity than the other parameters.

5.2 Analysis of inter-task transfer

The disapointing results obtained from majority of the
inter-task experiments 
ould be tra
ed down to a num-
ber of potential sour
es of error.

� The averaged spread � values 
al
ulated for trans-
ferred hidden units were inappropriate. A hid-
den unit re
eiving a larger spread than it was
trained on is apt to over generalize and give false
positives. Conversely, a hidden unit re
eiving a
smaller spread than it was trained on is unlikely
to dete
t the appropriate input patterns and thus
generate false negatives.

� The averaged input feature values (� 
entres)

al
ulated for the transferred hidden units with
\missing" input features were inappropriate. No



Figure 4: Results of knowledge transfer for related tasks

A
tivity Task A

 Comp Symb RBFs Total Overall
Sequen
e (%) Di� Di�(%) Trans RBFs Transfer

1 A1 ! A2 100:100 Equal 0.0 4 6 Positive
2 A2 ! A1 100:100 Equal 0.0 4 4 Positive
3 B1 ! B2 86:86 Greater 50.0 9 209 Zero
4 B2 ! B1 62:62 Less 0.0 6 36 Zero
5 C1 ! C2 87:87 Less 45.0 45 80 Zero
6 C2 ! C1 57:57 Greater 35.0 11 131 Zero
7 D1 ! D2 93:93 Less 50.0 0 50 Zero
8 D1 ! D3 71:71 Less N/A 0 50 Zero
9 D2 ! D1 72:72 Greater 0.0 0 90 Zero
10 D2 ! D3 71:71 Less N/A 0 50 Zero
11 D3 ! D1 72:72 Greater N/A 0 90 Zero
12 D3 ! D2 93:93 Greater N/A 0 50 Zero
13 E1 ! E2 94:85 Greater 68.0 12 112 Negative
14 E2 ! E1 73:73 Less 0.0 23 46 Zero

analysis was performed to verify this hypothe-
sis. However, given the authors knowledge of how
spread and 
entre position values 
an a�e
t 
las-
si�
ation a

ura
y it is likely that this was a par-
ti
ulary damaging sour
e of error.

6 Con
lusions

The results of the initial experimental work on intra-
task transfer were en
ouraging. Although it was sus-
pe
ted that the Iris domain may have been too simple
to enable useful transfer of knowledge to o

ur. How-
ever, positive transfer did o

ur in a number of 
ases
be
ause of the de
omposition of the Iris data. This en-
abled the formation of three tasks that had the same
number of input features with RBF 
entre lo
ations
that were numeri
ally similar. The main fa
tor likely
to prevent the uptake of knowledge transfer by the neu-
ral network 
ommunity would 
on
ern to the pra
ti-

alities of training a network afresh versus the tradeo�
between the 
omputational overheads of the transfer
pro
ess. There are undoubtably many appli
ation ar-
eas where neural networks would not bene�t from task
transfer e.g. those sour
e to target tasks that have
di�erent numbers of input features and those whi
h
are from drasti
ally di�erent domains. Conversely, to
bene�t from task transfer the RBF networks under
s
rutiny should have the same number of inputs and
be from fairly similar domains.
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