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Abstract 

There is growing awareness of the overheating risks in new-build properties in 

the UK. However, this tends to be considered a problem principally for the 

southern regions in the UK, only becoming a serious issue in the North of 

England in the medium term and in the long term for Scotland. This notion tends 

to be largely predicated upon climate change predictions, differences in latitude 

and summer air temperatures.  This paper describes the results from Building 

Performance Evaluation (BPE) studies over a two-year period from 26 occupied 

new-build homes across Scotland which demonstrated incidences of overheating.  

Results suggest that low energy buildings are susceptible to overheating despite 

northerly latitudes, with 54% of houses studied overheating for more than six 

months annually, and 27% of homes overheating for less than 10% of the year. 

Evidence indicated that commonly used prediction tools do not appear to 

adequately anticipate overheating. This paper maps common overheating causes 

due to design and the role of occupants, identifying the risks due to the regulatory 

system, prediction and procurement processes, and the design and construction. 

A common finding was that design and occupancy factors appear to greater 

impact on overheating more than location and climatic factors. 

Keywords: Overheating, Building Evaluation, Design, Occupant behaviour, Low 

energy buildings, Passive House, Scotland. 

Introduction 

In recent years in the UK, responses to climate change by government (Parliament of 

the United Kingdom [UK], 2008; Scottish Parliament, 2009) and the construction 

industry (Parliament of the UK, 2006a) have led to improvements in building standards 

(Her Majesties Government [HMG], 2013; Scottish Government, 2015) and zero carbon 

reduction targets (Parliament of the UK, 2006b, p. 168). This has resulted in a 
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transformation of UK housing and manufacture, leading to improved insulation levels, 

airtightness, performance and technologies (National House Building Council [NHBC], 

2015). However, these changes have not always been accompanied by industry-wide 

capacity, understanding or skills, nor by occupant understanding of some of the new 

strategies and technologies (NHBC, 2015). 

Davies & Oreszczyn (2012) raised concerns about the unintended consequences 

of rapid change in the construction industry, which include summer overheating. A 

growing body of research in recent years has led to the identification of a number of 

variances between design intentions and as built performance in new building types 

which need to be addressed (Zero Carbon Hub [ZCH], 2014; NHBC, 2012; ZCH, 

2015a). These variations tend to be known collectively as constituting a ‘Performance 

Gap’ between intended or predicted, and real or monitored outcomes (ZCH, 2014). 

Building Performance Evaluation (BPE) is used to identify the performance gap of 

buildings, and the impact of this may have on energy consumption and occupants 

(Stevenson & Leaman, 2010).  

Overheating Concern 

Within the context of dwellings in the UK, one acknowledged issue is that of 

overheating (NHBC, 2012; ZCH, 2015a). However, this has mostly been identified as a 

problem in the South of the UK with overheating occurring in the North and in Scotland 

by the middle of the century due to an increase in external temperature due to climate 

change (Department for Communities and Local Government [DCLG], 2012, p. 35). 

Dynamic simulation of future climates in different building types by Peacock, Jenkins 

and Kane (2010) suggested that overheating in Edinburgh is a low risk particularly in 

buildings with thermal mass. These studies typically base their conclusions on the 

results of virtual modelling taking into account known patterns of summer temperatures, 



linked to latitude and future climate change predictions. Beizaee, Lomas and Firth 

(2013) studied overheating risk in English homes during summer, they found that the 

least warm homes were in the North East, North West and Yorkshire. However, they 

recommended for more research to be undertaken as to what temperatures are 

acceptable in English regions. Despite this, there is growing practice based evidence of 

overheating in Scotland and comparable northern latitude countries. McLeod, Hopfe, 

and Kwan (2013) suggest that Passive House and other super-insulated dwellings are 

already at risk of overheating in the UK, Ireland and Northern Europe. Morgan, Foster, 

Sharpe, and Poston (2015) suggest that there is increasing evidence of overheating 

already occurring in Scotland.  

There is growing evidence of overheating in low energy and Passive House 

properties in other northern latitude countries. Larsen and Jensen (2011) monitored 10 

Passive House dwellings in Skibet, Denmark (latitude is 55.7° N, Glasgow’s latitude is 

55.9° N) for three years, commencing October 2008; all homes were found to have 

severely overheated during the 2009 and 2010 summers. Their overheating assessment 

used the Danish Standards Authority “Ventilation for building – Design criteria for the 

indoor environment” with the acceptable Category B temperature range of 23-26°C 

selected for assessment. Analysis of one home indicated that during July and August the 

Category B temperature was exceeded 40% and 60% of the time during 2009 and 2010 

respectively; this level of overheating was not predicted by the Passive House Planning 

Package (PHPP) model which uses a temperature of 25°C as its overheating threshold. 

A study by Ruud and Lundin (2004) in Lindas, Sweden (latitude of 57.2° N, Inverness’ 

latitude is 57.5° N) found mean temperatures across 20 terraced apartments of 25.2°C, 

however temperatures were variable and some exceeded 30°C.  



Further north in Estonia ( average latitude 59° N, around the same as the 

Scottish Orkney Islands), Maivel, Kurnitski & Kalamees (2014) note that while 

overheating has not been considered an issue in Nordic countries, new buildings are 

changing and they compare increased levels of overheating in newer apartments 

compared to older ones. The Estonian regulations have a criterion for overheating, 

based on excess degree hours over 27° C. This was exceeded 13.7% of the time in new 

apartments that were monitored. 

Given that overheating is occurring in well insulated buildings in northern 

latidudes now and not under future climate scenarios, it follows that the causes of this 

needs further study, not only because it might represent additional energy consumption, 

but also due to the known risk that overheating represents to the comfort and health of 

occupants, , especially to the more vulnerable sections of society (Office of the Deputy 

Prime Minister [ODPM], 2006; Kovats & Hajat, 2008; NHBC, 2012). 

Overheating Definition & Calculation 

The assessment of overheating can be in relation to thermal comfort, health or 

productivity. As a result various evidence-based overheating thresholds are used by 

different disciplines with incomparable metrics (ZCH, 2015b, p. 2). Peacock et al. 

(2010) and ZCH (2015a) highlight that there is currently no precise definition of 

overheating of dwellings in the UK. A limitation of fixed temperature thresholds is that 

they do not take variation of occupancy comfort levels in relation to other factors and 

external temperatures into consideration (ZCH, 2015a). Use of adaptive comfort models 

such as CIBSE TM52 are limited as they are currently based on non-domestic evidence 

and testing is required as to the appropriateness for night-time comfort in bedrooms 

(ZCH, 2015a). A survey of housing providers by ZCH (2015, p. 36) found that fixed 

thermal comfort definitions for overheating assessment were derived variously from the 



Standard Assessment Procedure (SAP) Appendix P, CIBSE Guide A (2006) and 

Passive House Institute design criteria.  

SAP is the UK Government’s adopted means of assessing and comparing 

environmental and energy performance of dwellings and is primarily used as a threshold 

within the building regulations in each of the four constituent countries of the UK to 

assess compliance with the energy efficiency requirements of that country. Although it 

is primarily used as a compliance tool and contains a number of default assumptions, 

the data derived from these assessments is often used to underpin national policy 

initiatives (ZCH, 2015c). Appendix P of SAP provides an overheating check which uses 

predicted design and performance data to calculate the predicted average internal 

temperature for June, July and August, with overheating risk defined as slight between 

20.5 – 22°C, medium between 22-23.5°C and high when greater than 23.5°C (ZCH, 

2015a; ZCH, 2015c).  

As with SAP, the PHPP overheating calculation method is also a monthly 

calculation however PHPP uses a dynamic single zone building model where risk of 

overheating is based on exceedance of a fixed internal temperature threshold of 25°C. 

The difference between the two methods is PHPP’s use of a full calendar year and 

historical weather files for the assessment of solar gains, whereas SAP overheating 

criteria is based three summer months data, is independent of location and uses floor 

area assumptions for internal gains (ZCH, 2015c). An internal temperature of 25°C is an 

important health threshold identified in the UK Government Housing Health and Safety 

Rating System (HHSRS) (ODPM, 2006; ZCH, 2015). This temperature threshold is also 

used by the Passivhaus Institute in their PHPP software (Certified European Passive 

House [CEPH], 2014), to indicate risk of overheating during the design phase. For 

certification of Passive Houses, the PHPP temperature threshold may not exceed 25°C 



for more than 10% of the year. Bearing in mind climate change predictions and the fact 

that 10% of a year is a long time for a property to be overheating, good practice within 

the Passive House community acknowledges that less than 5% overheating annually is 

acceptable practice while ideally Architects and designers should aim for 0% 

exceedance of the temperature threshold annually (CEPH, 2014 p. 79, BRE 2011).  

Due to the health risks associated with temperatures that exceed 25°C the 

Passive House overheating criterion has been selected for use in this study. 

Temperatures have been noted in this paper without associated reference to relative or 

absolute humidity measurements. Relative humidity readings were taken as part of the 

monitoring of all properties but are rarely used in discussion of overheating generally 

and have not been used in this paper to avoid confusion. 

Project information 

The case studies in this paper represent six separate sites across Scotland with a total of 

26 occupied homes (see Table 1 and Figure 1) all of these dwellings were participating 

in the £8m Innovate UK (IUK) funded BPE studies and were located in rural and urban 

areas. The rural sites are located in Lockerbie, Dunoon and Inverness; the urban sites in 

Barrhead, Livingston and Glasgow. Of the 26 homes, 20 were provided for affordable 

rent and six were owner occupied and sold to the occupants under a shared equity 

scheme. The dwellings were designed and constructed as affordable Passive House 

dwellings (5no.) and low energy housing (21no.) these were subjects of the Phase 2 of 

the IUK BPE project that required data collection for a two year period. The objective 

of the BPE was to compare the designed performance against the actual indoor 

environmental conditions, energy consumption and fabric performance of new occupied 

domestic and non-domestic buildings across the UK. The data analysed for this paper 

represents one full calendar year (2013) to allow comparison across the various sites, as 



the project start and end dates were not synchronised.  

Table 1. Basic data for the 26 monitored homes. 
Site Code Home 

type 
Built Form  Occupants 

(A=adult, 
C = child) 

Floor 
Area (m2) 

No. of 
Bedrooms 

Storeys 

Lockerbie 

Latitude 55.1; 
Longitude 3.4 

DA1 House Semi-detached 1A 1C 87.00 2 2 
DA2 House Semi-detached 1A 1C 87.00 2 2 
DB1 House Semi-detached 3A 102.77 3 2 
DB2 House Semi-detached 2A 102.77 3 2 

Dunoon 
Latitude 55.9; 
Longitude 4.9 

TB1 House Semi-detached 1A 1C 104.00 2 2 
TA1 House Semi-detached 2A 3C 120.00 3 2 
TA2 House Semi-detached 2A 2C 120.00 3 2 

North 
Glasgow 
Latitude 55.9; 
Longitude 4.3 

 

GA1 Flat Flat – ground floor 1A 51.00 1 1 
GA2 Flat Flat – mid floor 1A 51.00 1 1 
GA3 Flat Flat – top floor 1A 53.00 1 1 
GB1 Flat Flat – ground floor 1A 66.00 2 1 
GB2 Flat Flat – top floor 2A 1C 66.00 2 1 
GB3 Flat Flat – ground floor 2A 1C 73.30 2 1 

Livingstone 
Latitude 55.9; 
Longitude 3.5 

LA5 House Mid-terrace 3A 104.00 3 2 
LA6 House End-terrace 3A 104.00 3 2 

Barrhead 
Latitude 55.8; 
Longitude 4.4 

BA1 House Mid-terrace 2A 93.09 2 2 
BB2 Flat Flat – top floor 2A 75.80 2 1 
BC1 House End-terrace 2A 75.44 2 1 

Inverness 
Latitude 57.4; 
Longitude 4.2 

IA1 House End-terrace 2A 4C 110.00 3 2 
IA2 House Mid-terrace 1A 5C 110.00 3 2 
IB1 House Semi-detached 2A 2C 90.00 3 2 
IB2 House Semi-detached 2A 2C 90.00 3 2 
IC1 Flat Flat – ground floor 1A 63.00 1 1 
IC2 Flat Flat – Top Floor 2A 63.00 1 1 
ID1 Flat Flat – ground floor 2A 76.00 2 1 
ID2 Flat Flat – ground floor 2A 76.00 2 1 

Note: Grey shading denotes Passive Houses 



 

Figure 1. Locations of the 26 monitored homes across Scotland. 

Methodology 

The internal temperature in three different rooms were monitored in each home during 

the calendar year of 2013, this data is represented as a percentage of each month the 

temperature exceeded the thermal threshold for an overall representation of the whole 

house for each home. This is represented to allow comparison with the single whole 

house volume of the Passive House standards. Monitoring of temperatures in the living 

room and master bedroom was common to all properties and this data provides a 

comparison of internal temperature for two rooms that form the main focus of this 

study.  

It should be noted that although the UK weather on average in 2013 was 

average, significant weather events occurred including a late cold spring with 

unseasonable snowfalls. The summer was sunny and warm with heatwave conditions in 

July with external temperatures 1.9°C above the 1981-2010 average. October and 



December were stormy with high winds and rainfall (Met-Office, 2016). Whilst 2013 

could be seen as slightly anomalous in the context of the preceding and surrounding 

years, it is nonetheless perhaps more representative of the years to come with more 

extreme weather events and predicted global surface temperature increases of 0.3°C to 

0.7°C between 2016-2035 and 1.5°C – 2°C between 2081-2100 (IPCC 2014).  

Indoor environmental monitoring data was collected via EnOcean Wireless 

Sensor Technology (WiST) using combined wall-mounted sensors to provide readings 

representative of the occupied rooms. These were positioned around 1.6m from finished 

floor level in locations away from draughts, heat sources and direct sunlight. The 

sensors measured internal temperature (°C) (0-51°C range, accuracy ±0.5°C over full 

range), Relative Humidity (RH) (0-100% range, accuracy ±1.5% over full range) and 

Carbon Dioxide (CO2) concentration (0-5000ppm range, accuracy ±50ppm over full 

range with auto-calibration every eight days). Wireless solar powered window contact 

sensors were used to monitor window opening occurrences in the rooms subjected to 

environmental monitoring. Data from these apparatus was transmitted via Modbus 

Receiver Unit every five minutes throughout the monitoring period to a central off-site 

server, transmitting data over General Packet Radio Service (GPRS) networks.  

Mains powered repeater units with internal antenna were positioned centrally in 

each dwelling to boost signals and improve reliability of data transfer. However, 

transmission problems were encountered at one of the rural sites due to lack of GPRS 

network reception. In these dwellings the data transfer was made via an Ethernet 

connection. A manual data cleansing process was adopted, where missing or corrupt 

data was amended using averages from readings immediately before and after the 

interruption. In dwelling DA1, large gaps in the data were detected effecting three 

months of data, these incomplete months were excluded from analysis.  



Additional studies informing this research were occupant interviews and 

questionnaires, these consisted of semi-structured interviews delivered by the research 

team, as well as a detailed understanding of the building fabric, made through a number 

of non-destructive surveys in adherence to the requirements of the BPE programme.  

The data is represented in two ways. The first is through the use of measured, 

quantitative data representing recorded temperatures from the monitored rooms. 

Secondly, a matrix of overheating factors was developed, based on a mixed methods 

approach, mapping a range of potential circumstances, design aspects and known 

occupancy behaviour factors which could lead to overheating in living rooms and 

master bedrooms in the 26 dwellings monitored.  

The matrix provides an overview of the range and frequency of these factors 

rather than an accurate assessment of each. In each case, a point is gained where there is 

an increased likelihood of overheating against a nominal UK average or for example 

where a measure has, or has not been taken, for example, provision of external shading 

on a South-facing window. Unlike computer modelling processes, the monitoring 

process does not allow for disaggregation or individual measurement of each factor. It is 

recognised that this study comprises a limited sample of dwellings from which to draw 

definitive conclusions, particularly for Passive House, with a limited geographical 

spread. The aim of this study is to use the data collected to illustrate the issues in 

relation to overheating that are arising in new homes in Scotland; and to demonstrate 

that overheating of dwellings is a current problem in Scotland.   

Results 

Table 2 depicts the results of the temperature monitoring at five minute intervals across 

all dwellings in 2013. The results represent the mean temperature across the whole 

(monitored) house, indicating the total percentage of time for each month and total year 



that the temperature in the house was over 25°C. This is in keeping with the Passive 

House criteria whereby: 0-5% of time annually over 25°C is considered acceptable, 

anything over 10% of time annually is considered for the building to have overheated. 

Total time over 30% is also depicted in the study to demonstrate the severity of 

overheating experienced in some homes, this represents the equivalent of overheating 

continuously for more than three months. 

Table 2. Percentage of time the whole (monitored) dwelling is overheating (>25°C) by 
month. 

 

Two findings are evident from this table. The first is the high levels of overheating 

recorded generally, and the second is that this overheating – in certain properties - 

appears to be spread widely throughout the year. In a domestic context, this calls into 

question the general assumption that overheating is only a summer issue caused by 

external temperature.  

With each of the five homes demonstrating the highest levels of overheating 

(DA1, GA2, LA5, BC1 and IA1 - over 40%) from different regions in Scotland, there is 



no overall trend relating overheating incidence to location, except perhaps in the case of 

Dunoon, which is discussed below.  

Of the five Passive House projects, one registered the second highest levels of 

overheating (DA1, 49%), while another registered the second lowest level (TB1, 3%). 

All of the Lockerbie projects had levels of overheating above the 10% threshold 

acceptable for Passive House compliance in reality, whereas the incidence of 

overheating predicted in their PHPP calculation was 0.2%. Overall however, it cannot 

be said that the Passive Houses fare particularly well or badly in comparison to the other 

homes. 

The general rise of overheating in the summer months may be expected but the 

significant peak of overheating recorded in the month of July is noticeable and in some 

cases it appears anomalous. Table 3 displays the combined mean internal monthly and 

annual temperatures of the living rooms and master bedrooms for each dwelling. July 

exhibits the highest mean temperatures with 60% of rooms overheating, with mean 

temperatures as high as 29.5°C (GA2 – Bedroom) and 28.3°C (GB2 Living Room). Of 

all of the rooms, 56% of living rooms and 68% of bedrooms were revealed to be 

overheating when compared with Passive House criteria. These temperatures may be a 

result of the July 2013 heatwave, with an average UK external temperature of 17°C, 

1.9°C above the average (Met-Office, 2016), as only 25% of rooms exhibited 

overheating out with this period. However, temperature patterns in adjacent months 

indicate that in the majority of homes, high mean temperatures were still achieved, but 

the mean was below the 25°C threshold.  

 

  



Table 3. Combined mean internal monthly and annual temperature (°C) in the living 

rooms and master bedrooms of all dwellings. 

 

Throughout the whole year, by monthly mean temperature, 25% of rooms were found to 

be overheating for between three and nine months. The total annual data indicated that 



seven rooms were found to have mean annual temperatures which exceeded 25°C. In 

both monthly and annual mean data, bedrooms represented 50% of the overheating. IA1 

was the only house which was overheating in both living room and bedroom. These 

findings are of particular concern as high temperatures in bedrooms do not allow the 

body to recover from daytime thermal stress (Kovats & Hajat, 2008). Many of the 

occupants stated that they opened windows in bedrooms overnight when it was hot, but 

some, particularly in ground floor flats did not do so due to issues with noise and 

security.  

Table 4 is the matrix, which maps a number of relevant factors relating to 

overheating in living rooms and bedrooms in all 26 homes while Table 5 describes each 

factor in more detail. The first three columns in Table 4 indicate basic incidence of 

overheating with black diamonds as shown more graphically in the preceding tables to 

allow comparison with the factors shown by red dots. Overheating was predicted in 

only two of the 26 properties, using the requisite SAP calculation and PHPP assessment 

for the Passive Houses. The SAP overheating prediction for dwellings ID1 and ID2, 

indicated a household incidence of 11% per annum. 64% of the homes monitored 

experienced a greater percentage of overheating than those where it had been predicted 

by SAP.  

  



Table 4. Overheating Matrix by room. 

 

  

Key:





DA1 LR                  15
DA1 Bed1                  16
DA2 LR                   17
DA2 Bed1                    18
DB1 LR                     19
DB1 Bed1                    18
DB2 LR                   17
DB2 Bed1                   17
TB1 LR               14
TB1 Bed1                14
TA1 LR              12
TA1 Bed1             11
TA2 LR              12
TA2 Bed1             11
GA1 LR                  16
GA1 Bed1                  16
GA2 LR                    18
GA2 Bed1                     19
GA3 LR                      20
GA3 Bed1                     19
GB1 LR                 16
GB1 Bed1                   17
GB2 LR                  17
GB2 Bed1                   17
GB3 LR                  17
GB3 Bed1                    18
LA5 LR              13
LA5 Bed1               13
LA6 LR               14
LA6 Bed1                14
BA1 LR            11
BA1 Bed1              13
BB1 LR                  16
BB1 Bed1               14
BC1 LR             12
BC1 Bed1             12
IA1 LR                14
IA1 Bed1              12
IA2 LR                 15
IA2 Bed1                14
IB1 LR                 15
IB1 Bed1                14
IB2 LR                14
IB2 Bed1               13
IC1 LR                14
IC1 Bed1               13
IC2 LR                14
IC2 Bed1              13
ID1 LR                  16
ID1 Bed1                  16
ID2 LR               13
ID2 Bed1             12
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Table 5. Matrix factors and parameters.  

 
Note: SAP=Standard Assessment Procedure; MEV=mechanical extract ventilation; DHW=domestic hot 
water. 

Of the eight properties with more than 30% overheating, half of the occupants 

concerned did not consider their home to have overheated, or at least did not consider it 

a problem. However, most of these occupants had moved from old draughty properties 

that were typically difficult to heat. Conversely, in the three homes registering the 

Factor Parameter

Overheating over 10% year Point if over 10% of whole year overheating
May-Sept overheating Point if overheating took place for any month in this period
Oct-April overheating Point if overheating took place for any month in this period
Predicted in SAP? Point if overheating predicted in SAP design calculations?
Predicted in Other? Point if predicted in another tool, e.g. PHPP, dynamic modelling etc.

High-risk occupants Point if occupants include children, elderly, infirm, other vulnerable. This does not change overheating, but alters the 
severity of risk

Identified by occupants Point where occupants themselves have identified overheating as an issue in the room studied or house as a whole. Does 
not alter overheating but indicates awareness / concern.

Latitude Point if property is in southern half of UK (none)
Altitude Point if property is below 50m altitude
Urban Point if urban location. References potential effect of Urban Heat Island
Av. July temperature Point if greater than UK 2013 average of 17°C for July
Av. July sunshine hours Point if greater than UK 2013 average of 249 hours for July

Microclimate shading Point if no effective microclimate shading. For example: by trees or nearby buildings / high ground which would reduce 
direct solar gain

Upper storey Point if room is on an upper floor. References potential for stack effect heat gain
Room height Point if ceiling heights are no more than 2.4m
Windows / Room area ratio Point if window area / room area ratio is greater than 0.3 (30%)
Orientation Point if windows face East, South or West 
External shading Point if no fixed / adjustable shading and facing, East, South or West

Heat Loss Parameter (HLP) 
(W/m2K)

Point if HLP less than 2.1W/m2K. (UK new build average) Heat Loss Parameter = Overall heat loss (fabric + vent) / total 
floor area. Refers to house overall. 

Thermally coupled wall/roof Point if thermally coupled fabric (eg solid stone wall). Vented cavity or insulation ‘de-coupling’ reduces risk of 
overheating via fabric conduction.

Airtightness Overall house value, point if tested to below 3.0 m3/h/m2 @50Pa

Low Thermal Mass Point where useful thermal mass exposed internally deemed to be ‘low’ under SAP assessment. (potential high / medium / 
low)

Window U-value Point if windows av. U-value below 1.4 W/ m2K (UK Building Standards Minimum standard) relates to potential for 
increased heat retention

Windows openable Point if windows cannot be accessed / opened (unusual in domestic, more common in non-domestic)
High/Low purge Point if no designed high / low openings, including accessible rooflights to allow natural purge ventilation
Cross ventilation Point where no capacity for cross ventilation possible
Continuous MEV Point if no continuous extract, ie intermittent only with trickle vents
Summer bypass etc. Point if MVHR is fitted without summer bypass. 

Thermostatic control Point if no thermostatic control installed or demonstrably not understood by occupants?
Programmatic control Point if no programmatic control installed or demonstrably not understood by occupants?

Occupancy level Point if occupancy level is above UK average of 2.3, used for living rooms only
Trickle vents closed Point if installed trickle vents inoperative or unused / left closed.
Windows kept closed Point where windows habitually kept closed. May be closed in practice due to security, noise or pollution.
Thermostat set high Point where thermostats knowingly set high ( more than 25°C or Thermostatic Radiator Valves (TRVs) on 4 or 5)

Cooking Point if high level of cooking and associated heat gains. Derived from sub-metering of cooker circuit recording more than 
30 kWh/month

Hot water storage Point if hot water storage vessel (if present) poorly or not insulated
Insulation of DHW pipes Point if hot water pipework (DHW) generally uninsulated
District heating / solar thermal Point if district heating or solar thermal pipework present and uninsulated 

Electrical equipment Point if medium or high level of incidental gains from electrical equipment, derived from sub-metering of circuits 
recording more than 250kWh/month.

Occupancy

Internal Gains

Overheating

Location

Form and Orientation

Construction

Ventilation

Heating



lowest percentages of overheating (TA1 – 1%, TB1 – 3% and GB1 – 3%) overheating 

was identified as an issue in the occupant feedback. TB1 in Dunoon had one of the 

lowest frequencies of overheating, but the occupant considered her house to have 

overheated at temperatures of over 22°C and took measures to mitigate against this.  

Occupants vary considerably in their attitude to overheating. In IA1, the house is 

recorded as overheating for a total of 46% of the year, but the occupants did not 

mention overheating in their feedback. Next door, in identical dwelling IA2, the 

occupants registered concern about overheating while their home overheated for a 

comparatively small 13% of the year. Similarly, IB1 in Inverness overheated for 38% of 

the year with no mention of overheating, while identical and adjacent IB2 overheated 

for only 5% of the time but the occupants noted overheating in their feedback.  

All monitored homes are north of the nominal mid-point of the UK suggesting a 

lower risk of overheating relative to the UK overall. Those located in Dunoon and North 

Glasgow were below 50m altitude, the Glasgow homes additionally being within an 

urban area, both factors which could increase risk of overheating. Only the homes in 

Dunoon were judged to have microclimate shading, due to high land mass to their 

immediate West. The three Dunoon homes also have no South facing windows as they 

form an East-West facing terrace of dwellings, it is worth noting that these homes 

consistently evidenced lower internal temperatures. 

A number of commonly considered factors are indicated in Table 4 within the 

‘Design Form and Orientation’ grouping but no clear trends emerge from this data 

relating to room size, ceiling height and relationships with window size. Perhaps 

surprisingly given the significance of solar gain on internal temperature, only 18 of the 

52 rooms monitored have a greater than 30% ratio of window to room size, and the 

incidence of these does not tally well with the overall incidence of overheating. 



However, of the houses monitored only one (BA1) at Barrhead had any form of 

external shading, a technique known to deal effectively with solar gain and reduce 

overheating ‘at source’. At this dwelling there is an installed framework onto which a 

deciduous climbing plant is trained but the climber is not yet well established so its 

effects are yet to be felt and currently no benefit can be seen. The BPE process 

highlighted that a number of these dwellings had fixed solar shading initially proposed 

but was subsequently removed due to value engineering. 

The Heat Loss Parameter (HLP) available from all SAP calculations was used as 

a representative single figure for the overall level of heat loss from each dwelling. HLP 

is defined as the specific heat loss (W/K) (including both fabric and ventilation losses) 

divided by the building’s internal floor area (m2) giving a resultant figure in W/m2K. 

The UK average for new build is 2.1W/m2K (Cooper & Palmer, 2011) so all of the 

projects as relatively low energy new builds were some way below this threshold. It is 

noteworthy that the two highest HLPs (‘worst insulated’) belong to BC1 and IA1 which 

also exhibit some of the highest levels of overheating.  

Thermal mass is often discussed in relation to reducing overheating so it is 

worth noting that almost all but three of the properties were built with little thermal 

mass exposed to the internal spaces. The generally high levels of overheating could 

support the argument that thermal mass is valuable in reducing overheating if purged 

correctly, but it should be noted that one of the properties, IA1 in Inverness, deemed to 

have higher levels of available thermal mass also exhibited one of the highest levels 

(46%) of overheating over the year. 

Cross ventilation was possible in 65% of the homes, although a similar majority 

do not allow for effective stack ventilation, for example a rooflight and ground floor 

window that can be left open to cool the house overnight. In still and warm weather this 



ventilation method can be more effective than cross ventilation, but in both cases 

successful ventilation of warm air can be compromised if internal doors are kept closed 

and do not have sufficient undercuts. 

Although the majority of the homes have some form of thermostatic control, 

about half have no form of programmatic control. In addition, a common finding as part 

of the occupancy feedback during the research was that occupants did not fully 

understand their heating and ventilation controls. In some cases, this lack of 

understanding was exacerbated by the complexity of the systems, the use of unfamiliar 

renewable technologies and controls, and a number of mistakes made in the installations 

themselves. 

In 42% of the properties, either trickle vents, or windows, or both, were kept 

closed at all times, thereby preventing the possibility of effective ventilation. In most 

cases, this behaviour was associated with those who did not mention overheating in 

their feedback but that is not the case in six properties (DB1, DB2, GB1, IA2, ID1 and 

ID2) which raises questions about the level of occupants’ understanding of the control 

mechanisms available to them. A clear correlation can be seen between four households 

(GA3, IA2, IB1 and IC1) where the thermostatic control was set to a consistently high 

level, and who did not mention overheating in their feedback. This suggests that in 

certain households, what is being defined in this paper as overheating could simply be 

the desired comfort range of some occupants.  

Table 4 indicates a high incidence of hot water storage and uninsulated hot water 

pipework, including ‘additional’ pipework associated with district heating or a solar 

thermal system that increase the internal temperature. 

Figure 2 maps the incidence of overheating in the properties, against the sum of 

all overheating factors noted in Table 4. As can be seen clearly, there is no discernible 



correlation between the incidence of potential factors causing overheating, and the 

monitored levels of overheating which suggests that there is no obvious priorities or 

evident first lines of enquiry.  

Figure 2. Percentage Overheating versus Matrix total points: by room. 

Discussion 

This study analysed temperature data from a sample of 26 new homes built to comply 

with 2007 and 2010 building (Scotland) regulations, the results indicate that overheating 

is currently occurring in Scotland. There is no denying that overheating is likely to be a 

greater problem in the South of the UK both now and in the future, but the evidence 

presented in this paper counters the notion that overheating is a medium- or long-term 

problem for the northern parts of the UK and Scotland in particular. The likely 

consequences of this are that policy makers, clients and those involved in the 

construction industry in Scotland may put off making the changes to dwelling design 

that increasing evidence suggests is needed now.  

Assuming that all new buildings will be built to similar or improved thermal 

standards, it is reasonable to suggest that a significant proportion of new properties 

constructed in the near future without ‘future-proofing’ against overheating could be 



similarly affected. These buildings will still be occupied in the 2050s and 2080s when 

climate change modelling suggests that overheating will be as serious in the North of 

the UK as it is currently becoming in the South of the UK (Peacock et al., 2010). 

However, to state this with certainty requires a wider study of house types, construction, 

occupant types, behaviour and geographical location within Scotland, similar to the 

English study by Beizaee et al. (2013).  

The extent of overheating and high mean internal temperatures, represented in 

Tables 2 and 3 respectively, provides evidence that within the 26 occupied homes, 

overheating presents a significant issue affecting all of the homes for at least one month 

per annum, with 54% of the houses being affected for more than six months and into the 

heating season. This runs counter to conventional wisdom in which overheating is 

associated with (external) summer temperatures, increasing with climate change. Over 

one year only 15% of houses managed to attain ‘acceptable’ conditions for less than 4% 

of the year and 27% of houses were found to be below the annual 10% Passive House 

overheating threshold, which itself represents the equivalent of more than one 

continuous month. It should be remembered that the results in Table 2 are averaged over 

the whole year and include an additional one or two rooms worth of data. In addition, 

there is no data correlating overheating with occupied hours, nonetheless, these figures 

give cause for concern. 

Comparing properties situated in the same locations and identical in form and 

construction, it would seem that occupant behaviour appears to be the biggest variable 

in determining likelihood of overheating. This can be seen when comparing identical or 

very similar house pairs such as DA1 and DA2, IA1 and IA2 and IB1 and IB2. 

However, the occupant profiles in two sets of the dwelling pairs (DA1 and DA2 and 

IB1 and IB2) are marginally different, thus requiring further investigation.  



Another observation of interest is that a number of occupants surveyed do not 

perceive the measured temperatures to be ‘overheating’ as such, but desirable 

conditions of comfort. Thus while a number of properties exhibited significant periods 

in which temperatures exceeded 25°C, overheating was not mentioned in occupant 

feedback. This may be due in part to the occupants having inhabited draughty 

inefficient homes previously. Conversely, a number of occupants of other households 

were concerned about overheating, whereas their homes exhibited far lower 

temperatures in general. Thus occupant perception of overheating, as well as resultant 

behaviour can be seen as a major factor. 

Table 4 takes a broad overview of the factors pertaining to overheating in the 26 

properties monitored. Few clear trends can be established but from the perspective of 

design, the following are of note: none of the properties have any form of effective 

external shading; only 19% have any thermal mass exposed to the internal spaces; and 

38% of rooms have potential for stack ventilation. In addition, it appears that hot water 

pipework is not being effectively insulated and many occupants do not clearly 

understand heating controls i.e. of those studied, 46% did not understand or use 

programmatic control and 15% did not understand or adjust thermostatic controls. 

Focused studies, particularly those based on modelling are valuable in that they 

enable the community of interest to understand the relative contribution of different 

factors within a controlled set of variables. previous studies have concentrated on 

locational and future climate change scenarios (Beizaee et al., 2013; Peacock et al., 

2010; Taylor et al., 2014), others have looked at constructional options and thermal 

mass (Adekunle & Nikolopoulou , 2016) while others have examined occupant control 

aspects in detail (Nicol & Humphreys, 2002). Whilst research based on monitoring of 

occupied homes may not allow us to identify the relative contribution of each factor, it 



has demonstrated that much design prediction modelling fails to take account of the 

myriad of design factors and in particular variations in occupant behaviour. By mapping 

potential causes, both the range and complexity of possible causes can be identified.  

The risks of overheating extend not just to those associated with thermal comfort 

and health of building occupants, but to the risks of increased electricity consumption 

from an uptake in air conditioning use (Peacock et al., 2010) to provide comfort 

cooling. Such an uptake would have a detrimental effect on the UK’s attempts to reduce 

carbon emissions and put greater strain on the National Grid.  

Architects and designers can do little about the wider developments of climate 

change, nor can they change the geography of their projects, but they can affect most of 

the other factors which tend to increase overheating risk, including the options for 

occupants. It should also be ensured that these measures are delivered in finished 

buildings. With an aim to provide buildings which are designed and built to inherently 

protect against overheating and provide opportunities for occupants to manage residual 

overheating risk is not difficult, nor costly to do, but requires an awareness of the risks 

from all of those involved in the built environment. 

Conclusions 

This paper intended to address overheating in energy efficient housing in Scotland using 

data collected through BPE studies and a matrix to identify design and occupant factors. 

Internal air temperature data collected over a one year period demonstrated that 

overheating, as defined by the Passive House standard, is occurring to concerning levels 

in dwellings in Scotland; in some cases this is not limited to the summer months. The 

matrix developed demonstrates that although there were no clear correlations for 

overheating there are a number of significant contributing factors in both the design and 

occupancy that requires to be considered for future developments. In short, design and 



occupancy factors appear to override geography and climate change. 

The fact that overheating appears not to be entirely a function of external 

temperature suggests that other factors are contributing to this phenomenon. Further 

research needs to be undertaken to demonstrate the interrelationship between 

contributing factors and overheating risk, which can be used to inform change in policy 

and construction practices. However, beyond both location and design factors, it 

appears that the individual behaviour of occupants, derived from varying individual 

perceptions of what constitutes comfortable conditions, can radically alter the 

performance of buildings in respect of overheating. Thus identical buildings were seen 

to perform very differently with different occupant patterns and behaviour. Further BPE 

research into overheating is required and needs to consider specific granular user data, 

including: use and understanding of systems and controls, window opening, internal 

door opening, trickle vent use, occupancy patterns and occupant perceptions. 

Awareness by policy makers and the regulatory system, supported by more 

accurate prediction tools, could create the context within which Architects and 

designers could easily adjust common strategies, details and specifications with the 

importance of these communicated to builders and occupants. Crucially, occupants 

would be able to take simple measures to maintain comfortable conditions and mitigate 

the effects of climate change for as long as possible. 
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